
 

In Black and White: An Integrated Approach to 

Class Level Testing of Object-Oriented Programs 
 

HUO YAN CHEN 

Jinan University 

T.H. TSE, F.T. CHAN 

The University of Hong Kong 

and 

T.Y. CHEN 

The University of Melbourne 

 
 

Because of the growing importance of object-oriented programming, a number of testing strategies have been proposed. 

They are based either on pure black-box or white-box techniques. We propose in this paper a methodology to integrate the 

black- and white-box techniques. The black-box technique is used to select test cases. The white-box technique is mainly 

applied to determine whether two objects resulting from the program execution of a test case are observationally equivalent. It 

is also used to select test cases in some situations. 

 

We define the concept of a fundamental pair as a pair of equivalent terms that are formed by replacing all the variables on 

both sides of an axiom by normal forms. We prove that an implementation is consistent with respect to all equivalent terms if 

and only if it is consistent with respect to all fundamental pairs. In other words, the testing coverage of fundamental pairs is as 

good as that of all possible term rewritings, and hence we need only concentrate on the testing of fundamental pairs. Our 

strategy is based on mathematical theorems. According to the strategy, we propose an algorithm for selecting a finite set of 

fundamental pairs as test cases. 

 

Given a pair of equivalent terms as a test case, we should then determine whether the objects that result from executing the 

implemented program are observationally equivalent. We prove, however, that the observational equivalence of objects 

cannot be determined using a finite set of observable contexts (which are operation sequences ending with an observer 

function) derived from any black-box technique. Hence, we supplement our approach with a “relevant observable context” 

technique, which is a heuristic white-box technique to select a relevant finite subset of the set of observable contexts for 

determining the observational equivalence. The relevant observable contexts are constructed from a Data member Relevance 

Graph, which is an abstraction of the given implementation for a given specification. A semi-automatic tool has been 

developed to support this technique. 

 

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications  languages; D.2.5 

[Software Engineering]: Testing and Debugging  test data generators; D.3.2 [Programming Languages]: Language 

Classifications  object-oriented languages 

 

General Terms: Algorithms, Languages, Reliability 

 

Additional Key Words and Phrases: Abstract data types, algebraic specification, object-oriented programming, software 

testing methodologies, observational equivalence 

 
 

© ACM, 2001. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for 

redistribution. The definitive version was published in ACM Transactions on Software Engineering and Methodology 7 (3): 

250–295 (1998). http://doi.acm.org/10.1145/287000.287004. 
This research is supported in part by a grant of the Hong Kong Research Grants Council, a grant of the Guangdong Province Science 

Foundation (#950618), and a grant of the Australian Research Council. 

Authors’ addresses: Huo Yan Chen, Department of Computer Science, Jinan University, Guangzhou 510632, China. Email: 

“tchy@maina.jnu.edu.cn” and “hychen@cs.hku.hk”. T.H. Tse (Contact Author), Department of Computer Science, The University of 

Hong Kong, Pokfulam Road, Hong Kong. Email: “thtse@cs.hku.hk”. (Part of this research was done when the second author was an 

exchange visitor at the University of Melbourne.) F.T. Chan, School of Professional and Continuing Education, The University of Hong 

Kong, Pokfulam Road, Hong Kong. Email: “hrxecft@hkucc.hku.hk”. T.Y. Chen, Department of Computer Science, The University of 

Melbourne, Parkville 3052, Australia. Email: “tyc@cs.mu.oz.au”. 

Administrator
   HKU CSIS Tech Report TR-96-07



2 

1. INTRODUCTION 

 

The special characteristics and properties of an object-oriented approach render resulting software 

systems more reliable, maintainable, and reusable. However, an object-oriented approach also poses new 

challenges to software testing as a software system is now composed of classes of objects and has unique 

features not found in other programming paradigms. New testing problems arise from the following facts: 

(1) Programs in an object-oriented system are not necessarily executed in a predefined order; the 

sequence of invocation of methods in a class is not specified explicitly; and there are more variations in 

combining methods in the same class or across different classes [1] . (2) Special testing techniques are 

also required to deal with inheritance, polymorphism, overloading, message passing, association, 

aggregation, and state-dependent behavior [2, 3, 4, 5, 6, 7]. (3) Furthermore, it is mandatory to derive an 

algorithm for determining the observational equivalence of the output objects so as to judge the 

correctness of implementations. The concept of object observational equivalence reflects the 

encapsulation and information hiding features of the object-oriented paradigm. In this paper, we only 

consider the facts (1) and (3) in class level testing, which concerns only the interactions of methods and 

data within a given class. However, inheritance, polymorphism, overloading, message passing, 

association, and aggregation concern the relationships and interactions among different classes in a given 

cluster, which are considered in our other paper [8] 

 

In recent years, a number of papers on class-level testing of object-oriented programs have been 

published. The techniques involved can be classified into two categories. The black-box technique refers 

to program testing based on software specifications [9, 10, 11]; whereas the white-box technique refers to 

that based on information from the source code of the developed systems [1, 12, 13, 14, 15, 16, 17]. Each 

technique has its advantages and disadvantages. For example, if part of the specification is missing in an 

implementation, there is no way of revealing the problem using a pure white-box technique. On the other 

hand, we shall formally prove that it is impossible to determine whether two objects are observationally 

equivalent using a pure black-box technique. We therefore propose to integrate black- and white-box 

techniques in our project. We do not consider program syntax errors and specification errors in this 

paper. 

 

The organization of the paper is as follows. Section 2 states the problems of test case selection, 

including the reasons why we use equivalent sequences of operations rather than individual operations as 

test cases, and our new selection strategy. In Section 3, we present a white-box technique, namely a 

“relevant observable context” technique, to determine the observational equivalence of objects. Section 4 

is devoted to comparing our approaches with related work by other researchers. In Section 5, we 

conclude our current findings, summarize their limitations, and make suggestions for future work. 

 

 

2. SELECTION OF TEST CASES 

 

2.1 Background: Equivalent Terms as Test Cases 

 

Algebraic specifications are popular in the formal specification of object-oriented programs [18, 19, 

20]. An algebraic specification for a class consists of a syntax declaration and a semantic specification. 

The syntax declaration lists the operations
1
 involved, plus their domains and co-domains, corresponding 

to the input and output parameters of the operations. The semantic specification consists of equational 

                                                 
1
 In this paper, the word “operation” is used in a specification, while its counterpart in the implementation is called a 

“method”. 



3 

axioms that describe the behavioral properties of the operations. The following is an example of an 

algebraic specification for the class of integer stacks. 

 

Example 1 

 

module INTSTACK is 

classes Int Bool IntStack 

inheriting INT 

operations 

new:  IntStack 

_.empty: IntStack  Bool 

_.push(_): IntStack Int  IntStack 

_.pop: IntStack  IntStack 

_.top: IntStack  Int  {NIL} 

variables 

S: IntStack 

N: Int 

axioms 

a1: new.empty  true 

a2: S.push(N).empty  false 

a3: new.pop  new 

a4: S.push(N).pop  S 

a5: S.top  NIL if S.empty 

a6: S.push(N).top  N  

 

Intuitively, a term is a series of operations in an algebraic specification. For example, 

new.push(1).push(2).pop is a term in the class of integer stacks above. A term is in normal form if and 

only if it cannot be further transformed by any axiom in the specification. For example, 

new.push(1).push(2) is in normal form but new.push(1).push(2).pop is not. 

 

 The concept of equivalent terms has been adopted in testing [9, 11, 21, 22, 23]. Two terms are said to 

be equivalent if and only if they can both be transformed to the same normal form. The terms 

new.push(1).push(2).pop and new.push(3).pop.push(1) are equivalent as they can both be transformed to 

the normal form new.push(1). A term without variables is called a ground term. In this paper, we only 

consider ground terms because in dynamic testing, actual test cases involve ground terms only. 

 

 Let u1 and u2 be two ground terms and s1 and s2 be their corresponding method sequences in a given 

implementation. The test case {u1, u2} reveals an error of the implementation if u1 is equivalent to u2 but s1 

and s2 produce observationally different objects. 

 

The idea of using pairs of equivalent terms, rather than individual operations, as test cases in 

object-oriented black-box testing is justified by the following reasons: 

 

(1) In object-oriented programming, a series of messages are often passed to an object, and the resulting 

object is then evaluated for correctness. The concept of observational equivalence is very important 

here. Consider, for example, a word processor that maintains the history of insertions and deletions 

in its document file for the purpose of undo’s and redo’s before it is finally saved. A user may enter 

a series of messages into the word processor, possibly with a number of wrong insertions followed 



4 

by a number of corrective deletions. Another user may make different mistakes followed by 

different corrections when creating the same document. In either case, as long as they produce the 

same printed version, the final document files produced by the two users should be regarded as 

observationally equivalent. The concept of “equivalent terms” models this phenomenon very 

naturally. A series of messages passed to the object is modeled by a sequence of operations in a term. 

The objects resulting from two different series of messages would be equivalent if their observable 

versions, modeled by normal forms, are identical. 

 

(2) The conventional approach of testing the output B of an individual operation _.op using an input A is 

just a special case of the testing of equivalence. The equivalent terms in this case are A.op and B. 

However, testing pairs of equivalent terms includes the checking of interactions among operations 

in the terms, while testing individual operations separately does not. 

 

Obviously, if an error occurs in a common subterm of a pair of equivalent terms, it cannot be revealed 

with this pair as a test case. We can, however, find another pair of equivalent terms to reveal this error. 

For example, if u1 = new.push(1).push(2).pop and u2 = new.push(1), then u1 and u2 are equivalent. The 

common subterm of u1 and u2 is new.push(1). If _.push(1) is erroneously implemented as _.push(11), 

then the error cannot be detected by the test case of equivalent terms u1 and u2, but can be revealed by 

another pair of equivalent terms new.push(1).top and 1. 

 

2.2 Basic Concepts 

 

 The following are the formal definitions of the basic concepts used in this paper. Definitions 2.1, 2.2, 

2.3, and 2.6 are about algebraic specification, Definitions 2.7 to 2.10 are about implementation, while 

Definitions 2.4 and 2.5 are related to both. 

 

 Definition 2.1 The sets TC of ground terms in a term algebra T are defined recursively as follows: 

 

(a) For any constant or constant operation f:  C, f is a ground term in TC. The length of f is defined to 

be 1. 

 

(b) For any operation _.f(_, ..., _): C0 C1 ... Cn  C (where n  0), and for any ground terms ui in TCi, 0  

i  n, u0.f(u1, ..., un) is a ground term in TC. Each ui is a proper subterm of u0.f(u1, ..., un). Furthermore, 

if v is a proper subterm of ui, then v is also a proper subterm of u0.f(u1, ..., un). The length of u0.f(u1, ..., 

un) is defined as 

 

length(u0.f(u1, ..., un)) = 1+ length(u0) + length(u1) + ... + length(un) 

 

In Example 1, for instance, new.push(1).push(2).pop.top is a ground term, with proper subterms 

“new.push(1).push(2).pop”, “new.push(1).push(2)”, “new.push(1)”, “2”, “new”, and “1”. Their lengths 

are shown in Table 1. By Definition 2.1, all ground terms are of finite lengths. 
 



5 

Table 1 Lengths of terms 

 

Terms Lengths 

“1” 1 

new 1 

“2” 1 

new.push(1) 3 

new.push(1).push(2) 5 

new.push(1).push(2).pop 6 

new.push(1).push(2).pop.top 7 

 

 Definition 2.2 Suppose 

(a) a0: u = u’ is an equational axiom such that each variable occurring in u’ also appears in u. 

(b) u0 is a ground term containing a subterm that is a substitution instance of the left-hand side u of the 

axiom. 

(c) if we replace that subterm in u0 by the corresponding substitution instance of the right-hand side u’, 

the result is a ground term u1. 

Then we say that the ground term u0 can be transformed into the ground term u1 using the axiom a0 as a 

left-to-right rewriting rule. This is denoted by the notation: 

 

a0 

u0  u1. 

 

 In Example 1, for instance, the ground term new.push(1).push(2).pop.top can be transformed into 

new.push(1).top using axiom a4 as a left-to-right rewriting rule, and new.push(1).top can be transformed 

further into the ground term “1” using a6. These transformations are expressed as: 

 

 a4 a6 

 new.push(1).push(2).pop.top  new.push(1).top  1. 

 

 Definition 2.3 A ground term is said to be in normal form if and only if no further axiom is 

applicable to it as a left-to-right rewriting rule. A specification is said to be canonical if and only if every 

sequence of rewrites on the same ground term reaches a unique normal form in a finite number of steps. 

 

 Definition 2.4 Suppose A1, ..., Ai, and E are classes different from class C, and D1, ..., Dk are classes 

that may or may not be different from class C, where i, k  0. An operation or method f: A1 ... Ai  C is 

called a creator of class C. An operation or method _.g(_, ..., _): C D1 ... Dk  C is called a constructor of 

class C if it can appear in a normal form. If an operation or method _.h(_, ..., _): C D1 ... Dk  C cannot 

appear in any normal form, it is called a transformer of class C. An operation or method _.p(_, ..., _): C 

D1 ... Dk  E is called an observer of class C. 

