
An Examination of
Requirements Specification Languages*

T.H. Tse and L. Pong**
Department of Computer Science

The University of Hong Kong
Pokfulam Road

Hong Kong

ABSTRACT

We examine the features which are most desirable in requirements specification languages, and
then use the framework to review six established languages: PSL, SADT, EDDA, SAMM, HOS and
RSL.

Keywords and phrases: Requirements specification, specification languages, systems development
CR Categories: D.2.1, F.3.1, K.6.3

1. INTRODUCTION

A requirements specification for an information system is important for several reasons: It serves
as a means of communication between the user and the systems developer; it represents in a
systematic fashion the current state of the real world, its problems and its future requirements; it
enables the systems developer to turn real world problems into other forms which are more
manageable in terms of size, complexity, human understanding and computer processability; it serves
as the basis for the design, implementation, testing and maintenance of the target system. In order
that all the objectives of a requirements specification be met, we need a powerful specification
language. Quite a number of authors (such as [9, 21, 13, 36, 38]) hav e proposed independently the
desirable features of requirements specification languages. In Section 2 of this paper, we consolidate
these features and present them in the context of an engineering process. Then, in Section 3, we use
the proposed features as the basis of an examination of some of the established research in
specification languages.

2. DESIRABLE FEATURES OF A REQUIREMENTS SPECIFICATION LANGUAGE

Information systems development can be conceived of as an engineering process. A graphical
representation is shown in Figure 1. We must first of all build a model, which is a small-scaled
abstract representation of the real world. All unnecessary details in the physical world which are
irrelevant to the engineering process are removed from the model, or in other words, ignored during

∗ Part of this research was done at the London School of Economics, University of London under a Commonwealth
Academic Staff Scholarship. The research was also supported in part by a Hong Kong and China Gas Research Grant
and a University of Hong Kong Research and Conference Grant.

∗∗ Currently with IBM, Canada.

1

Tse and Pong Requirements Specification Languages 2

the analysis stage. When a bridge or tunnel is planned between two nations, for instance, the political
issues should best be dealt with by politicians and not form part of the engineer’s requirements
specification.

If the resulting model is still too complex, further abstractions may be necessary, until the
problem is reduced to a manageable size. The model is then analysed and manipulated until a feasible
solution is found. In engineering, diagrams and mathematics are often used because they hav e been
found to be more suitable for manipulation than verbal descriptions. One representation may have to
be transformed into another so that the most appropriate model for a given analysis can be used.
Diagrams, for instance, may have to be converted into equations. Finally, if the abstract solution is
accepted by the customer, a construction phase turns it into a real system.

In order for a requirements specification to be useful in systems development, seen as an
engineering process, the specification language must exhibit various features, each being relevant to
one of the stages. These features will be highlighted in this section.

We recognise that there are authors who may object to having an engineer’s view of information
systems development. Examples are Checkland, Land and Mumford [5, 18, 23], who regard systems
development as a human activity process. They propose that emphasis should be made on such issues
as understanding the impacts of change, people-oriented design and user participation throughout the
development process. It would be interesting to study how our proposal for the desirable features of a
specification language fits into this alternative framework. It is, however, beyond the scope of the
present paper to do so.

2.1 ABSTRACTION OF THE REAL WORLD

A requirements specification language is the means by which users can make a model of the real
world and specify its problems and requirements. It is the bridge between a development environment
and the users, including systems analysts, designers and end users. We must ensure that this interface
is understandable to all concerned. The usual marketing phrase ‘‘user-friendliness’’ is a bit too vague
to act as a useful guide. Instead, we consider it essential for the language to have the following
properties:

2.1.1 USER FAMILIARITY OF THE SPECIFICATION LANGUAGE

It would be difficult for users to employ an entirely new requirements specification language
because of several reasons.

(a) There is an inertial effect from the point of view of users. They are not willing to try a new
method with which they are not familiar.

(b) From the management point of view, a well-tested methodology which has proven popularity
tends to be more acceptable than a newly proposed technique. It is more easy to recruit staff
members who are trained and experienced in an established method. It would be easier to
maintain standards if the same methodology were used throughout the company. Managers in
general find it safer to be old-fashioned than to try the latest innovation and regret it afterwards.

2

Tse and Pong Requirements Specification Languages 3

As a result, practitioners are rather hesitant to use new tools which involve an unfamiliar formal
language [10, 20, 21]. When we propose a new systems development environment, therefore, we
should not be inventing an entirely new language, with the hope that it will turn out to be the best in
the world. Instead, we should try to use a currently available specification language which has most
of the desirable features and, more importantly, has proven popularity among practitioners.

2.1.2 LANGUAGE STYLE

(a) Textual Language

When we consider the use of a textual language for requirements specifications, two
possibilities arise: We may like either a natural language or a more formal programming-like
language. There is little doubt that natural languages give a better persuasive power and more
freedom of expression, especially in the initial phases of the system life cycle when a degree of
uncertainty is involved. It is also more natural to the average end user and hence improves the
user-understanding of a new situation. Research workers in artificial intelligence, however, are
still trying very hard to make natural language understood by computer systems, and hence it is
impossible currently to find a development environment which supports requirements
specifications based on natural language.

