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ABSTRACT 
 
Many existing studies measure the effectiveness of test case prioritization techniques using the 

average performance on a set of test suites. However, in each regression test session, a real-

world developer may only afford to apply one prioritization technique to one test suite to test a 

service once, even if this application results in an adverse scenario such that the actual perfor-

mance in this test session is far below the average result achievable by the same technique over 

the same test suite for the same application. It indicates that assessing the average performance 

of such a technique cannot provide adequate confidence for developers to apply the technique. 

The authors ask a couple of questions: To what extent does the effectiveness of prioritization 

techniques in average scenarios correlate with that in adverse scenarios? Moreover, to what 

extent may a design factor of this class of techniques affect the effectiveness of prioritization in 

different types of scenarios? 

 

To the best of their knowledge, the authors report in this paper the first controlled experiment to 

study these two new research questions through more than 300 million APFD and HMFD data 

points produced from 19 techniques, eight WS-BPEL benchmarks and 1000 test suites prioritized 

by each technique 1000 times. A main result reveals a strong and linear correlation between the 

effectiveness in the average scenarios and that in the adverse scenarios. Another interesting 

result is that many pairs of levels of the same design factors significantly change their relative 
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strengths of being more effective within the same pairs in handling a wide spectrum of prioritized 

test suites produced by the same techniques over the same test suite in testing the same bench-

marks, and the results obtained from the average scenarios are more similar to those of the more 

effective end than otherwise. This work provides the first piece of strong evidence for the research 

community to re-assess how they develop and validate their techniques in the average scenarios 

and beyond. 

 
Keywords: Adverse Scenario, Average Scenario, Controlled Experiment Correlation, Empirical 

Study, Regression Testing, Test Case Prioritization, WS-BPEL, XML-based Artifact 

 

 

INTRODUCTION 
 

In an ecosystem of services, a WS-BPEL program (WS-BPEL Version 2.0, 2007) offers a service 

by invoking external services (Mei et al. 2014b) to implement its workflow steps. If the business 

requirements of the ecosystem for the program are not met, its service consumers may 

discontinue consuming the service it provides, and switch to competing services dynamically. A 

conventional wisdom is that if a customer discards a product or service, it is intuitively difficult to 

attract the same customer to reuse the same product or service. Hence, to stay competitive, 

developers need to rapidly maintain and deploy the service to meet these latest business 

requirements. Moreover, each modified service should be rapidly and thoroughly tested to reduce 

the potential impact of any latent fault on its consumers. In short, from the testing viewpoint, 

maintaining such a service demands highly efficient test sessions, and every test session should 

be as efficient as possible. 

 

In a regression test session (Leung and White 1989; Onoma et al. 1998), developers execute a 

modified service over a suite of regression test cases to assess to what extent this modified service 

passes the regression test. Suppose that these test cases have been prioritized (Rothermel et al. 

2001; Rothermel et al. 2002), meaning that some test cases are scheduled to execute earlier than 

others, in order to expose all the faults in the service detectable by these test cases as fast as 

possible. Developers would expect that executing these test cases according to their priority can 

quickly expose faults in their own situations. 

 

Existing studies on test case prioritization (Do et al. 2004; Elbaum et al. 2002; Mei et al. 2014b), 

or TCP for short, evaluate various design factors of TCP techniques or these techniques directly 

based on their effectiveness on average (that is, mean or median effectiveness statistically). Yet, 

in practice, in a regression test session, a developer only applies at most one test case prioritiza-

tion technique to one test suite once to test the same version of the same program. The same 

developers do not have the luxury to apply multiple test suites or the same test suite multiple 

times to look for the average effectiveness of the technique on the service under test. 

 

Thus, even when the average effectiveness of a TCP technique or a design factor in TCP is excel-

lent, if the technique or the factor performs ineffectively in scenarios that are far below average 

(hereafter simply referred to as the adverse scenarios), the technique or the factor may not be 

reliably used in practice. This problem is general across a wide range of software domains, and 

we are particularly interested in it within the regression testing of services. 

 

In the preliminary version of this paper (Jia et al. 2014), we reported the first controlled 

experiment investigating whether the effectiveness results (the rate of fault detection measured by 

APFD (Elbaum et al. 2002)) of both TCP techniques and their design factors can be extrapolated 
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from the average scenarios to the adverse scenarios. The controlled experiment included 10 TCP 

techniques plus two control techniques, eight benchmarks, and 100 test suites per benchmark with 

100 repeated applications of every TCP technique on every such test suite. In total, we computed 

0.96 million raw APFD values. It compared the consistency between the whole effectiveness 

dataset of each technique against that of random ordering (labeled as C1 in the Preliminaries 

section of this paper) and the dataset consisting of the lowest 25 percentile of the former dataset. 

The results showed that less than half of all the techniques and factors exhibited such consistency. 

 

This paper significantly extends the preliminary version (Jia et al. 2014). We investigate two 

completely new research questions (denoted by RQ1 and RQ2), which are refined from the 

research questions presented in the preliminary version. RQ1 investigates the correlation of the 

change of effectiveness (relative to random ordering) between the average scenarios and adverse 

scenarios. RQ2 investigates whether switching among levels of a design factor of TCP techniques 

may result in statistically distinguishable changes of effectiveness in handling a wide spectrum of 

prioritized test suites produced by the same techniques over the same test suite in testing the same 

benchmarks. The new controlled experiment uses 19 TCP techniques, eight benchmarks, 1000 

test suites per benchmark, and applies every TCP technique to every test suite 1000 times, 

producing 152 million APFD values and 152 million HMFD values (where HMFD is another 

measure of TCP effectiveness (Zhai et al. 2014)). 

 

For RQ1, the main result shows that the prioritization effectiveness in the average scenarios has a 

strong linear correlation with the effectiveness in the adverse scenarios. Moreover, with respect 

to random ordering, we find that in handling a test suite where a technique is (in-)effective in the 

average scenarios, the same technique tends to amplify the corresponding (in-)effectiveness in the 

adverse scenarios; and such an amplification effect is stronger on the ineffective side than on the 

effective side. For RQ2, we find that many pairs of levels of the same TCP design factors 

significantly affect the effectiveness in handling a wide spectrum of prioritized test suites 

produced by the same techniques over the same test suite in testing the same benchmarks. We 

also find that the results obtained from the average scenarios are more similar to those of the 

more effective end of the above spectrum than otherwise. 

 

The main contribution of this paper is twofold. (i) To the best of our knowledge, this paper is the 

first work studying the extent that the effectiveness of test case prioritization techniques in 

average scenarios correlates with that in adverse scenarios, and the extent that TCP design factors 

exhibit statistically distinguishable and conflicting results in different regions in the effectiveness 

spectra above. (ii) This paper also reports the first large-scale controlled experiment to study the 

two research questions. 

 

The rest of the paper is organized as follows. The next section describes the preliminaries. After 

that, we formulate the research questions, followed by describing the setup of the experiment. 

Then, we present the data analyses. Finally, we review related work and conclude the paper. 

 

 

PRELIMINARIES 
 

Test case prioritization (TCP) techniques can be designed to achieve certain goals in a regression 

test, such as to improve the rate of code coverage or the fault detection rate. The test case prioriti-

zation problem has been formally defined in (Elbaum et al. 2002), which we adapt as follows: 
 

Given: T, a test suite; PT, a set of permutations of T; and f, a function from PT to real numbers. 
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Objective: To find a reordered test suite T’PT such that T’’PT, f(T’) ≥ f(T’’). 

 

To measure how effectively TCP techniques achieve the goal of obtaining higher fault detection 

rates, the weighted Average of the Percentage of Faults Detected (APFD) (Elbaum et al. 2002) 

and the Harmonic Mean of Rate of Fault Detection (HMFD) (Zhai et al. 2014) are two metrics we 

use in our experiments. 
 