 

 In Example 1, for instance, the operation new is a creator, _.push(N) is a constructor, _.pop is a 

transformer, and _.empty and _.top are observers. 

 

Definition 2.5 Suppose C is a class of a given specification. A valid sequence of operations or 

methods in C, starting from a constructor or transformer but ending in an observer, is called an 

observable context on C. 

 



6 

 The general form of an observable context oc is as follows: 

 

  oc = _.f1(...).f2(...)...fk(...).obs(...) 

 

where _.f1(...), _.f2(...), ..., _.fk(...) are constructors or transformers of class C and _.obs(...) is an observer 

of class C. For any object O in C, O.oc denotes the result of applying oc to O. For example, oc = 

_.push(1).push(2).pop.push(4).top is an observable context on the class of integer stacks given by 

Example 1. The result of applying it to new is new.push(1).push(2).pop.push(4).top = 4. 

 

 Definition 2.6 For a given canonical specification, two ground terms u1 and u2 are said to be 

equivalent (denoted by u1 ~ u2) if and only if both of them can be transformed into the same normal form 

by some axioms as left-to-right rewriting rules. 

 

 The following definition is adapted from [11, 22]: 

 

 Definition 2.7 Given a canonical specification and its implementation in a class C, two objects O1 

and O2 in C are said to be observationally equivalent (denoted by O1  O2) if and only if the following 

conditions are satisfied: 

 

(a) When C is a class provided by the implementation language, O1 and O2 are identical according to the 

built-in equality in the language. 

 

(b) When C is a user-defined class, for any observable context oc on C, O1.oc is observationally 

equivalent to O2.oc in the output class. 

 

Let Oi.dj represent the value of a data member dj in an object Oi. Notice that even if O1.dj  O2.dj for 

some data member dj of the objects O1 and O2, it does not necessarily mean that O1 and O2 are 

observationally nonequivalent. This point reflects the encapsulation or hiding of implementation details 

in the object-oriented paradigm. 

 

For a canonical system, the observational equivalence of objects is reflexive, symmetric, and 

transitive. 

 

 Definition 2.8 Given a canonical specification and its implementation, a series of methods 

corresponding to the operations in a ground term is called a method sequence corresponding to the 

ground term. Two such sequences s1 and s2 are said to be equivalent (denoted by s1  s2) if and only if they 

produce observationally equivalent objects. 

 

 For a canonical system, the equivalence of method sequences is reflexive, symmetric, and transitive. 

 

Definition 2.9 Suppose P is an implementation of a canonical specification SP. P is said to be 

complete if and only if, for every operation f in SP, there exists one and only one method mf in P that 

implements f. 

 

We can regard a complete implementation as a mapping  from the specification to the 

implemented class, such that ( f ) = mf. Let u = f1.f2...fk be a ground term in the class. We write the 

method sequence ( f1).( f2)...( fk) as (u). 

 



7 

 Definition 2.10 A complete implementation  is said to be consistent with respect to the equivalent 

ground terms u1 and u2 if and only if the corresponding method sequences (u1)  (u2). 

 

 Obviously, given a canonical specification, if a complete implementation is not consistent with 

respect to some equivalent ground terms, then there is an error in this implementation. Hence, this forms 

the basis of using equivalent ground terms as test cases. 

 

2.3 Our Strategy: Fundamental Pairs as Test Cases 

 

 Although we have seen the rationale behind the use of equivalent ground terms as test cases, the set 

of all such terms for a given specification is infinite in general. Exhaustive testing is of course impossible. 

How do we select a finite representative subset of all equivalent ground terms as test cases? In this and 

the next sections, we shall propose a mathematically based strategy for selecting representative equiva-

lent ground terms as test cases. First, we define an important concept as follows. 

 

 Definition 2.11 For a given canonical specification, a pair of equivalent ground terms, formed by 

replacing all the variables on both sides of an axiom by normal forms, is called a fundamental pair of 

equivalent terms induced from the axiom. For the simplicity of expression, we shall refer to such a pair as 

a fundamental pair in this paper. 

 

 In Example 1, the pair of equivalent ground terms new.push(1).push(2).push(3).pop  

new.push(1).push(2) can be formed by replacing the variables S and N in axiom a4 by the normal forms 

new.push(1).push(2) and “3”, respectively, and hence is a fundamental pair induced from axiom a4. 

However, the pair of equivalent ground terms new.push(1).push(2).pop.push(3).pop  new.push(1) is not 

fundamental. 

 

 When we generate fundamental pairs from an axiom, if the right side of the axiom contains some 

conditions, the selected normal forms to replace variables have to satisfy these conditions. 

 

 Having defined the basic concepts, we would like to state our strategy for test case selection. We 

prove that, in order to test whether a complete implementation of a canonical specification is consistent 

with respect to all equivalent ground terms, we need only test fundamental pairs. That is, the testing 

coverage of all fundamental pairs remains the same as that of all equivalent ground terms. In other words, 

any error revealable by general equivalent ground terms can be revealed by some fundamental pairs. 

 

 Example 2 Given the specification as shown in Example 1, consider an erroneous implementation in 

which the second call of pop returns a wrong value because of a flag. In this implementation, a stack is 

represented by an array and has an internal Boolean flag that is set to false when a new stack is created. 

The operation pop is implemented as follows
2
: 

 

S.pop: 

if S.flag then return NIL; /* An error */ 

else { ... /* If S.flag is false, then pop behaves properly. The code for the correct 

implementation will not be listed in full here. */ 

S.flag = true; } 

 

                                                 
2
 This example is due to [24]. 



8 

This error can be revealed by the following pair of general equivalent ground terms: 

 

  w1 = new.push(1).push(2).pop.push(3).pop, 

  w2 = new.push(1); 

 

It must also be exposed by a fundamental pair, say, 

 

  u1 = new.push(1).push(2).push(3).pop, 

  u2 = new.push(1).push(2). 

 

 Executing the corresponding implementation method sequences s1 and s2 of u1 and u2, respectively, 

we obtain the following objects as a result: 

 

array flag  /* Two data members in the implementation */ 

O1 = ( [1, 2], true ) 

O2 = ( [1, 2], false ) 

 

Since O1.pop.top = NIL but O2.pop.top = 1, by Definition 2.7, O1 and O2 are not observationally 

equivalent. Thus, (s1s2), but u1 ~ u2. By Definition 2.10, the error is detected by u1 ~ u2.  

 

In Example 1, for instance, we need only select test cases like the fundamental pair 

new.push(1).push(2).push(3).pop  new.push(1).push(2), and need not consider general equivalent 

ground terms like new.push(1).push(2).pop.push(3).pop  new.push(1). Obviously, the set of funda-

mental pairs is a proper subset of the set of equivalent ground terms. 

 

 To prove Theorem 2, we need the following lemmas and Theorem 1. 

 

 Lemma 1 If a ground term ui is a proper subterm of ground term u, then length(u) > length(ui) > 0. 

 

Proof: 

 

The proof of Lemma 1 follows immediately from Definition 2.1.  

 

 Lemma 2 A canonical specification cannot contain any axiom a in the following form: 

 

a: X  T 

 

where X is a variable, T is a term, and X and T belong to the same class. 

 

Proof: 

 

 Suppose the given specification contains a: X  T. Let u0 be a term of the class. 

 

 If T contains the variable X, we denote T = T(X), 

 

 a: X  T(X). 

 



9 

Thus, we have: 

 

 a a a 

u0  T(u0)  T(T(u0))  ... 

 

which is an infinite rewriting sequence, thus contradicting the termination property of canonical 

specifications. 

 

 If T does not contain the variable X, we have: 

 

 a a a 

 u0  T  T  ... 

 

which is also an infinite rewriting sequence, thus contradicting the termination property of canonical 

specifications.  

 

 For instance, if Example 1 contained an axiom a01: S  S.push(N).pop, then we would obtain the 

infinite rewriting sequence: 

 

 a01 a01 a01 

new  new.push(1).pop  new.push(1).pop.push(2).pop  ... 

 

which would contradict the terminating property of canonical specifications. If it contained an axiom 

a02: S  new, we would have an infinite rewriting sequence: 

 

 a02 a02 a02 

new  new  new  ... 

 

which would also contradict the terminating property of canonical specifications. 

 

 Lemma 3 Suppose u is a ground term in a canonical specification. If u is not in normal form, then 

there exists an axiom a which can be applied to u as a left-to-right rewriting rule such that the following 

binding condition is satisfied: 

 

 All the variables involved in a are bound to normal forms. 

 

Proof: 

 

 The basic idea of the proof is shown in Figure 1. Since u is not in normal form, according to 

Definition 2.3, there exists some axiom a1 that can be applied to u as a left-to-right rewriting rule. If a1 

satisfies the binding condition, then the conclusion holds. 

 

 



10 

a1: ... X1 ... = ... 

u = ... u1 ... (...), where X1 is bound to u1 

 

a2: ... X2 ... = ... 

... u2 ... (...), where X2 is bound to u2 

 

a3: ... X3 ... = ... 

... u3 ... (...), where X3 is bound to u3 

 

and so on. 

 

Figure 1. The basic idea of the proof of Lemma 3 

 

 

Otherwise, a1 includes a variable X1 bound to a non-normal form u1, where u1 is a subterm of u. We know 

that u1 must be a proper subterm of u because, if u1 = u, a1 would be of the form: 

 

 a1: X1  T. 

 

thus contradicting Lemma 2. According to Definition 2.3 again, there exists some other axiom a2 that can 

be applied to u1 as a left-to-right rewriting rule. Since u1 is a proper subterm of u, a2 can also be applied to 

u as a left-to-right rewriting rule. If a2 satisfies the binding condition, then the conclusion holds. 

 

 Otherwise, a2 includes a variable X2 bound to a non-normal form u2, where u2 is a subterm of u1. 

Similarly to the above, according to Lemma 2, u2 must be a proper subterm of u1. Furthermore, u2 is also 

a proper subterm of u. According to Definition 2.3, there exists some other axiom a3 that can be applied to 

u2 as a left-to-right rewriting rule. Since u2 is also a proper subterm of u, a3 can also be applied to u as a 

left-to-right rewriting rule. If a3 satisfies the binding condition, then the conclusion holds. 

 

 Otherwise, continue the process similar to the above. Since the length of u is finite, and according to 

Lemma 1, we have 

 

 length(u) > length(u1) > length(u2) > ... > 0, 

 

the process must terminate in a finite number of steps. Thus, we obtain an axiom ai that can be applied to 

u as a left-to-right rewriting rule and satisfies the binding condition.  

 

 Consider, for instance, a term u = new.push(1).push(2).pop.push(3).top for the specification in 

Example 1. We can apply axiom a6 to u as a left-to-right rewriting rule. In this case, the variables S and N 

in a6 are bound to new.push(1).push(2).pop and 3, respectively. However, new.push(1).push(2).pop is not 

in normal form. We can apply axiom a4 to it, such that the variables S and N involved are bound to the 

normal forms “new.push(1)” and “2”, respectively. Furthermore, since “new.push(1).push(2).pop” is a 

subterm of u, we can also apply a4 directly to u. Thus, we have found an axiom a4 which can be applied 

directly to u as a left-to-right rewriting rule such that the binding condition is satisfied. 

 

 Theorem 1 Suppose u is a ground term in a canonical specification. If u is not in normal form, then 

u can be transformed into a unique normal form u* via a series of axioms a1, a2, ..., ak: 

 



11 

 a1 a2 ak-1 ak 

 u  u2  ...  uk  uk+1 = u*, 

 

such that each ai satisfies the binding condition. 

 

Proof: 

 

 Since the given specification is canonical, according to Lemma 3, there exists some axiom a1 that 

can be applied to u as a left-to-right rewriting rule, transforming u into a ground term u2: 

 

a1 

u  u2, 

 

and satisfies the binding condition. If u2 is in normal form, then the theorem holds. 

 

 Otherwise, according to the same lemma, there exists another axiom a2: 

 

a2 

u2  u3, 

 

which satisfies the binding condition. If u3 is in normal form, then the theorem is satisfied. 

 

Otherwise, continue the process similar to the above. Since the specification is canonical, according 

to Definition 2.3, the process must terminate at a unique normal form, thus yielding a finite series of 

axioms a1, a2, ..., ak that satisfies the theorem.  

 

 Theorem 2 Given a canonical specification, a complete implementation is consistent with respect to 

all equivalent ground terms if and only if it is consistent with respect to all fundamental pairs.
3
 

 

Proof: 

 

 Obviously, if a complete implementation is consistent with respect to all equivalent ground terms, 

then it is consistent with respect to all fundamental pairs. 

 

 Suppose a complete implementation is consistent with respect to all fundamental pairs. Let u1 ~ u2 be 

any two equivalent ground terms. Since the implementation is complete, it can be regarded as a mapping 

. Let (u1) = s1 and (u2) = s2. We wish to prove that s1  s2. 

 

 By Definition 2.6, u1 and u2 can be transformed into the same normal form u*. Since the given 

specification is canonical, according to Theorem 1, we can find a series of k axioms that transform u1 to 

u*: 

 a1 a2 a3 ak-1 ak 

u1  u12  u13  ...  u1k  u*. 

