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SUMMARY

In this paper, we investigate into the feasibility of applying logic programming to structured
design. We propose to use Prolog as a common machinery for the representation of various
structured tools. We illustrate through examples how to produce structure charts from data flow
diagrams, and evaluate them according to commonly recommended design guidelines. If the
structure charts produced are not satisfactory, the inherent backtracking mechanism in Prolog will
help to produce other versions for further evaluation.
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INTRODUCTION

The application of logic programming to structured analysis and design is an area which has
begun to attract much attention. Kowalski [1] suggested that data flow diagrams are different in
syntax but equivalent in semantics to a logic-based language of conclusion-condition rules.
Docker [2] used Prolog to develop a CASE tool called SAME to specify and exercise data flow
diagrams. Steer [3] used a parallel logic programming language Parlog to model data flow
diagrams. Tsai and Ridge [4] proposed the use of expert system in assisting structured design,
and reported several problems encountered.

Although both structured analysis and structured design depend to a large extent on decision-
making processes based on heuristics and human experience, most of the projects above are
confined to the analysis phase and do not address the issues in the design phase. Logic
programming, which is most suitable for logical inference, should play a prominent role in
structured design as well.

One objective of our Software Engineering research group is to investigate into the feasibility
of applying Prolog to structured design and develop automated tools to assist human designers in
this important phase of the software life cycle. Our recent investigation [5] has contributed an
initial effort in this respect and demonstrated the usefulness of Prolog in evaluation of structure
charts. We would like to use a common machinery for all aspects of structured design, including
the representation and processing of various structured tools. We find that Prolog is more suitable
than conventional imperative languages for the purpose. Not only have we solved some problems
formerly regarded as difficult, but also obtained better solutions for others which had only been
solved partially [4] .
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We assume that readers of this paper are familiar with the fundamentals of Prolog. Please
refer to [6, 7, 8] for details.

STRUCTURED SYSTEMS DEVELOPMENT

A number of software tools and techniques have been developed to enhance software
productivity for various stages of the software life cycle. Structured systems development
methodology stands out to be the most popular and successful [9, 10]. It provides a set of
notations which can be used to specify the overall structure and functional requirements of a
system in a graphical and hierarchical manner. Such a systems specification may be evaluated
and manipulated under a set of well-accepted guidelines.

A data flow diagram [11, 12] is a graphical network representing the processes and data
interfaces of a system. It is structured in the sense that a lower level represents a decomposition
of the higher level. The details of the lowest level are described by mini-specifications [11]
written in structured English . Specifications of the data interfaces and storage information are
recorded in data dictionaries . A structure chart [13, 14] is a graphical tool for describing the
hierarchy of modules to be implemented, as well as the algorithmic relationships and
communication links among them. Like data flow diagrams, the detailed specifications of
individual modules are written in structured English and the communication links are specified by
means of data dictionaries.

A data flow diagram is a natural tool for the analysis phase of the software life cycle, while a
structure chart is useful in the design and implementation phases. There is a vast difference in
graphical outlook between data flow diagrams and structure charts, and the bridging of this gap is
vital in ensuring a smooth transition between software development phases. To this end,
structured methodology provides us with two important strategies called transform analysis and
transaction analysis . Then the structured chart can be evaluated according to guidelines such as
coupling and cohesion .

Numerous attempts and evaluations may be required before the final structure chart can be
produced [11, 13, 14]. Tedious programming would be involved if an imperative language were
used to develop an automated system. Implementation in Prolog is much easier since its intrinsic
backtracking mechanism is particularly useful in such processes involving trial and error.

REPRESENTATIONS OF STRUCTURED TOOLS IN PROLOG

Tse [15] proposed the use of term algebra as a unified representation of various structured
tools, and showed that there are mathematical mappings between them. Since data flow diagrams
and structure charts are usually large in size, however, it may be rather cumbersome to handle
long and deeply-nested terms. Instead, we propose to use a collection of Prolog predicates or
relations to represent the structured tools. Such a representation turns out to be easier to
understand and manipulate. In this section, we describe briefly how to represent data flow
diagrams, structure charts, data dictionaries and structured English using Prolog.