Let T be a test suite containing n test cases, F be a set of m faults revealed by T, and TFi be the 

index of the first test case in the reordered test suite T’ that reveals fault i. The following two 

equations compute the APFD value and HMFD value of T’, respectively. 
 

        
             

  
  
 

  
 

 

      
 

 
   

 
 
   

   
 
   

 

 

A higher APFD value (or a lower HMFD value) indicates a higher fault detection rate. In this 

paper, the function f maps every permutation T’ in PT to the APFD or HMFD value of T’. 

 

We follow (Elbaum et al. 2002; Rothermel et al. 2001) to compare TCP techniques with random 

ordering as a control technique, defined as follows: 
 

C1: Random ordering. This technique randomly orders the test cases in a test suite T. 

 

 

RESEARCH QUESTIONS 
 

We study two main research questions in this paper. 

 

RQ1: To what extent does the effectiveness of prioritization techniques for service regression 

testing in the average scenarios correlate with that in the adverse scenarios? 

 

RQ2: To what extent do different levels of the same factors in designing test case prioritization 

techniques for service regression testing exhibit significantly different effectiveness results with 

respect to different regions of effectiveness results of random ordering? 

 

RQ1 has a significant impact on regression testing research on programs in general and 

workflow-based services in particular. As stated in the Introduction section, many pieces of such 

work have reported their effectiveness results in average scenarios. The result of RQ1 augments a 

large body of such work to help them to extrapolate their results to handle adverse scenarios. 

 

RQ2 examines how to design TCP techniques for service regression testing with different focuses 

of optimization in mind. For instance, configuring a factor to one particular level may be more 

effective in one region but configuring the same factor to another level may be more effective in 

another region. Discovering this information can help researchers investigate whether designing 

an adaptive TCP technique is necessary. 

 

 



 

5 

SETUP OF EXPERIMENTS 
 
This section presents the setup of the experiments, including the description of the benchmark 

and test suites, TCP techniques, and experimental procedures. 
 

Benchmark and Test Suites 
 
We included eight representative service-based subjects (Mei et al. 2008) as our benchmarks. 

They are all developed in WS-BPEL. Table 1 shows the statistics of these benchmarks. These 

benchmarks have been used in other service regression testing studies (Jia et al. 2014; Mei et al. 

2011; Mei et al. 2014b). 

 

We used a set of faults and associated test suites for each benchmark to measure the effectiveness 

of different TCP techniques. For each subject, we generated the faulty versions by seeding one 

fault with three typical types of mutations (Andrews et al. 2005): value mutation, decision 

mutation, and statement mutation. The statistics of the faults in the modified versions have been 

reported in Mei et al. (2014a). Since BPEL can be treated as Control Flow Graphs (CFGs), the 

mutations were performed in the same way as seeding faults in CFGs. An XPath fault is a wrong 

usage of XPath expressions, such as extracting the wrong content or failing to extract any content. 

Similarly, a WSDL fault is a wrong usage of the WSDL specifications such as binding to a wrong 

WSDL specification or an inconsistent message definition. 

 
 

Table 1. Benchmarks and their descriptive statistics 
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A atm 8 94 180 3 12 12 5 

B buybook  7 153 532 3 16 14 5 

C dslservice 8 50 123 3 16 20 5 

D gymlocker  7 23 52 2 8 8 5 

E loanapproval 8 41 102 2 8 12 7 

F marketplace  6 31 68 2 10 10 4 

G purchase  7 41 125 2 8 10 4 

H triphandling  9 94 170 6 36 20 8 

 Total 60 527 1352 23 114 106 43 

 

 

For each subject, we constructed a test pool that included 1000 randomly generated test cases. 

Then, we randomly selected test cases from the pool one by one and put it into a test suite (which 

was initially empty) until all the workflow branches, XRG branches, and WSDL elements had 

been covered at least once. This process was the same as that in the test suite construction in 

Elbaum et al. (2002) and Mei et al. (2014a) except that we used the adequacy on BPEL, XRG and 

WSDL instead of that on program statements as the stopping criterion. We repeated this process 

for each subject 1000 times. In total, we constructed 1000 test suites for each subject. 

 

Table 2 shows the maximum, mean, and minimum sizes of these test suites. We followed existing 

work (Do et al. 2004; Elbaum et al. 2002; Mei et al. 2011) to exclude a faulty version from data 

analyses if more than 20 percent of the test cases detected the fault from the version. The numbers 

of faulty versions actually used are shown in the rightmost column of Table 1. For each generated 
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test suite, we further marked which test case reveals which fault. That is, to determine whether 

the test case revealed a fault, our tool compared its execution result against the original subject 

program with its result against a faulty version. If there is any difference, we deemed that the 

output of the faulty version revealed a fault. 

 

 
Table 2. Sizes of test suites for each subject 

Ref. 

Size 
A B C D E F G H Average 

Max 182 128 157 165 197 139 151 149 158.5 

Mean 78 48 64 85 155 43 84 85 80.3 

Min 20 12 15 18 43 23 16 26 21.6 

 

 

Test Case Prioritization Techniques 
 
In total, we included 18 prioritization techniques shown in Table 3. In addition to the 10 tech-

niques M1M10 presented in (Jia et al. 2014), we further included eight more techniques M11–

M18 taken from Mei et al. (2014a), which applied a Refinement-Oriented Level-Exploration 

(ROLE) strategy to refine two techniques (Total-BPEL-Workflow and Addtl-BPEL-Workflow) in 

Elbaum et al. (2002). We will briefly review the process of applying the ROLE strategy. 

 

The ROLE strategy relies on a multilevel coverage model (Mei et al. 2014a), which is a six-tuple 

⟨T, Πα, Πβ, Πγ, Πδ, Πθ⟩ for a service P, where (a) T is a regression test suite for P and (b) Πα, Πβ, 

Πγ, Πδ, and Πθ represent, respectively, sets of workflow branches, sets of XRG branches, sets of 

WSDL elements, sets of XRG patterns, and sets of tag values and unique tags in XML messages 

collected from the executions of all the test cases in T against P. For any test case t in T, Πα, Πβ, 

Πγ, Πδ, and Πθ represent, respectively, the set of workflow branches, the set of XRG branches, the 

set of WSDL elements, the set of XRG patterns, and the set of tag values and unique tags in XML 

messages covered by the execution of t against P. The five levels are referred to as CMi levels, 

where CM stands for Coverage Model and i = 1 to 5. 

 

With the multilevel coverage model, the ROLE strategy refines a technique (M9 and M10 in this 

paper) at a level CMi when encountering tie cases by using the coverage in the next level 

CM(i+1). M9 and M10 conduct the prioritization with coverage data at the CM1 level. Applying 

the ROLE strategy to refine M9 and M10 on the other four coverage levels generated four new 

TCP techniques for each of M9 and M10. To simplify our presentation, we use M9-CMi-Refine (i 

= 2 to 5) to stand for the generated techniques of M9 with ROLE at the CMi coverage level. We 

also use a similar shorthand M10-CMi-Refine (i = 2 to 5) to stand for the generated techniques of 

M10 with ROLE at the CMi coverage level. Thus, using ROLE, these CMi techniques form a 

subsumption hierarchy (Mei et al. 2014a). 
 

The following presents each of the 18 techniques listed in Table 3. We note that all the techniques 

used in our controlled experiments have been used in existing work. 

 

M1: Total BPEL activity coverage prioritization (Total-BPEL-Activity). It is the same as the 

classical total-statement technique (Elbaum et al. 2002; Mei et al. 2011) except that M1 sorts the 

test cases in descending order of the total number of BPEL activities (instead of statements) 

executed by each test case. If multiple test cases cover the same number of BPEL activities, M1 

orders them randomly. 
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M2: Additional BPEL activity coverage prioritization (Addtl-BPEL-Activity). It is the same as 

the classical addtl-statement technique (Elbaum et al. 2002; Mei et al. 2011), where M2 itera-

tively selects a test case that yields the maximum cumulative BPEL activity (instead of statement) 

coverage, and then removes the covered activities from the coverage information of each remain-

ing test case. Additional iterations will be conducted until all the activities have been covered by 

at least one test case. If multiple test cases cover the same number of activities in the current 

coverage information of the test cases, M2 selects one of them randomly. Having achieved the 

complete coverage of all the activities by the prioritized subset of test cases in the given test suite, 

M2 resets the coverage information of each remaining test case to its initial value and then 

reapplies the algorithm to the remaining test cases. 