 

                                                 
3
 In spite of this theorem, we should note that an infinite set of observable contexts may be required to check the observational 

equivalence of objects resulting from the fundamental pairs. This problem cannot be solved by any black-box technique. We 

shall present in Section 3 a heuristic white-box technique that selects a relevant finite subset of the set of observable contexts. 



12 

where all the axioms a1, ..., ak satisfy the binding condition. Let (u1j) = s1j, j = 2, ..., k, and (u*) = s*. 

 

u1 must be of the form f0(v0).f1(v1)...fn(vn). Each vi, i = 0, 1, ..., n, is a list of parameters (possibly an 

empty list) of the form 

 

vi = ( h10(v10).h11(v11)...h1p(v1p), h20(v20).h21(v21)...h2q(v2q), ..., hr0(vr0).hr1(vr1)...hrs(vrs) )i , 

 

where each parameter contains only ground terms, each v10, v11, ..., vrs may further be expressed in a form 

similar to vi, and so on. 

 

Since u1 can be rewritten by applying a1 as a rewriting rule, the left hand side of a1 should match a 

subterm of u1. Hence, a1 must be of one of the following two forms: 

 

X.fj(Xj).fj+1(Xj+1)...fk(Xk)  X.g1(Y1).g2(Y2)...gm(Ym),  1 j  k  n, 

 

or 

 

X.fj(Xj).fj+1(Xj+1)…fk(Xk)  Y.g1(Y1).g2(Y2)…gm(Ym),  1 j  k  n, 

 

where X and Y ( X) are creators or object variables
4
, Xj, Xj+1, ..., Xk, Y1, Y2,..., Ym are lists of parameters 

(possibly empty lists) containing variables or ground terms, and g1(Y1).g2(Y2)...gm(Ym) may be absent
5
. 

 

Thus, u12 will be of the corresponding form 

 

f0(v0).f1(v1)...fj-1(vj-1).g1(w1).g2(w2)...gm(wm).fk+1(vk+1)...fn(vn) 

 

or 

 

w.g1(w1).g2(w2)...gm(wm).fk+1(vk+1)...fn(vn), 

 

where w, w1, w2, ..., wm are substitution instances of Y, Y1, Y2, ..., Ym, respectively. Without loss of 

generality, we will only discuss the more complex case 

 

u12 = f0(v0).f1(v1)...fj-1(vj-1).g1(w1).g2(w2)...gm(wm).fk+1(vk+1)...fn(vn) 

 

for the remaining part of this proof. Thus, 

 

s1 = ( f0(v0)).( f1(v1))...( fn(vn)), 

                                                 
4
 Since a1 satisfies the binding condition and X in a1 is bound to f0(v0).f1(v1)...fj 1(vj 1), we need to show that any ground term 

u1 contains at least a normal form at the beginning. In fact, any ground term consists of a creator at its beginning followed by 

constructors, transformers, or observers. According to Lemma 2, a canonical specification cannot contain any axiom of the 

form “X  T”. Thus, any creator cannot be rewritten in a canonical specification, and hence is a normal form. Besides the 

creator, in the ground term u1, any subterm beginning with this creator and followed only by some constructors is also a 

normal form. See footnote 6. We can therefore conclude that any ground term u1 contains at least some normal form at its 

beginning. 
5
 For example, the axiom X.credit(M).balance = X.balance.add(M) is of the first form such that g1(Y1).g2(Y2)...gm(Ym) is 

present. The axiom X.push(N).pop  X is also of the first form such that g1(Y1).g2(Y2)...gm(Ym) is absent. The axiom 

X.push(N).top  N is of the second form such that Y = N and g1(Y1).g2(Y2)...gm(Ym) is absent. The axiom X.push(N).empty  

false is also of the second form such that Y is the creator false and g1(Y1).g2(Y2)...gm(Ym) is absent. 



13 

s12 = ( f0(v0)).( f1(v1))...( fj-1(vj-1)).(g1(w1)).(g2(w2))...(gm(wm)) 

 .( fk+1(vk+1))...( fn(vn)). 

 

Since axiom a1 satisfies the binding condition in the transformation from u1 to u12, 

 

f0(v0).f1(v1)…fj-1(vj-1).fj(vj).fj+1(vj+1)…fk(vk) ~ f0(v0).f1(v1)…fj-1(vj-1).g1(w1).g2(w2)…gm(wm) 

 

must be a fundamental pair induced from a1. According to the assumption that the implementation is 

consistent with respect to all fundamental pairs, we have 

 

 ( f0(v0)).( f1(v1))…( fk(vk)) 

  ( f0(v0)).( f1(v1))…( fj-1(vj-1)).(g1(w1)).(g2(w2))...(gm(wm)) (a) 

 

If fn(vn) is an observer, then 

 

 ( fk+1(vk+1))...( fn(vn)) (b) 

 

is an observable context. According to Definitions 2.7 and 2.8, by applying (b) to both sides of (a), we 

have 

 

 ( f0(v0)).( f1(v1))...( fn(vn)) 

  ( f0(v0)).( f1(v1))...( fj-1(vj-1)).(g1(w1)).(g2(w2))...(gm(wm)) 

  .( fk+1(vk+1))...( fn(vn)) 

 

In other words, s1 s12. 

 

If fn(vn) is not an observer, for any observable context oc of the given class, 

 

 ( fk+1(vk+1))...( fn(vn)).oc (c) 

 

is still an observable context on the given class. According to Definitions 2.7 and 2.8, by applying (c) to 

both sides of (a), we have 

 

( f0(v0)).( f1(v1))...( fn(vn)).oc 

 ( f0(v0)).( f1(v1))...( fj-1(vj-1)).(g1(w1)).(g2(w2))...(gm(wm)) 

.( fk+1(vk+1))...( fn(vn)).oc 

 

This means that the objects produced by s1 and s12 are observationally equivalent. According to 

Definition 2.8, we have s1  s12. 

 

By the same argument, we have 

 

s12  s13  ...  s1k  s*. 

 

Therefore, s1  s*. Similarly, we can prove that s2  s*. Hence, s1  s2.   

 

 



14 

2.4 Algorithm GFT for Generating a Finite Number of Test Cases 

 

 In general, the axioms of an algebraic specification may contain branch conditions. An axiom may 

induce an infinite number of different fundamental pairs by assigning different normal forms to its 

variables. Exhaustive testing is impossible. How do we select a finite number of representative test cases 

from the infinite set of fundamental pairs? We present the following Algorithm GFT to deal with this 

problem. We give a related definition first. 

 

Definition 2.12 Let mf be an implemented method. We say we apply the path-based domain 

partition technique (PDP technique) to mf if we: 

 

(a) Partition the input domain of mf into subdomains such that all the test points in each subdomain 

cause a particular path in the implementation of mf to be executed. Here, the partition concept 

follows White and Cohen [25], but the path generation algorithm is the same as the one proposed by 

Jeng and Weyuker [26]. 

 

(b) Use the simplified domain-testing strategy presented by Jeng and Weyuker [26] to select some test 

points from each subdomain, if the assumptions required by the strategy are satisfied. 

 

(c) Otherwise, randomly select a test point from each subdomain. 

 

Since the PDP technique is path-oriented, it obviously inherits the problems associated with path 

testing, such as an infinite number of paths and the identification of infeasible paths. Recently, Jeng and 

Weyuker [26] proposed an innovative technique for detecting domain errors. Instead of the traditional 

approach of testing whether a border is correct, they test whether or not there is a displaced area. Their 

new perspective has greatly improved the practicality of White and Cohen’s domain-testing strategy by 

removing most of the unrealistic constraints in its original model. Furthermore, although their new 

technique has a lower cost, the effectiveness is comparable. They also propose a path generation 

algorithm in which all the selected paths are executable, and hence infeasible paths are no longer an issue 

in the implementation. In view of all the above merits, we have adopted Jeng and Weyuker’s method in 

our algorithm. 

 

Algorithm GFT (Generating a Finite number of Test cases) The algorithm asks the analyst to 

supply a canonical specification, and requests the designer to identify the mapping from the set of 

specified operations to the set of implemented methods. According to Theorem 2, we need not produce 

general equivalent ground terms as test cases. We need only construct fundamental pairs, which are 

produced from each axiom in the given canonical specification. Suppose the given specification contains 

n axioms a1, a2, ..., an. For each axiom ai (i = 1, 2, ..., n), conduct the following steps: 

 

(a) If a variable V of type T involved in ai is not observable, use the syntax part of the given specification 

as a grammar [27] to construct all patterns of normal forms from the creators and constructors
6
 of 

type T, such that their lengths do not exceed some positive integer k. Then replace each occurrence 

of V in ai by these patterns to unfold ai into several new equations, which are further unfolded until 

all the variables involved in the new equations aij are of observable types. 

 

The above positive integer k may be determined by a white-box technique, such as by referring to 

the maximum sizes of arrays, or the boundary values of variables declared in the implemented code. 

                                                 
6 We can infer from Definition 2.4 that a normal form contains only a creator and some constructors, but no transformer. 



15 

If the maximum sizes or the boundary values are too large for the generation of test sets of 

reasonable sizes, ask the user to specify an acceptable value of k. 

 

(b) Suppose the right hand side of a new equation aij obtained in step (a) contains a defined operation f. 

Use the conditions of the set of axioms defining f to partition the input domain of f into subdomains. 

 

(c) Randomly select an element from each subdomain obtained in step (b), and use these elements to 

replace all occurrences of the corresponding input variables in equation aij to obtain a group of 

fundamental pairs induced from axiom ai. 

 

(d) If the above group of fundamental pairs reveals an error, exit from the algorithm. Otherwise go to 

step (e). 

 

(e) Suppose the defined operation f in step (b) is implemented by method mf. Apply the PDP technique 

to mf for selecting input data points to replace all occurrences of the corresponding variables in 

equation aij, and hence obtain another group of fundamental pairs for axiom ai.  

 

 Example 3 below is used to illustrate Algorithm GFT. 

 

Example 3 The specification is nearly the same as Example 1, except the following additional 

entries: 

 

operations 

 ... 

_.ascending: IntStack  Bool 

variables 

... 

 N1 N2: Int 

axioms 

 ... 

 a7: new.ascending  true 

 a8: new.push(N).ascending  true 

 a9: S.push(N1).push(N2).ascending  N1  N2 and S.push(N1).ascending 

 

Suppose the following axioms in class INT define the operation “”: 

 

b1: (N1  N2)  true if N1 = = N2 

b2: (N1  N2)  true if N1  N2 

b3: (N1  N2)  false if N2  N1 

 

Following Algorithm GFT, we should conduct steps (a), (b), and (c) for each of the axioms a1 to a9. For 

simplicity, however, we shall only illustrate the procedure for axiom a9. 

 

(a) a9 includes a variable S that is not observable. Determine a positive integer k for S. For the sake of 

illustration, suppose k = 3. The patterns of normal forms of S of lengths  3 are as follows: 

 

S = new, 

S = new.push(N0). 



16 

By replacing S in a9 with the above patterns, we unfold a9 into the following new equations: 

 

a91: new.push(N1).push(N2).ascending  (N1  N2) and new.push(N1).ascending 

a92: new.push(N0).push(N1).push(N2).ascending 

 (N1  N2) and new.push(N0).push(N1).ascending 

 

(b)  The right-hand side of a91 contains an operation  defined by axioms b1, b2, and b3. Use the 

conditions of b1, b2, and b3 to partition the input domain of the operation  into the following 

subdomains: 

 

(1) N1 = N2 

(2) N1  N2 

(3) N2  N1 

 

Furthermore, we partition the input domain into the following subdomains for axiom a92: 

 

(1) N1 = N2 and N0 = N1 

(2) N1 = N2 and N0  N1 

(3) N1 = N2 and N1  N0 

(4) N1  N2 and N0 = N1 

(5) N1  N2 and N0  N1 

(6) N1  N2 and N1  N0 

(7) N2  N1 and N0 = N1 

(8) N2  N1 and N0  N1 

(9) N2  N1 and N1  N0 

 

(c)  Replace the variables N1, N2, and N0 in the above axioms a91 and a92 by some integers randomly 

selected from the corresponding subdomains above, thus resulting in the following fundamental 

pairs induced from a9 as a part of test cases: 

 

new.push(1).push(1).ascending  (1  1) and new.push(1).ascending 

new.push(1).push(2).ascending  (1  2) and new.push(1).ascending 

new.push(2).push(1).ascending  (2  1) and new.push(2).ascending 

new.push(2).push(2).push(2).ascending 

 (2  2) and new.push(2).push(2).ascending 

new.push(1).push(2).push(2).ascending 

 (2  2) and new.push(1).push(2).ascending 

new.push(3).push(2).push(2).ascending 

 (2  2) and new.push(3).push(2).ascending 

new.push(3).push(3).push(4).ascending 

 (3  4) and new.push(3).push(3).ascending 

new.push(2).push(3).push(4).ascending 

 (3  4) and new.push(2).push(3).ascending 

new.push(5).push(3).push(4).ascending 

 (3  4) and new.push(5).push(3).ascending 

new.push(4).push(4).push(2).ascending 

 (4  2) and new.push(4).push(4).ascending 



17 

new.push(3).push(4).push(2).ascending 

 (4  2) and new.push(3).push(4).ascending 

new.push(5).push(4).push(2).ascending 

  (4  2) and new.push(5).push(4).ascending  

 

It should be noted that if k in step (a) is not well chosen, some implementation errors may not be 

revealed, as illustrated in Example 4. Thus, the selection of k is important, but difficult as indicated in 

Section 2.5.2. This may warrant further investigation. 