On the other hand, requirements specified in a natural language may cause ambiguities, since
they may be interpreted differently by different people. As pointed out by DeMarco [11] and
others, standard English prose is not suitable even for specifications which are processed
manually. Languages that have a better defined syntax and slightly more restrictive semantics
would therefore be preferred. These languages are more formal in nature and resemble a
programming language or a mathematical language.

(b) Graphical Language

It is generally agreed that graphical representation of complex material is much more
comprehensible than its textual counterpart. The reasons can be summarized as follows:

• Graphics is in two dimensions while text is in one dimension. The former gives an additional
degree of freedom in presentation.

• Graphics is more useful in showing the hierarchical structure of complex systems and more
natural in describing parallelism.

• A person reading graphics can do so selectively, depending on the level of details required. If
he reads text, he has to do so linearly.

• There is a limit to the number of concepts which can reasonably be held in the short-term
memory of human mind [22] . A person reading graphics can start off generally and go down to
detail after some degree of familiarization. If one is reading text, then one has to start off with
the detail and abstract the skeleton concepts afterwards.

3

Tse and Pong Requirements Specification Languages 4

It should be noted, however, that graphical languages with too many symbols are not necessarily
comprehensible to end users. The graphics-based language must consist only of a relatively small
number of easily understood symbols.

(c) Hybrid Languages

It is often impractical to define a requirements specification only in terms of a single
graphical or textual language. For example, although graphical languages are better than textual
languages in presenting an overview of a complex situation, textual languages are regarded as
better tools for detailed description. Although formal languages have precise semantics, their
meanings are often explained through natural languages. We need, therefore, a language which
exists in more than one format. A reasonable subset of the specification, at least at the higher
levels of abstraction, must exist both as formal and informal versions. The specification must be
convertible from one form to another so that users, analysts, designers, implementors and
managers can communicate effectively. A person needs only to review the version most
appropriate to his understanding and his needs. A formal one-to-one correspondence must be
maintained among the various syntaxes of the specification language, so that there will not be any
error or dispute.

2.1.3 COMPLEXITY

As suggested in [39] , complexity is the main barrier to the understanding of system problems. A
requirements specification language should therefore provide a means to improving the conceptual
clarity of the problems. There are two ways of attaining this goal.

(a) Separation of Logical and Physical Characteristics

When we analyse the requirements of a system, we should distinguish between logical and
physical characteristics. By logical characteristics we mean the essential features of the system
which must be satisfied in order to meet the users’ requirements, irrespective of the actual
procedure or mechanism. They are also known as essential characteristics. By physical
characteristics we mean the way in which the system actually functions in the real world. A
typical example of the latter is a process which employs some specific tool or material, such as
photocopiers or microfilms. In another example, we may encounter two independent tasks with
no data passing from one to the other, and yet they are performed in a definite sequence. Such an
order of events is more likely to be due to political or historical issues not relevant to the system.

A requirements specification language must allow us to model logical and physical
characteristics separately, in order to differentiate important issues from non-essentials. For
example, when we analyse a control system for operating a lift, we may like to exclude such
physical features as colour, decor and lighting from our logical model. In this way, the logical
model for the lift control system may be found to be equivalent to that of a disk control system, so
that any expertise in one design can be applied to the other.

4

Tse and Pong Requirements Specification Languages 5

(b) Multi-Level Abstraction

A hierarchical framework should be provided by the specification language to enable users to
visualize a target system more easily. It allows users to start conceptualizing the system at the
highest level of abstraction, and then to continue steadily downwards for further details. It allows
users to distinguish those parts of the target system relevant to a given context from those which
are not. Such a top-down approach frees users from embarking on unnecessary detail at a time
when they should be concerned only with an overall view of the target system. On the other hand,
it allows certain parts of a system to be investigated in detail when other parts are not yet defined.

To enable users to relate a requirements specification to real life problems, the specification
language should help them to refine the target system in a natural way. Target subsystems must
be as self-contained as possible. The interface between any two subsystems should be kept to a
minimum but defined explicitly. This will reduce complexity, avoid misunderstanding, and make
it possible for two subsystems to be analysed further by two different people. System modules
created in this way can be reusable common components which are independent of the parent
modules that call them. Furthermore, sufficient mechanism should be build into the development
environment to help users to check whether each refinement step is logically valid, so that each
group of child modules exactly replace the relevant parent module.

2.1.4 MODIFIABILITY

The requirements specification must be structured in such a way that the parts of a target system
can be modified easily to cater for new user needs, technological updates and/or other changes in the
environment. It should cater not only for amendments by the original specifier, but also allow
modifications to be made by anyone who is assigned the task.

2.2 MANIPULATION OF REPRESENTATIONS

2.2.1 TOOLS FOR MANIPULATION

(a) Formalism

In order to eliminate the problems of ambiguity during the construction and implementation
of a target system, the requirements specification should be expressible in a precise notation with
a unique interpretation. A formal framework must, therefore, be present. It helps to reduce the
probability of misunderstanding between different designers. At the same time, automated tools
based on the formal framework can be used to validate the consistency and completeness of the
specification. Furthermore, given the complexity and scope of present day systems, manual
development and maintenance methods are highly ineffective. The implementation and
maintenance phases can be made ‘‘computer-aided’’ more easily if a formal framework is present.

