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Abstract—This paper extends the CHOiCe reLATion framEwork, abbreviated as CHOC’LATE, which assists software testers in the application

of category/choice methods to testing. CHOC’LATE assumes that the tester is able to construct a single choice relation table from the entire

specification; this table then forms the basis for test case generation using the associated algorithms. This assumption, however, may not

hold true when the specification is complex and contains many specification components. For such a specification, the tester may construct

a preliminary choice relation table from each specification component, and then consolidate all the preliminary tables into a final table to be

processed by CHOC’LATE for test case generation. However, it is often difficult to merge these preliminary tables because such merging may

give rise to inconsistencies among choice relations or overlaps among choices. To alleviate this problem, we introduce a DividE-and-conquer

methodology for identifying categorieS, choiceS, and choicE Relations for Test case generation, abbreviated as DESSERT. The theoretical

framework and the associated algorithms are discussed. To demonstrate the viability and effectiveness of our methodology, we describe case

studies using the specifications of three real-life commercial software systems.
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1 INTRODUCTION

THE black-box approach is a mainstream category of
techniques for test case generation [3], [12], where test

cases are constructed according to information derived from
the specification without requiring knowledge of any imple-
mentation details. In software development, user and sys-
tems requirements are established before implementation
and, hence, the specification should exist prior to program
coding. The black-box approach is useful because test cases
can be generated before coding has been completed. This
facilitates development phases being performed in parallel,
thus allowing time for preparing more thorough test plans
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and yet shortening the duration of the whole development
process. Another merit is that it can be applied to test
off-the-shelf software packages, where the source code is
normally not available from vendors. These reasons make
black-box testing very popular in the commercial sector.

Our investigation is built on the CHOiCe reLATion
framEwork [7], [16], abbreviated as CHOC’LATE, which
supports category/choice methods in black-box testing.
CHOC’LATE assumes that a single choice relation table can
be constructed from the specification in its entirety. This
table captures choices and choice constraints and is the
basis for test case generation using the associated algo-
rithms provided by CHOC’LATE. The assumption, however,
may not hold true when the specification is complex and
contains many specification components, such as narrative
descriptions, use cases, and class diagrams. For such a
specification, the tester may construct a preliminary choice
relation table from each specification component individ-
ually, and then consolidate these preliminary tables into
a final table to be processed by CHOC’LATE for test case
generation. These preliminary tables are often difficult to
merge because such merging may give rise to inconsis-
tencies among choice relations or overlaps among choices.
To alleviate this problem, we introduce a DividE-and-
conquer methodology for identifying categorieS, choiceS,
and choicE Relations for Test case generation, abbreviated
as DESSERT.

Section 2 of this paper gives the motivation of our study
by presenting a major problem in CHOC’LATE [7], [16]
that may hinder effective and wider application. Section 3
introduces important concepts of CHOC’LATE that are es-
sential for understanding DESSERT. Section 4 presents an
overview of DESSERT. Section 5 discusses the key step of

Administrator
  HKU CS Tech Report TR-2011-11



2

our methodology — the consolidation of preliminary choice
relation tables — and describes part of our case studies
involving a real-life commercial specification. Section 6
continues to discuss other parts of the case studies involv-
ing two additional commercial specifications. The aim is
to demonstrate the viability and effectiveness of DESSERT.
Finally, Section 7 concludes the paper.

2 MOTIVATION OF STUDY

2.1 Overview of Choice Relation Framework

CHOC’LATE [7], [16] provides a systematic skeleton for con-
structing test cases from specifications using the category-
partition approach [1], [15]. It identifies instances that
influence the functions of a software system and generates
test cases by systematically varying these instances over
all values of interest. It generates test cases in three steps:
1) identify choices to partition the input domain (that is,
the set of all possible inputs) of the software under test,
2) based on the constraints among choices, select valid
combinations of choices so that each combination contains
sufficient choices for test case generation, and 3) construct
test cases from these valid choice combinations.

Several other black-box test case generation methods,
such as the classification-tree method [6], [10], [11], [17], in-
parameter-order [13], [18], domain testing [2], equivalence
partitioning [14], and the avoid and replace methods [9],
also largely follow the above three steps for test case genera-
tion. We will refer to them collectively as other category/choice
methods in this paper.

The following example illustrates these three steps:

Example 1 (Choice Relation Framework). Consider an
undergraduate degree classification system AWARD, which
accepts the details for each student from an input file F .
These details include the student ID, the number of years
of study, the cumulative number of credits, and the grade
point average (GPA). AWARD will then determine and
advise the user whether a student is eligible to graduate.
The minimum requirements for graduation are three years
of study, 120 cumulative credits, and a GPA of 2.0. (Because
of a restriction on the maximum number of courses students
can enroll in each semester, it is impossible for students
to attain 120 or more cumulative credits in less than three
years of study.) If a student is eligible to graduate, AWARD

will further determine the level of award that the student
will obtain, such as a first-class honor.