 

 Example 4 Let us refer to the specification in Example 1 again. Suppose the implementation is as 

follows, where array[100] is the top of the stack and array[1] is the bottom. 

 

#include <iostream.h> 

#define SIZE 100 

#define NIL 0 

 

class intStack { 

 int array[SIZE]; /* Only one data member */ 

public: ... 

}; 

... 

 

void intStack :: newStack( ) 

{ 

 for ( int j = 1; j <= 100; j++ ) 

 array[j] = NIL; 

} 

 

void intStack :: push(int i) 

{ 

 for ( int j = 1; j <= 99; j++ ) 

 array[j] = array[j+1]; 

 array[100] = i; 

} 

 

void intStack :: pop( ) 

{ 

 for ( int j = 100; j > = 2; j  ) 

 array[j] = array[j1]; 

 array[1] = NIL; 

} 

 

int intStack::top( ) 

{ 

return array[100]; 

} 

... 

 



18 

Let u1 = new.push(1).push(2)...push(100).push(101).pop 

u2 = new.push(1).push(2)...push(100). 

Obviously, u1  u2 is a fundamental pair. The following objects O1 and O2 are produced by u1 and u2, 

respectively: 

 

 O1 = [NIL, 2, ..., 100] 

 O2 = [1, 2, ..., 100]. 

 

Since O1 and O2 are not observationally equivalent, this implementation contains an error. In step (a) 

above, suppose for argument’s sake we have chosen k = 10 for the variable S in axiom a4. Then the error 

cannot be revealed.  

 

2.5 Discussions on Algorithm GFT 

 

In this section, we discuss a number of important issues on Algorithm GFT including assumptions, 

limitations, applicability, and complexity. 

 

2.5.1 Assumptions 

 

We have assumed in Theorem 2 and Algorithm GFT that a canonical specification and a complete 

implementation are given. How restrictive are these requirements? 

 

Intuitively, the normal form of a ground term denotes the “abstract object value” [28] of this ground 

term. Two ground terms having the same normal form would have the same “abstract object value”. Thus, 

according to Definition 2.3, every ground term under a canonical specification would have a unique 

“abstract object value”, hence avoiding any ambiguity. In other words, if we relax the canonical 

requirement for a specification, the ground terms may be ambiguous. 

 

If an implementation is not complete, there exists some operation f0 such that (1) no method 

implements it or (2) two or more distinct methods implement it in the same class. Case (1) is obviously an 

error, since the implemented system will fail when f0 is called. Case (2), on the other hand, is ambiguous, 

since the implemented system can have two distinct outcomes. In both cases, the problem can easily be 

detected by comparing a checklist of all the operations in the specification against the corresponding 

methods in the implementation. 

 

To summarize, in order to avoid omissions and ambiguities, it is acceptable to require a specification 

to be canonical and an implementation to be complete. 

 

2.5.2 Limitations 

 

It is difficult to determine the positive integer k in step (a) of Algorithm GFT. It will be helpful to 

apply a white-box technique, such as referring to the maximum sizes of arrays, or the boundary values of 

variables declared in the implemented code. However, when the maximum sizes or the boundary values 

are large, the sizes of the test cases may be of the order O(mk) (where m is the number of constructors in 

the class under test) and hence unreasonable. Furthermore, even when the maximum sizes or the 

boundary values are not large, some of the faults on the capabilities for handling excess of the maximum 

sizes or the boundary values may not be identified. This is a natural limitation of step (a). Similarly, the 

PDP technique in step (e) of Algorithm GFT cannot be fully automated. 

 



19 

As an optional heuristic, we may supplement the algorithm by the “weak class graph” and “weak 

coverage criteria” approaches proposed by [15] for selecting the normal forms in step (a) of Algorithm 

GFT. (See Section 4.3 for more details.) 

 

Alternatively, we may have to ask the user to choose k for the algorithm (similarly to [21]) when the 

white-box technique fails. Thus, Algorithm GFT can be implemented as a semi-automatic CASE tool 

that interacts with users when the above problems are encountered. 

 

2.5.3 Effectiveness and Applicability Issues 

 

In step (a) of Algorithm GFT, we replace every variable of nonobservable types by a finite number 

of patterns of normal forms with limited lengths. In fact, this is a common practice in testing, and has 

been formalized in [21] by means of a regularity hypothesis. The random selection of a value from each 

subdomain in step (c) of Algorithm GFT and PDP technique is also a common practice in testing. It has 

also been formalized in [21] by means of a uniformity hypothesis. 

 

For example, consider a program “if X  0 then Y = f(X) else Y = X”. Suppose “Y = f(X)” is a 

computational error that should be corrected to “Y = g(X)”. We partition the input domain of X into two 

subdomains sb1 = {X | X  0} and sb2 = {X | X  0}. Let solutionSet1 = {X | X  0 and f(X) = g(X)}. Suppose 

t is some randomly selected test data from sb1. If t  solutionSet1, the error cannot be revealed. However, 

if t  (sb1 \ solutionSet1), the error can be exposed. In many practical cases, we can expect the cardinal 

number of the set (sb1 \ solutionSet1) to be much greater than that of the solutionSet1. For instance, in 

many programs, f(X) and g(X) are arithmetic expressions. In this case, the solutionSet1 is finite but the set 

(sb1 \ solutionSet1) is infinite. This means that the probability of t(sb1 \ solutionSet1) is much greater than 

that of t  solutionSet1. In other words, in such cases, the probability of revealing the error by the ran-

domly selected t from the subdomain is much greater than that of not revealing it. 

 

The “simplified domain-testing strategy” and its corresponding “path generation algorithm”, 

adopted from [26] and used in Definition 2.12 and step (e) of Algorithm GFT of this paper, have been 

shown by the original authors to be effective and applicable. 

 

2.5.4 Complexity Issue 

 

Algorithm GFT is similar to that used in the tools described in Sections 5 and 6 of Bouge et al. [9], 

except the following differences: (1) We suggest in Algorithm GFT to use a white-box technique to 

determine the positive number k in step (a), whereas Bouge et al. regard k as a part of the regularity 

hypothesis. (2) In Algorithm GFT, we replace all the variables in the unfolded equations by normal forms, 

while Bouge et al. replace them by ground terms. 

 

In practice, the complexity of Algorithm GFT depends heavily on the actual number of normal 

forms generated for a given positive integer k. According to Definition 2.4, a normal form contains only 

a creator and a number of constructors, but no transformer, whereas a ground term may contain all three 

types of operations. In most situations, a class contains more transformers than creators and constructors. 

Hence, our proposal in the algorithm to replace variables by normal forms, rather than ground terms in 

general, enhances the efficiency of testing. 

 

 



20 

3. DETERMINING THE OBSERVATIONAL EQUIVALENCE OF TWO OBJECTS 
 

 Suppose the fundamental pair u1 ~ u2 is selected as a test case for a given specification. To apply this 

test case to an implementation, we should map each operation in u1 and u2 to a method in the program. As 

a result, this mapping generates two method sequences s1 and s2 in the program corresponding to u1 and u2, 

respectively. For a complete implementation, this mapping exists and can be indicated manually by the 

implementation designer, or be derived automatically from a given interface specification. Let O1 and O2 

be two objects resulting from the execution of s1 and s2, respectively. After executing s1 and s2 in the 

program and obtaining results O1 and O2, in order to judge whether the test case {u1, u2} reveals an 

implementation error, we have to decide whether O1 and O2 are observationally equivalent (denoted by 

O1  O2). In Section 3.1, we explain why this problem is undecidable using black-box techniques, and 

indicate that we have to use a heuristic white-box technique to select a relevant finite subset of the set of 

observable contexts. 

 

3.1 Reason for Using a Heuristic White-Box Technique 

 

According to Definition 2.7, we can use the observable contexts on class C to determine whether O1 

 O2. Unfortunately, the set of all observable contexts in class C is infinite in general. How do we select a 

finite subset? For the stack example (O1 and O2 are stacks), it intuitively seems that 

 

 (O1  O2)  (O1.height  O2.height) and 

  (O1.top  O2.top) and 

  (O1.pop.top  O2.pop.top) and 

  ... and 

 (O1.pop
(O1.height)

.top  O2.pop
(O2.height)

.top) (Formula I) 

 

Let SS = {height}  {pop
i
.top | i = 0, 1, ..., height}. Although the subset SS of observable contexts is 

finite, Formula I is unfortunately still incorrect. A counterexample
7
 is given in Bernot et al. [21]. The 

authors then added, “we get the depressing result that the only credible alternative is to consider the set of 

all observable contexts, which is infinite (and consequently impracticable).” They simply regard 

Formula I as a hypothesis, known as an “oracle hypothesis”
8
, for the class of integer stacks. 

 

In fact, we can formally prove that the observational equivalence of two objects cannot be decided 

by a black-box technique. 

 

 Theorem 3 For any given class, let AllOCs be the set of observable contexts, CT be the set of 

constructors and transformers, and OBS be the set of observers. If CT and OBS are non-empty, then 

AllOCs is infinite. Furthermore, if the class has at least one pair of equivalent ground terms u1  u2 and a 

constructor or transformer f(...)  CT such that the numbers of appearances of f(...) in u1 and u2 are 

                                                 
7
 Example 5 in Section 3.2 is another counter-example. It concludes that the objects O1 = ([1, 2], 1, 0, 0) and O2 = ([1, NIL], 1, 

1, 0) are not observationally equivalent, but the finite subset SS of observable contexts shown above will report that they are 

observationally equivalent. 
8
 The oracle hypothesis is an attempt by [21] to formalize the basic assumptions about the oracle problem in software testing. 

According to the authors, “the oracle problem [is related with] how to decide if a program execution returns a correct result. 

The solutions to this problem depend both on the kind of formal specification and program; a property required by the 

specification may not be observable using the program under test. Most of the formal specification methods provide a way to 

express observability. In this case, the program is assumed to satisfy the observability requirements (for instance, to decide 

correctly the equality of two integers); it is [known as] an oracle hypothesis.” 



21 

different, then the observational equivalence of objects cannot be determined using a finite set of 

observable contexts selected independently of implementations. In other words, given any finite subset 

SubOCs of AllOCs, there exist some implementation and two objects O1 and O2 such that 

 

(oc  SubOCs) (O1.oc  O2.oc)  (oc0  AllOCs) ((O1.oc0  O2.oc0)) (Formula II) 

 

That is, there exist objects that are not observationally equivalent, but appear to be so when only a finite 

subset of the observational contexts are applied. 

 

Proof: 

 

 Since CT and OBS are non-empty, there exist a constructor or transformer g(...) in CT and an 

observer obs(...) in OBS. Given any positive integer i, we can construct an oci = g(...)...g(...).obs(...) in 

AllOCs that contains i g(...)’s. Hence, AllOCs is infinite. 

 

 Suppose u1 contains m f(...)’s and u2 contains n f(...)’s, such that 0  n  m. Consider any given finite 

subset SubOCs of AllOCs, selected independently of implementations. We can find an oc1 from this 

SubOCs such that the number k of f(...)’s in oc1 is maximal in SubOCs (where k  0). We can then 

construct an implementation  that contains an error in the (m+k+1)th call of f(...) but correct otherwise. 

Let O1 and O2 be the objects resulting from executing the method sequences corresponding to u1 and u2, 

respectively. For simplicity, we write O1 = (u1) and O2 = (u2). Since O1.oc1 = (u1).oc1 contains m+k 

f(...)’s and O2.oc1 = (u2).oc1 contains n+k f(...)’s such that n  m, for any ocSubOCs, there must be no 

more than m+k f(...)’s in O1.oc or O2.oc. Thus, according to the construction of implementation , 

 

O1.oc  O2.oc 

 

for any oc in SubOCs. By Definition 2.5, oc1 must end with an observer. Let u be the result of removing 

the observer from oc1. Consider u* = u.f(...). Obviously, since u* contains k+1 f(...)’s, 

 

 O1.u* = (u1).u* contains m+k+1 f(...)’s, and 

 O2.u* = (u2).u* contains n+k+1  m+k f(...)’s, 

 

according to the construction of implementation , we have (O1.u*  O2.u*). By Definition 2.7, there 

exists an observable context oc2 such that (O1.u*.oc2  O2.u*.oc2). Let oc0 = u*.oc2. It follows that 

 

(O1.oc0  O2.oc0). 

 

Since u* contains k+1 f(...)’s, oc0 must contain at least k+1 f(...)’s, and hence oc0  SubOCs but oc0  

AllOCs. Thus we arrive at Formula II.  

 

 In the above proof, we realize that the number m+k+1 is closely related to this error. In order to 

reveal this error, we must catch the number m+k+1. Obviously, this can be done only by using a heuristic 

white-box technique, rather than a black-box technique. This is the reason why we propose to 

supplement our axiom-based black-box approach by the following heuristic white-box technique. (On 

the other hand, see also Section 3.3.2 that discusses why a white-box technique cannot be a substitute for 

the black-box technique.) 