There are five kinds of components in data flow diagrams, as illustrated in the sample in
Figure 1. They are specified using the following predicates:

dfd_data_flow(Data).
dfd_file(Node).
dfd_source(Node).
dfd_sink(Node).
dfd_process(Node, Node_reference).
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where Node_reference is a list specifying the reference number usually attached to each node
in a data flow diagram. For instance, the node 4.3.2 is given a Node_reference of
[4,3,2] . Similarly, the root node of the entire data flow diagram is given a
Node_reference of [1] .

Furthermore, we use the following predicate to specify the connections between data flows
and processes or other nodes:

dfd_couple(Node1, Data, Node2).

For example, the sample data flow diagram in Figure 1 is specified in Figure 2.

The components of structure charts (modules, connections and couples) are represented by the
predicates

sc_module(Module).
sc_structure(Module, Structure_type, Children).
sc_couple(Module1, Data, Module2).
sc_data(Data, Data_type).

Here the predicate sc_module is used to specify the name of each module. The predicate
sc_structure is used to specify the parent-child relationship between a Module , and a list of
submodules, denoted by Children . The type of relationship is indicated by
Structure_type and can either be sequence , selection or iteration . The predicate
sc_couple is used to specify the data passed between two modules, and sc_data further
specifies the type of each data couple, namely atomic , composite or control . For
example, the sample structure chart in Figure 3 is specified in Figure 4.

A data dictionary is represented by a set of entries, each of which gives the structure of a data
item as follows:

data_structure(Data, Data_structure).

A Data_structure can be defined using one or more composition operators, namely:

Operator Meaning Corresponding Symbol
in Structured Design

and
or
iter
opt
atom

sequence
selection
iteration
optional
atomic data item

+
[]
{}
()

For example,

order = [customer#|customer_name] +(discount)
+ {product# + quantity}

is represented by

data_structure(order,
and([or([customer#, customer_name]), opt(discount),

iter(and([product#, quantity]))])).
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Structured English is a specification language consisting of a subset of natural English with
only a limited vocabulary and limited language constructs. Each sentence may be a simple
statement or a compound statement made of the sequence, selection and/or iteration of other
statements. For the purpose of the evaluation exercise in our system, we represent the lowest
level statements using a Prolog predicate

ms_statement(Node, Statement_reference, Verb, Inputs,
Outputs)

where Node is the name of the node in the data flow digram which contains the statement,
Statement_reference is a reference number assigned to each statement for identification,
Verb is the command of the statement, Inputs is the list of data items referred to by the
statement, and Outputs is the list of data items returned. For example, the statement ‘‘add
amount to total’’ in a node compute_total may be represented by

ms_statement(compute_total, 1, add, [amount, total],
[total]).

SYSTEM OVERVIEW

A structured systems specification (in the form of a hierarchy of data flow diagrams plus data
dictionary and mini-specifications) is maintained in a Dfd_file in Prolog representation as
described in the previous section. The system will (a) load the Dfd_file into the Prolog
database, (b) construct a structure chart automatically by inserting its Prolog representation into
the database, and (c) evaluate the construction using a set of standard criteria. If the result of an
evaluation fails to pass the pre-defined standards, the system will backtrack and produce another
structure chart for further evaluation. This will be repeated automatically until the result is
acceptable. The accepted structure chart is then output to an Sc_file . In case none of the
results is acceptable, we may relax the pre-defined standards and make further attempts.

Because of the inherent backtracking mechanism of Prolog, the above procedure can be
defined using a simple predicate as follows:

dfd_to_sc(Dfd_file, Sc_file) :-
reconsult(Dfd_file),
dfd_process(Global_root, [1]),

% Find the root of the entire data flow diagram
construct_structure_chart(Global_root),
evaluate,
output_result_to(Sc_file).

