
Databases in the 1990s, 2: Proceedings of 2nd Australian Conference on Database and Information Systems ,
B. Srinivasan and J. Zeleznikow (eds.), Sydney, Australia, pp. 270−284 (1991)

Evaluation of Structure Charts:
a Logic Programming Approach*

T.Y. CHEN
Department of Computer Science and Software Engineering

University of Melbourne

C.S. KWOK, W.H. TANG
Centre of Computing Services and Telecommunications
The Hong Kong University of Science and Technology

and

T.H. TSE
Department of Computer Science

The University of Hong Kong

ABSTRACT

We apply the techniques of logic programming to evaluate structure charts.
We find that structure charts can be represented naturally in Prolog, and useful
information can be derived in a straightforward manner. Standard techniques in
the evaluation of structure charts can be formalized, and a few previous
problems can be solved easily.

1. Introduction

Structured systems development methodologies have been recognized as some of the most
popular methods in software engineering [1] . They inv olve problem solving techniques and
decision making processes which can only be carried out by experienced software engineers.
Although a number of CASE tools on structured methodologies have already been proposed, they
are not totally satisfactory since it is extremely difficult to have human expertise formalized in
conventional terms and implemented by algorithmic programs.

A project has been set up to apply the techniques of logic programming to structured
methodologies. This is a relatively unexplored direction. An exception is the work by Kow alski
[10] , who suggests that we can regard data flow diagrams merely as syntactic sugar for logic
programs. Another is the work of Docker [3] , who uses Prolog to implement a tool for
‘‘specifying and exercising’’ data flow diagrams. A recent paper by Tsai and Ridge [14] reported

* This project is supported in part by a University and Polytechnic Grants Committee Research Grant, a Research and Con-
ference Grant of the University of Hong Kong and a Travelling Grant of the Hong Kong University of Science and Technolo-
gy.

1

that quite a few problems have been encountered in an attempt to use expert systems for the
evaluation of structure charts. In this paper, we summarize our experience in applying logic
programming techniques to evaluate these charts. We find that logic programming is a useful tool
for this purpose.

In Sections 2 and 3 of the paper, we shall provide some background information on
structured methodologies and logic programming. In Section 4.1, we shall show how to represent
structure charts naturally in Prolog, and how to derive useful information from such
representation. In Section 4.2, we shall illustrate through examples how we can formalize
standard techniques in the evaluation of structure charts, including one or two problem areas
suggested by other authors. We hope the research will provide further insight for software
engineers into structured methodologies, and guidelines for implementors of CASE tools.

2. Structured Systems Development

Structured methodologies are widely accepted by practising systems developers because of
the top-down approach to systems problems and the graphical nature of the representations. A
complex systems specification can be decomposed into a modular and hierarchical structure
which is easily comprehensible. They enable practitioners to work out blueprints of target
systems and to communicate with users easily.

Different structured representations are found to be suitable for different development
situations depending on the environment, emphasis and stage of development [1, 11, 13] . In
other words, we need more than one of these models during the development process of a typical
system. They are converted from one form to another as the needs arise. For example, data flow
diagrams are used for systems analysis and structure charts for systems design [2, 12, 18] .
Specification details are expressed in a textual form such as structured English or decision tables.
The multi-model approach allows the most appropriate representation to be used in a given
situation. One distinct feature of all these models is that they support multiple levels of
abstraction and refinement. Hence the analysis and modification of a specification can be handled
relatively easily.

If we provide practitioners with CASE tools to convert one structured representation to
another, the efficiency of systems development can be greatly improved. Unfortunately, the
transformation process is not a straightforward matter based on well-defined algorithms. The
heuristics are often unquantifiable and, unlike simple rules of thumb, involve many decision
factors which can easily be overlooked by less experienced systems designers. Hence the
qualities of different designs vary according to the expertise of the practitioners involved. We
believe that design constraints and heuristics can be handled more easily within the logic
programming paradigm. An expert system should be built to simulate the knowledge and
experience of human practitioners.