 
 

Table 3. Prioritization techniques and factors under study: 

strategy (A: Additional; T: total; I: Iterative), order direction (A: Ascending; D: Descending) 

Index Name of Technique  

Factors in Designing TCP Techniques 

Artifact Type Strategy 
Order 

Direction 

Type of Coverage 

Data  

ROLE 

Hierarchy 

M1 Total-BPEL-Activity BPEL T D Executable - 

M2 Addtl-BPEL-Activity BPEL A D Executable - 
M3 Total-XPath-Selection XRG T D Executable - 
M4 Addtl-XPath-Selection XRG A D Executable - 
M5 Ascending-XRG-Node XRG I A Non-Executable - 
M6 Descending-XRG-Node XRG I D Non-Executable - 
M7 Ascending-WSDL-Element WSDL I A Non-Executable - 
M8 Descending-WSDL-Element WSDL I D Non-Executable - 
M9 Total-BPEL-Workflow BPEL I D Executable CM1 

M10 Addtl-BPEL-Workflow BPEL I D Executable CM1 

M11 Total-BPEL-CM2-Refine BPEL, XRG T D Executable CM2 

M12 Addtl-BPEL-CM2-Refine BPEL, XRG A D Executable CM2 

M13 Total-BPEL-CM3-Refine BPEL, XRG, WSDL T D Both CM3 

M14 Addtl-BPEL-CM3-Refine BPEL, XRG, WSDL A D Both CM3 

M15 Total-BPEL-CM4-Refine 
BPEL, XRG, WSDL, 

XRG Pattern 
T D Both CM4 

M16 Addtl-BPEL-CM4-Refine 
BPEL, XRG, WSDL, 

XRG Pattern 
A D Both CM4 

M17 Total-BPEL-CM5-Refine 
BPEL, XRG, WSDL, 

XML, XRG Pattern 
T D Both CM5 

M18 Addtl-BPEL-CM5-Refine 
BPEL, XRG, WSDL, 

XML, XRG Pattern 
A D Both CM5 

 

 

M3 and M4: Total XPath selection coverage prioritization (Total-XPath-Selection) and 

Additional XPath selection coverage prioritization (Addtl-XPath-Selection) (Jia et al. 2014). 

They are the same as M1 and M2, respectively, except that M3 and M4 measure test coverage in 

terms of XPath selections rather than BPEL activities. 

 

M5 and M6: Ascending XRG node coverage prioritization (Ascending-XRG-Node) and 

Descending XRG node coverage prioritization (Descending-XRG-Node) (Jia et al. 2014). Each 

technique first partitions test cases into groups such that all the test cases with the same number 

of XRG nodes are placed in the same group. Suppose that the partitioning process results in m+1 

groups G0, G1, ..., Gm, where Gi is a group of test cases each of which covers exactly i XRG 

nodes. M5 and M6 will select one test case randomly from a group starting from G0 to Gm in 

ascending order and descending order of the index of the groups, respectively. It then iterates the 

procedure until all the test cases in all the groups have been selected. 
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M7 and M8: Ascending WSDL element coverage prioritization (Ascending-WSDL-Element) 

and Descending WSDL element coverage prioritization (Descending-WSDL-Element) (Mei et 

al. 2011). M7 and M8 are the same as M5 and M6 except that they measure test coverage in terms 

of the elements in WSDL documents rather than XRG nodes. 

 

M9 and M10: Total BPEL workflow coverage prioritization (Total-BPEL-Workflow) and 

Additional BPEL workflow coverage prioritization (Addtl-BPEL-Workflow) (Do et al. 2004; 

Mei et al. 2011). M9 and M10 are the same as M1 and M2 except that they measure test coverage 

in terms of BPEL workflow transitions rather than BPEL activities. They are adapted from the 

classical total-branch and addtl-branch techniques presented in Elbaum et al (2002), respectively. 

 

M11 (M9-CM2-Refine), M13 (M9-CM3-Refine), M15 (M9-CM4-Refine), and M17 (M9-

CM5-Refine) (Mei et al. 2014a). M9-CMi-Refine (i = 2 to 5) is the same as M9-CM(i –1)-Refine 

(where M9-CM1-Refine means M9) except when multiple test cases cover the same number of 

CM(i–1), it reorders them in descending order of the number of CMi items covered by each test 

case involved in the tie. If there is still a tie, M9-CMi-Refine randomly orders the test cases 

involved in tie cases. 

 

M12 (M10-CM2-Refine), M14 (M10-CM3-Refine), M16 (M10-CM4-Refine), and M18 (M10-

CM5-Refine) (Mei et al. 2014a). M10-CMi-Refine (i = 2 to 5) is the same as M10-CM(i–1)-

Refine (where M10-CM1-Refine means M10) except three things: (a) In each iteration, M10-

CMi-Refine removes the covered CM1 to CMi items of the selected test cases from the remaining 

test cases to indicate that the removed items have been covered. (Note that M10-CMi-Refine still 

selects test cases based on the CM1 item coverage as in M10.) (b) If multiple test cases cover the 

same number of CM(i–1) items in the current round of selection, M10-CMi-Refine selects the test 

case that has the maximum number of uncovered CMi items. If there is still a tie, it randomly 

selects one of the test cases involved. (c) When resetting is needed, M10-CMi-Refine resets each 

remaining test case to the original coverage of CM1 to CMi items. 

 

We applied the ROLE strategy to M9 and M10 because M9 and M10 have been evaluated in 

existing work (Mei et al. 2014a). M1 to M8 have not been evaluated with ROLE, and yet our 

controlled experiment is already very large in scale. Also, to the best of our knowledge, the 

classical versions of M9 and M10 are still the most effective series of TCP techniques since the 

inception of TCP research (Zhang et al. 2013). 

 

Experimental Procedure 
 
For each random test suite T, we applied each prioritization technique M 1000 times to T to gain 

statistical power on each technique. Then, for each prioritized test suite T’, we computed its 

APFD value and HMFD value. In total, we collected 152,000,000 (= 8 subjects × 1000 test suites 

× 19 techniques × 1000 times) APFD and HMFD items for our data analyses, respectively. 

 

RQ1 studies the correlation between the effectiveness measures of TCP techniques in the average 

scenarios and the adverse scenarios for each test suite. For each test suite T, we define the 

average scenarios of applying technique Mi (i = 1 to 18) to T as the set of all 1000 prioritized test 

suites, each being generated by Mi on T. We define the adverse scenarios as the 250 test suites 

that lead to the lowest 25% prioritization effectiveness (i.e., the lowest 25 percentile of all the 

1000 APFD values or the highest 25 percentile of all the 1000 HMFD values). First, we 

performed a statistical comparison using the Analysis of Variance (ANOVA) at the 5% 

significance level followed by a multiple mean comparison using Matlab (with HSD (Jia et al. 

2014), which is the default option in Matlab for such comparisons) between Mi and random 
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ordering (C1) on T in the average scenarios. The comparison result can be one of the three 

possible cases: Mi is significantly more effective than C1, Mi has no significant difference from 

C1, and Mi is significantly less effective than C1. We followed Jia et al. (2014) to use “>”, “=”, 

and “<” to represent the above three cases, respectively. We also want to study whether Mi in the 

adverse scenarios is statistically more effective than the mean effectiveness of C1. Thus, we first 

computed the mean effectiveness of C1 in the average scenarios. Then, we performed a statistical 

comparison between Mi in the adverse scenarios and the mean effectiveness of C1. Such a 

comparison also results in three similar cases. By doing so, for each test suite T, we can find the 

relative distribution of comparison results between Mi and C1 in the average scenarios (which we 

take as the x dimension) and the comparison results in the adverse scenarios (which we take as 

the y dimension). 