The respective sub-programs will be discussed in the following sections.

CONSTRUCTION OF STRUCTURE CHARTS

Transform and transaction analyses are two supplementary strategies for producing structure
charts. In transform analysis, we follow the input and output data streams of a data flow diagram
to determine the central portion of the system responsible for the main transform of data. In this
way, a balanced structured chart can be derived accordingly. In transaction analysis, we try to
isolate a transaction centre which captures an input transaction, determines its type, and then
processes it in the appropriate branch of the centre.

Yourdon [14] suggests to hide the transaction centres as if they are single processes, and
apply transform analysis first. He then suggests the use of transaction analysis to deal with the
hidden parts. On the other hand, Page-Jones [13] suggests that a system should first be broken
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into suitably tractable sub-diagrams using transaction analysis. Each sub-diagram should then be
converted into a structure chart using transform analysis. We propose to follow Yourdon in the
main data flow diagram, but the advice of Page-Jones is also taken at the lower levels. Hence we
implement the combined strategy as a recursive procedure, thus:

(a) Locate a proper level to start the conversion. A commonly suggested heuristics is to choose a
level as high as possible but containing at least ten processes.

(b) Hide all the transaction centres in the diagram, recursively if necessary.

(c) Perform transform analysis on the diagram.

(d) Search the structure chart for modules whose corresponding processes contain hidden
transaction centres. Expand these processes and perform the procedure on them. Paste the
resulting subcharts on to the main structure chart.

(e) Recursively perform the procedure on the lower processes which have not been considered in
(a) above.

The procedure can be specified and hence implemented in Prolog as follows:

construct_structure_chart(Root) :-
expand_nodes([Root], Node_list, 10),
( Node_list = [], !

;
transact_analysis(Node_list, _, New_node_list),
transform_analysis(New_node_list, Root),
expand_transact_centres,
findall(Node,

( member(Node, Node_list),
% Nodes without children:
not sc_structure(Node, _, _) ),

Leaf_node_list),
zoom_into(Leaf_node_list) ).

zoom_into([]).

zoom_into([Node|Other_nodes]) :-
construct_structure_chart(Node),
zoom_into(Other_nodes).

In the rest of this section, we shall explain transform and transaction analyses in more detail,
since the two together constitute the most important step in the preparation of a structure chart,
resulting in a reasonably acceptable form for further evaluation.

Transform Analysis

A data flow diagram contains a transform centre, the afferent streams and the efferent streams.
The transform centre is the collection of processes which make up the major function of the
system. An afferent stream is a string of processes which start off by reading data from a
physical source, and then convert it into a more abstract form suitable for the transform centre.
An efferent stream, on the other hand, is a string of processes which convert output data from the
transform centre into a more physical form suitable for output to the real world.

We can know for sure that some nodes must belong to the transform centre. They satisfy
either of the following conditions:

(a) The node name contains a verb such as subtract which would alter the values of input
data items;
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(b) Statements in the mini-specification of the node contain verbs which would alter the values of
input data items.

We define the Core_transform_centre as the minimal sub-data-flow-diagram containing
these nodes.

We also know for sure that some nodes must belong to the afferent streams. As
recommended by standard guidelines, we follow each input stream and identify those nodes whose
input and output data names are similar except a qualifier. Examples are order and
valid_order , or formatted_debit and confirmed_debit . We define
Core_afferent as the minimal afferent streams containing these nodes. The nodes between
Core_afferent and Core_transform_centre , not identified by the above criteria, can
possibly be regarded either as part of the afferent streams or part of the transform centre. Our
system would initially treat all of them as part of the afferent streams. The treatment on
Core_efferent and that on the nodes between Core_efferent and
Core_transform_centre are similar.

Structure charts can then be constructed and evaluated, such as by promoting a boss or hiring
a boss, as described in detail in [13]. If, however, the structure charts thus constructed are
unacceptable, the system will backtrack automatically and reduce the afferent and efferent
streams. This will be repeated until the result is acceptable, or until the afferent and efferent
streams cannot be reduced further.