 



22 

3.2 Relevant Observable Context Technique 

 

 The basic idea behind our heuristic technique is as follows. Suppose we want to determine whether 

O1  O2. Suppose further that O1 and O2 have different values for the same data member di of the 

implemented class. Such different values may or may not have an effect on the observable attributes of 

O1 and O2. If no observable attribute is affected, di need not be considered. If some observable attribute is 

affected, di must have affected the attribute through some series of methods in the implemented class. 

Such a series of methods is called a relevant observable context. We need only use the relevant 

observable contexts to determine whether O1  O2. We can ignore any other observable contexts for this 

decision. We shall give a formal definition for the concept of relevant observable context, and how it can 

be produced by means of a Data member Relevance Graph constructed from the implemented class C. 

 

 If a relevant observable context itself contains an implementation error, by applying it to determine 

the observational equivalence of objects, we may increase the chance of having the error revealed. If, 

after applying the relevant observable context to objects O1 and O2, we find inconsistencies in some 

observable attribute, we can conclude an implementation error in s1 or s2, or in the relevant observable 

context itself, or both. The worst case scenario happens when the error(s) in s1 and s2 offset the error(s) in 

the relevant observable context, so that neither can be revealed. We note, however, that the possible 

offsetting of errors cannot be avoided in testing. Even if we test a single method sequence, errors in two 

of the methods may happen to cancel each other. This is the well-known phenomenon of fault masking 

(see, for example, Morell [1990]). 

 

In the relevant observable context technique, we assume a program model without pointers. This 

kind of program model is gaining popularity in the latest object-oriented programming languages such as 

JAVA. 

 

Definition 3.1 If a data member d1 is defined or revised by a data member d2 in a method m under a 

condition p(..., d3, ...), we say that d2 directly affects d1 in m under p(...), and that d3 directly affects d1 in m 

under p(...). 

 

In Example 5 below, for instance, we say that the data member numPush directly affects the data 

member totalPush in the method incTop under the condition height  0. 

 

Definition 3.2 Given an implemented class C, its Data member Relevance Graph (DRG) is 

constructed as follows. Each data member of C is represented as a bold rectangle node in the DRG. The 

DRG also contains some thin rectangle nodes, which denote some constants coming from the given 

program. If the data member d2 directly affects the data member d1 in the method m1 under a condition 

p(...), then there is an arc, labeled by (p, m1), from d2 to d1. (See Figure 2.) We call [d2, (p, m1), d1] a 

segment of the DRG, d2 a start node of arc (p, m1), d1 an end node of arc (p, m1), (p, m1) an output arc of d2, 

and (p, m1) an input arc of d1. If d2 is identical to d1, the segment is said to be a cycle. Otherwise it is said 

to be acyclic. Each DRG contains a special node called observed, which is the ending node of each arc 

with an observer as the second component of its label. An arc with observed as an ending node is call an 

observer arc. An example of a DRG is given in Figure 3. 

 
(p, m1) 

d2 d1 

 

Figure 2. Nodes and arc in a DRG 

 



23 

 

 

i 

 

arc1  arc9 

arc8 array NIL 

 

0 

arc1 

arc5 arc9 

false NIL 

arc3 arc4 

height observed totalPush 

arc2 

arc7 arc6 

true NIL arc8 

arc9 

 

0 

 

 

 

arc1 

numPush 

arc7 

arc9 

0 0 

 

 

arc1: (height  size, push(i)); 

arc2: (height  0, empty); 

arc3: (height  0, empty); 

arc4: (totalPush  3, top); 

arc5: (totalPush  3  height  0, top); 

arc6: (totalPush  3  height  0, top); 

arc7: (height  0, pop); 

arc8: (height  0, incTop); 

arc9: (true, newStack); 
 

 

Figure 3. DRG of integer stacks 



24 

Definition 3.3 Suppose d1 is a data member of an implemented class C, O1 and O2 are two given 

objects of C. If 

(1) O1.d1  O2.d1, 

(2) there is a path P from the node d1 to the node observed in the DRG of class C, and 

(3)  the methods in the labels of the arcs in path P are op1, op2, ..., opt, obs successively, 

then we call op1.op2...opt.obs a relevant observable context induced from path P with respect to O1 and 

O2, and say that d1 affects the observable attribute of O1 and O2. Notice that, the concept of paths in this 

paper is the same as that in directed graphs in general, except they end at a special node observed. 

 

 Definition 3.4 Let O1 be an object of the implemented class C. Suppose the data members of class C 

are d1, d2, ..., dn. In the DRG of class C, if all the conditions in the labels of the arcs in a given path P are 

satisfied by O1.di as initial data, then the path P is said to be executable for O1. Otherwise P is said to be 

unexecutable for O1. 

 

 Algorithm DOE (Determining Observational Equivalent) Suppose O1 and O2 are two objects 

of the same implemented class, resulting from the execution of the method sequences s1 and s2, 

respectively. The steps for deciding whether O1  O2 by means of relevant observable contexts are as 

follows: 

 

(a) If s1 and s2 end with an observer, then O1 and O2 are values of some import class. We can therefore 

directly decide whether O1  O2 in the import class. 

 

(b) Otherwise, suppose O1 and O2 belong to the implemented class C. Construct the Data member 

Relevance Graph of class C from the coding of class C. 

 

(c) Suppose the data members of the implemented class C are d1, d2, ..., dn. In general, the classes of di 

are imported, observable, and there are known methods to determine the equivalence of values of the 

classes. Suppose further that Ot.di denotes the value of di of Ot for i = 1, 2, ..., n and t = 1, 2. 

 

Check whether the tuples (O1.d1, O1.d2, ..., O1.dn) and (O2.d1, O2.d2, ..., O2.dn) are equal. If yes, we 

have O1  O2, and exit from Algorithm DOE. Otherwise proceed to step (d). 

 

(d) Suppose O1 and O2 have different values with respect to the data members dx1, dx2, ..., dxk, where 1  

x1 < x2 < ... < xk  n. In other words, suppose O1.dxj  O2.dxj for j = 1, 2, ..., k. 

 

For each dxj, check whether there is a path from the node dxj to the node observed in the DRG. If not, 

skip this dxj. If yes, proceed as follows: 

 

(1) If dxj is a simple data type, traverse every acyclic executable path P once (using the original 

O1.di as initial data and backtracking if necessary) and obtain the relevant observable context 

oc induced from P. If there are uninstantiated input variables in oc, apply the PDP technique to 

select values for the input variables. 

 

If a cycle li is encountered when traversing an executable path for O1, the user should manually 

decide on a ceiling ti for the number of iterations of li, or supply a global ceiling T allowed by 

the system. 

 



25 

Check whether at least one of these relevant observable contexts, say oc0, fails, that is, (O1.oc0 

 O2.oc0). If so, we have (O1  O2), and exit from Algorithm DOE. Otherwise we say this dxj 

has successfully passed the check, and proceed to step (3). 

 

(2) If dxj is a compound data type (such as an array or structure in C++), construct relevant 

observable contexts by the following process: For each value V of the component index or 

element variable of dxj that satisfies O1.dxj.V  O2.dxj.V, select every method sequence msEl to 

change the current value of the component index or element variable to V, then traverse each 

executable path (not exceeding the iteration ceilings in the case of cycles, if any) for O1 from the 

node dxj to the node observed to obtain method sequence msOb, and create a relevant 

observable context oc = msEl.msOb. (If V is already the current value of the component index 

or the current element variable, then msEl is empty.) The process of traversing each executable 

path (not exceeding the iteration ceilings in the case of cycles, if any) for O1 in this step is the 

same as that in step (1). If oc contains uninstantiated input variables, the PDP technique is 

applied to determine values for the input variables. If at least one of these relevant observable 

contexts, say oc0, fails, then we have (O1  O2), and exit from Algorithm DOE. Otherwise we 

say this dxj has successfully passed the check, and proceed to step (3). 

 

(3) If all the dxj have successfully passed the checks, then we have O1  O2, and exit from Algorithm 

DOE. Otherwise continue to check the next dxj such that O1.dxj  O2.dxj.  

 

Example 5  The specification is the same as Example 1, except for following additional operations 

and axioms: 

 

operations 

... 

 _.incTop: IntStack  IntStack 

axioms 

... 

 a7: S.incTop.top  if S.empty then S.top 

  else S.top + 1 

 

 In the following implementation, the internal data member numPush is used to count the number of 

continuous calls to _.push, and totalPush is applied to record the total number of calls to _.push. For the 

sake of illustration, we have embedded some errors in the implementation. 

 

#include <iostream.h> 

 

#define SIZE 100 

#define NIL 0 

 

enum bool { false, true }; 

 



26 

class intStack { 

/* intStack consists of 4 data members: */ 

int array[SIZE]; 

int height; 

int numPush; 

int totalPush; 

public: 

 void newStack( ); 

 bool empty( ); 

 void push(int i); 

 void pop( ); 

 void incTop( ); 

 int top( ); 

}; 

 

void intStack :: newStack( ) 

{ 

 height = 0; 

 numPush = 0; 

 totalPush = 0; 

 for ( int j = 1; j <= 100; j++ ) 

 array[j] = NIL; 

} 

 

bool intStack :: empty( ) 

{ 

 if (height = = 0) return true; 

 else return false; 

} 

 

void intStack :: push(int i) 

{ 

 if (height = = SIZE) 

  cout << "Stack is full"; 

 else { 

  height = height + 1; 

  array[height] = i; 

  numPush = numPush + 1; 

 } 

} 

 

void intStack :: pop( ) 

{ 

 if (height > 0) { 

  height = height  1; 

  numPush = 0; 

 } 

} 

 



27 

void intStack :: incTop( ) 

{ 

 if (height > 0) { 

  array[height] = array[height] + 1; 

  totalPush = totalPush + numPush; /* Error 1: This statement should be in the   

   method pop but has been placed here by 

    mistake. */ 

 } 

} 

 

int intStack :: top( ) 

{ 

 if (totalPush = = 3) return NIL; /* Error 2: The condition should be totalPush = = 0. */ 

 else { 

  if (height > 0) return array[height]; 

  else return NIL; 

 } 

} 

 

 The fundamental pair u1 = new.push(1).push(2).pop and u2 = new.push(1) can be induced from 

axiom a4. Let us denote their corresponding implemented method sequences as s1 and s2, respectively. 

Suppose the execution results of s1 and s2 are objects O1 and O2, respectively. We would like to illustrate 

how to use Algorithm DOE to determine whether O1  O2. 

 

(a) Since the sequences s1 and s2 do not end with an observer, proceed to step (b). 

 

(b) Construct the Data member Relevance Graph of class C from the coding of class C. The DRG is 

shown in Figure 3. 

 

(c) The execution results are: 

 

 (array, height, numPush, totalPush) 

O1 = ([1, 2], 1,  0,  0), 

O2 = ([1, NIL], 1,  1,  0). 

 

Check whether the tuples ([1, 2], 1, 0, 0) and ([1, NIL], 1, 1, 0) are equal. The answer is no. 

 

(d) O1 and O2 have different values on the data members array and numPush: 

 

(1) For array, we follow step (d)(2) of Algorithm DOE. Here, the component index is height. The 

current values of both O1.height and O2.height are 1, whereas the value of height, which 

satisfies O1.array[height]  O2.array[height], is 2. From the cycle height-arc1-height in Figure 3, 

we see that the only method sequence msEl1 which changes the value of height from 1 to 2 is 

push(i). On the other hand, by traversing the executable paths for O1 from the node array to the 

node observed in Figure 3, we obtain the method sequences msOb1 = top and msOb2 = 

incTop.top, corresponding to the paths array-arc5-observed and array-arc8-array-arc5-

observed, respectively. Thus, by concatenating msEl1 with msOb1 and msOb2, respectively, we 



28 

obtain the relevant observable contexts push(i).top and push(i).incTop.top. Then apply the PDP 

technique
9
 to determine i = 8, and check whether 

 

  O1.push(8).top = O2.push(8).top and 

O1.push(8).incTop.top = O2.push(8).incTop.top 

 

They are both successful. 

 

(2)  For numPush, since it is a simple data type, we follow step (d)(1) of Algorithm DOE to traverse 

every executable path for O1 by backtracking. Suppose the global ceiling T supplied by the user 

for the number of iterations of cycles is 2. 

 

(i) In Figure 3, the node numPush has two output arcs arc8 and arc1 (where arc1 is a cycle). All 

the conditions of arc8 and arc1 are satisfied by O1.height = 1. Let us consider arc8 first. Its 

label contains the method incTop. Execute the method and obtain O1.incTop = ([2, 2], 1, 0, 

0). The end node of arc8 is totalPush, which has four output arcs arc4, arc5, arc6, and arc8 

(where arc8 is a cycle). The current state, O1.incTop = ([2, 2], 1, 0, 0), satisfies the 

conditions of arc5 and arc8 but not those of arc4 and arc6. Hence, arc5 and arc8 are 

executable for the current state but arc4 and arc6 are unexecutable. Consider arc5 first. The 

label of arc5 contains the method top. Execute the method and obtain (O1.incTop).top = 2. 