 

RQ2 studies the effect of factors on prioritization effectiveness with respect to the whole spec-

trum of random ordering. In many existing studies, a TCP technique is viewed as a combination 

of chosen levels of different factors. Table 3 shows the possible values of the five factors 

identified by previous work for the 18 techniques studied in our controlled experiment. 

 

To study whether the factor significantly affects the prioritization effectiveness, we compared two 

techniques Mi and Mj that contain different levels of the same factor. Table 4 shows each factor, 

the possible pairwise level comparisons of the factors, and the pair of techniques corresponding to 

the pairwise level comparisons of the factors. The rightmost column of the table shows the 

number of technique-pairs in the same row. 

 

 
Table 4. Pairwise comparisons of levels and techniques for each factor 

Factor 
Pairwise Level 

Comparison 
Technique-Pair 

No. of 

Pairs 

Artifact type 

BPEL-XRG 
Mi–Mj, where Mi {M1, M2, M9, M10} 

and Mj {M3, M4, M5, M6} 
16 

BPEL-WSDL Mi–Mj, where Mi {M1, M2, M9, M10} and Mj {M7, M8} 8 

XRG-WSDL Mi–Mj, where Mi {M3, M4, M5, M6} and Mj {M7, M8} 8 

Strategy 

Total-Additional 
Mi–Mj, where Mi {M1, M3, M9, M11, M13, M15, M17} 

and Mj {M2, M4, M10, M12, M14, M16, M18} 
49 

Total-Iterative 
Mi–Mj, where Mi {M1, M3, M9, M11, M13, M15, M17} 

and Mj {M5, M6, M7, M8} 
28 

Additional-Iterative 
Mi–Mj, where Mi {M2, M4, M10, M12, M14, M16, M18} 

and Mj {M5, M6, M7, M8} 
28 

Order 

direction 
Ascending-Descending 

Mi–Mj, where Mi {M5, M7} and Mj {M1, M2, M3, M4, M6, 

M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M18} 
32 

Coverage data 
Executable-

Nonexecutable 

Mi–Mj, where Mi {M1, M2, M3, M4, M9, M10, M11, M12} 

and Mj {M5, M6, M7, M8} 
32 

ROLE hierarchy 

CM1–CM2 M9–M11 and M10–M12 2 

CM1–CM3 M9–M13 and M10–M14 2 

CM1–CM4 M9–M15 and M10–M16 2 

CM1–CM5 M9–M17 and M10–M18 2 

CM2–CM3 M11–M13 and M12–M14 2 

CM2–CM4 M11–M15 and M12–M16 2 

CM2–CM5 M11–M17 and M12–M18 2 

CM3–CM4 M13–M15 and M14–M16 2 

CM3–CM5 M13–M17 and M14–M18 2 

CM4–CM5 M15–M17 and M16–M18 2 

 

 

In our preliminary version (Jia et al. 2014), we compared techniques and factors only on the 

lowest 25th effectiveness percentile and the whole effectiveness. In this paper, we compare each 

factor in a fine-grained level. Specifically, we divide the effectiveness spectrum of Mi into five 
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regions (i.e., Regions 1–5). The boundaries of the five regions are defined by two parameters: the 

mean and standard deviation of the effectiveness of random ordering (C1). We refer to these two 

parameters as µ and δ, respectively. For a prioritized test suite T’ generated by applying Mi to a 

test suite T, we refer to its APFD effectiveness value as APFD(T’). Then, the boundaries of the 

five regions are defined as follows with the three-sigma rule (i.e., the classical 68–95–99.7 rule in 

statistics) on random ordering. To simplify the presentation, we define the whole set of 

effectiveness data as Region All. The five regions of APFD(T’) together with Region All are 

defined as follows: 

 

 Region 1:  µ – 3 × δ ≤ APFD(T’) < µ – 1.5 × δ. 

 Region 2:  µ – 1.5 × δ ≤ APFD(T’) < µ – 0.5 × δ. 

 Region 3:  µ – 0.5 × δ ≤ APFD(T’) < µ + 0.5 × δ. 

 Region 4:  µ + 0.5 × δ ≤ APFD(T’) < µ + 1.5 × δ. 

 Region 5:  µ + 1.5 × δ ≤ APFD(T’) < µ + 3 × δ. 

 Region All:  all effectiveness data are in this region. 
 

In the above five regions, Region 1 is the least effective region and Region 5 is the most effective 

region. Then, for each Mi, we distributed all its effectiveness data into them, and compared them 

pairwise to see to what extent the same factor affects the prioritization effectiveness. 

 

We also define the corresponding six regions for HMFD result on each prioritized test suite as 

follows. Note that the boundaries of HMFD regions are defined with the same effectiveness 

semantics (i.e., from Region 1 to Region 5, the measured effectiveness increases) against that of 

APFD regions. 
 

 Region 1:  µ + 1.5 × δ ≤ HMFD(T’) < µ + 3 × δ. 

 Region 2:  µ + 0.5 × δ ≤ HMFD(T’) < µ + 1.5 × δ. 

 Region 3:  µ – 0.5 × δ ≤ HMFD(T’) < µ + 0.5 × δ. 

 Region 4:  µ – 1.5 × δ ≤ HMFD(T’) < µ – 0.5 × δ. 

 Region 5:  µ – 3 × δ ≤ HMFD(T’) < µ – 1.5 × δ. 

 Region All:  all effectiveness data are in this region. 

 

 

DATA ANALYSES 
 

Answering RQ1 
 
In RQ1, we investigate to what extent the effectiveness of TCP techniques in the average scenar-

ios correlates with the effectiveness in the adverse scenarios. 

 

Table 5 shows the distribution of comparison results (a, b) of techniques with random ordering in 

the average scenarios and adverse scenarios. There are nine possible combinations in total. The 

value of a is the measure on the extent that Mi is statistically more effective than C1 on T in the 

average scenarios. If Mi is statistically more effective than, has no difference from, and is less 

effective than C1 at the 5% significance level, then the value of a is positive (>), zero (=), and 

negative (<), respectively. The value of b is for the adverse scenarios and can be interpreted 

similarly to the value of a in the average scenarios. The value in each cell is the number of 

comparisons for all the techniques located in the column category for the subject in the 

corresponding row. The last row shows the statistics of each column category for taking all the 

subjects as a whole. 
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Table 5. Distribution of comparison results in nine cases for all techniques on all test suites for each subject 

 No. of Comparison Results (a, b) in Average Scenarios and Adverse Scenarios in Each of the Nine Cases 

 APFD HMFD 

Case 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Ref (>, >) (>, =) (>, <) (=, >) (=, =) (=, <) (<, >) (<, =) (<, <) (>, >) (>, =) (>, <) (=, >) (=, =) (=, <) (<, >) (<, =) (<, <) 

A 8909 487 5736 0 0 2414 0 0 454 11312 282 2465 0 0 2173 0 0 1768 

B 1005 173 6752 0 0 7804 0 0 2266 1311 209 6410 0 0 8013 0 0 2057 

C 8393 128 4039 12 0 2863 0 0 2565 13333 32 230 0 0 2057 0 0 2348 

D 13004 337 1691 0 0 979 0 0 1989 13435 411 1193 0 0 1036 0 0 1925 

E 16308 204 909 0 0 141 0 0 438 17148 7 183 0 0 199 0 0 463 

F 12674 239 2308 2 3 2054 0 0 720 14356 46 906 1 0 2105 0 0 586 

G 14204 286 2205 0 0 210 0 0 1095 16354 10 641 1 0 260 0 0 734 

H 10461 124 2429 7 0 3418 0 0 1561 12076 12 912 0 0 3402 0 0 1598 

Total 84958 1978 26069 21 3 19883 0 0 11088 99325 1009 12940 2 0 19245 0 0 11479 

Proportion 0.59 0.01 0.18 0.00 0.00 0.14 0.00 0.00 0.08 0.69 0.01 0.09 0.00 0.00 0.13 0.00 0.00 0.08 