The following, then, is a program for transform analysis:

transform_analysis(Node_list, Root) :-
split(Node_list, Transform_centre, Afferent, Efferent),
convert(Root, Transform_centre, Afferent, Efferent).

The predicate split divides a given set of processes in a data flow diagram into the transform
centre and the sets of afferent and efferent processes as described. The predicate convert
transforms them into sub-structure-charts and hangs them under the Root module. These
predicates are defined as follows:

split(Node_list, Transform_centre, Afferent, Efferent) :-
core_transform_of(Node_list, Core_transform_centre),
core_afferent_of(Node_list, Core_afferent),
semi_afferent_of(Node_list, Core_transform_centre,

Core_afferent, Semi_afferent),
semi_afferent_subpaths_of(Semi_afferent,

Core_transform_centre, Semi_afferent_subpaths),
append(Semi_afferent_subpaths, Core_transform_centre,

Temp_transform_centre),
subtract(Semi_afferent, Semi_afferent_subpaths,

Remaining_semi_afferent),
append(Core_afferent, Remaining_semi_afferent, Afferent),
core_efferent_of(Node_list, Core_efferent),
semi_efferent_of(Node_list, Core_transform_centre,

Core_efferent, Semi_efferent),
semi_efferent_subpaths_of(Semi_efferent,

Core_transform_centre, Semi_efferent_subpaths),
append(Temp_transform_centre, Semi_efferent_subpaths,

Transform_centre),
subtract(Semi_efferent, Semi_efferent_subpaths,

Remaining_semi_efferent),
append(Remaining_semi_efferent, Core_efferent, Efferent).
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convert(Root, Transform_centre, Afferent, Efferent) :-
retractable_assertz(sc_module(Root)),
convert_afferent(Afferent, Root),
convert_transform_centre(Transform_centre, Root),
convert_efferent(Efferent, Root).

convert_transform_centre(Transform_centre, Root) :-
hire_a_boss(Transform_centre, Root)
;
promote_a_boss(Transform_centre, Root).

where the predicate retractable_assertz(clause) inserts the clause into the Prolog
database in forward execution, but removes it in the case of backtracking.

Transaction Analysis

Transaction analysis consists of three steps:

(1) Find each transaction centre by locating the respective first node and all its subsequent
branches.

(2) Reduce each of them into a single node for the ease of transform analysis.

(3) Re-expand the nodes afterwards.

If there is more than one transaction centre in a given data flow diagram, transaction analysis will
be executed recursively.

The first node in a transaction centre is a process which inspects the type of each transaction
entering the system and routes it to its corresponding branch for processing. We locate this first
node (which we shall call Milestone) from the set of processes in a data flow diagram using
the following predicate:

is_milestone(Node_list, Milestone) :-
member(Milestone, Node_list),
dfd_couple(_, Input, Milestone),
setof(Data,

Nˆdfd_couple(Milestone, Data, N),
Data_list),

is_transact_data(Input, Data_list),
mutually_exclusive_types(Data_list).

is_transact_data(_, []).

is_transact_data(Input, [Data|Other_data]) :-
is_part_of(Data, Input),
is_transact_data(Input, Other_data).

where the predicate is_part_of(Data, Input) holds if every component of Data is a
component of Input , and mutually_exclusive_types(Data_list) holds if there is a
common component X in each data in Data_list such that all the X’s are different.

This example illustrates the advantage of using a declarative programming language to help
automating structured design. We need only to declare the characteristics of Milestone . It is
not necessary to specify the procedure for searching all modules. The is_milestone predicate
will trigger the intrinsic backtracking mechanism and find every Milestone . The declarative
characteristic of Prolog is useful also in many other parts of the system.