5

Tse and Pong Requirements Specification Languages 6

(b) Rigour

Systems development, as it is being practised at the present, lacks any theoretical background
and is seen by many as a black art [7] . In other engineering disciplines, the engineers can provide
users with a guaranteed degree of confidence by supporting practice with theory, hence ensuring
that the product is error free. It is, on the other hand, impossible for a systems developer to do so
[26] . To solve the problem, the systems development process must be supported by theory, so
that the correctness of implementation can be proved and verified against the user requirements.
A variety of theoretical techniques are already available in computer science for the verification of
software correctness. We must ensure that the requirements specification language is supported
by a mathematical foundation so that it can be mapped on to the appropriate theories.

2.2.2 TRANSFORMATION

(a) Support of Different Development Situations

It has been found [8, 19, 31] that different models are needed for different development
situations depending on the environment, emphasis and stage of development. For example, a
hierarchical chart may be useful as an overview of the target system. Another model showing
algorithmic details may be more appropriate for implementation purposes. A third model in a
mathematical form may be used for proving the correctness of the implementation. Thus the
requirements specifications may be transformed from one style or notation into another. This
raises the problem of determining whether the models are in fact equivalent in semantics, and is
another reason why the models must be supported by rigour.

(b) Transparency of Formalism

In order to support the manipulation and construction phases of the engineering process, a
requirements specification usually consists of a substantial amount of formalism or jargon not
fully understood by end users. The formal and mathematical aspects of the specification language
must be transparent to users because most people who are not mathematically trained feel
infuriated if they are presented with a list of Greek and Hebrew symbols. A unified mathematical
framework must, however, be present in the language so that it is possible to guarantee a one-to-
one correspondence between the formal side and the user-friendly side of the same language.
Otherwise it is impossible to ensure, for example, that a hierarchical chart presented to the end
user is the same as the algorithmic description read by the implementor.

2.2.3 INDEPENDENCE OF DESIGN AND IMPLEMENTATION

A requirements specification should be independent of the design and implementation of the
target system. The supporting language must be behaviour-oriented and non-procedural. In other
words, it should help us to spell out ‘‘what to do’’ rather than ‘‘how to do it’’. The resulting
specification must be open-ended in terms of implementation, rather than imposing a specific design
choice such as the algorithms, files or databases to be used. It should not depend on the proposed
hardware or other resources that are subject to change. It must not cause any obstacle to the
introduction of new technologies.

6

Tse and Pong Requirements Specification Languages 7

2.3 CONSTRUCTION OF REAL SYSTEM

A requirements specification can be seen as a contract between the user and the systems
developer. During the construction of the target system, we must have an independent means of
deciding whether the developer has fulfilled the contract. Elements in the specification should be
traceable to the final design and implementation. In other words, suitable cross-referencing
mechanism must be provided in the specification language to help us to verify the consistency
between the specified system and the implemented version. This enables us to verify that all the
functions and constraints specified are actually addressed by the developed system. It also ensures
that operations in the final system are attributed to requirements made in the original specification.
Furthermore, in the case where implementation is achieved through the help of automatic code
generators, such as the Information Engineering Facility, the cross-referencing mechanism must also
be automated.

3. REVIEW OF REQUIREMENTS SPECIFICATION LANGUAGES

In this section we review six requirements specification languages, namely PSL, SADT, EDDA,
SAMM, HOS and RSL, which have been selected for study for the following reasons:

(a) They were pioneers in requirements specification languages with supporting environments meant
to cover the entire systems life cycle, and have stood the test of time.

(b) They are better known and published, so that interested readers can obtain further information
easily.

(c) They are still active in dev elopment and recent enhancements have been reported.

(d) The languages examined cover a wide spectrum of characteristics. Some of the languages were
developed originally as manual tools, but others were meant to be supported by automatic systems
from the very beginning. For some languages, a system can be specified in a hierarchical manner,
but not for others. Some languages use graphics as the specification medium while others are
purely textual.

(e) The final reason is a pragmatic one. We hav e included some of the languages which are more
familiar to the present authors.

We shall use a common example to highlight the properties of these languages. It must be a fairly
simple one to help us to restrict the length of the current paper. The example chosen is the
specification of a customer order system, with which most readers are familiar, so that no further
explanation is required. Readers interested in more complex examples may consult the references
suggested in the respective subsections.

7

Tse and Pong Requirements Specification Languages 8

3.1 PROBLEM STATEMENT LANGUAGE (PSL)

PSL [34, 33] was developed by the ISDOS project at the University of Michigan and is currently
a commercial product marketed by ISDOS Inc. It was part of the first major project in defining a
requirements specification language formally and analysing it automatically. PSL statements cover
system structure, data flows, data structures, system behaviour and project management. Their
syntaxes and semantics are formally based on the entity-relationship approach [6] . (This appears,
however, to be an afterthought since the entity-relationship model was not available when PSL was
first introduced.) Descriptive comments in natural English can also be included to enhance
readability. An example of PSL is shown in Figure 2.