3. Logic Programming

Logic programming is the study of predicate logic as a programming language [7] . In
addition to the simplicity and elegance of its semantics [17] , logic programming supports a new
programming paradigm, namely declarative programming. An algorithm consists of two parts: a
logic component and a control component [8] . The logic component specifies the problem to be
solved, and the control component specifies the mechanism to solve the problem. In pure logic
programming, the control component is left entirely to the system, while the programmer is only
responsible for the logic component. In other words, the programmer just needs to specify what

2

is required and leaves how it is done to the system. Thus the programmer is liberated from such
problems as overcoming structural complexity and the implicitness of knowledge [4] .

In the following paragraphs, we summarize some special features of logic programming
which are relevant to our study. The language to be used is Prolog (Programming in logic),
which is regarded as the most successful and practical logic programming language. As an
example of a simple Prolog program, consider an append procedure for concatenating lists:

append ([] , List1, List1).

append ([Head | List1] , List2, [Head|List3]) :-
append (List1, List2, List3).

Here ‘‘:-’’ is the standard Prolog symbol for ‘‘if’’, ‘‘[]’’ denotes an empty list, and
‘‘[Head | List1]’’ denotes a non-empty list whose first element is Head and whose other
elements form another list called List1 . Thus the first clause of the procedure means that
concatenating [] with List1 will end up with List1 itself. The second clause means that, if
concatenating List1 with List2 gives List3 , then concatenating the list [Head | List1]
with List2 will give the list [Head | List3] .

A procedure in Prolog, such as append above, is commonly known as a predicate. Its
identifier begins with a lower case letter. It is more general than a procedure in a conventional
programming language, as we shall see in Section (a) below. On the other hand, a variable
identifier such as List1 begins with an upper case letter. A variable in Prolog denotes an
element in a domain. Once a variable has been assigned a value, it cannot take a new value. In
order to avoid confusion with a variable in a conventional programming language, we call it a
logical variable.

(a) Variation of Input/Output Parameters

A parameter in a Prolog procedure can be used either as an input parameter or as an
output parameter depending on the context. As a result, a given procedure may have multiple
usage. For example, we can use the append procedure to concatenate two giv en lists by
specifying a goal such as

?- append([i, n], [f, o], Result).

to Prolog. We may also use it to split a given list into two by issuing a goal such as

?- append(List1, List2, [i, n, f, o]).

In the latter case, there will be more than one solution:

List1 = [], List2 = [i, n, f, o];
List1 = [i], List2 = [n, f, o];
List1 = [i, n], List2 = [f, o];
List1 = [i, n, f], List2 = [o];
List1 = [i, n, f, o],List2 = [].

We refer to such a case as nondeterminism.

3

(b) Backtracking

Prolog is a sequential logic programming language. When it encounters
nondeterminism, it explores the solutions one by one through a mechanism known as
backtracking. When a goal succeeds, it carries on to try the next potential solution. When a
goal fails, it backtracks to an earlier point and tries an alternative path.

In structured methodology, such as when we convert a data flow diagram into a structure
chart, the set of guidelines given by most authors will not guarantee a unique result. The
whole process is nondeterministic by nature. We are supposed to make a first-cut design, and
evaluate it based on a set of criteria. In case the first-cut design is unsatisfactory,
backtracking must be employed to find an improved solution. If we use a conventional
programming language to implement the methodology, we shall have to specify the
backtracking strategy explicitly. If we use Prolog, however, this can be done automatically
and is transparent to the implementor.

(c) Incremental Addition of Knowledge

The application of logic programming languages to implement rule-based expert systems
has been a popular topic. The following example is adapted from Kow alski [10] . Suppose in
a medical expert system, we have a rule stating that a patient should take some treatment if
(i) she has a complaint which the treatment will suppress and (ii) the treatment is not
unsuitable for her. This heuristic rule used by a human expert can be captured very naturally
in Prolog, thus:

should_take (Patient, Treatment) :-
has_complaint (Patient, Complaint),
suppresses (Treatment, Complaint),
not unsuitable(Treatment, Patient).