Step 1). Categories and choices are identified from the
specification of AWARD. A category is defined as a major
property or characteristic of a parameter or an environment
condition of the software system that affects its execution
behavior. Parameters are explicit inputs to a system supplied
by either the user or another system/program, whereas
environment conditions are the states of a system at the
time of its execution. The possible values associated with
each category are partitioned into distinct subsets known
as choices, with the assumption that all values in the same
choice are similar either in their effect on the system’s

behavior, or in the type of output they produce. 1 Table 1
depicts the possible categories and their associated choices
for AWARD. The category “Status of F” is defined with
respect to an environment condition of AWARD, whereas
the remaining four categories are defined with respect to
parameters of AWARD.

Given a category P , we will use the notation Px to denote
a choice of P , defined as a set of values associated with P .
In Table 1, for instance, the choice “GPA [0.0, 2.0)” denotes all
the GPAs within the range [0.0, 2.0), that is, it denotes the
set {GPA | 0.0 6 GPA < 2.0}. When there is no ambiguity,
we will simply write Px as x. Given a category P , all its
associated choices together should cover the entire input
domain relevant to P . Also, any pair of distinct choices Px

and Py , if defined properly, should be nonoverlapping, that
is, Px ∩ Py = ∅.

Step 2). A choice relation table is used to capture
the constraints among choices [7], [16]. Then, associated
algorithms are provided by CHOC’LATE to generate valid
combinations of choices so that each combination contains
sufficient choices for subsequent test case generation. Exam-
ples are B1 = {Status of F defined but empty} and B2 = {Status
of F defined and nonempty, Student ID 7-digit number, Number of
Years of Study> 3, Cumulative Number of Credits< 120,
GPA [0.0, 2.0)}. Consider the valid choice combination B1

first. It contains “Status of F defined but empty” only, because
of the constraint that “Status of F defined but empty” cannot
be combined with any choice in categories “Student ID,”
“Number of Years of Study,” “Cumulative Number of
Credits,” and “GPA.” This constraint is based on an obvious
rationale that, when F is empty, student details are not
present. B1 is useful for testing how AWARD behaves in the
exceptional circumstances when nobody enrolls in a partic-
ular program. Now, consider the valid choice combination
B2. The choices “Student ID 7-digit number,” “Number of Years
of Study> 3,” “Cumulative Number of Credits< 120,” and
“GPA [0.0, 2.0)” require the coexistence of the choice “Status
of F defined and nonempty” to form a valid choice combination
to be used in step 3 for test case generation. Specific student
details, such as the number of years of study, can be
obtained only when F is defined and is nonempty.

Step 3). A test case is formed from every valid choice
combination B generated in step 2 by randomly selecting
and combining an instance from each choice in B. Thus,
a test case is a set of instances of the choices that forms
a stand-alone input. Consider, for instance, the choice
combination B2 in step 2. A test case tc = {Status of F
= defined and nonempty, Student ID = 3241750, Number
of Years of Study = 3, Cumulative Number of Credits =

1. In the software testing community, different testers have different
ways of treating invalid values. For example, some testers prefer to define
one or more “extra” choices in a category to cater for invalid values
(approach 1), while other testers do not (approach 2). Although the
input domain is literally interpreted by most software practitioners as the
set of all valid input values, technically speaking, the input domain in
approach 1 will include both valid and invalid values. On the other hand,
the input domain in approach 2 includes valid values only. If approach 2 is
used, then other methods should be used to generate test cases for invalid
values if the tester wants to test the system with such values. Our DESSERT

methodology supports both approaches.
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TABLE 1

Categories and Choices for AWARD

Categories Associated Choices

Status of F Status of F undefined, Status of F defined but empty, Status of F defined and nonempty

Student ID Student ID 7-digit number, Student ID invalid number

Number of Years of Study Number of Years of Study< 3, Number of Years of Study> 3

Cumulative Number of Credits Cumulative Number of Credits < 120, Cumulative Number of Credits > 120

GPA GPA [0.0, 2.0), GPA [2.0, 2.5), GPA [2.5, 3.0), GPA [3.0, 3.5), GPA [3.5, 4.0]

98, GPA = 1.7} can be formed. Here, the values “3241750,”
“3,” “98,” and “1.7” are randomly selected from the relevant
choices. �

2.2 A Major Problem

We note that steps 1 and 2 of CHOC’LATE are very im-
portant. In step 1, the comprehensiveness of the identified
categories and choices will affect the effectiveness of the set
of test cases generated in step 3 for fault detection [4]. Sup-
pose, for instance, that the software tester fails to identify
a valid choice x. Then, any choice combination containing
x will not be generated. Consequently, any software fault
associated with x may not be detected. In step 2, the
correctness of the defined choice constraints is also critical
for the comprehensiveness of the generated test cases [8].
Any incorrectly defined choice constraint may result in the
omission of some valid choice combinations. This in turn
causes some test situations to be missed.