7 Dec 15 16:01 1995



The predicate for transaction analysis may then be written as follows:

transact_analysis(Node_list, Temp_node_list,
New_node_list) :-

is_milestone(Node_list, Milestone), !,
findall(Transact_branch,

( dfd_couple(Milestone, _, Second_node),
transact_branch_of(Node_list, Milestone,

Second_node, Transact_branch) ),
Transact_branches),

append([Milestone], Transact_branches, Transact_centre),
assertz(is_transact_centre(Transact_centre)),
reduce(Node_list, Milestone, Transact_centre,

Temp_node_list),
transact_analysis(Temp_node_list, Temp_node_list2,

New_node_list)
;
New_node_list = Node_list.

Here the predicate reduce replaces the entire Transact_centre by a single node. If the
name of the original Milestone is x , then the single node will be given a name of do_x . The
clause is_transact_centre(Transact_centre) is a fact inserted into the Prolog
database to save the details of the hidden transaction centre for use in the predicate
expand_transact_centres below. In case there is more than one transaction centre in a
given data flow diagram, there will be more than one fact
is_transact_centre(Transact_centre) inserted. The predicate fail in
expand_transact_centres will cause backtracking to take place and re-expand further
Transact_centres thus saved.

expand_transact_centres :-
is_transact_centre([Milestone|Transact_branches]),
expand_branches(Milestone, Transact_branches),
concat(’do_’, Milestone, New_milestone),
setof(Node,

Dˆsc_couple(New_milestone, D, Node),
Node_list),

assertz(sc_structure(New_milestone, selection,
Node_list)),

fail
;
abolish(is_transact_centre / 1).

expand_branches(_, []).

expand_branches(Milestone,
[Transact_branch|Other_branches]) :-

concat(’do_’, Milestone, New_milestone),
Transact_branch = [Second_node|Other_nodes],
transform_analysis(Other_nodes, Second_node),
dfd_couple(Milestone, Input, Second_node),
retractable_assertz(sc_couple(New_milestone, Input,

Second_node)),
findall(Output,

( last_node_of(Transact_branch, Second_node,
Last_node),

dfd_couple(Last_node, Output, _) ),
Output_list),

retractable_assertz(sc_couple(Second_node, Output_list,
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New_milestone)),
expand_branches(Milestone, Other_branches).

EVALUATION OF STRUCTURE CHARTS

Some of the structure charts produced by the predicates described in the last section may be
reasonably acceptable by users, but others may not be worth considering. We must evaluate the
structure charts according to some established guidelines [11, 13, 14], which may include coupling,
cohesion, fan-out, fan-in consistency, tramp data, factoring, decision-splitting, morphology, and
initializing and terminating modules. The first four are the most important and have been used in
our system. Since Prolog programs are declarative in nature, any further expertise in evaluation,
as long as it does not contradict existing heuristics, can be incorporated incrementally. The
predicate for evaluation is specified simply as follows.

evaluate :-
globally_acceptable_coupling,
globally_acceptable_cohesion,
globally_acceptable_fan_outs,
globally_consistent_fan_ins.

Details of each predicate called will be explained in the subsequent subsections.

Coupling

Coupling is a measure of the inter-dependence among modules in a structure chart. A good
system should consist of as many independent modules as possible, so that low coupling between
modules signifies a well-designed system. An important means of measuring coupling is by
inspecting the types of data passing between modules. We can divide coupling into five major
types, varying from the best to the worst. Data coupling is the best. It means that two modules
communicate through atomic data items. The next one on the list is stamp coupling, which means
that two modules communicate through composite data items. Control coupling between two
modules means that they communicate through control flags. Common coupling means that
modules use global data. Finally, content coupling means that a module refers to (or changes)
some data within another module, or refers to (or alters) a statement in another module.* The last
two types of coupling are generally regarded as unsatisfactory.