The unsuitable predicate can be defined in a similar way:

unsuitable (Treatment, Patient) :-
aggravates (Treatment, Condition),
has_condition (Patient, Condition).

The properties of various treatments can be stored in a database of facts:

suppresses (aspirin, inflammation).
suppresses (aspirin, pain).
aggravates (aspirin, pepticUlcer).
aggravates (lomotil, impairedLiverFunction).
. . .

Incorporation of additional knowledge and expertise can be done incrementally. For
example, suppose we learn later on that a treatment is unsuitable to a patient if she is allergic
to it. We do not need to alter any of the predicates in the original program, but simply define
an additional rule

unsuitable (Treatment, Patient) :-
allergic (Patient, Treatment).

In other words, we can start with a prototype with limited heuristics, and then incrementally

4

increase the ‘‘heuristic power’’ as we know more about the problem domain.

4. Evaluation of Structure Charts

In the evaluation of structure charts, we are concerned with two issues: how to represent a
structure chart and how to formalize the criteria for evaluating the chart. The first issue is a study
of the knowledge representation. The second issue is slightly more complex because most of the
criteria suggested in the literature are rather vague and imprecise.

4.1 Representation of Structure Charts

A unique feature of logic programming is that one can use a set of relations to represent a
data structure. We shall not discuss the pros and cons of term-based representation and relation-
based representation here (see, for example, Kow alski’s text [9]). Our contention is that a
structure chart is usually large, and hence it would be rather cumbersome to encode the chart as
one huge term [15] .

We need to know (a) all the modules in the chart, (b) all the data items in the chart, (c) the
organization of the modules, and (d) all the communications among modules. As an example for
illustration, consider Figure 1 which has been adapted from Page-Jones [12] . It shows part of an
interactive system for updating a file. First of all, we identify all the modules in the system by
defining the is_module predicate:

is_module (updateFile).
is_module (getValidTrans).
is_module (getTrans).
is_module (validateTrans).
is_module (getMaster).
. . .

Next, we identify all the data items through the is_data predicate. The first argument of
is_data is the name of a data item. The second argument tells us whether it is a simple item
(atomic), a composite item (record) or a flag (control).

is_data (trans, record).
is_data (validTrans, record).
is_data (continueResponse, control).
. . .

Then we specify the organization of the modules. The predicate
structure (ParentModule, Type, ChildModules) describes the connection
between a ParentModule and a list of ChildModules . The Type of connection can be
sequence, selection or iteration, which are denoted by the constants seq , sel or itr
respectively.

structure (updateFile, itr, [getValidTrans, getMaster,
updateMaster, putNewMaster]).

structure (getValidTrans, seq, [getTrans,
validateTrans]).

structure (putNewMaster, seq, [formatMaster, writeMaster,
askIfUserWantsToContinue]).

5

askIf
UserWants
ToContinue

Figure 1 Sample Structure Chart

get
Trans

validate
Trans

trans

valid
Trans

trans

update
File

valid
Trans

getValid
Trans

get
Master

update
Master

putNew
Master

master

validTrans
new

Master

master

continue
Response

write
Master

new
Master

formated
Master

formated
Master

format
Master

continue
Response

new
MasterU

Finally, we specify the communication between modules. The predicate
coupling (Data, SourceModule, TargetModule) would hold when Data flows
from SourceModule to TargetModule . Thus:

coupling (validTrans, getValidTrans, updateFile).
coupling (trans, getTrans, getValidTrans).
coupling (validTrans, validateTrans, getValidTrans).
. . .

This completes the specification of a structure chart.

Despite the simplicity of the representation method, useful information can be extracted
through the underlying deduction mechanism which is transparent to the user. For example, it is
easy to find all the input and output data items related to a given Module by defining the
following predicates:

input_data (Module, DataItems) :-
is_module (Module),
findall (Data, coupling (Data, _, Module), DataItemsB),
delete_dup (DataItemsB, DataItems).

output_data (Module, DataItems) :-
is_module (Module),
findall (Data, coupling (Data, Module, _), DataItemsB),
delete_dup (DataItemsB, DataItems).