Inspired by this observation, we have conducted
a close examination of CHOC’LATE (as well as other
category/choice methods in testing), focusing particularly
on steps 1 and 2. We find that CHOC’LATE, like other
category/choice methods, is not explicitly developed
for large and complex specifications. It assumes that
identifying categories, choices, and choice constraints can
be done in one single round for the entire specification. This
assumption is not always true. Software testers often find
the identification task for the entire specification difficult
if the document is large and complex, expressed in many
different styles and formats, or contains a large variety of
components such as narrative descriptions, use cases, class
diagrams, state machines, activity diagrams, and data flow
diagrams.

To alleviate the problem, we propose a systematic
methodology, referred to as DESSERT, to support steps 1
and 2 of CHOC’LATE. An appealing feature is that
the identification process focuses on one specification
component at a time and, hence, greatly eases the
difficulties of identification associated with the entire
specification. Grounded on a sound theoretical framework,
DESSERT provides algorithms for consolidating preliminary
choice relation tables (constructed from individual
specification components) into a final table to be processed
by CHOC’LATE for test case generation.

3 PRELIMINARIES

We first introduce the important concepts [7], [16] that are
essential for understanding DESSERT.

Definition 1 (Test Frame and its Completeness). A test
frame B is a set of choices. B is complete if, whenever a single
instance is selected from every choice in B, a stand-alone input
is formed. Otherwise, B is incomplete.

The notion of test frames is, in fact, a formal treatment
of choice combinations. Technically speaking, the input
domain is partitioned into nonempty disjoint subsets that
correspond to complete test frames. These test frames then
form the basis for test case generation.

Example 2 (Test Frame and its Completeness). Refer to
Example 1. B1 and B2 are complete test frames. Consider
the test frame B3 = {Status of F defined and nonempty, Student
ID 7-digit number, Number of Years of Study> 3, Cumulative
Number of Credits> 120}. B3 is incomplete because we need
additional information about GPA in order to generate a test
case for AWARD. �

CHOC’LATE provides predefined algorithms to generate
a set of complete test frames and to construct test cases
from these complete test frames. Among these test frames,
we are interested in identifying those that share a common
choice. Thus, we have the following definition:

Definition 2 Set of Complete Test Frames Related to a
Choice). Let TF denote the set of all complete test frames.
Given any choice x, we define the set of complete test frames
related to x as TF (x) = {B ∈ TF | x ∈ B}.

Example 3 (Set of Complete Test Frames Related to a
Choice). If we exhaustively list all the complete test frames
for AWARD in Example 1, a total of 18 complete test
frames can be found. First, consider the choice “Status of
F undefined.” TF (Status of F undefined) is simply

{

{Status of
F undefined}

}

. Now, consider the choice “Number of Years of
Study< 3.” We find that TF (Number of Years of Study< 3)
contains five complete test frames. For example, one of
these complete test frames is {Status of F defined and nonempty,
Student ID 7-digit number, Number of Years of Study< 3, Cumu-
lative Number of Credits< 120, GPA [0.0, 2.0)}. �

The above concept of TF (x) is used to define the validity
of a choice (Definition 3) and the relation between two
choices (Definition 4).

Definition 3 (Validity of a Choice). Any choice x is valid
if TF (x) 6= ∅. Otherwise, it is invalid.

Obviously, a choice is meaningless or inappropriate if it
is not related to a nonempty subset of the input domain.
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Example 4 (Validity of a Choice). Refer to Example 3.
Since TF (Number of Years of Study< 3) 6= ∅, “Number of
Years of Study< 3” is a valid choice. �

For the rest of this paper, valid choices are simply referred
to as “choices.”

Refer to Definitions 1 and 2. CHOC’LATE generates valid
combinations of choices as complete test frames by con-
sidering the constraints between pairs of choices [7], [16].
These constraints are captured in a choice relation table,
denoted by T . Given k choices, the dimension of T is k×k.
A constraint between any two choices is formalized through
the following concept:

Definition 4 (Choice Relation between Two Choices).
Given any choice x, its relation with another choice y (denoted
by x 7→ y) is defined as follows: 1) x is fully embedded in
y (denoted by x ⊏ y) if and only if every complete test frame
that contains x also contains y; 2) x is partially embedded
in y (denoted by x ⊏P y) if and only if there are complete test
frame(s) that contain both x and y while there are also complete
test frame(s) that contain x but not y; and 3) x is not embedded
in y (denoted by x ⊏6⊐ y) if and only if there is no complete test
frame that contains both x and y.