The end node of arc5 is the node observed. Thus, we obtain an executable path p1 = 

numPush-arc8-totalPush-arc5-observed for the given object O1. The relevant observable 

context corresponding to path p1 is oc1 = incTop.top. Execute O2.oc1 and obtain O2.oc1 = 2. 

Hence, oc1 succeeds because O1.oc1 = O2.oc1. 

 

(ii) To obtain the other executable path for O1, backtrack to the node totalPush and consider 

the other executable output arc arc8 (which is a cycle). The label of arc8 contains the 

method incTop. Execute the method and obtain (O1.incTop).incTop = ([2, 2], 1, 0, 

0).incTop = ([3, 2], 1, 0, 0). The end node of arc8 is totalPush, which has four output arcs 

arc4, arc5, arc6, and arc8. The current state, O1.incTop.incTop = ([3, 2], 1, 0, 0), satisfies the 

conditions of arc5 and arc8 but not those of arc4 and arc6. Hence, arc5 and arc8 are 

executable for the current state but arc4 and arc6 are unexecutable. Consider arc5 first. The 

label of arc5 contains the method top. Execute the method and obtain 

(O1.incTop.incTop).top = 3. The end node of arc5 is the node observed. Thus, we obtain an 

executable path p2 = numPush-arc8-totalPush-(arc8-totalPush)1-arc5-observed for the 

given object O1. The relevant observable context corresponding to path p2 is oc2 = 

incTop.incTop.top. Execute O2.oc2 and obtain O2.oc2 = 3. Hence, oc2 also succeeds because 

O1.oc2 = O2.oc2. 

 

(iii) Similarly to step (ii), in order to obtain the other executable path for O1, backtrack to the 

node totalPush, and consider the other executable output arc arc8 (which is a cycle). The 

label of arc8 contains the method incTop. Execute the method and obtain 

(O1.incTop.incTop).incTop = ([4, 2], 1, 0, 0). The end node of arc8 is totalPush, which has 

four output arcs arc4, arc5, arc6, and arc8. The current state, O1.incTop = ([4, 2], 1, 0, 0), 

satisfies the conditions of arc5 and arc8 but not those of arc4 and arc6. Hence, arc5 and arc8 

are executable for the current state but arc4 and arc6 are unexecutable. Consider arc5 first. 

The label of arc5 contains the method top. Execute the method and obtain 

                                                 
9
 Here, as a special case, the partition only contains a unique subdomain. 



29 

(O1.incTop.incTop.incTop).top = 4. The end node of arc5 is the node observed. Thus, we 

obtain an executable path p3 = numPush-arc8-totalPush-(arc8-totalPush)2-arc5-observed 

for the given object O1. The relevant observable context corresponding to path p3 is oc3 = 

incTop.incTop.incTop.top. Execute O2.oc3 and obtain O2.oc3 = ([1, NIL], 1, 1, 

0).incTop.incTop.incTop.top = NIL. However, as evaluated above, O1.oc3 = 

O1.incTop.incTop.incTop.top = 4. Hence, oc3 fails because O1.oc3  O2.oc3. Report (O1  

O2). Then exit from Algorithm DOE.  

 

3.3 Discussions on Algorithm DOE 

 

We discuss in this section a number of important issues on Algorithm DOE including effectiveness, 

limitations, and complexity. 

 

3.3.1 Effectiveness (1): Skipping Irrelevant Observable Contexts 

 

By adopting Algorithms DOE, we can skip the testing of many irrelevant cases. Referring to step (d) 

in Example 5, none of the method sequences of the form push(i1).push(i2)
j.top or push(i)j.popk.incTop.top 

(where j, k = 1, 2, ...) are relevant observable contexts with respect to O1 and O2. Hence, we need not 

consider them. In fact, none of them reveals the error. 

 

3.3.2 Effectiveness (2): Overcoming the “Missing Path” Problem 

 

A common drawback of white-box techniques is the failure to detect “missing paths”, which are 

parts of the specification omitted from the implementation. However, even though Algorithm DOE is a 

white-box technique by itself, it can help to expose some of the missing paths when integrated with a 

black-box technique, such as our axiom-based approach to generate fundamental pairs as test cases. This 

is the main idea behind our proposal to integrate black- and white-box techniques in program testing. In 

Example 5, for instance, suppose the branch “if (height0) return array[height]” is missing from the code 

of the method top( ). Then the path “totalPush-arc5-observed” in Figure 3 will be missing. The originally 

selected fundamental pair u1 = new.push(1).push(2).pop and u2 = new.push(1) (see the paragraph before 

step (a) of Example 5) cannot reveal this error, since O1.oc3 = NIL = O2.oc3 (see step (iii) of Example 5). 

However, following Algorithm GFT in our axiom-based approach, this error will be exposed by another 

fundamental pair new.push(8).top  8 induced from axiom a6 in Example 1, since new.push(8).top = NIL 

 8. 

 

3.3.3 Limitation (1): Infinite Cycles 

 

If a DRG contains cycles, the set of relevant observable contexts is infinite. We can, however, only 

choose a finite subset as test cases. Thus some program faults may remain undetected. This is an inherent 

limitation of program testing. To select such a finite subset, step (d) of Algorithm DOE uses a positive 

integer ti or T to control the number of iterations of the cycles. The determination of ti or T remains a 

difficult problem. In the current phase, these integers are supplied manually by user. Alternatively, we 

may consider the feasibility of adding further heuristics to the algorithm. For instance, in step (d)(2) of 

Example 5, we may find that the required number ti of iterations of the cycle li = 

-totalPush-(arc8-totalPush)
ti- is closely related with the number 3 in the branch condition of the method 

top, which can be identified in the labels of the output arcs of the node totalPush. 

 



30 

3.3.4 Limitation (2): Fault Masking 

 

A new concern may be raised on our relevant observable context technique. If an observable context 

oc itself contains an error, can we determine whether O1  O2? Let u1 ~ u2 be two equivalent ground terms 

and s1 and s2 be their corresponding method sequences in an implementation. There are four possible 

cases: 

 

(a) There exists some error in s1 or s2 such that (O1  O2): 

(1) The error in oc does not affect the decision whether O1  O2. In this case, our procedure finds 

that (O1  O2) and reports an error. 

(2) The error in oc causes an erroneous decision on the observational equivalence of O1 and O2. In 

this case, our procedure finds that O1  O2 and does not report any error. 

 

(b) There is no error in s1 and s2, and hence we should have O1  O2: 

(1) The error in oc does not affect the decision whether O1  O2. In this case, our procedure finds 

that O1  O2 and does not report any error. 

(2) The error in oc causes an erroneous decision whether O1  O2. In this case, our procedure finds 

that (O1  O2) and reports an error. In spite of the erroneous decision, the error report is 

actually correct because there is an implementation error in oc. 

 

 It is well-known that program testing does not necessarily guarantee correctness [30, 31]. It is 

generally considered acceptable that a test may not reveal all the errors in an implementation. If a test 

reports an implementation error, we say that the test is useful. It would be unacceptable, however, if a test 

reports an error that does not exist in an implementation. 

 

In the above, the cases (a)(1) and (b)(2) are useful, while the cases (a)(2) and (b)(1) are acceptable. 

Hence, our approach does not produce unacceptable cases. 

 

3.3.5 Size of DRG 

 

The size of a DRG can be represented by a tuple (N, S), where N is the number of nodes in the DRG, 

and S is the number of segments. If the corresponding implementation contains D data members and M 

methods, and P is the maximum number of conditions in each method, then N = D+1, and S  D
2
  M  

P. In the worst case, “directly affects” is a universal relation, which corresponds to S = D
2
  M  P. In fact, 

this worst case very seldomly occurs, if ever. We expect the DRG to be rather simple in most practical 

situations, since the DRG models the class level, which is a relatively low level in an object-oriented 

system. The number of nodes in the DRG of a class, equivalent to the number of data members in a given 

concrete class, is usually small, and “directly affects” is generally far from a universal relation. For 

conventional programming, many authors have supplied statistical data to show that simple program 

structures are used more often than complex structures [25, 32, 33, 34, 35]. Since the class level is 

relatively low in an object-oriented system, the situation is very similar. For example, we have analyzed 

statistically the source code of one of our projects entitled FOOD (Functional Object-Oriented Design) 

[36]. We have reviewed 16 classes and found that the average numbers of the data members and methods 

in each class were 6 and 8, respectively. We have also examined 21 classes in another case study on bank 

accounts and found that the average numbers of data members and methods in each class were 4 and 7, 

respectively. 

 



31 

3.3.6 Executability of a Given Path for a Given Object 

 
Note that the concept of executability of a given path for a given object defined in Definition 3.4 is 

very different from the concept of feasibility of a path in other flow graph techniques [25]. An infeasible 

path is normally defined as a path whose conditions cannot be satisfied by any input value, and is 

well-known to be undecidable. However, since executable and unexecutable paths defined in Definition 

3.4 are related to some object O1, they can be determined from the known values O1.di, that is, the 

values of the data members of the given object O1. Thus, unlike the concept of feasibility, the 

executability of a given path for a given object as defined in this paper is decidable. 

 

3.3.7 Complexity of Traversing Executable Paths 
 

Referring to Algorithm DOE and Example 5, let L be the maximum length of all acyclic paths from 

any node to the node observed. Let n be the maximum number of Boolean conditions in the output arcs of 

any node that are true for the current values of O1.di and O2.di. Let T be the ceiling supplied by the user for 

the number of iterations of cycles. Since the maximum number of selective branches at any node in a path 

is n(T + 1), and the longest path contains L nodes, the maximum number of executable paths is (n(T + 1))
L
. 

We note that, for a given DRG of the class under test, n is a variable according to the different objects O1 

and O2, but L and T are constants. Hence, the complexity of traversing executable paths is O(n
L
), in the 

worst case. 

 

Furthermore, by the same reasoning as that of Section 3.3.5, we do not expect the constant L to be 

large in most practical situations. 

 

3.4 An Implementation of Algorithm DOE 

 

As indicated in Section 2.5.4, Algorithm GFT is analogous to that used in the tools described in [9]. 

Their implementations are also similar, so that we have not included it in the present phase of our 

prototyping study. Instead, we have focused our attention on the implementation of Algorithm DOE, and 

implemented a prototype on a Pentium/120. In summary, it is a reformed C++ interpreter, constructed by 

embedding Algorithm DOE into a C++ interpreter. The prototype consists of five modules: parser.c, 

drg.c, pigeonC.h, subLib.c, and pigeonC.c. The modules pigeonC.h and subLib.c contain the definitions 

of the main data structures and the interfaces to internal library functions, respectively. The module 

parser.c includes a lexical analyzer and a recursive descent parser. It also performs the initialization for 

drg.c and other modules. The module drg.c constructs the DRG, traverses executable paths by 

backtracking, and generates and executes the corresponding relevant observable contexts for two given 

objects. Finally, pigeonC.c serves as the main module of the prototype. It reads the C++ program code 

for a given class under test, allocates memory for the program, prescans it, and calls and coordinates 

other modules to perform the task. 

 

Note that Algorithm DOE as specified in this paper shows only an abstract summary. It is, in fact, 

refined into several sub-algorithms that call many other functions, as described in Chen et al. [37]. 

Readers may find the following additional notes useful: 

 

3.4.1 Pigeon C++ 

 

The prototype has been implemented using Borland C++. It requires the program for a given class 

under test is written in a subset of C++ language. We call this subset Pigeon C++, which is an extension 

of Little C [38]. In the present phase, Pigeon C++ contains the following features of C++ language: 



32 

parameterized or non-parameterized functions with local variables; recursion; if statements; do-while, 

while, and for statements; return statements; integer, character, and array variables; instance variables of 

classes; global variables; string constants; some standard library functions; member functions of classes; 

+, , , , %, , , , , , ! = , unary , unary +; and comments. As a limitation, Pigeon C++ does not 

contain pointers in the present phase. The implementation of the relevant observable context technique 

with pointers is much more complex and needs further investigation. 

 

3.4.2 Construction and Traversal of a DRG 

 

Suppose an implemented class contains k methods m1, m2, ..., mk. Let d1 and d2 be two data members 

in the implemented class. The following is a schematic summary of the tasks required for each method mi 

in the construction of the DRG: 

 

(1)  Scan the code of mi. 

 

(2)  Suppose c denotes a constant and p denotes a predicate. When a statement of the form “d1 = c” or “d1 

= f(..., d2, ...)” is found, put the arc_label (true, mi) into the table of arc labels, and put the segment [c 

or index of d2, index of arc_label (true, mi), index of d1] into the list of output arcs. When a statement 

such as “if (p) {...; d1 = c or f(..., d2, ...); ...}” is found, put the arc_label (p, mi) into the table of arc 

labels, and put the segment [c or index of d2, index of arc_label (p, mi), index of d1] into the list of 

output arcs. If p = p(..., d3, ...), d3 is a data member different from d2, we should also put the segment 

[index of d3, index of arc_label (p, mi), index of d1] into the list of output arcs. If the statement also 

contain “else {...; d4 = c0 or g(..., d5, ...); ...}”, we must also put the arc_label (p, mi) into the table of 

arc labels, and put the segment [c0 or index of d5, index of arc_label (p, mi), index of d4] into the list 

of output arcs. 