 

 
We observe from Table 5 that for 59% of the cases for APFD and 69% of the cases for HMFD, 

the studied 18 TCP techniques are consistently more effective than random ordering (see Case 1 
in the (>, >) column in the table). Even considering Case 2, Case 4, and Case 5 as well, the 
proportions are only 60% and 70% in terms of APFD and HMFD, respectively. This indicates that 
for 60% of the cases for APFD and 70% of the cases for HMFD, the studied techniques 
performed no worse than random ordering in both the average and adverse scenarios. In other 
words, for 40% of the cases for APFD and 30% of the cases for HMFD, the studied techniques 
performed less effectively than random ordering in at least one of the two scenarios. This finding 
strongly shows that the studied techniques have noticeable probabilities of being less effective 
than random ordering. 
 

The proportions of cases (i.e., Case 1, Case 2, and Case 3) in which the studied techniques are 

more effective than random ordering in the average scenarios are 78% for APFD and 79% for 

HMFD. Among these three cases, the proportion of Case 3 takes up to 23.1% for APFD and 

11.4% for HMFD. This finding indicates that even when the studied TCP techniques have been 

measured to be more effective than random ordering in the average scenarios, there is still a 

noticeable chance of having a less effective result when applying the techniques. Measuring the 

effectiveness of a technique in the average scenarios only is unlikely to reliably guarantee the 

effectiveness of applying the technique with high confidence (e.g., 80–100% of chances). 

However, it does provide a moderate confidence (e.g., 40–79% of chances). 
 

To further explore the relationship between the effectiveness in the average scenarios and that 
in the adverse scenarios, we plotted all the comparison data points in a scatter plot as shown in 
Figure 1, in which each data point is a comparison result (a, b) summarized in Table 5. The x-axis 
and y-axis of the figure represent the effectiveness comparison results in the average scenarios 
and in the adverse scenarios, respectively. 
 

We observe from Figure 1 that no matter for APFD or HMFD, the effectiveness of TCP 
techniques in the average scenarios seem to have a strong linear correlation with the effectiveness 
in the adverse scenarios. To verify our observation, we performed a Pearson correlation 
coefficient test using Matlab on all the data points. The test results in terms of APFD and HMFD 
are shown in the first column entitled ‘All’ under the section entitled Pearson’s Correlation 
Coefficient in Table 6 and Table 7, respectively. There is no golden criterion to interpret the result 
of Pearson test in software engineering and services computing research. Thus, we followed 
existing work (e.g., Wang et al. (2014)) to interpret the result as follows: If the absolute value of 
the Pearson’s Correlation Coefficient is greater than 0.8, the correlation is regarded as strong. If 
the absolute value is more than 0.1 but less than 0.5, the correlation is considered as mild. If the 
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absolute value is at most 0.1, there is no correlation. Otherwise, the correlation is said to be 
moderate. 
 

We find that for all the subjects except B (i.e., buybook), the overall correlation coefficient is 

larger than 0.9 for both APFD and HMFD. In fact, for the subject B, the overall correlation is 

more than 0.79. These Pearson test data indicate that overall speaking, there is a strong linear 

correlation between the effectiveness measures of the prioritization techniques in the two 

scenarios. 
 

We also investigate whether the techniques that are effective (or ineffective, respectively) in the 

average scenarios are also effective (or ineffective) in their corresponding the adverse scenarios. 

Hence, we studied the correlations in Case (>, >) and Case (<, <). 
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Figure 1. Statistical comparisons of TCP techniques for all subjects in average scenarios and in adverse scenarios 

 

 
Table 6. Correlations of effectiveness measures of all TCP techniques in average scenarios and adverse scenarios for 

each subject in terms of APFD 

Ref 

Pearson’s Correlation Coefficient 
Linear Regression (y = ax + b) 

Value of a Value of b 

All Case (>, >) Case (<, <) All Case (>, >) 
Case (<, <

) 
a(>, >)  a(<, <

) 
All 

Case (>, >

) 
Case (<, <) 

A 0.900375 0.892824 0.620642 1.238222 0.910829 1.822192 –0.91136 –0.05819 –0.02327 –0.05193 

B 0.795791 0.856073 0.730196 1.152342 0.987222 0.653001 0.334221 –0.16123 –0.07582 –0.18668 

C 0.976206 0.937613 0.970091 1.497027 1.051372 1.438022 –0.38665 –0.11067 –0.02299 –0.11902 

D 0.935073 0.92394 0.808715 1.446076 0.969249 1.451735 –0.48249 –0.09624 –0.02538 –0.13787 

E 0.975306 0.95563 0.903943 1.205387 1.147328 1.187479 –0.04015 –0.06119 –0.05346 –0.06169 

F 0.954217 0.925365 0.553224 1.414656 1.096258 1.435644 –0.33939 –0.12958 –0.05628 –0.11976 

G 0.96767 0.948118 0.732413 1.328643 1.162229 1.155755 0.006474 –0.10218 –0.06103 –0.12465 

H 0.991916 0.971094 0.92489 1.369702 1.132112 1.0309 0.101212 –0.11834 –0.04655 –0.11544 

All  0.952259 0.961681 0.905938 1.389617 1.084976 1.322813 –0.23784 –0.10858 –0.04226 –0.12571 
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Table 7. Correlations of effectiveness measures of all TCP techniques in average scenarios and adverse scenarios for 

each subject in terms of HMFD 

Ref 

Pearson Correlation Coefficient 
Linear Regression (y = ax + b) 

Value of a Value of b 

All Case (>, >) Case (<, <) All 
Case (>, >

) 

Case (<, <

) 
a(>, >)  a(<, <) All 

Case (>, >

) 
Case (<, <) 

A 0.92987 0.893379 0.560859 1.546947 1.276856 0.644731 0.632125 –2.18133 –1.31753 –1.96731 

B 0.792614 0.747389 0.646295 1.45697 0.873583 0.835877 0.037706 –4.97821 –1.12333 –5.32191 

C 0.989152 0.990626 0.990136 1.575833 1.087219 1.524913 –0.43769 –3.22828 –0.6807 –4.13576 

D 0.958961 0.858727 0.705028 1.868274 1.153052 1.288721 –0.13567 –5.42358 –1.87845 –8.53117 

E 0.987114 0.96721 0.865683 1.174191 1.165036 1.047905 0.117131 –0.98564 –0.94917 –1.12298 

F 0.938369 0.981216 0.484756 1.532698 1.063368 1.519201 –0.45583 –3.62574 –0.68343 –2.8275 

G 0.960469 0.991917 0.87947 1.367318 1.028599 2.128536 –1.09994 –3.54536 –0.45145 –5.27834 

H 0.969589 0.995733 0.763302 1.667766 1.014701 1.214153 –0.19945 –6.41994 –0.30329 –6.45247 

All 0.956734 0.981556 0.961 1.511497 1.065811 1.531579 –0.46577 –3.80313 –0.80661 –4.44408 

 

 
Table 6 and Table 7 also show the Pearson test data for the two cases in terms of APFD and 

HMFD, respectively. We observe from Table 6 that the correlation coefficient in Case (>, >) is 
consistently higher than that in Case (<, <) for all the subjects except for subject C. In  Table 7, 
this trend is consistent for all the subjects. In particular, in Case (>, >), all the subjects in these 
two tables except subject B in Table 7 have a correlation value larger than 0.85. In Case (<, <), 
only four and three subjects in these two tables have a correlation value larger than the threshold 
of strong correlations (0.80). 

