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ABSTRACT

Quite a number of models have been proposed under the name of structured analysis and design. It

has been pointed out, however, that there is no common theoretical framework among them.

Transformation of a specification from one model to another, although often recommended by

authors, can only be done manually. A category-theoretic approach is proposed in this paper. As a

result, development of structured specifications can be assisted through structured tasks and

morphisms, and the integration of structured models can be achieved through functors and free

categories.
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1. INTRODUCTION

Quite a number of models have been proposed under the name of structured analysis and design.

Examples are data flow diagrams (DeMarco, 1979; Gane and Sarson, 1979; Weinberg, 1980), Jackson

structure diagrams, Jackson structure text (Jackson, 1975), system specification diagrams, system

implementation diagrams (Jackson, 1983), Warnier/Orr diagrams (Orr, 1977) and structure charts

(Yourdon and Constantine, 1979). They are widely accepted by practising systems analysts and

designers through the simplicity of use and the ease of communication with users. It has been pointed

out by Tse (1986), however, that there is no common theoretical framework among them.

Transformation of a specification from one model to another, although often recommended by

authors, can only be done manually. An initial algebra approach has been proposed in that paper to

integrate these models. Given a specification in one structured model, the initial algebra approach

provides a formal means of mapping it to an equivalent specification in terms of another model. It
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does not, however, provide a means of developing the specification in the first place.

A category-theoretic alternative is proposed in this paper. The concept of an elementary task is

defined. Intuitively, it contains a process together with its input and output states. Structured tasks are

defined as elementary tasks linked up by five operations: sequence, selection, parallelism, iteration

and procedure call. The usual structured models such as DeMarco data flow diagrams, Yourdon

structure charts or Jackson structure text can be seen as different ways of representing structured

tasks. Morphisms, or functions preserving the structures, can be defined between tasks. The usual

refinements in structured methodologies can be seen as the reverse of morphisms. These concepts

help a system developer visualize the internal structure of a system, assemble or refine subsystems,

and verify the consistency and completeness of a design.

Furthermore, we can integrate the models by providing mappings from one type of specification to

another via the structured tasks. A DeMarco or Yourdon specification, for example, can be mapped to

a structured task specification by means of a functor. Conversely, giv en a structured task specification,

free categories of DeMarco or Yourdon specifications will result.

2. ADVANTAGES OF A CATEGORY-THEORETIC APPROACH

There are several advantages of using the category-theoretic approach to integrate the structured

analysis and design models:

(a) Many attempts have already been made to computerize the system development environment.

Examples are ISDOS (Teichroew and Hershey, 1977; Teichroew, 1980), SREM (Alford, 1985),

EDDA (Trattnig and Kerner, 1980), UDS2 (Biggerstaff, 1979), SAMM (Stephens and Tripp,

1978) and USE (Wasserman, 1982). Most of these approaches, however, are developed

independently of existing structured analysis and design models. As pointed out by Davis (1982)

and Martin (1984), practitioners are rather hesitant to use such new tools because they inv olve an

unfamiliar formal language. On the other hand, the category-theoretic approach simply adds a

theoretical framework to existing structured models. If development environments are based on

this concept, users can continue to employ the popular notations of structured specifications.

(b) Using the proposed approach, a system developer may conceive the target system in terms of

structured tasks, which are the equivalents of standard structuring mechanisms such as sequence,

selection and iteration used in the structured methodologies. The DeMarco, Yourdon or Jackson

notations are simply seen as variations on the representation of the structured tasks. Morphisms

or refinements can then be used by the system developer to manipulate the tasks. Properties of

structured functions can be used to verify the correctness of such manipulation.

(c) The conversion of a specification from one model to another can be achieved through the concepts

of functors and free categories. For example, a functor can map a DeMarco specification to a

structured task. Furthermore, a structured task can be mapped to a number of Yourdon

specifications. The system developer can then exercise discretion in choosing the appropriate

specification according to system requirements.

(d) Different structured models are suitable for different situations depending on the environment

(Shigo et al., 1980), emphasis (Colter, 1982) and stage of development (Lauber, 1982). Several

models are therefore required during the development process of one single system. If we provide

system developers with a means of mapping one model to another, the efficiency of system

development can be greatly improved.

(e) A number of development aids have been designed for individual structured models (Delisle et al.,

1982; DeMarco and Soceneantu, 1984; Tse, 1985). These aids, however, are useful only for
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individual models and are not applicable to others. If a way can be found to map one model to

another, the development aid for one structured methodology may be applied to another.

3. A BRIEF INTRODUCTION TO CATEGORY THEORY

In this section, we shall give a brief introduction to the fundamental concepts in category theory.

Interested readers may refer to Arbib and Manes (1975a; 1975b), Goguen et al. (1973; 1975; 1976),

Goldblatt (1984) and Mac Lane (1971) for further details.