 

For every such statement, the time for performing this task is bounded. Assume that it is no more 

than T1. If the method mi contains si1 such statements, the time for handling these statements is no 

more than T1.si1. 

 

(3) Skip the other statements in the method mi. The time for skipping such a statement is also bounded. 

Assume that it is no more than T2. Since the method mi contains (si  si1) such statements, the time for 

handling these statements is no more than T2(si  si1). 

 

Thus, the time t for constructing the DRG of the class satisfies the following formula: 

 

t  i=1, ..., k(T1.si1 + T2(si  si1))  i=1, ..., k(T.si1 + T(si  si1)) = i=1, ..., k(T.si) = T.s 

 

where T = max{T1, T2} and s = s1+ s2+ ...+ sk. Hence, the time t for constructing the DRG is O(s). 

 

 When traversing the executable paths, if backtracking is necessary, the algorithm traverses the 

observer arcs first, followed by the acyclic output arcs, and finally the output arcs for cycles. 

 

Further implementation details, such as the internal representations and the actual procedures for the 

construction and traversal of the DRG, can be found in Chen et al. [37]. 

 



33 

3.4.3 Interactions with Users 

 
The prototype is a semi-automatic tool. In the present phase, it requires the users to supply the 

following information manually: 

 

(1) Two equivalent method sequences corresponding to a selected fundamental pair of equivalent 

ground terms for the given class under test. 

 

(2) A list of methods in the class that are observers. 

 

(3) In step (d) of Algorithm DOE, when there are uninstantiated input variables in the oc just obtained, 

we should apply the PDP technique to select values for the input variables. This selection may be 

semi-automatic, but is only manual at present. 

 

(4) In the traversal of an executable path in step (d), if a cycle li is encountered, the user should supply a 

ceiling ti for the number of iterations of li, or determine a global ceiling T allowed by the system for 

the number of iterations of any cycle. 

 

If Algorithm GFT is implemented, (1) can be semi-automatic. Even then, we shall reserve the manual 

interface as a supplement. 

 

3.4.4 Empirical Results 

 

We have experimented with Examples 4 and 5 on the prototype. The experimental result of Example 

5 (on Pentium/120), as shown in the following table, is the same as predicted. 

 

Global ceiling 

supplied by the user 

for the number of 

iterations of any cycle 

Number of 

observable contexts 

generated by the 

prototype 

Number of 

error-revealing 

observable 

contexts 

Total run time 

for all 

observable 

contexts 

Run time for the 

first observable 

context that 

reports the error 

0 2 0 0.093407 s  

1 6 0 0.164835 s  

2 12 3 0.283516 s 0.108791 s 

3 20 5 0.437363 s 0.107692 s 

4 30 5 0.634066 s 0.129670 s 

 

Here, the run time includes the time for generating the two objects under test, traversing the 

executable paths for the objects in the DRG, constructing observable contexts from the executable paths, 

executing the observable contexts, and reporting the detected error, if any. However, it does not include 

the time for constructing the DRG. In Example 5, the time for constructing the DRG is 0.043297 seconds. 

 

Suppose that the user indicates a global ceiling of 3 iterations. From the above table, we know there 

are 20 observable contexts to be generated in total. The run time for executing all of them would be 

0.437363 seconds. In fact, Algorithm DOE does not test all the 20 observable contexts. When the first 

observable context reporting an error is encountered, the algorithm will exit, ignoring other observable 

contexts. Hence, the actual run time is found to be 0.107692 seconds. 

 



34 

Some trouble was encountered in the experiment on Example 4, since “#define SIZE 100” was too 

large for generating test sets of reasonable sizes. The allowable maximum size of array in the experiment 

on this example is 50. After changing the SIZE to 50, the experiment succeeds in reporting the error, but 

the run time on Pentium/120 is 13.571429 seconds. 

 

We also wrote a correct C++ program for the specification in Example 1, embedded common errors 

into the program, such as writing height  0 as height  0 or height  2, and then experimented with them 

on the prototype. The experimental results showed that all such common errors could be exposed by the 

prototype. As an illustration, the empirical results for the erroneous implementation with height  2 are 

listed as follows: 

 

 

 

 

Global ceiling 

supplied by the user 

for the number of 

iterations of any cycle 

Number of 

observable 

contexts generated 

by the prototype 

Number of 

error-revealing 

observable 

contexts 

Total run time 

for all 

observable 

contexts 

Run time for the 

first observable 

context that 

reports the error 

0 5 3 0.092308 s 0.041758 s 

1 14 6 0.226374 s 0.041758 s 

2 24 7 0.404396 s 0.041758 s 

3 34 7 0.602198 s 0.041758 s 

4 44 7 0.836264 s 0.041758 s 

 

The time for constructing the DRG of this example is 0.024835 seconds. 

 

 

4. RELATED WORK 
 

There are two ways to use algebraic specifications in software testing. One was originally presented by 

Jalote [39], and extended by Frankl and Doong [11, 22, 23]. The other was initially proposed by Gannon 

et al. [40], and extended by Gaudel and others [9, 10, 21]. 

 

The former considers the axioms as rewriting rules, suggests to choose test cases from all legal 

combinations of operations (or terms), and derives their equivalent terms by means of the rewriting rules. 

The latter selects test cases from “the set of ground instances of the axioms obtained by replacing each 

variable by all ground terms of the right sort” under well-defined hypotheses [10]. Our Theorem 2 

reveals an essential relationship between these two approaches. 

 

Our approach is motivated by the ASTOOT black-box approach of Frankl and Doong and the testing 

theory of Gaudel and others. For completeness, we shall also compare our approach with the white-box 

dataflow-based approach of Parrish and others. 

 



35 

4.1 The Work of Frankl and Doong 

 

In general, there are a number of advantages in Frankl and Doong’s functional approach [11, 22, 23] 

to test object-oriented programs. Using algebraic specifications, it helps to solve the oracle problem. By 

taking sequences of operations as test cases, instead of individual operations, this approach does not 

depend on a predefined calling method but on a suite of messages passing among objects. This concept is 

especially suitable for object-oriented programming. It can support an integrated set of semi-automatic 

tools covering test case generation, test driver generation, test execution, and test checking. 

 

Our approach hopefully inherits the above advantages. However, there are a few substantial 

distinctions between Doong and Frankl’s approach and ours: 

 

(1) Frankl and Doong define two terms u1 and u2 to be equivalent “if we can use the axioms as rewrite 

rules to transform u1 to u2” [11]. There is a problem in this definition. Consider, for example, two 

terms new.push(1).push(2).pop and new.push(3).pop.push(1) for the specification of the class of 

integer stacks in Example 1. They produce observationally equivalent results when implemented 

correctly. However, they cannot be transformed from one to the other by left-to-right rewriting rules, 

and hence are not equivalent according to this definition. As a result, Frankl and Doong’s approach 

cannot derive this kind of test cases. Our Definition 2.6 avoids this problem. However, as a 

supplement, Doong and Frankl’s approach allows the user to add manually generated test cases that 

may remedy such kinds of situations. 

 

 (2) Doong and Frankl’s approach requires the user to select a finite number of original (operation) 

sequences from the set of terms, which is infinite in general. They offer the following tentative 

guidelines to guide the selection and generation of test cases: “Use (at least some) long original 

sequences, with a variety of relative frequencies of different constructors and transformers” and “If 

the specification has conditional axioms (with comparison operators), choose a variety of test cases 

for each original sequence, with various parameters chosen over a large range. Equivalently, choose 

a variety of different paths through the ADT tree arising from each original sequence.” [11] These 

guidelines are supported by two empirical case studies. 

 

The selection domain of our “fundamental pair” strategy is much smaller than that of the set of 

equivalent ground terms, but the coverage of testing fundamental pairs remains the same. Using our 

strategy, two of Doong and Frankl’s tools, the compiler and simplifier, can be replaced by a 

generator that induces fundamental pairs as test cases directly from the two sides of each axiom. Our 

strategy is based on mathematical theorems, thus more precise. 

 

(3) Frankl and Doong give an “approximate check” [11] for object observational equivalence, known as 

the EQN method, consisting of two techniques. One produces a recursive version of eqn from 

specification. The other is at the “implementation level”. The former requires the analyst to supply a 

special axiom eqn to the specification of each class to define equivalence of two objects in the class. 

Different eqn axioms are attached to different classes. The approach also requires the designer and 

programmer to implement a special recursive method eqn for the respective eqn axiom in each class. 

If one of the attached axioms for eqn, or its implementation, is problematic, then the test report may 

show an error even if the original class is implemented correctly. Having said that, if we consider the 

eqn function to be a part of the class under test, the above situation is acceptable. The technique at 

the “implementation level” suggests to use white-box information about how the data type is 

represented and manipulated in the implementation. “For example, knowing that a FIFO queue is 

represented as a linked list, one can traverse the two lists comparing the elements”. If the 



36 

corresponding elements of the two lists are equal, we can indeed conclude that the two queues are 

observationally equivalent. If some corresponding elements of the two lists are not equal, however, 

we cannot immediately conclude that the two queues are observationally not equivalent, since the 

object-oriented paradigm allows encapsulation and the hiding of internal information. As discussed 

by Frankl and Doong, there are some advantages and disadvantages of the two techniques. As an 

option, our relevant observable context technique checks observational equivalence of objects using 

a different idea, which concentrates on checking relevant observable contexts only, skipping 

irrelevant observable contexts. 

 

4.2 The Work of Gaudel, Bernot, Bouge, Choquet, Dauchy, Fribourg, and Marre 

 

Bernot, Gaudel, and Marre [21] have proposed a general theory for software testing based on 

algebraic specifications. This theory includes several hypotheses such as a regularity hypothesis and a 

uniformity hypothesis for selecting test cases, and some oracle hypotheses to constrain the oracle 

problem. These hypotheses are important from a theoretical point of view, because they formalize 

common test practices and express the gap between testing and correctness proving. In our approach, we 

combine our strategy with the regularity hypothesis and the decomposition technique of uniform 

subdomains to select a finite set of fundamental pairs as test cases. 

 

 Furthermore, the oracle hypothesis and the related counterexample in [21] have inspired us to 

propose the relevant observable context technique. 

 

An important distinction between our approach and the work of Gaudel and others is that the latter 

replaces all the variables in the axioms by ground terms according to the regularity hypothesis [10], 

whereas our approach replaces them by normal forms according to Theorem 2. The benefit of replacing 

variables by normal forms, rather than by general ground terms, has been described in Section 2.5.4. 

 

4.3 The Work of Parrish, Borie, and Cordes 

 

Parrish, Borie, and Cordes [15] proposed a white-box dataflow-based approach to testing classes. 

Their approach uses a class graph, which is a collection of N, E, D, U, I, where N is the set of nodes, E 

is the set of edges. A node represents an operation. An edge from a node A to a node B means that it is 

permissible to invoke the operation B after the operation A. D denotes the set of definitions of data. U 

denotes the set of uses of data. I refers to the set of infeasible subpaths. N, E, D, and U are obtained from 

the class interface in the implementation. The purpose of introducing the concept of I is to allow us to 

eliminate sequences that are inappropriate or impossible to test. For this purpose, the authors set up a 

weak class graph and the corresponding weak coverage criteria, and added two further restrictions. They 

then proved that a minimum-length sequence of operations which satisfies weak node coverage criteria, 

weak branch coverage criteria, weak definition coverage criteria, or weak use coverage criteria could be 

found in polynomial time. Hence, the approach can be automated efficiently. However, as admitted by 

the authors, these weak criteria and the two additional restrictions substantially weaken the degree of 

testing demanded, and reduce the significance of their results. 

 

We can compare Parrish’s class graph approach and our DRG approach as follows: 

 



37 

(a) Both of these two approaches are white-box techniques. 

 

(b) The class graph approach only deals with syntax problems. However, the DRG approach is used to 

determine whether two given objects are observational equivalent, which is a semantics problem. 

 

(c) In a class graph, a node represents an operation and an edge (op1, op2) denotes that the concatenation 

of two operations, op1.op2, is legal in syntax. On the other hand, in a DRG, a node represents a data 

member and an arc (d1, d2) denotes that the data member d1 directly affects data member d2. 

 

(d) In DRGs, the counterpart to the weak branch coverage criteria in the class graph approach ensures 

each cycle is traversed only once. In general, this is very insufficient for the purpose of deciding 

whether two given objects are observationally equivalent. See Example 5 and the table in Section 

3.4.4. 

 

(e) As indicated by [15], the class graph approach can also be based on the syntax section of algebraic 

specifications. Hence, this approach can be considered as an optional technique to select normal 

forms in step (a) of Algorithm GFT without a choice on the positive integer k. 

 

 

5. CONCLUSION 
 

 In this paper, we define a fundamental pair as a pair of equivalent ground terms formed by replacing 

all the variables on both sides of an axiom by normal forms. We prove that a complete implementation of 

a canonical specification is consistent with respect to all equivalent ground terms if and only if it is 

consistent with respect to all fundamental pairs. In other words, the testing coverage of fundamental pairs 

as good as that of all equivalent ground terms, and hence we need only concentrate on the testing of 

fundamental pairs. Our strategy is based on mathematical theorems. Combining this strategy with the 

regularity hypothesis and the decomposition technique of uniform subdomains, we construct an 

algorithm for selecting a finite set of fundamental pairs as test cases. 

