The School of Computing and Data Science (https://www.cds.hku.hk/) was established by the University of Hong Kong on 1 July 2024, comprising the Department of Computer Science and Department of Statistics and Actuarial Science and Department of AI and Data Science.

Abstract

Instrumental variable methods provide useful tools for inferring causal effects in the presence of unmeasured confounding. To apply these methods with large-scale data sets, a major challenge is to find valid instruments from a possibly large candidate set. In practice, most of the candidate instruments are often not relevant for studying a particular exposure of interest. Moreover, not all relevant candidate instruments are valid as they may directly influence the outcome of interest. In this article, we propose a data-driven method for causal inference with many candidate instruments that addresses these two challenges simultaneously. A key component of our proposal involves using pseudo variables, known to be irrelevant, to remove variables from the original set that exhibit spurious correlations with the exposure. Synthetic data analyses show that the proposed method performs favourably compared to existing methods. We apply our method to a Mendelian randomization study estimating the effect of obesity on health-related quality of life. .

About the speaker

Linbo Wang is an associate professor from the University of Toronto, Canada, and he holds a joint appointment at statistic, mathematics and computer science departments. His research interests are at casual inference and graphical models. Currently he is a Canada Research Chair in Causal Machine Learning.

 

 

Division of Computer Science,
School of Computing and Data Science

Rm 207 Chow Yei Ching Building
The University of Hong Kong
Pokfulam Road, Hong Kong
香港大學計算與數據科學院, 計算機科學系
香港薄扶林道香港大學周亦卿樓207室

Email: csenq@hku.hk
Telephone: 3917 3146

Copyright © School of Computing and Data Science, The University of Hong Kong. All rights reserved.
Don't have an account yet? Register Now!

Sign in to your account