Having defined the notion of satisfactory /unsatisfactory coupling, an obvious extension is that
a structure chart is acceptable if none of its modules have unsatisfactory coupling. Such an
extension, however, would be too strict and impractical. A structure chart is usually considered
acceptable in practice even if a limited percentage of its modules are not satisfactory. The
tolerance limit is specified by the user by means of inserting a fact
maximal_unsatisfactory_coupling(Defined_percent) into the Prolog database.

Thus, the following predicate globally_acceptable_coupling is used to determine
the overall acceptability of the structure chart in terms of coupling. As long as the Percent of
unsatisfactory coupling is not more than Defined_percent , the system will backtrack
automatically, so that another module is checked. If, however, the Percent of unsatisfactory
modules exceeds the defined limit, the predicate will fail.

∗ The second aspect of content coupling is the result of poor programming and cannot be detected at the systems
design phase.
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globally_acceptable_coupling :-
setof(M, sc_module(M), Module_list),
length(Module_list, No_of_modules),
maximal_unsatisfactory_coupling(Defined_percent),

% Reasonable percentage of modules not having
% satisfactory coupling, as specified by the user

ctr_set(0, 1),
member(Module, Module_list),
unsatisfactory_coupling(Module),
ctr_inc(0, No_of_unsatisfactory_modules),
Percent is No_of_unsatisfactory_modules / No_of_modules,
Percent > Defined_percent, !, fail
;
true. % Percent =< Defined_percent

Here ctr_set and ctr_inc are pre-defined predicates in Arity Prolog, which is used for our
system. ctr_set(0, 1) initializes the contents of ‘‘counter 0’’ to one. ctr_inc(0,
Variable) moves the latest contents of ‘‘counter 0’’ to Variable and then adds one to the
counter. The predicate unsatisfactory_coupling(Module) detects common or content
coupling in a module by detecting

(a) data which is input to a statement but is neither captured explicitly into the module nor
generated by another statement in the same module, and

(b) data which is output from a statement but is neither exported explicitly from the module nor
generated by another statement in the same module.

The predicate can simply be defined as follows:

unsatisfactory_coupling(Module) :-
ms_statement(Module, _, _, Inputs, _),
member(Data1, Inputs),
not sc_couple(_, Data1, Module),
not ( ms_statement(Module, _, _, _, Outputs),

member(Data1, Outputs) ), !
;
ms_statement(Module, _, _, _, Outputs),
member(Data2, Outputs),
not sc_couple(Module, Data2, _),
not ( ms_statement(Module, _, _, Inputs, _),

member(Data2, Inputs) ).

Cohesion

Another major design guideline involves cohesion, which is a measure of the strength of
functional association of activities within a module. It is commonly recommended that elements
in modules should be highly cohesive, that is, strongly inter-related.

There are seven major levels of cohesion. The best level is functional cohesion, where a
module performs a single identifiable function. The next level is sequential cohesion, where the
data produced in an earlier part of the module will be used in a later part of the same module. In
a module with communicational cohesion, the elements process data items in the same file, but
not necessarily in any specific order. In a module with procedural cohesion, the elements are
related by program control algorithms such as selection or iteration. Temporal cohesion means
that elements are grouped under the same module because they are time-related. Logical cohesion
means that elements are grouped under the same module because they are supposed to have
similar behaviour, but actually exhibit minor differences. The worst level of cohesion is
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coincidental cohesion, where the elements of a module are grouped together for no specific
reason.

Tsai and Ridge [4] have pointed out the difficulty in determining cohesion levels
automatically. Fortunately, we do not need to determine the exact level of cohesion of a module
in most cases of evaluation. We say that two statements are related with each other if an output
of one statement is also an input to the other. The number of related statements should be
relatively large in a module with strong cohesion such as functional, sequential or
communicational cohesion. Thus the cohesion of a given module is regarded as satisfactory if
there is a reasonably percentage of related statements. Furthermore, the overall cohesion of a
structure chart is deemed to be acceptable if there is a reasonable percentage of modules having
satisfactory cohesion. This is specified using a predicate
globally_acceptable_cohesion . Its logic is similar to
globally_acceptable_coupling and hence not repeated here. It uses the backtracking
mechanism of Prolog to call the predicate satisfactory_cohesion(Module) and decide
whether only a reasonable percentage of Modules do not have satisfactory cohesion.

satisfactory_cohesion(Module) :-
findall([Statement1, Statement2],

( ms_statement(Module, Statement1, _, _, _),
ms_statement(Module, Statement2, _, _, _),
not Statement1 = Statement2 ),

Statement_pairs),
length(Statement_pairs, No_of_statement_pairs),
( No_of_statement_pairs = 0, !