The predicate coupling (Data, _, Module) would hold when the given Module accepts
a piece of Data from some arbitrary module (denoted by ‘‘_’’). The predicate
findall (Data, Goal, DataItems) would hold when DataItems is a list of instances
of Data such that Goal succeeds. The predicate delete_dup (DataItems, Result)
would hold when Result is a list obtained by removing all the duplicated elements from the list
of DataItems .

Furthermore, we can decide whether a given Module is a get module, a put module or a
transform module by simply adding the following rules:

module_type (Module, get) :-
/* nothing flows into it, but something flows out */
input_data (Module, []),
output_data (Module, [_|_]).

module_type (Module, put) :-
/* nothing flows out of it, but something flows in */
input_data (Module, [_|_]),
output_data (Module, []).

module_type (Module, transform) :-
/* something flows in and something flows out */
input_data (Module, [_|_]),
output_data (Module, [_|_]).

Here ‘‘[_|_]’’ denotes a non-empty list in Prolog.

6

4.2 Formalization of Evaluation Criteria

In this section, we illustrate how we can apply Prolog predicates to review structure charts
according to evaluation guidelines as recommended by DeMarco [2] , Page-Jones [12] and
Yourdon [18] .

(a) Coupling and Cohesion

Coupling is a measure of the interdependence among different modules. Modules should
be loosely coupled, or relatively independent. There are five major types of coupling. Data
coupling and stamp coupling mean that two modules communicate through atomic and
composite data items, respectively. They are the best type of coupling. Control coupling
means that two modules communicate through control flags. Common coupling means that
two modules share common data, whereas content coupling means that they share common
code. The first three types of coupling can easily be detected from our representation of a
structure chart. For example, we can define a predicate data_coupling (Module1,
Module2) which would hold when modules Module1 and Module2 exhibit data
coupling.

data_coupling (Module1, Module2) :-
(coupling (Data, Module1, Module2)

; coupling (Data, Module2, Module1)),
is_data (Data, atomic).

Stamp and control couplings may be defined in a similar fashion. On the other hand,
common and content couplings cannot be determined from structure charts alone. They are
in fact implementation oriented and can only be detected at a later stage of systems
development.

Cohesion is a measure of the strength of association of elements within a module. It is
recommended that elements should be highly cohesive, or strongly inter-related. There are
seven major levels of cohesion. Functional cohesion means that the module performs a single
identifiable function, and is the best type of cohesion. Sequential cohesion means that data
produced in an earlier part of the module will be used in a later part of the same module. In
communicational cohesion, the elements in the module process data items in the same file,
but not necessarily in any specific order. In procedural cohesion, the elements in the module
are related by program control algorithms such as selection or iteration. In temporal
cohesion, elements are grouped under one module because they are time-related. In logical
cohesion, elements are grouped under one module because they are supposed to have similar
behaviour, but actually exhibit minor differences. Coincidental cohesion means that the
elements in the module are grouped together for no particular reason, and is the worst type of
cohesion.

In our project, Prolog predicates are used to represent the internal functions of a module
in a style similar to the representation of a structure chart described in Section 4.1 above.
While the Prolog representation of internal functions is straightforward, determining the level
of cohesion is not a simple matter. Modules with temporal and coincidental cohesions, for
instance, are very similar in appearance. Tsai and Ridge [14] suggest that the expert system
must query the user for information.

7

We note, however, that in real practice, the evaluation procedure for a structure chart
would not require us to determine the exact cohesion level in every module. Even if we
found the precise level of cohesion for each module, the end result would not be useful
because there is no accepted guideline for combining all of them to give an overall measure.
Instead, most human designers are only interested in identifying modules with relatively poor
cohesion levels and improving them accordingly. For example, in the better classes of
modules with functional, sequential and communicational cohesions, their functions refer to
some common data. In our system, therefore, we would highlight those modules whose
functions do not share any common input/output data.