 

These observations indicate that for those test suites where the techniques are effective in the 

average scenarios, their effectiveness in the adverse scenarios can be more reliably predicted. 

However, for those test suites where the techniques are ineffective in the average scenarios, their 

effectiveness in the adverse scenarios is less reliably predictable. 

 

We also computed the linear regression lines (y = ax + b) for all the data points (All), the data 

points in Case (>, >), and those in Case (<, <) for taking all subjects as a whole as well as for 

each individual subject. 

 

Figure 1 shows the two linear regression lines for taking all subjects as a whole in Case (>, >) and 

Case (<, <), respectively. We observe that the slopes of the two regression lines are not the same 

(nor nearly so). Figure 2 and Figure 3 show the scatter plots and the regression lines for the data 

points of each subject in terms of APFD and HMFD, respectively. We also find similar 

observations that the slopes of the two regression lines are not the same (nor nearly so). 

 
Table 6 and Table 7 show the estimated parameters (a and b) for the regression lines of all data 

points, the data points in Case (>, >), and the data points in Case (<, <) for each individual subject 
and taking all subjects as a whole (i.e., the last row). When taking all the subjects as a whole, we 
observe from the last row of each of Table 6 and Table 7 that the three values of ‘a’ are larger than 
1, which means the effectiveness in the average scenarios is amplified in the adverse scenarios. 
The value of ‘a’ in Case (<, <) is larger than that in Case (>, >), which indicates that when 
techniques are ineffective in the average scenarios for some test suites, these techniques will 
amplify the ineffectiveness cases more in the adverse scenarios for the same test suites. 
 

We then subtract the value of a in Case (<, <) from the value of a in Case (>, >) to facilitate 
our observation. The results are shown in Table 6 and Table 7 under the column entitled ‘a(>, >)  
a(<, <)’. We observed that most subjects (namely, 5 out of 8) had negative values in this column. 
This indicates that for most subjects, the above amplification effect does exist. 
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We also observe from Table 6 and Table 7 that the estimated values of b are negative for all 
subjects. This means that when techniques show no significant difference in effectiveness in the 
average scenarios of the test suites, the techniques are very likely to be ineffective in the adverse 
scenarios of these test suites as well. 
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Figure 2 Statistical comparisons of TCP techniques in average scenarios and adverse scenarios in terms of APFD 
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Figure 3 Statistical comparisons of TCP techniques in average scenarios and adverse scenarios in terms of HMFD 

 

 

Summary: We find a strong linear correlation between the effectiveness of the techniques in the 

average scenarios and that in the adverse scenarios. This linear correlation is stronger for the test 

suites in Case (>, >) than those in Case (<, <). Also, comparing between the amplification results 

of the effectiveness measures in the average scenarios and the adverse scenarios, the ineffective-
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ness cases are amplified more in the adverse scenarios. The studied prioritization techniques also 

have a noticeable chance of being less effective than random ordering in terms of APFD and 

HMFD. 

 

Answering RQ2 
 
In RQ2, we investigate to what extent each of the five factors affects the prioritization effective-

ness in different regions. We recall that Table 4 has shown all the technique-pairs for each factor 

at each pairwise combination of the corresponding factor levels, and the whole effectiveness 

spectrum of each technique on the prioritized test suite is also mapped to five regions defined at 

the end of the Experimental Procedure section. 

 

As stated in the experimental procedure, in each region, for each factor at each pairwise combina-

tion of factor levels, we performed a multiple mean comparison for all the techniques. We then 

checked whether any pair of techniques is significantly different in each case, which is described 

in detail as follows. 

 

Table 8 shows the statistical comparison results using the APFD dataset. In each region, there are 

three possible outcomes: Mi is significantly more effective than (>), has no significant difference 

from (=), or is significantly less effective than (<) Mj. The value in each cell in Table 8 is the 

proportion of technique-pairs Mi–Mj of the corresponding row in Table 4 falling within a 

particular outcome. For instance, from Table 4, there are 16 pairs of techniques grouped in the 

BPEL-XRG row. Under Region All in Table 8, 50% of them are marked as “>”. It means that 

50% of these techniques are identified to be more effective using BPEL than XRG. Other cells 

can be interpreted similarly. 

 
 

Table 8. Statistics of technique pair comparisons in terms of APFD for each level value pair of each factor 

Factor 
Pairwise 

Comparison 

Region 1 

(Least Effective) 
Region 2 Region 3 Region 4 

Region 5 

(Most Effective) 
Region All 

  > = < > = < > = < > = < > = < > = < 

Artifact type 

BPEL-XRG 0.44 0.00 0.56 0.69 0.06 0.25 0.69 0.00 0.31 0.25 0.00 0.75 0.38 0.06 0.56 0.50 0.06 0.44 

BPEL-WSDL 0.00 0.00 1.00 0.38 0.00 0.63 0.88 0.00 0.13 0.75 0.00 0.25 0.75 0.00 0.25 1.00 0.00 0.00 

XRG-WSDL 0.00 0.00 1.00 0.25 0.00 0.75 0.75 0.00 0.25 0.88 0.00 0.13 0.88 0.00 0.13 1.00 0.00 0.00 

Strategy 

Total-

Additional 
0.61 0.02 0.37 0.47 0.00 0.53 0.41 0.00 0.59 0.53 0.00 0.47 0.29 0.02 0.69 0.29 0.00 0.71 

Total-Iterative 0.14 0.00 0.86 0.07 0.00 0.93 0.61 0.00 0.39 0.89 0.00 0.11 0.71 0.00 0.29 0.89 0.00 0.11 

Additional- 

Iterative 
0.07 0.00 0.93 0.14 0.04 0.82 0.86 0.00 0.14 0.89 0.00 0.11 0.79 0.00 0.21 0.96 0.00 0.04 

Order 

direction 

Ascending- 

Descending 
0.84 0.03 0.13 0.94 0.00 0.06 0.28 0.00 0.72 0.00 0.00 1.00 0.00 0.00 1.00 0.03 0.00 0.97 

Coverage 

data 

Executable-

Nonexecutable 
0.19 0.00 0.81 0.19 0.03 0.78 0.66 0.00 0.34 0.81 0.00 0.19 0.69 0.00 0.31 0.88 0.00 0.13 

ROLE 

hierarchy 

CM1–CM2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

CM1–CM3 1.00 0.00 0.00 1.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

CM1–CM4 1.00 0.00 0.00 1.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

CM1–CM5 0.50 0.00 0.50 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 

CM2–CM3 0.50 0.50 0.00 1.00 0.00 0.00 0.00 0.50 0.50 0.50 0.00 0.50 0.00 0.00 1.00 0.00 0.00 1.00 

CM2–CM4 0.50 0.00 0.50 1.00 0.00 0.00 0.50 0.00 0.50 0.50 0.00 0.50 0.00 0.00 1.00 0.00 0.00 1.00 

CM2–CM5 0.50 0.00 0.50 1.00 0.00 0.00 0.00 0.00 1.00 0.50 0.00 0.50 0.50 0.00 0.50 0.00 0.00 1.00 

CM3–CM4 0.00 0.50 0.50 0.00 0.50 0.50 0.50 0.50 0.00 0.00 0.50 0.50 0.50 0.50 0.00 0.00 0.50 0.50 

CM3–CM5 0.00 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.00 

CM4–CM5 0.00 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.00 

 

 

For ease of presentation, we further highlight certain cells in color. Specifically, in each region, 

for each row in Table 8, if one of the three cells “>”, “=”, and “<” dominates the percentage of 

techniques, we highlight the dominating cell by setting its background color to yellow
1. For 

                                                 
1 The yellow cells are rendered in light gray if this paper is printed in black and white. 
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instance, in Region All for the BEPL-WSDL artifact type, the cell “>” dominates. On the other 

hand, if multiple cells have the same or similar values in the same region (defined as the 

difference in proportion being less than 10%), we highlight these multiple cells by setting their 

background color to green
2. As such, for each region, at each row, at least one cell is highlighted. 