PSL supports multi-level refinement, so that systems can be specified in a hierarchical manner.
The logical characteristics of systems are separable from the physical ones. The specifications are
independent of design and implementation, and can be traced to the target systems. Statements can be
modified without major amendments to the rest of a specification. Although PSL can only be input as
a textual language, a set of graphical reports can be generated automatically by the corresponding
development environment for user verification. Unfortunately, users must go back to source PSL
statements for any modification. Furthermore, there is no guarantee of a one-to-one correspondence
between PSL statements and the graphical counterpart.

PSL was not designed for any particular systems development methodology. When attempts
were made to use PSL as the front-end language in System Optimization and Design Algorithm [24,
25] , it had to be modified to suit the environment. A META/GA system [34, 37] was subsequently
developed to solve the problem. Instead of using one standardized PSL for all applications, the formal
description of a tailor-made PSL may be defined for a given dev elopment methodology and input to
the META system. Systems descriptions can then be formulated in that particular PSL. This
approach has been tested on structured methodologies [11, 16, 40], and the results are encouraging.
The main user-interface, however, is still formal.

3.2 STRUCTURED ANALYSIS AND DESIGN TECHNIQUE (SADT)

SADT [12, 30] has been developed by SofTech Inc. A specification is made up of a hierarchy of
SADT diagrams, each of which is a network of boxes representing activities, as shown in Figure 3.
The arrows at the four sides of each box represent Input, Output, Control and Mechanism for the
activity involved. The activities and input/output data can be decomposed in a top-down fashion
according to strict syntactical and semantic rules, so that a multi-level specification can be defined.
An indexing scheme is provided so that the relationships of boxes and arrows at different levels can be
traced easily.

A natural language or an artificial language for a particular application can be embedded into this
graphical framework. The two languages together constitute the specification medium for that
application. In this way, the embedded language cannot be used in an arbitrary fashion but must
follow definite guidelines, hence reducing the effects of potential errors.

SADT provides a graphical means of refining problems and expressing solutions. A specification
is modifiable and can be traced to the target system, but is quite dependent on the process design of
the final system. Although SADT provides systems analysts with a useful visual aid, the large number
(about 40) of primitive constructs are definite obstacles to user-understanding. Moreover, the concept
of Mechanism may mislead analysts to deal prematurely with physical implementation issues.

8

Tse and Pong Requirements Specification Languages 9

In spite of the complex nature of its graphical notations, SADT was only designed for manual
systems development. There is no underlying formalism. Any language can be used as the embedded
language. Rules to analyse the consistency and completeness of a specification are not provided.
‘‘Obvious’’ requirements are allowed to be omitted. As it stands, there is no guarantee of a smooth
transition to automatic development environments.

3.3 EDDA

EDDA [35] is an attempt to enhance SADT to include a mathematical formalism, so that
specifications can be analysed automatically for their static and behavioural properties. EDDA exists
in two forms: the graphical form G-EDDA is for human understanding and the symbolic form S-
EDDA is for computer processing. The former is in fact identical to SADT. An example of the latter
is shown in Figure 4. Since the two forms have corresponding syntaxes and identical semantics, one
can easily be transformed into the other. An extended Petri net [28, 29] is used as the mathematical
model for the formal semantic definition. Transitions in Petri nets correspond to activities in SADT,
and places in Petri nets correspond to data items. To support the complex structure of SADT, EDDA
extends the Petri net concept to include predicates and coloured tokens at transitions and places.
Delay times and probabilities of activation are also included to help with analysing the behavioural
properties of target systems.

EDDA is an attempt to add a formalism to an existing graphical language. It has all the positive
characteristics of SADT. In addition, it has a textual representation which is in a one-to-one
correspondence with a graphical representation. The language is formal with a mathematical model
transparent to users. Specifications are modifiable and can be traced to the target systems, but like
SADT, they are quite dependent on the process design of the final systems. EDDA has three major
drawbacks:

(a) It is restricted to SADT and cannot be linked to other structured methodologies.

(b) Not ev ery one of the 40 features of SADT has a Petri net counterpart. Even where such a
correspondence exists, the large number of concepts and notations hinders user-understanding.

(c) Even where a user is familiar with SADT, he must learn an entirely new textual language S-
EDDA because the latter serves as the input medium for the development environment.

3.4 SYSTEMATIC ACTIVITY MODELLING METHOD (SAMM)

SAMM [17, 27, 32] has been developed by Boeing Computer Services Co. The language
construct is a combination of graphics and graph-theoretical notions, with the aim that the resulting
language can be machine-processed. A specification consists of a context tree, activity diagrams and
condition charts. A sample context tree is shown in Figure 5(a). As the name suggests, it functions as
a table of contents for activity diagrams, expressed in a hierarchical form. A sample activity diagram
is shown in Figure 5(b). It specifies the relationships between activities and data flows. Although
similar to SADT diagrams in appearance, the activity diagram does not show Controls or
Mechanisms. Details of activities and data are further specified through data tables and condition
charts (Figures 5(b) and (c)). The former spells out the descriptions and structures the input/output
data involved. The latter describes the input and activity requirements for the production of the
outputs.