 

 On the other hand, we prove that the observational equivalence of objects cannot be determined 

using a finite set of observable contexts derived from any black-box technique. Instead, we propose a 

relevant observable context approach, which is a heuristic white-box technique, and have implemented a 

prototype for it. 

 

Many authors have indicated that program testing cannot thoroughly expose all the errors in the 

program under consideration [30, 31]. In this sense, testing in general is an incomplete and undecidable 

problem. Our approach cannot avoid this inherent limitation of testing. We decompose the testing 

problem into several sub-tasks, separate the decidable sub-tasks from the undecidable or difficult ones, 

and put them into a unified methodological framework via two algorithms. The undecidable or difficult 

sub-tasks are analyzed separately. 

 

 As future work, we shall investigate into the selection of nonequivalent terms as test cases, and the 

testing of interactions among groups of cooperating classes at the cluster level. We shall also consider the 

following problems: Is it feasible to abstract heuristic information from program code to alleviate the 

problems of deciding on the length of normal forms in step (a) of Algorithm GFT, and determining the 

number of iterations of cycles in step (d) of Algorithm DOE? How do we extend Pigeon C++ and its 

implementation with the relevant observable context technique to include aliasing and pointers? How do 



38 

we use compiler techniques instead of interpreter techniques to improve the efficiency of the prototype? 

How can we make the prototype more practical and user-friendly? 

 

 

ACKNOWLEDGMENTS 
 

 We are grateful to Professor P.G. Frankl for her helpful discussions via electronic mail. We also 

greatly appreciate the anonymous referees for their invaluable comments, questions, and suggestions, 

which lead our paper to a greater depth. Special thanks are due to Mr. Yue Tang Deng, the first author’s 

M.Eng. student in Jinan University, for his invaluable contributions to the implementation and 

experimentation of the prototype. 

 

REFERENCES 

1. Smith, M.D. and Robson, D.J., A framework for testing object-oriented programs, Journal of 

Object-Oriented Programming 5, 3 (1992), 45–53. 

2. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., and Ghedamsi, A., Test selection based 

on finite state models, IEEE Transactions on Software Engineering 17, 6 (1991), 591–603. 

3. Harrold, M.J., McGregor, J.D., and Fitzpatrick, K.J., Incremental testing of object-oriented class 

structures, In Proceedings of 14th IEEE International Conference on Software Engineering 

(ICSE ’92), IEEE Computer Society, Los Alamitos, CA (1992), 68–80. 

4. Kung, D., Gao, J., Hsia, P., Toyoshima, Y., and Chen, C., A test strategy for object-oriented 

programs, In Proceedings of IEEE 19th Computer Software and Applications Conference 

(COMPSAC ’95), IEEE Computer Society, Los Alamitos, CA (1995), 239–244. 

5. Kung, D., Gao, J., Hsia, P., Lin, J., and Toyoshima, Y., Design recovery for software testing of 

object-oriented programs, In Proceedings of IEEE Working Conference on Reverse Engineering, 

IEEE Computer Society, Los Alamitos, CA (1993), 202–211. 

6. Perry, D.E. and Kaiser, G.E., Adequate testing and object-oriented programming, Journal of 

Object-Oriented Programming 3, 5 (1990), 13–19. 

7. Turner, C.D. and Robson, D.J., A state-based approach to the testing of class-based programs, 

Software: Concepts and Tools 16, 3 (1995), 106–112. 

8. Chen, H.Y. and Tse, T.H., Towards a new methodology for object-oriented software testing at the 

class and cluster levels, Technical Report TR-97-07, Department of Computer Science, The 

University of Hong Kong, Pokfulam, Hong Kong (1997). 

9. Bouge, L., Choquet, N., Fribourg, L., and Gaudel, M.-C., Test sets generation from algebraic 

specifications using logic programming, Journal of Systems and Software 6 (1986), 343–360. 

10. Dauchy, P., Gaudel, M.-C., and Marre, B., Using algebraic specification in software testing: a case 

study on the software of an automatic subway, Journal of Systems and Software 21, 3 (1993), 

229–244. 



39 

11. Doong, R.-K. and Frankl, P.G., The ASTOOT approach to testing object-oriented programs, ACM 

Transactions on Software Engineering and Methodology 3, 2 (1994), 101–130. 

12. Chen, T.Y. and Low, C.K, Dynamic data flow analysis for C++, In Proceedings of 1995 Asia-

Pacific Software Engineering Conference (APSEC’ 95), IEEE Computer Society, Los Alamitos, CA 

(1995), 22–28. 

13. Chen, T.Y. and Low, C.K, Error detection in C++ through dynamic data flow analysis, Software: 

Concepts and Tools 18, 1 (1997), 1–13. 

14. Fiedler, S.P., Object-oriented unit testing, Hewlett-Packard Journal 40, 4 (1989), 69–74. 

15. Parrish, A.S., Borie, R.B., and Cordes, D.W., Automated flow graph-based testing of object-

oriented software modules, Journal of Systems and Software 23, 2 (1993), 95–109. 

16. Turner, C.D. and Robson, D.J., State-based testing and inheritance, Technical Report TR-1/93, 

Computer Science Division, School of Engineering and Computer Science, University of Durham, 

Durham, UK (1993). 

17. Turner, C.D. and Robson, D.J, Guidance for the testing of object-oriented programs, Technical 

Report TR-2/93, Computer Science Division, School of Engineering and Computer Science, 

University of Durham, Durham, UK (1993). 

18. Goguen, J.A. and Diaconescu, R., Towards an algebraic semantics for the object paradigm, In 

Recent Trends in Data Type Specification: Proceedings of 9th International Workshop on 

Specification of Abstract Data Types, H. Ehrig and F. Orejas, Eds. Lecture Notes in Computer 

Science, Vol. 785. Springer-Verlag, Berlin, Germany (1994), 1–29. 

19. Goguen, J.A. and Meseguer, J., Unifying functional, object-oriented, and relational programming 

with logical semantics, In Research Directions in Object-Oriented Programming, B. Shriver and P. 

Wegner, Eds. MIT Press, Cambridge, MA (1987), 417–477. 

20. Wolfram, D.A. and Goguen, J.A., A sheaf semantics for FOOPS expressions, In Object-Based 

Concurrent Programming: Proceedings of ECOOP '91 Workshop, M. Tokoro, O.M. Nierstrasz, and 

P. Wegner, Eds. Lecture Notes in Computer Science, Vol. 612, Springer-Verlag, Berlin, Germany 

(1992), 81–98. 

21. Bernot, G., Gaudel, M.-C., and Marre, B., Software testing based on formal specifications: a theory 

and a tool, Software Engineering Journal, 6, 6 (1991), 387–405. 

22. Doong, R.-K. and Frankl, P.G., Case studies on testing object-oriented programs, In Proceedings of 

4th ACM Annual Symposium on Testing, Analysis, and Verification (TAV 4), ACM, New York, NY 

(1991), 165–177. 

23. Frankl, P.G. and Doong, R.-K., Tools for testing object-oriented programs, In Proceedings of 8th 

Pacific Northwest Conference on Software Quality (1990), 309–324. 

24. Frankl, P.G., Private communication (1994). 

25. White, L.J. and Cohen, E.I., A domain strategy for computer program testing, IEEE Transactions on 

Software Engineering SE-6, 3 (1980), 247–257. 



40 

26. Jeng, B. and Weyuker, E.J., A simplified domain-testing strategy, ACM Transactions on Software 

Engineering and Methodology 3, 3 (1994), 254–270. 

27. Frankl, P.G., A framework for testing object-oriented programs, Computer Science Technical 

Report PUCS-105-91, Department of Electrical Engineering and Computer Science, Polytechnic 

University, Brooklin, New York, NY (1991). 

28. Breu, R. and Breu, M., Abstract and concrete objects: an algebraic design method for object-based 

systems, In Algebraic Methodology and Software Technology: Proceedings of 3rd International 

Conference (AMAST '93), M. Nivat, C. Rattray, T. Rus, and G. Scollo, Eds. Workshops in 

Computing, Springer-Verlag, Berlin, Germany (1993), 343–348. 

29. Morell, L.J., A theory of fault-based testing, IEEE Transactions on Software Engineering 16, 8 

(1990), 844–857. 

30. Clarke, L.A., A system to generate test data and symbolically execute programs., IEEE Transactions 

on Software Engineering SE-2, 3 (1976), 215–222. 

31. Miller, E.F., Notes on the philosophy of testing, In Proceedings of 1st Annual International 

Computer Software and Applications Conference (COMPSAC ’77), IEEE Computer Society, New 

York, NY (1977). 

32. Knuth, D.E., An empirical study of FORTRAN programs, Software: Practice and Experience 1 

(1971), 105–133. 

33. Elshoff, J.L., A numerical profile of commercial PL/I programs, Report GMR-1927, Computer 

Science Department, General Motors Research Laboratory, Warren, MI (1975). 

34. Elshoff, J.L., An analysis of some commercial PL/I programs, IEEE Transactions on Software 

Engineering SE-2 (1976), 208–215. 

35. Cohen, E.I., A Finite Domain-Testing Strategy for Computer Program Testing, PhD Dissertation, 

Ohio State University, Columbus, OH (1978). 

36. Tse, T.H. and Goguen, J.A., Functional object-oriented design (FOOD), In Foundations of 

Information Systems Specification and Design, Dagstuhl Seminar Report No. 35, H.-D. Ehrich, A. 

Sernadas, and J.A. Goguen, Eds. International Conference and Research Center for Computer 

Science, Wadern, Germany (1992). 

37. Chen, H.Y., Deng, Y.T., and Tse, T.H., ROCS: an object-oriented software testing system at the 

class level based on the relevant observable context technique, Technical Report TR-97-08, 

Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong (1997). 

38. Schildt, H., The Craft of C: Take-Charge Programming, Osborne McGraw-Hill, Berkeley, CA 

(1992). 

39. Jalote, P., Specification and testing of abstract data types, In Proceedings of 7th Annual 

International Computer Software and Applications Conference (COMPSAC ’83), IEEE Computer 

Society, New York, NY (1983), 508–511. 



41 

40. Gannon, J.D., McMullin, P.R., and Hamlet, R., Data-abstraction implementation, specification, and 

testing, ACM Transactions on Programming Languages and Systems 3, 3 (1981), 211–223. 

 

 

AUTHORS’ BIOGRAPHIES 

 

 Huo Yan Chen is a full Professor at Jinan University in China. He has also performed research in 

software engineering and expert systems at the University of Hong Kong for more than six years. He had 

conducted research in logic programming and knowledge engineering at the University of Illinois at 

Urbana-Champaign for two years. He had also served in an electronic company in Guangzhou as a 

computer systems analyst and software designer for ten years. His current research interests are in soft-

ware engineering and knowledge engineering, including formal methods, object-oriented methodology, 

software testing, logic programming, expert systems, and discrete mathematics. 

 

 Professor Chen obtained his BS degree in Mathematical Science from Nankai University of China in 

1968 and his M.Eng. degree in Computer Science from the National University of Defence Science and 

Technology in 1982. He has received the “Governmental Special Allowance Monthly for Outstanding 

Contributions to the Nation” from the State Council of China since 1992. He has also been awarded three 

Prizes for Science and Technology Achievements by Guangdong Provincial Government. 

 

 T.H. Tse is a Professor in Computer Science at the University of Hong Kong. He is a Fellow of the 

British Computer Society, a Fellow of the Institute for the Management of Information Systems, a 

Fellow of the Institute of Mathematics and its Applications, and a Fellow of the Hong Kong Institution of 

Engineers. He had been a Council Member of the Vocational Training Council for eight years. 

 

 Dr. Tse received his PhD from the University of London. He was a Visiting Fellow of the University 

of Oxford in 1990 and 1992, and an Academic Exchange Visitor of the University of Melbourne in 1996. 

He has been selected for a Ten Outstanding Young Persons’ Award, a Key of Success Award, and a 

Twentieth Century Award for Achievement. He has been decorated with an MBE by the Queen. 

 

 F.T. Chan received the BSc, MPhil, and MBA degrees from the University of Hong Kong. He is an 

Associate Professor of the School of Professional and Continuing Education, the University of Hong 

Kong. He is responsible for developing and organizing continuing and professional courses in computer 

science and information science for adult learners. He had worked in the Computer Centre of the same 

university for eleven years before being an academic. 

 

 He is a member of the British Computer Society, the Hong Kong Computer Society, and the Hong 

Kong Institution of Engineers. He is a Chartered Engineer of the Engineering Council in the UK. His 

research interests are in software engineering, expert systems, and adult continuing education. 

 

 T.Y. Chen received his BSc and MPhil from the University of Hong Kong, his M.Sc. from the 

Imperial College of Science and Technology, and his PhD from the University of Melbourne. He taught 

at the University of Hong Kong and is currently with the University of Melbourne. His main research 

interests include software testing and software engineering. 

 