 

Moreover, for any entry in any specific region, if either (a) a yellow cell is under a column 

different from the yellow cell in Region All, or (b) there is a yellow cell but the corresponding 

cell in Region All is green, it indicates that the effect of prioritization in the former region is 

different from the overall effect observed from Region All. In this case, we further highlight the 

text in the yellow cell of the former region in bold. For instance, in the BPEL-WSDL row, the 

yellow cell in Region 1 is under the column “<” whereas the yellow cell in Region All is under 

the column “>”. Hence, the text in the former cell is highlighted in bold. We also do the 

highlighting for the green cells in a similar way. 

 

We first discuss the overall results. In Region 1, the texts in all but one row (CM3–CM4) are 

highlighted in bold. On the other hand, in Region 5, the texts in much fewer rows (only three) are 

highlighted in bold. 

 

In fact, moving from Region 1 to Region 5, we find that the texts in fewer and fewer cells are 

highlighted in bold. The results show that the overall effectiveness results (Region All) are 

increasingly consistent toward the results of those regions having higher effectiveness. It indi-

cates that the results of TCP techniques obtained in the average scenarios are more likely to be 

extrapolated successfully to the more favorable end of the effectiveness spectrum. 

 

We also study to what extent each factor is sensitive to affecting the prioritization effectiveness 

when switching from one factor level to another in different regions. The factor of ROLE strategy 

has the highest proportion (0.62 = 31 / 50) of regions that have at least one cell highlighted in 

bold, followed by the factor of artifact type (0.6 = 9 / 15) and strategy (0.47 = 7 / 15). The factors 

of order direction and coverage data have the same smallest proportion (0.4 = 2 / 5). This 

proportion can act as a measure of how sensitive a factor affects the prioritization effectiveness in 

the whole spectrum. Thus, the above data show that the most sensitive factor is the ROLE 

strategy, followed by the factors of artifact type and prioritization strategy. The factors of order 

direction and coverage type are the most insensitive. 

 

We next discuss the results on individual factors. We examine the four pairs of regions in each 

row: (Region 1, Region 2), (Region 2, Region 3), (Region 3, Region 4), and (Region 4, Region 

5). Specifically, if the change in relative effectiveness between two levels of the same factor (in 

the same row) is significant enough, then the highlighted cells in the corresponding pair of 

regions will change from one pattern (such as a yellow cell under the “>” column of one region in 

the pair) to another pattern (such as a yellow cell under the “=” column or a pair of green cells in 

another region of the same pair). 

 

We observe that for each row, there is at least one pair of regions such that the highlighted cells 

are placed under different columns. It indicates that for each factor, a change of level can lead to a 

difference in effectiveness in a statistically significant way in the corresponding region. 

 

For artifact type and strategy as a factor, among the three levels, there are, respectively, 4 and 6 

out of 12 possible consecutive pairs of regions such that a change of level in a given level pair 

(indicated by a row) can result in moving the highlighted cells from one set of columns (either 

                                                 
2 The green cells are rendered in dark gray if this paper is printed in black and white. 
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one or two columns depending on the color code) to another set of columns. Similarly, one out of 

four pairs of consecutive regions in either order direction or coverage data can result in such a 

change. For the CMi series, we find that 22 out of 40 possible consecutive pairs can result in such 

changes. 

 

Hence, roughly speaking, in 50% of the cases, a change of factor level in these five factors can 

result in a significant change of the TCP effectiveness. 

 

Lastly, we find it quite interesting that the two ends of the effectiveness spectrum of each 

technique exhibit such a distinguishing behavior from the factor’s perspective. Specifically, for 

artifact type as a factor, we find that using WSDL is attractive in Regions 1 and 2 (the ineffective 

end), but toward Region 5 (the effective end), it loses its grounds to using XRG. For strategy as a 

factor, the Iterative strategy is attractive when used in Region 1, but using the Additional strategy 

is better in Region 5. For order direction as a factor, we find that using ascending ordering is 

effective in Region 1, but using descending ordering is better in Region 5. For the factor of 

coverage data, using non-executable coverage artifact is better in Region 1, but using executable 

coverage artifact is better in Region 5. For the CMi techniques, in Region 1, CM1 is more 

effective, but in Region 5, CM3 becomes the most effective. 

 

 
Table 9. Statistics of technique pair comparisons in terms of HMFD for each level value pair of each factor 

Factors 
Pairwise 

Comparison 

Region 1 

(Least Effective) 
Region 2 Region 3 Region 4 

Region 5 

(Most Effective) 
Region All 

  > = < > = < > = < > = < > = < > = < 

Artifact 

type 

BPEL-XRG 1.00 0.00 0.00 0.94 0.00 0.06 0.63 0.00 0.38 0.31 0.00 0.69 – – – 0.75 0.00 0.25 

BPEL-WSDL 1.00 0.00 0.00 1.00 0.00 0.00 0.63 0.13 0.25 0.50 0.00 0.50 – – – 1.00 0.00 0.00 

XRG-WSDL 0.75 0.00 0.25 0.50 0.00 0.50 0.63 0.00 0.38 0.63 0.00 0.38 – – – 0.75 0.00 0.25 

Strategy 

Total- 

Additional 
0.22 0.00 0.78 0.20 0.06 0.73 0.02 0.00 0.98 0.57 0.00 0.43 – – – 0.31 0.00 0.69 

Total-Iterative 0.71 0.00 0.29 0.75 0.00 0.25 0.36 0.00 0.64 0.86 0.00 0.14 – – – 0.79 0.00 0.21 

Additional-

Iterative 
0.93 0.00 0.07 0.86 0.00 0.14 0.75 0.04 0.21 0.71 0.00 0.29 – – – 0.96 0.00 0.04 

Order 

direction 

Ascending-

Descending 
0.19 0.06 0.75 0.25 0.00 0.75 0.75 0.03 0.22 0.00 0.00 1.00 – – – 0.03 0.00 0.97 

Coverage 

data 

Executable-

Nonexecutable 
0.69 0.00 0.31 0.66 0.00 0.34 0.69 0.03 0.28 0.63 0.00 0.38 – – – 0.78 0.00 0.22 

ROLE 

strategy 

CM1–CM2 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.00 0.00 1.00 – – – 0.50 0.00 0.50 

CM1–CM3 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 – – – 0.00 0.00 1.00 

CM1–CM4 0.50 0.00 0.50 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 – – – 0.00 0.00 1.00 

CM1–CM5 0.50 0.00 0.50 0.50 0.00 0.50 1.00 0.00 0.00 0.00 0.00 1.00 – – – 0.00 0.00 1.00 

CM2–CM3 0.50 0.00 0.50 0.00 0.50 0.50 1.00 0.00 0.00 0.00 0.00 1.00 – – – 0.00 0.00 1.00 

CM2–CM4 0.50 0.00 0.50 0.50 0.00 0.50 1.00 0.00 0.00 0.00 0.00 1.00 – – – 0.00 0.00 1.00 

CM2–CM5 0.50 0.00 0.50 0.50 0.00 0.50 1.00 0.00 0.00 0.00 0.00 1.00 – – – 0.50 0.00 0.50 

CM3–CM4 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.00 0.00 0.50 0.50 – – – 0.50 0.50 0.00 

CM3–CM5 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 0.00 – – – 0.50 0.50 0.00 

CM4–CM5 0.50 0.50 0.00 0.50 0.50 0.00 0.00 0.50 0.50 0.50 0.50 0.00 – – – 0.50 0.50 0.00 

 

 

Table 9 shows the comparison data in terms of HMFD, which can be interpreted similarly as the 

APFD data in Table 8. No technique has any data falling in Region 5. Hence, we mark the cells in 

Region 5 with the symbol ‘–’. 