9

Tse and Pong Requirements Specification Languages 10

Each element of SAMM can be formulated mathematically. The mathematical models behind
context trees and activity diagrams are labelled trees and directed graphs, respectively. A total
systems description is thus a tree structure whose nodes are flowgraphs. In this way, the theory of
trees and graphs can be applied to analyse a specification. The consistency of the specification, for
instance, can be verified by checking whether each activity diagram is a connected graph and whether
each output state is reachable from some input state through a finite number of paths.

SAMM supports graphical representation and multi-level refinement. The logical characteristics
of target systems can be separated from physical characteristics. The specifications are independent
of design and implementation, can be modified easily, and can be traced to the target systems. Not
much consideration, however, has been given to users who would like some form of textual input,
especially for specifying the lowest level requirements of a system.

3.5 HIGHER ORDER SOFTWARE (HOS)

HOS [14, 15] is a requirements specification language developed by Higher Order Software Inc.
to support the automation of the HOS methodology, also known as the functional life cycle model.
The language was known originally as AXES but the name HOS has now been popularized by James
Martin [20, 21] .

HOS is designed to support the entire systems development process and to generate a provably
correct systems design. It is based on a formal model constructed on a set of mathematical axioms. It
represents a system by a binary tree called a control map, as shown in Figure 6. Each module in the
system is a mathematical function, and is shown as a node in the binary tree. Input and output of the
modules are represented by the domains and co-domains of the functions. The tree also describes
how functions are decomposed into sub-functions. Methods of decomposition are defined
mathematically. A development environment [1, 15] has been implemented to handle the
decomposition and the code generated can be proved mathematically to be correct. In this way, multi-
level specification is formally supported. The tree structure can be further transformed into a
dynamics graph, which is useful for understanding the behavioural properties of the target system.

HOS exists in two equivalent forms — graphical and textual. There is a one-to-one
correspondence between the two representations, thereby allowing one representation to be converted
into the other or traced against the other. The logical characteristics of systems are separable from
physical ones. The specifications are independent of design and implementation, and easily
modifiable. The language is formal and mathematically based. Unfortunately, although it attempts to
hide the mathematics from users, the result does not appear natural. For example, when the input and
output of a process are specified, the standard convention of mathematical functions is followed. As a
result, the input definition appears on the right hand side of a box and the output definition appears on
the left hand side, so that misunderstanding may arise.

3.6 REQUIREMENTS STATEMENT LANGUAGE (RSL)

RSL [2, 3, 4] has been developed by TRW Defence and Space Systems Group. It specifies
software requirements in terms of processing paths, each of which represents a sequence of processing
steps connecting the arrival of an input message (or stimulus) to the generation of the appropriate
output message (or response). Each processing step is known as an Alpha.

10

Tse and Pong Requirements Specification Languages 11

The processing paths and steps are represented in a graphical form known as requirements nets or
simply R-nets, as shown in Figure 7. In order to support stepwise refinement in systems development,
the description of any Alpha in an R-net can be replaced by a number of lower level Alphas. Unlike
SADT, howev er, the designers of RSL prefer the final documentation to appear in only one layer
rather than as a hierarchy of R-nets. Intermediate steps of decomposition will not be documented.
Only a flat network will be shown in the final form.

RSL can also be represented in a textual form. The statements consists of four basic constructs,
namely elements, relationships, attributes and structures. The first three constructs specify the non-
procedural aspects of users’ requirements in a style similar to the entity-relationship approach. The
structures are used to define the behavioural requirements of the system. The graphical and textual
representations of RSL are equivalent. The structure statements are in fact the result of projecting R-
nets on to a one-dimensional space. In this way, R-nets can be specified explicitly through an
interactive graphical tool, or implicitly through the structure statements.

The mathematical formalism behind RSL is transparent to users. The logical characteristics of
target systems can be separated from physical characteristics. The specifications are independent of
design and implementation, are modifiable and can be traced to the target systems. The major
drawback of RSL is that, although it is said to support stepwise refinement, it is not reflected in the
resulting documentation. The final specification in its flat form may be incomprehensible to users
who have not been involved with the development process.

4. CONCLUSION

We hav e examined the desirable features of requirements specification languages and used them
as the basis for reviewing six established languages. A summary is shown in Table 1. In most of the
languages examined, research workers have seen the need to propose a formal and/or mathematical
basis for information systems development. They hav e also proposed the use of graphics, to be
supplemented (except in the case of SAMM) by textual languages for defining details. The
complexity problem of target systems is also recognized. A hierarchical framework is provided in
most of the specifications (except in the case of RSL), and the logical characteristics of target systems
are separable from physical ones.

Many of these requirements specification languages are created as a result of studies in
formalism, and cause a psychological barrier to end users. Such a deficiency has been recognised in
the case of PSL, and hence the supporting development environment has been enhanced to allow for
interface with more popular tools such as structured methodologies. The main user-interface,
however, is still formal.