;
related(Statement_pairs, Related_statement_pairs),
length(Related_statement_pairs,

No_of_related_statement_pairs),
Percent2 is No_of_related_statement_pairs /

No_of_statement_pairs,
minimal_related_statements(Defined_percent2),

% Reasonable percentage of related statements
% in a module, as specified by the user

Percent2 > Defined_percent2 ).

related([], []).

related([[Statement1, Statement2]|Statement_pairs],
[[Statement1, Statement2]|Related_statement_pairs]) :-

ms_statement(_, Statement1, _, _, Outputs)
ms_statement(_, Statement2, _, Inputs, _)
component_of(Outputs, Data_element),
component_of(Inputs, Data_element), !,
related(Statement_pairs, Related_statement_pairs).

related([[_, _]|Statement_pairs],
Related_statement_pairs) :-

related(Statement_pairs, Related_statement_pairs).

where component_of(Data_list, Data_element) will hold if Data_element is

Fan-Out

In a structure chart, the fan-out from a module is the number of immediate subordinates to
that module. Due to the limits of human beings and according to software development
experience, we should limit the fan-out from a module to be no more than seven [16]. This is
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implemented using a predicate globally_acceptable_fan_outs similar to
globally_acceptable_coupling . It helps to decide whether or not only a limited
percentage of modules have unsatisfactory fan-outs. Such modules can be detected by a simple
predicate as follows:

unsatisfactory_fan_out(Module) :-
sc_module(Module),
sc_structure(Module, _, Children),
length(Children, N),
N > 7.

Fan-In Consistency

If any given Module is called by more than one parent module, say Parent1 and
Parent2 , the data couples between Parent1 and Module should be consistent with those
between Parent2 and Module . This is known as consistent fan-in. We define a predicate
globally_consistent_fan_ins to ensure fan-in consistency throughout the entire structure
chart. This is achieved by calling the predicate consistent_fan_ins(Module_list) ,
which not only checks the fan-in consistency of every Module in Module_list , but continues
the check recursively for every child of the Module .

globally_consistent_fan_ins :-
dfd_process(Global_root, [1]),

% Find the root of the entire data flow diagram
sc_structure(Global_root, _, Children),
consistent_fan_ins(Children).

consistent_fan_ins([]).

consistent_fan_ins([Module|Other_modules]) :-
% Find all Parents:
findall(P,

( sc_structure(P, _, Children),
member(Module, Children) ),

Parents),
% Single parent or consistent couples among parents:
( Parents = [_], !

;
consistent_couples(Module, Parents) ),

( sc_structure(Module, _, Children), !,
consistent_fan_ins(Children)
;
true ),

consistent_fan_ins(Other_modules).

where the predicate consistent_couples is defined as follows:

consistent_couples(Module, Parents) :-
all_couples_of(Module, Parents, Data_lists),
same_contents(Data_lists).
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all_couples_of(_, [], []).

all_couples_of(Module, [Parent|Other_parents],
[Data_list|Other_data_lists]) :-

setof(Data,
( sc_couple(Module, Data, Parent)

; sc_couple(Parent, Data, Module) ),
Data_list),

all_couples_of(Module, Other_parents, Other_data_lists).