(b) Tr amp Data

According to Page-Jones [12] , a tramp is ‘‘a piece of information that shuffles aimlessly
around a system, unwanted by — and meaningless to — most of the modules through which
it passes.’’ This definition is quite vague, as the terms ‘‘meaningless’’ and ‘‘most’’ are only
intuitive concepts and never formally defined. It is quite difficult to convert such a definition
into a conventional programming algorithm. However, experienced designers are able to
recognize tramp data in most cases. In Figure 2, for instance, the data item master appears
meaningless to the modules getTrans and getValidTrans , and would be regarded as a
tramp by most human practitioners. This kind of knowledge can be handled more easily by
logic programming than conventional programming.

We may try to specify the concept of meaninglessness using the simple predicate shown
below. It checks whether a piece of Data passes in and out of a Module directly.

meaningless (Data, Module) :-
coupling (Data, Module1, Module),
coupling (Data, Module, Module2).

Before jumping to conclusions, however, let us take a look at the getValidTrans module
in Figure 1. According to our simple definition, the data item trans would be meaningless
to the module, and yet most human practitioners do not regard it as a tramp. The reason is
that this design actually follows another guideline on the abstraction of data. That is, the
getValidTrans module hides the physical characteristics of trans from modules higher
up in the chart. This is especially useful for get and put modules. A more elaborate
definition of meaninglessness should, therefore, involve checking if both the source and
destination modules of a data item are children of the same module (or siblings):

meaningless (Data, Module) :-
coupling (Data, Module1, Module),
coupling (Data, Module, Module2),
not siblings(Module1, Module2).

siblings (Module1, Module2) :-
parent_child (ParentModule, Module1),
parent_child (ParentModule, Module2).

parent_child (ParentModule, Module1) :-
structure (ParentModule, _, ChildModules),
member (Module1, ChildModules).

8

update
File

master

getValid
Trans

get
Master

validate
Trans

master

master

get
Trans

Figure 2 An Example of Tramp Data

Here parent_child (ParentModule, Module1) would hold when
ParentModule is the parent of Module1 , and member (Module1,
ChildModules) would hold when Module1 is an element in the list of
ChildModules .

Another problematic term in the definition of tramp is ‘‘most’’. It should be clear that it
is meant to be a relative measure rather than an absolute one. This can be represented easily
in Prolog as follows:

tramp (Data, UserDefinedRatio) :-
input_output (Data, ModuleList),
length (ModuleList, NoOfInputOutput),
NoOfInputOutput > 0,
sub_list (ModuleList, Data, TrampModuleList),
length (TrampModuleList, NoOfTrampInputOutput),
Ratio is NoOfTrampInputOutput / NoOfInputOutput,
Ratio > UserDefinedRatio.

sub_list ([], Data, []).

sub_list ([Module | ModuleList], Data,
[Module | TrampModuleList]) :-

sub_list (ModuleList, Data, TrampModuleList),
meaningless (Data, Module).

sub_list ([Module | ModuleList], Data, TrampModuleList)
:-

sub_list (ModuleList, Data, TrampModuleList).

where NoOfInputOutput is the number of times that Data will be input to or output
from a module, and NoOfTrampInputOutput is the number of times that Data will be
input to or output from a module which regards it as meaningless. This formalization of
tramp leaves the final definition of ‘‘most’’ to the user. For example, the user might consider
‘‘most’’ to mean ‘‘more than half’’, in which case he should pose the query as

?- tramp(Data, 0.5).

to the system. In this way, validTrans in Figure 1 would not be regarded as tramp data
because NoOfInputOutput is 4 and NoOfTrampInputOutput is 2, and hence Ratio is
exactly 0.5.

(c) Flat Subcharts

Another guideline for evaluating structure charts is that modules higher up in a chart
should process ‘‘abstract’’ data, or data with less ‘‘physical’’ characteristics. Thus, a data
item called validTrans is more abstract than another data item called trans because the
former has presumably undergone a validation process and hence less physical than the raw
trans .