Only one project discussed in this paper uses the concept of employing an existing language as
the starting point for a mathematical framework. Namely, SADT is chosen as the graphical language
for EDDA. Unfortunately, EDDA may, in fact, be hindered by SADT, since the latter is not as popular
as other structured tools because of the extreme complexity of its graphical notations. Besides, EDDA
accepts only textual input and generates graphics afterwards, and hence the formalism is not
transparent to users.

11

Tse and Pong Requirements Specification Languages 12

ACKNOWLEDGEMENTS

The authors are indebted to Professor Ian Angell, Professor Bernie Cohen, Professor John
Campbell and Professor Ronald Stamper for their encouraging comments and suggestions.

REFERENCES

[1] USE.IT Reference Manual, Higher Order Software, Inc., Cambridge, Massachusetts (1982).

[2] M.W. Alford, ‘‘The software requirements methodology (SREM) at the age of four’’, in
Proceedings of the 4th Annual International Computer Software and Applications Conference
(COMPSAC ’80), IEEE Computer Society Press, New York, pp. 866−874 (1980).

[3] M.W. Alford, ‘‘Software requirements engineering methodology (SREM) at the age of two’’, in
Advanced System Development / Feasibility Techniques, J.D. Couger, M.A. Colter, and R.W.
Knapp (eds.), Wiley, New York, pp. 385−393 (1982).

[4] M.W. Alford, ‘‘SREM at the age of eight: the distributed computing design system’’, IEEE
Computer 18 (4): 36−46 (1985).

[5] P.B. Checkland, System Thinking, System Practice, Wiley, New York (1981).

[6] P.P. Chen, ‘‘The entity-relationship model: towards a unified view of data’’, ACM Transactions
on Database Systems 1 (1): 9−36 (1976).

[7] B. Cohen, W.T. Harwood, and M.I. Jackson, The Specification of Complex Systems, Addison
Wesley, Wokingham, UK (1986).

[8] M.A. Colter, ‘‘Evolution of the structured methodologies’’, in Advanced System Development /
Feasibility Techniques, J.D. Couger, M.A. Colter, and R.W. Knapp (eds.), Wiley, New York, pp.
73−96 (1982).

[9] M.A. Colter, ‘‘A comparative examination of systems analysis techniques’’, MIS Quarterly 10
(1): 51−66 (1984).

[10] A.M. Davis, ‘‘The design of a family of application-oriented requirements languages’’, IEEE
Computer 15 (5): 21−28 (1982).

[11] T. DeMarco, Structured Analysis and System Specification, Yourdon Press Computing Series,
Prentice Hall, Englewood Cliffs, New Jersey (1979).

[12] M.E. Dickover, C.L. McGowan, and D.T. Ross, ‘‘Software design using SADT’’, in Structured
Analysis and Design, State of the Art Report, J. Hosier (ed.), vol. 2, Infotech, Maidenhead, UK,
pp. 99−114 (1978).

[13] R. Rock-Evans (ed.), Analyst Workbenches, State of the Art Report, Infotech Pergamon,
Maidenhead, UK (1987).

[14] M. Hamilton and S. Zeldin, ‘‘Higher order software: a methodology for defining software’’,
IEEE Transactions on Software Engineering SE-2 (1): 9−36 (1976).

[15] M. Hamilton and S. Zeldin, ‘‘The functional life cycle model and its automation: USE.IT’’,
Journal of Systems and Software 3 (3): 25−62 (1983).

[16] M.A. Jackson, System Development, Prentice Hall International Series in Computer Science,
Prentice Hall, London (1983).

12

Tse and Pong Requirements Specification Languages 13

[17] S.S. Lamb, V.G. Leck, L.J. Peters, and G.L. Smith, ‘‘SAMM: a modeling tool for requirements
and design specification’’, in Proceedings of the 2nd Annual International Computer Software
and Applications Conference (COMPSAC ’78), IEEE Computer Society Press, New York, pp.
48−53 (1978).

[18] F.F. Land and R.A. Hirschheim, ‘‘Participative systems design: rationale, tools, and techniques’’,
Journal of Applied Systems Analysis 10: 91−107 (1983).

[19] R.J. Lauber, ‘‘Development support systems’’, IEEE Computer 15 (5): 36−46 (1982).

[20] J. Martin, Program Design which is Pro vably Correct, Savant Institute, Carnforth, Lancashire,
UK (1983).

[21] J. Martin, An Information Systems Manifesto, Prentice Hall, Englewood Cliffs, New Jersey
(1984).

[22] G.A. Miller, ‘‘The magic number seven, plus or minus two: some limits on our capacity for
processing information’’, Psychological Review 63: 81−97 (1956).

[23] E. Mumford, Designing Human Activity Systems, Manchester Business School, Manchester
(1983).

[24] J.F. Nunamaker, Jr., ‘‘A methodology for the design and optimization of information processing
systems’’, in System Analysis Techniques, J.D. Couger and R.W. Knapp (eds.), Wiley, New York,
pp. 359−376 (1974).