The concepts of categories and functors are stronger than the concepts of sets and functions in set

theory. A category consists of a collection of objects, together with relationships amongst these

objects called morphisms. Functions can be defined mapping objects in one category to those of

another category. In particular, the most useful of these functions also preserve the morphisms

amongst objects, and they are known as functors. More formally, a category X consists of

(a) a class of objects in X;

(b) for each pair of objects A and B in X, a set of morphisms f : A → B

subject to the following conditions:

(i) For each pair of morphisms f : A → B and g : B → C, there exists a morphism g f : A → C,

which is called the composite of f and g.

(ii) Given any morphisms f : A → B, g : B → C and h : C → D,

h (g f) = (h g) f.

(iii) For each object A of X, there exists a morphism i
A
: A → A, which is called an identity morphism.

(iv) Given any morphism f : A → B,

f i
A

= i
f [A]

f.

Mappings between categories preserving the morphisms are called functors. More formally, for any

functor F : X → Y,

(a) each object A in X is related with one and only one object A′ in Y, denoted by A′ = F(A);

(b) each morphism f : A → B in X is related with one and only one morphism F(f): F(A) → F(B) in Y

such that compositions and identities are preserved. That is to say,

• if h = g f, then F(h) = F(g) F(f);

• F(i
A
) = i

F [A]
.

4. STRUCTURED TASKS

Let us apply the categorical concepts to structured models. We define a flow as a tuple

< <s
11

, s
12

, ... >, p, <s
21

, s
22

, ... > >,

where p is a process, s
11

, s
12

, ... are input states and s
21

, s
22

, ... are output states. Any standard

process p should have only one input state s
1

and one output state s
2
. The flow corresponding to a

standard process will therefore be of the form <s
1
, p, s

2
>.
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Besides the standard processes, we shall also define auxiliary processes which may have more than

one input or output states. There are four auxiliary processes:

(a) A decision, which has one input state s
1

and two output states s
2

and s
3
. The flow corresponding

to a decision is denoted by <s
1
, +, <s

2
, s

3
> >.

(b) A collection, which has two input states s
1

and s
2

and one output state s
3
. The flow corresponding

to a collection is denoted by < <s
1
, s

2
>, +, s

3
>.

(c) A fork, which also has one input state s
1

and two output states s
2

and s
3
. The flow corresponding

to a fork is denoted by <s
1
, ×, <s

2
, s

3
> >.

(d) A join, which also has two input states s
1

and s
2

and one output state s
3
. The flow corresponding

to a join is denoted by < <s
1
, s

2
>, ×, s

3
>.

We define an elementary task as a set containing one and only one flow. A task in general is defined

as either an empty set or a set containing one or more flows.

In structured models, we are more interested in tasks which are in the form of sequences, selections,

iterations, parallelisms or procedure calls of other tasks. Such tasks are called structured tasks, and

are defined recursively as follows:

(a) Any elementary task T = { <s
1
, p, s

2
> }  is structured. We shall denote this structured task by

T(s
1
, s

2
).

(b) The sequence of any two structured tasks T
1
(s

1
, s

2
) and T

2
(s

2
, s

3
), defined as

(T
1
•T

2
)(s

1
, s

3
) = T

1
(s

1
, s

2
) ∪ T

2
(s

2
, s

3
),

is a structured task.

(c) The selection of any two structured tasks T
1
(s

1
, s

2
) and T

2
(s

3
, s

4
), defined as

(T
1
+T

2
)(s

5
, s

6
) = { <s

5
, +, <s

1
, s

3
> > } ∪ T

1
(s

1
, s

2
) ∪ T

2
(s

3
, s

4
)

∪ { < <s
2
, s

4
>, +, s

6
> },

is a structured task.

(d) The parallelism of any two structured tasks T
1
(s

1
, s

2
) and T

2
(s

3
, s

4
), defined as

(T
1
×T

2
)(s

5
, s

6
) = { <s

5
, ×, <s

1
, s

3
> > } ∪ T

1
(s

1
, s

2
) ∪ T

2
(s

3
, s

4
)

∪ { < <s
2
, s

4
>, ×, s

6
> },

is a structured task.

(e) The iteration of any structured task T(s
1
, s

2
), defined as

*(T)(s
3
, s

4
) = { < <s

3
, s

2
>, +, s

5
> } ∪ T(s

1
, s

2
) ∪ { <s

5
, +, <s

1
, s

4
> > },

is a structured task.

(f) The procedure call of any structured task T(s
1
, s

2
), defined as

×(T)(s
3
, s

4
) = { <s

3
, ×, <s

1
, s

5
> > } ∪ T(s

1
, s

2
) ∪ { < <s

2
, s

5
>, ×, s

4
> },

is a structured task.