But how do we know in general whether a data item is more abstract than another? One
possibility is to mimic how a human reader would determine the abstraction level — by
looking at the names of the data items. We may try to define a predicate
more_abstract_than (A, B) which would hold when data A is more abstract than B ,
thus:

9

more_abstract_than (A, B) :-
abstract_ prefix (Prefix),
append_terms (Prefix, B, A).

where abstract_ prefix is defined by a collection of assertions such as

abstract_ prefix (edited).
abstract_ prefix (valid).
abstract_ prefix (invalid).
abstract_ prefix (matched).
abstract_ prefix (unmatched).

This is rather unsatisfactory because there is no flexibility in the rule. Any prefix used
outside the given vocabulary will not be recognized. Furthermore, it would not work if the
system designer used another convention for naming data items. For example, a module
which prepares invoices for output may accept invoice_information as input and
produce edited_invoice_ information . Although the second data item carries
with it an edited prefix, it is in fact more physical than invoice_information .

An alternative, as adopted by Tsai and Ridge [14] , is to rely on the user to specify the
module which will be regarded as the root of a chart, and hence the data processed by the root
will be the most abstract. Our aim in this paper is to investigate how to extract as much
information as possible from a given structure chart and rely less on additional user input.
For example, we may like to check for the abstraction level of data items based on the
structural organization of the chart. Consider the excerpts from two similar structure charts,
as shown in Figures 3 and 4. The design shown in Figure 3 is better than that shown in
Figure 4, because it follows the guideline on the abstraction level of data items, namely that A
should be transparent to Parent . We can detect the anomaly in Figure 4 by means of a
flat_subchart predicate.

flat_subchart (Parent) :-
/* modules involved */
parent_child (Grandparent, Parent),
structure (Parent, seq, [Module1, Module2,

Module3]),
/* in case the first child is a get module */
module_type (Module1, get),
coupling (A, Module1, Parent),
coupling (A, Parent, Module2),
coupling (B, Module2, Parent),
coupling (B, Parent, Module3),
coupling (C, Module3, Parent),
coupling (C, Parent, Grandparent).

We can similarly define a rule for detecting an anomaly in a put module.

flat_subchart (Parent) :-
/* modules involved */
parent_child (Grandparent, Parent),
structure (Parent, seq, [Module1, Module2,

Module3]),

10

A
BA

B

CB

Module1
(getA)

Module2
(turnA
intoB)

Module3
(turnB
intoC)

(getB)

Figure 3 Get Modules according
to Recommended Guidelines

Parent
(getC)

C

Grand
Parent

Figure 4 Example of a Flat Subchart

Module2
(turnA
intoB)

A
A

Module1
(getA)

C

Module3
(turnB
intoC)

B

B

Parent
(getC)

C

Grand
Parent

/* in case the third child is a put module */
module_type (Module3, put),
coupling (A, Grandparent, Parent),
coupling (A, Parent, Module1),
coupling (B, Module1, Parent),
coupling (B, Parent, Module2),
coupling (C, Module2, Parent),
coupling (C, Parent, Module3).

5. Findings and Conclusion

This paper is part of a long term effort to apply techniques of logic programming to
structured systems development methodologies. We hav e described our experience in the
evaluation of structure charts. We find that logic programming is a useful tool in this respect. We
can represent structure charts naturally, and derive meaningful information in a straightforward
manner. Standard techniques in the evaluation of structure charts can be formalized, and a few
previous problems can be solved easily.

We find that Prolog is a very natural tool for the detection of anomalies in structure charts.
There are several factors contributing to this: Firstly, we may not be fully aware of all forms of
anomalies at the beginning, since most of them are based on the experience of individual
practitioners and are not formally defined in the literature. Such forms of anomalies can be
specified in a Prolog program incrementally. Secondly, we are more interested in what an
anomaly looks like and not very much concerned about the algorithm to detect it. If we use
Prolog, we can formulate procedures for detecting problematic structure charts by simply
translating the anomalies into predicates, and leave the detection mechanism to the system.
Thirdly, identifiers in structure charts will have the same name if and only if they refer to the
same object [2] . Hence they are more naturally defined by logical variables in Prolog than
variables in a conventional assignment-based programming language.