[25] J.F. Nunamaker, Jr., B.R. Konsynski, Jr., T. Ho, and C. Singer, ‘‘Computer-aided analysis and
design of information system’’, Communications of the ACM 19 (12): 674−687 (1976).

[26] D.L. Parnas, ‘‘Software aspects of strategic defense systems’’, American Scientist 73: 432−440
(1985).

[27] L.J. Peters and L.L. Tripp, ‘‘A model of software engineering’’, in Proceedings of the 3rd
International Conference on Software Engineering (ICSE ’78), IEEE Computer Society Press,
New York, pp. 63−70 (1978).

[28] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Englewood Cliffs,
New Jersey (1981).

[29] W. Reisig, Petri Nets: an Introduction, EATCS Monographs on Theoretical Computer Science,
vol. 4, Springer, Berlin (1985).

[30] D.T. Ross and K.E. Schoman, ‘‘Structured analysis for requirements definition’’, in Classics in
Software Engineering, E. Yourdon (ed.), Yourdon Press Computing Series, Prentice Hall,
Englewood Cliffs, New Jersey, pp. 365−385 (1979).

[31] O. Shigo, K. Iwamoto, and S. Fujibayashi, ‘‘A software design system based on a unified design
methodology’’, Journal of Information Processing 3 (3): 186−196 (1980).

[32] S.A. Stephens and L.L. Tripp, ‘‘Requirements expression and verification aid’’, in Proceedings
of the 3rd International Conference on Software Engineering (ICSE ’78), IEEE Computer
Society Press, New York, pp. 101−108 (1978).

[33] D. Teichroew and E.A. Hershey III, ‘‘PSL / PSA: a computer-aided technique for structured
documentation and analysis of information processing systems’’, in Advanced System
Development / Feasibility Techniques, J.D. Couger, M.A. Colter, and R.W. Knapp (eds.), Wiley,
New York, pp. 315−329 (1982).

13

Tse and Pong Requirements Specification Languages 14

[34] D. Teichroew, P. Macasovic, E.A. Hershey III, and Y. Yamamoto, ‘‘Application of the entity-
relationship approach to information processing systems modelling’’, in Entity-Relationship
Approach to Systems Analysis and Design: Proceedings of the 1st Conference on Entity-
Relationship Approach, P.P. Chen (ed.), North-Holland, Amsterdam, pp. 15−39 (1980).

[35] W. Trattnig and H. Kerner, ‘‘EDDA: a very-high-level programming and specification language
in the style of SADT’’, in Proceedings of the 4th Annual International Computer Software and
Applications Conference (COMPSAC ’80), IEEE Computer Society Press, New York, pp.
436−443 (1980).

[36] A.I. Wasserman, P. Freeman, and M. Porcella, ‘‘Characteristics of software development
methodologies’’, in Information Systems Design Methodologies, a Feature Analysis:
Proceedings of the IFIP WG 8.1 Working Conference, T.W. Olle, H.G. Sol, and C.J. Tully (eds.),
North-Holland, Amsterdam (1983).

[37] Y. Yamamoto, An Approach to the Generation of Software Life Cycle Support Systems, Ph.D.
Thesis, The University of Michigan, Michigan (1981).

[38] S.S. Yau and J.J.-P. Tsai, ‘‘A survey of software design techniques’’, IEEE Transactions on
Software Engineering SE-12 (6): 713−721 (1986).

[39] R.T. Yeh and P. Zav e, ‘‘Specifying software requirements’’, Proceedings of the IEEE 68 (9):
1077−1085 (1980).

[40] E. Yourdon, Modern Structured Analysis, Yourdon Press Computing Series, Prentice Hall,
Englewood Cliffs, New Jersey (1989).

14

A
bs

tr
ac

t
M

od
el

D
et

ai
le

d
M

od
el

R
ef

in
em

en
t

C
on

st
ru

ct
io

n

In
te

ra
ct

io
n

w
it

h
U

se
rs

M
an

ip
u

la
ti

on

A
b

st
ra

ct
io

n

A
bs

tr
ac

t
M

od
el

D
et

ai
le

d
M

od
el

A
bs

tr
ac

ti
on

R
ef

in
em

en
t

M
u

lt
ip

le
 M

od
el

s

M
u

lt
i-

le
ve

l
A

b
st

ra
ct

io
n

M
u

lt
i-

le
ve

l
A

b
st

ra
ct

io
n

A
bs

tr
ac

ti
on

F
ig

u
re

 1

S
ch

em
at

ic
 C

on
ce

p
t

of
 a

n
 E

n
gi

n
ee

ri
n

g
P

ro
ce

ss

U
se

rs
 (

in
cl

ud
in

g
A

na
ly

st
s,

 D
es

ig
ne

rs
an

d
E

nd
 U

se
rs

)

R
ea

l
W

or
ld R

ea
l S

ys
te

m

PROCESS: process-order
/* authors T.H. Tse and L. Pong */

DESCRIPTION:
this process captures the details of a valid order, calculates the
amounts, discount and net-amount, and prepares an invoice;

GENERATES: net-invoice;
RECEIVES: valid-order, discount-rate;
SUBPARTS ARE: prepare-gross, compute-discount;
PART OF: process-sales;
DERIVES: amount