CONCLUSION

This paper reports on an attempt to apply logic programming techniques in structured design.
We have solved some problems formerly regarded as difficult, and obtained better solutions for
other problems which had only been solved partially, such as in the areas of transform analysis,
coupling and cohesion. We have developed a Prolog system to implement our proposals. We
have found that Prolog is an excellent tool for the automation of structured design because of
several reasons. Firstly, it serves as a common notation for representing data flow diagrams,
structure charts, data dictionaries and mini-specifications. This facilitates cross-referencing and
reduces the probability of errors when one structured tool is converted into another. Secondly,
underlying backtracking and pattern-matching mechanisms of Prolog enable multiple design
solutions to be found. If a design is not satisfactory according to the evaluation criteria, feasible
alternatives can be determined automatically. Thirdly, because of its declarative nature, Prolog
supports the incremental incorporation of evaluation criteria and other guidelines on structured
design.
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dfd_data_flow(order).
dfd_data_flow(credit_info).
dfd_data_flow(valid_order).
dfd_data_flow(regular_order).
dfd_data_flow(regular_invoice).
dfd_data_flow(bulk_order).
dfd_data_flow(pre_discount_info).
dfd_data_flow(bulk_invoice).
dfd_data_flow(invoice).

dfd_file(customer_file).

dfd_source(customer).

dfd_sink(customer_accounts).

dfd_process(process_sales, [1]).
dfd_process(validate_order, [1, 1]).
dfd_process(classify_order, [1, 2]).
dfd_process(process_regular, [1, 3]).
dfd_process(prepare_bulk, [1, 4]).
dfd_process(calc_discount, [1, 5]).
dfd_process(put_invoice, [1, 6]).

dfd_couple(customer, order, process_sales).
dfd_couple(customer_file, credit_info, process_sales).
dfd_couple(process_sales, invoice, customer_accounts).
dfd_couple(customer, order, validate_order).
dfd_couple(customer_file, credit_info, validate_order).
dfd_couple(validate_order, valid_order, classify_order).
dfd_couple(classify_order, regular_order, process_regular).
dfd_couple(process_regular, regular_invoice, put_invoice).
dfd_couple(classify_order, bulk_order, prepare_bulk).
dfd_couple(prepare_bulk, pre_discount_info, calc_discount).
dfd_couple(calc_discount, bulk_invoice, put_invoice).
dfd_couple(put_invoice, invoice, customer_accounts).

Figure 2 Sample Representation of Data Flow Diagram in Prolog
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sc_module(process_sales).
sc_module(validate_order).
sc_module(do_classify_order).
sc_module(put_invoice).
sc_module(process_regular).
sc_module(process_bulk_order).
sc_module(prepare_bulk).
sc_module(calc_discount).

sc_structure(process_sales, sequence,
[validate_order, do_classify_order, put_invoice]).

sc_structure(do_classify_order, selection,
[process_regular, process_bulk_order]).

sc_structure(process_bulk_order, sequence,
[prepare_bulk, calc_discount]).

sc_data(valid_order, composite).
sc_data(invoice, composite).
sc_data(regular_order, composite).
sc_data(regular_invoice, composite).
sc_data(bulk_order, composite).
sc_data(bulk_invoice, composite).
sc_data(pre_discount_info, composite).

sc_couple(validate_order, valid_order, process_sales).
sc_couple(process_sales, valid_order, do_classify_order).
sc_couple(do_classify_order, invoice, process_sales).
sc_couple(process_sales, invoice, put_invoice).
sc_couple(do_classify_order, regular_order, process_regular).
sc_couple(process_regular, regular_invoice, do_classify_order).
sc_couple(do_classify_order, bulk_order, process_bulk_order).
sc_couple(process_bulk_order, bulk_invoice, do_classify_order).
sc_couple(process_bulk_order, bulk_order, prepare_bulk).
sc_couple(prepare_bulk, pre_discount_info, process_bulk_order).
sc_couple(process_bulk_order, pre_discount_info, calc_discount).
sc_couple(calc_discount, bulk_invoice, process_bulk_order).

Figure 4 Sample Representation of Structure Chart in Prolog
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