Because of the strong formal relationship [15] between structure charts and other structured
tools such as DeMarco data flow diagrams [2] , Jackson structure diagrams and Jackson structure
text [5, 6] , it is hoped that our attempt to use Prolog in analysing structure charts can also be
applied in alternative structured notations. Our recent experience [16] confirms that this may
indeed be the case. Thus the application of logic programming techniques to structured
methodologies is a promising area from both research and practical points of view.

Acknowledgements

The authors are indebted to H.Y. Chen, H.L. Xie and other members of the ALPSE
(Application of Logic Programming to Software Engineering) Group for their support of the
project.

References

[1] M.A. Colter, ‘‘Evolution of the structured methodologies’’, in Advanced System
Development / Feasibility Techniques, J.D. Couger, M.A. Colter, and R.W. Knapp (eds.),
Wiley, New York, pp. 73−96 (1982).

[2] T. DeMarco, Structured Analysis and System Specification, Yourdon Press Computing
Series, Prentice Hall, Englewood Cliffs, New Jersey (1979).

11

[3] T.W.G. Docker, ‘‘SAME: a structured analysis tool and its implementation in Prolog’’, in
Logic Programming: Proceedings of the 5th International Conference and Symposium, R.A.
Ko walski and K.A. Bowen (eds.), MIT Press, Cambridge, Massachusetts, pp. 82−95 (1988).

[4] C.J. Hogger, ‘‘Prolog and software engineering’’, Microprocessors and Microsystems 11 (6):
308−318 (1987).

[5] M.A. Jackson, Principles of Program Design, Academic Press, London (1975).

[6] M.A. Jackson, System Development, Prentice Hall International Series in Computer Science,
Prentice Hall, London (1983).

[7] R.A. Ko walski, ‘‘Predicate logic as a programming language’’, in Proceedings of the 1974
IFIP Congress (Information Processing ’74), J.L. Rosenfeld (ed.), North-Holland,
Amsterdam, pp. 569−574 (1974).

[8] R.A. Ko walski, ‘‘Algorithm = logic + control’’, Communications of the ACM 22 (7):
424−431 (1979).

[9] R.A. Ko walski, Logic for Problem Solving, North-Holland, Amsterdam (1979).

[10] R.A. Ko walski, ‘‘Software engineering and artificial intelligence in new generation
computing’’, Future Generation Computer Systems 1 (1): 39−49 (1984).

[11] R.J. Lauber, ‘‘Development support systems’’, IEEE Computer 15 (5): 36−46 (1982).

[12] M. Page-Jones, The Practical Guide to Structured Systems Design, Yourdon Press
Computing Series, Prentice Hall, Englewood Cliffs, New Jersey (1988).

[13] O. Shigo, K. Iwamoto, and S. Fujibayashi, ‘‘A software design system based on a unified
design methodology’’, Journal of Information Processing 3 (3): 186−196 (1980).

[14] J.J.-P. Tsai and J.C. Ridge, ‘‘Intelligent support for specifications transformation’’, IEEE
Software 5 (6): 28−35 (1988).

[15] T.H. Tse, A Unifying Framework for Structured Analysis and Design Models: an Approach
Using Initial Algebra Semantics and Category Theory, Cambridge Tracts in Theoretical
Computer Science, vol. 11, Cambridge University Press, Cambridge (1991).

[16] T.H. Tse, T.Y. Chen, F.T. Chan, H.Y. Chen, and H.L. Xie, ‘‘The application of Prolog to
structured design’’, Software: Practice and Experience 24 (7): 659−676 (1994).

[17] M.H. van Emden and R.A. Kow alski, ‘‘The semantics of predicate logic as a programming
language’’, Journal of the ACM 23 (4): 733−742 (1976).

[18] E. Yourdon and L.L. Constantine, Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Yourdon Press Computing Series, Prentice Hall,
Englewood Cliffs, New Jersey (1979).

12