USING: price, quantity-ordered;
DERIVES: total-amount

USING: amount;
DERIVES: net-amount

USING: total-amount, discount-rate;
PROCEDURE:

1. multiply price and quantity-ordered to obtain amount;
2. update stock record accordingly;
3. add amounts to obtain total-amount;
4. multiply total-amount by discount-rate to obtain net-amount;
5. update customer record accordingly;
6. generate invoice for net-amount;

HAPPENS: 1 TIMES-PER valid-order;
TRIGGERED BY: valid-order-event;
TERMINATION CAUSES: invoice-event;
SECURITY IS: account-clerk-only;

Figure 2 Example of PSL Specification

6 2 15

order process
sales

net-invoice

bad-order

discount-policy

Figure 3 Example of SADT Specification

Input

customer-info

gross-invoiceprepare
gross

compute
discount

product-info

discount-
policy

determine
discount-rate

net-invoice

discount-rate

Output

bad-order

order check
order

Control

or and

Mechanism

call()

process process-sales (interfaces
input I1 = order: orders
control C1 = discount-policy: rules
output O1 = net-Invoice: invoices);

type
orders = customer-info sequ product-info

internal data
product-info: product-array
customer-info: customer-records
valid-order: orders
bad-order: orders
gross-invoice: invoices
discount-rate: rates

structure
xfork order = validOrder + bad-order

subprocesses
process check-order (interfaces

input I1 = order: orders
output O1 = checked-order: orders);
forward

process determine-discount-rate (interfaces
input I1 = customer-info: customer-records
control C1 = discount-policy: rules
output O1 = discount-rate: rates);
forward

process prepare-gross (interfaces
input I1 = product-info: product-array
output O1 = gross-invoice: invoices);
forward

process compute-discount (interfaces
input I1 = discount-rate: rates

I2 = gross-invoice: invoices
output O1 = net-invoice: invoices);
forward

begin
process check-order (I1 = order, O1 = checked-order);
process determine-discount-rate (I1 = customer-info,

C1 = discount-policy, O1 = discount-rate) 〈
process prepare-gross (I1 = product-info,

O1 = gross-invoice);
process compute-discount (I1 = discount-rate,

I2 = gross-invoice, O1 = net-invoice);
end

Figure 4 Example of S-EDDA Specification

6 2 16

Figure 5(a) Example of SAMM Context Tree

check
order

process
gross

compute
discount

process
sales

A

B C D

Figure 5(b) Example of SAMM Activity Diagram

1

2

3

4

5

6

Title: process sales

Data Description

Node: root

1 2

5

6

order

discount-rate

valid-order

gross-invoice

error-report

net-invoice

3

4

check
order

process
gross

compute
discount

B

C

D

Title: process sales Node: root

Output
Input

Required Cond Condition Description

3

4

5

6

1

2

Process sucessfully completed

Error encountered

1

3

1

2, 4

1

1

2

1

Figure 5(c) Example of SAMM Condition Chart

Figure 6 Example of HOS Specification

.model/processSales
 netInvoice = processSales (order, discountRate) [j]

.end

validOrder = checkOrder (order) [op]
netInvoice = processInvoice (validOrder, discountRate) [j]

grossInvoice = prepareGross (validOrder) [p]
netInvoice = computeDiscount (grossInvoice, discountRate) [p]

order
discountRate

op

 netInvoice processSales

process
Invoice

 grossInvoice prepareGross validOrder

compute
Discount p

p

validOrder
discountRate

grossInvoice
discountRate

netInvoice

netInvoice

checkOrder ordervalidOrder

operation which
has been defined

primitive
function

input

output

join

sequence

join

Figure 7 Example of R-Net

v1

from_
terminal

check_
order

initial node

validation
point

external
interface

alpha
(processing step)

or node
(decision point)

&
to_terminal

to_terminal

v2

v3

process_
bad_order

prepare_
gross

determine_
discount_rate

compute_
discount

and node"valid""invalid"

terminal
node

&

PSL SADT EDDA SAMM HOS RSL

ABSTRACTION OF THE
REAL WORLD

× √× √× × × ×User Familiarity of the
Specification Language

Language Style
• Textual language √ × √ × √ √
• Graphical language √× √ √ √ √ √
• Hybrid languages √ × √ √× √ √

Complexity
√ √× √× √ √ √• Separation of logical and

physical characteristics
• Multi-level abstraction √ √ √ √ √ √×

Modifiability √ √ √ √ √ √

MANIPULATION OF
REPRESENTATIONS

Tools for Manipulation
• Formalism √ √× √ √ √ √
• Rigour × × √ √ √ √

Transformation
√ √× √ √ √ √• Support of different development

situations
• Transparency of formalism × √× × √ √× √

√ √× √× √ √ √Independence of Design and
Implementation

CONSTRUCTION OF REAL
SYSTEM

√ √ √ √ √ √Traceability between
Specification and Target Systems

LEGION: √ Supported
√× Partially supported
× Not supported

Table 1 A Summary of the Desirable Features
of Requirements Specification Languages

6 2 17

