The School of Computing and Data Science (https://www.cds.hku.hk/) was established by the University of Hong Kong on 1 July 2024, comprising the Department of Computer Science and Department of Statistics and Actuarial Science and Department of AI and Data Science.

×

Warning

Sorry - this event cannot be viewed using the link provided. Its possible the item may have been updated while you have been viewing the webpage.
Events for
Upcoming Seminars and Events
September 12, 2025
  • Title: Algorithmic Optimization of Carbon Footprint in Long-Haul Heavy-Duty E-Truck Transportation

    Time: 10:00am 

    Venue: CB308, HKU

    Speaker(s): Minghua Chen

    Remark(s): 

    Abstracct

    The US transportation sector accounted for 37% of the country's total CO2 emissions in 2023. While representing only 0.4% of on-road vehicles, long-haul heavy-duty trucks contribute a disproportionate 12% of transportation carbon emissions, making their decarbonization a critical leverage point for climate change mitigation. Electrifying long-haul heavy-duty trucks represents a vital step toward decarbonizing the trucking sector, yet realizing their full potential requires minimizing the carbon footprint of timely deliveries. This involves optimizing electric truck travel between distant locations across the national highway system under strict deadline constraints. The resulting task, encompassing strategic path, speed, and charging planning, is combinatorial in nature and proven NP-hard. Consequently, traditional methods, including our recent approximation algorithms, struggle to optimize at scale. To this end, we present a novel stage-expanded graph formulation that reduces modeling complexity while revealing exploitable problem structure. Our approach naturally decomposes the problem into tractable subproblems, enabling efficient coordination between routing and charging decisions while maintaining manageable graph sizes. Leveraging these structural insights, we design an efficient algorithm with theoretical performance guarantees. Simulations using real-world data across the US highway system demonstrate that our method achieves an additional 25% carbon reduction beyond the 36% reduction from electrification alone, yielding a total 61% emissions decrease. Furthermore, our carbon-optimized strategy, applicable across various truck types, can achieve comparable carbon reductions nine years sooner than relying solely on zero-emission truck adoption, providing a powerful tool in addressing climate change.

    About the speaker

    Minghua is a Presidential Chair Professor in School of Data Science, The Chinese University of Hong Kong, Shenzhen. He received the Eli Jury award from UC Berkeley in 2007 and The Chinese University of Hong Kong Young Researcher Award in 2013. His recent research interests include online optimization and algorithms, machine learning for optimization with hard constraints and its application in power system operations, intelligent transportation, distributed optimization, and delay-critical networking. He is an ACM Distinguished Scientist and an IEEE Fellow.




Division of Computer Science,
School of Computing and Data Science

Rm 207 Chow Yei Ching Building
The University of Hong Kong
Pokfulam Road, Hong Kong
香港大學計算與數據科學院, 計算機科學系
香港薄扶林道香港大學周亦卿樓207室

Email: csenq@hku.hk
Telephone: 3917 3146

Copyright © School of Computing and Data Science, The University of Hong Kong. All rights reserved.
Don't have an account yet? Register Now!

Sign in to your account