 

As to the sensitivity of factors affecting the effectiveness spectrum, similar to the observation in 

Table 8, we find that the factor of ROLE strategy is still the most sensitive one, where 42.5% (= 

17 / 40) of the regions have at least one cell highlighted in bold. The next one is the factor of 

order direction (33% = 1 / 4), followed by artifact type (25% = 3 / 12), and then strategy (0.17 = 2 

/ 12). The factor of coverage data is still the most insensitive one, which has no cell highlighted in 
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bold in each region for the HMFD metric. This is consistent with the conclusion drawn from the 

APFD dataset. 

 

We also find that for each factor, a change of level can result in many significant changes in the 

highlighted cells between two consecutive regions. For instance, 4, 3, 2, 0, and 19 changes out of 

9, 9, 3, 3, and 30 possible pairs have their highlighted cells moved, or about 52% of all cases (or 

42% in weighted average). This also supports the conclusion drawn from the APFD dataset that in 

a noticeable proportion of cases, the TCP effectiveness changes significantly as we change the 

factor level. 

 

For individual factors, most level-switch pairs have at least one pair of regions between Regions 1 

and 4 such that the highlighted cells are under different columns. This also indicates that the two 

ends of the effectiveness spectrum of each technique in terms of HMFD also exhibit distinguish-

able behavior from the factor’s perspective. 

 

Summary: The five factors have significant effects on prioritization effectiveness with respect to 

changes in factor levels. The ROLE strategy and coverage data are still the most sensitive and 

insensitive factor, respectively, in affecting the prioritization effectiveness spectrum. 

 

Threats to Validity 
 
In this section, we discuss the threats to validity of the experiments. 

 

Threats to construct validity arise when the metric cannot adequately reflect the features that they 

should measure. In our experiments, we used two metrics APFD and HMFD to measure the 

effectiveness of test case prioritization techniques. Other measures such as FATE (Yu and Lau 

2012) and APSC (Li et al. 2007) may also be used to evaluate a prioritization technique. We used 

mutants to simulate real faults in this study. Existing work (Andrews et al. 2005) shows that the 

detection of mutation faults can simulate the detection of real faults in the same program. Many 

studies have used these mutation faults to evaluate TCP techniques. 

 

Threats to internal validity affect the ability to make causal conclusions between experiment 

variables. The major internal threat is the correctness of data collection for each test case prioriti-

zation technique and data analyses for answering research questions. To assure their correctness, 

we have carefully implemented our tools and test suite prioritization techniques in Java. We also 

have carefully verified the Matlab scripts for data analyses. 

 

Threats to external validity relate to the degree of extending our results and conclusions to more 

general populations, including subjects and techniques. To minimize any bias in our experiments, 

we have chosen subjects and techniques widely researched and used in existing work. Even so, 

the use of other subjects, test cases, faults, test oracles, and techniques may yield different results. 

We define the effectiveness spectrum into five regions with the results of a random ordering 

technique. The use of alternative decompositions of the effectiveness spectrum may also yield 

other results. 

 

 

RELATED WORK 
 

This section discusses existing work related to this paper. 
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Regression testing is widely used in the industry (Onoma et al. 1998). It is a testing process 

performed after the modification of a program (Leung and White 1989). Leung and White pointed 

out that it is not a simple testing process by just rerunning all the test cases. Regression testing 

can be more effective by selecting only those test cases relevant to the modified components. Test 

case prioritization is one of major tasks in regression testing, enabling test cases to be executed in 

selected order to achieve specific testing purposes, such as a higher fault detection rate (Do et al. 

2004; Elbaum et al. 2002; Srivastava and Thiagarajan 2002). 

 

Leung and White (1989) provided a principle of retests by dividing the regression testing problem 

into two subproblems: test selection and test plan update. Yoo and Harman (2012) reported that 

there are an increasing number of papers that study regression testing techniques. 

 

Generally, there are two kinds of test case prioritization, namely general test case prioritization 

and version-specific test case prioritization (Elbaum et al. 2002). For the former, a test suite T for 

a program P is sorted with the intent of being useful over the subsequent modified versions of P. 

For the latter, the test suite T is prioritized to be useful on a specific version P' of P. Such a test 

suite may be more effective at meeting the goal of the prioritization for P'. Our study in this paper 

focuses on the former kind. 

 

Many coverage-based prioritization techniques (such as Do et al. 2004; Elbaum et al. 2002; Kim 

and Porter 2002; Mei et al. 2011; Mei et al. 2014b; Rothermel and Harrold 1996; Rothermel et al. 

2001; Rothermel et al. 2002; Srivastava and Thiagarajan 2002) have been proposed, including 

prioritizing test cases by the total statement or branch coverage achieved by individual test cases, 

and by additional statement or branch coverage (or additional cost) achieved by not-yet-selected 

test cases. Zhang et al. (2013) generalized the total-and-additional test case prioritization 

strategies. Some techniques are not purely based on code coverage data of test cases such as 

prioritization based on test costs (Srivastava and Thiagarajan 2002), fault severities (Yoo and 

Harman 2012), ability to detect specification-based faults (Yu and Lau 2012), data from the test 

history (Huang et al. 2012), or fault-exposing-potential (Yoo and Harman 2012). The effects of 

granularity and compositions of test suites have been reported (Elbaum et al. 2002). Srivastava 

and Thiagarajan (2002) built an Echelon system to prioritize test cases according to the potential 

change impacts of individual test cases between versions of a program to cover maximally the 

affected programs. Most of the existing experiments are conducted on procedural (Elbaum et al. 

2002) and object-oriented (Do et al. 2004) programs. 

 

In addition, studies on prioritizing test cases using input domain information (Zhai et al. 2014) 

and service discovery mechanisms (Tsai et al. 2005) have been explored. Moreover, methods to 

reveal internal state transitions through testing techniques have also been developed (Bartolini et 

al. 2011; Ye and Jacobsen 2013). 

 

Xu and Rountev (2007) proposed a regression test selection technique for AspectJ programs. 

They use a control-flow representation for AspectJ software to capture aspect-related interactions 

and develop a graph comparison algorithm to select test cases. Martin et al. (2007) gave a 

framework that generates and executes web-service requests, and collects the corresponding 

responses from web services. Using such request-response pairs, they test the robustness aspect of 

services. They discuss the potential of using request-response pairs for regression testing. Tsai et 

al. (2005) proposed an adaptive group testing technique to address the challenges in testing a 

service-oriented application with a large number of web services simultaneously. 

 

Using the mathematical definitions of XPath constructs (XPath 2.0, 2007) as rewriting rules, Mei 

et al. (2008) developed a data structure known as XPath Rewriting Graph (XRG). They propose 
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an algorithm to construct XRGs and a family of unit testing criteria to test WS-BPEL applica-

tions. Their research group has also developed test case prioritization techniques for service 

testing (Mei et al. 2011; Mei et al. 2014b). However, they do not study the factors that may affect 

the fault detection effectiveness in the adverse scenarios or the whole effectiveness spectrum. 

This paper complements the study of TCP technique performance on the whole spectrum. 

 

Most importantly, to the best of our knowledge, all the above reviewed work have not studied the 

relationship between the average scenarios that they study and other scenarios as what we have 

presented in RQ1 (connecting to the adverse scenarios) and in RQ2 (connecting among five 

sequences of regions in the whole effectiveness spectrum with respect to random ordering). 
 
 

CONCLUSION 
 
In this paper, we have analyzed test case prioritization for WS-BPEL applications in both the 

average scenarios and adverse scenarios. We have found a strong linear correlation between the 

effectiveness in the average and adverse scenarios. We have also studied the influence of using 

different levels of the same design factors on prioritization effectiveness. We have found that 

switching the levels of various different design factors of various prioritization techniques could 

significantly affect the prioritization effectiveness in at least 50% and 52% of all cases in terms of 

APFD and HMFD, respectively. 
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