To ease user understanding, we shall represent structured tasks by task diagrams, as shown in

Figure 1. Task diagrams are, in fact, a variation of DeMarco data flow diagrams. We simply forget

about the input/output types and insist that every selection or parallelism must have a single input

state and a single output state, as shown in the example of Figure 2.
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5. STRUCTURED FUNCTIONS AND MORPHISMS

Given two tasks (or sets of flows) T
1

and T
2
, various functions f : T

1
→ T

2
can be defined mapping

individual flows of one task to those of the other. An important class of these functions is known as

structured functions, which preserve the structuredness of the subtasks in T
1

and T
2
. Formally, a

structured function f must satisfy the following condition for any subtask T in T
1
:

T is structured if and only if f [T]is structured.

We are interested in actually constructing a structured function. This can be done through abstractions

and morphisms. A function f : T
1

→ T
2

is an abstraction if and only if there exist a structured subtask

T in T
1

and an elementary subtask { <s
1
, p, s

2
> }  in T

2
such that

(a) any flow in T is mapped to the single flow <s
1
, p, s

2
> in T

2
;

(b) any other flow in T
1

is mapped to the same flow in T
2
.

Morphisms are then defined between tasks using the following recursive definition:

(a) An abstraction is a morphism

(b) Composition of morphisms are morphisms.

It can be shown that any morphism must be a structured function. In other words, a morphism

preserves the structures of the tasks.

We shall relate the concept of morphisms to the usual concept of refinements in structured analysis

and design. A task T
1

is said to be a refinement of another task T
2

if and only if there exists a

morphism f mapping T
1

on to T
2
. In this way, morphisms and refinements help the users to visualize

the development of a specification. The sample specification in Tse (1986), for instance, can be

developed in terms of morphisms and refinements. Thus, using the obvious morphisms,

T
1

= { <customer-info, process-sales, invoice> }

can be refined to

T
2

= { <customer-info, get-valid-order, valid-order>,

<valid-order, process-order, invoice-info>,

<invoice-info, put-invoice, invoice> },

which can be further refined to

T
3

= { <customer-info, get-order, order>,

<order, validate-order, valid-order>,

<valid-order, +, <lc-order, os-order>>,

<lc-order, prepare-local-invoice, pre-tax-info>,

<pre-tax-info, compute-tax, lc-invoice-info>,

<os-order, prepare-overseas-invoice, os-invoice-info>,

< <lc-invoice-info, ls-invoice-info>, +, invoice-info>,

<invoice-info, put-invoice, invoice> }

and so on. In this way, stepwise refinement can simply be conceived as a set-manipulation process,

which can easily be aided by a computerized system. For the sake of user friendliness, however, we

can also represent the refinement steps diagrammatically, as shown in Figure 3.
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6. FUNCTORS AND FREENESS

If we modify our structured tasks and morphisms slightly, we shall obtain the common structured

models. For example, if each of the input and output states is given a type such as source, sink, file or

data, then the structured tasks can be represented diagrammatically by DeMarco data flow diagrams.

If we forget about the names of input and output states, we can represent the structured tasks by

Jackson structure text, as shown in Figure 4. If all the abstractions are documented, one level at a

time, we can represent the structured tasks by Yourdon structure chart, as shown in Figure 5.

Since the structured models are slightly different ways of representing structured tasks, we would like

to know whether there is any mapping which helps us convert one representation to another. It can be

shown that the structured tasks and the morphisms form a category. Functors, or functions which

preserve the morphisms, can be defined between categories. A Yourdon specification, for example,

can be mapped to a task diagram specification by means of a functor. In other words, given a Yourdon

specification, one and only one structured task specification will result. Conversely, a structured task

specification can be mapped to free categories of Yourdon specifications. In this case, the system

developer will be presented with possible design choices and may select the appropriate

implementation based on personal experience, environmental considerations and hardware

characteristics. An illustration of functors and free categories is shown in Figure 6.

The arguments for DeMarco and Jackson specifications are similar. As a result, the structured models

can be linked up through the paths shown in Figure 7. Thus, we can integrate the models by providing

categorical bridges from one type of specification to another. A DeMarco specification, for example,

can be mapped to a number of Yourdon specifications via a structured task. The system designer can

then exercise discretion in choosing the appropriate option according to system requirements.

7. CONCLUSION

A category-theoretic approach is proposed in this paper to link up the structured analysis and design

models. The concepts of structured tasks and morphisms are defined. They help a system developer

visualize the internal structure of a system, assemble or refine subsystems, and verify the consistency

and completeness of a design. These can be done through simple set-manipulation with the aid of

task diagrams.

The structured tasks and the morphisms form a category. Similar categories can be defined over other

structured models such as DeMarco data flow diagrams, Yourdon structure chart and Jackson

structured text. We can integrate the models by providing categorical bridges from one type of

specification to another via the structured tasks. A DeMarco specification, for example, can be

mapped to a number of Yourdon specifications. The system developer will be presented with possible

design choices and may select the appropriate implementation based on personal experience,

environmental considerations and hardware characteristics.
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