In other words, 1) x ⊏ y if and only if TF (x) ⊆ TF (y),
2) x ⊏P y if and only if TF (x) ∩ TF (y) 6= ∅ and TF (x) 6⊆
TF (y), and 3) x ⊏6⊐ y if and only if TF (x) ∩ TF (y) = ∅.
Fig. 1 illustrates these relationships using Venn Diagrams.

Throughout the whole paper, we will use the “⊆” symbol
to denote a subset relation and the “⊂” symbol to denote
a proper subset relation. Also, in Definition 4, the symbols
“⊏”, “ ⊏P ”, and “⊏6⊐” are called relational operators. Since the
three types of choice relations are exhaustive and mutually
exclusive, x 7→ y can be uniquely determined. In addition,
immediately from Definition 4, for any category P , the
relational operator for Px 7→ Px is “⊏”, and that for Px 7→ Py

is “⊏6⊐” if Px 6= Py , since any pair of distinct choices Px and
Py should be disjoint if defined properly.

Example 5 (Choice Relation between Two Choices). Refer
to Example 1. We have (Number of Years of Study< 3) ⊏

(Status of F defined and nonempty), indicating that every com-
plete test frame containing “Number of Years of Study< 3”
must also contain “Status of F defined and nonempty.” The
rationale is that F must be defined and nonempty, from
which the information on the number of years of study
by the student can be obtained. An example of a partial
embedding relation is (Status of F defined and nonempty) ⊏P

(Number of Years of Study< 3). Any complete test frame
containing “Status of F defined and nonempty” may or may not
contain “Number of Years of Study< 3,” because a com-
plete test frame containing “Status of F defined and nonempty”
may contain “Number of Years of Study> 3” instead of
“Number of Years of Study< 3.” Finally, an example of a
nonembedding relation is (Number of Years of Study< 3)
⊏6⊐ (Cumulative Number of Credits> 120). As stated in the
specification of AWARD, a student cannot attain a minimum
of 120 cumulative credits in less than three years of study.

�

The correctness of choice relations directly affects the
comprehensiveness of the generated complete test frames.
However, it is tedious and error prone to manually define
all choice relations. Hence, Chen et al. [7] have identified
various properties of these relations to form the basis for
automatic deductions and consistency checking. We only
list two of these properties here for illustration: (Prop-
erty 1) Given any choices x, y, and z, if x ⊏ y and y ⊏6⊐ z,
then x ⊏6⊐ z. (Property 2) Given any choices x, y, and z, if
x ⊏ z and y ⊏P z, then y ⊏P x or y ⊏6⊐ x.

The “then” part of Property 1 consists of a definite rela-
tion and, hence, provides a basis for automatic deduction
of choice relations. More specifically, if x ⊏ y and y ⊏6⊐ z are
manually defined by the tester, x ⊏6⊐ z can be automatically
deduced without human intervention. As for Property 2,
the “then” part contains two possible relations. Although
this property cannot be used for automatic deductions, it
nevertheless allows the tester to check the consistency of
the relations among choices. For example, the tester knows
that when x ⊏ z and y ⊏P z, we cannot have y ⊏ x, or else
it will contradict Property 2.

4 OVERALL APPROACH OF OUR IDENTIFICATION

METHODOLOGY: DESSERT

To alleviate the problem of applying CHOC’LATE to com-
plex specifications, DESSERT uses the following three-step
approach to constructing a choice relation table T : 1) de-
compose the entire specification S into several components
C1, C2, . . . , Cn (where n > 1), with each Ci (i = 1, 2, . . . , n)
modeling part of the behavior of the software under test;
2) construct a preliminary choice relation table τi from
each Ci; and 3) consolidate τ1, τ2, . . . , τn into a single T .
Fig. 2 outlines the three steps of DESSERT. This “divide-
and-conquer” approach is particularly useful when the
software tester finds S to be too large and complex for one
single round of identifying categories, choices, and choice
relations.

Strategies for supporting step 1 of DESSERT have been
well discussed in the literature to decompose a specification
into components for testing (based, for instance, on the
functionality of individual systems). Also, much work [5],
[6], [7], [10], [11], [17] has been done to support the
identification of categories, choices, and choice constraints
with the assumption that the proposed technique is applied
to the entire specification in one go. Although the assump-
tion may not work for large and complex specifications,
such techniques are still effective in identifying categories,
choices, and choice constraints during the construction of
preliminary choice relation tables from specification com-
ponents (where the tester can consider each component as
a small specification). Because of this, we will focus only
on step 3 of DESSERT in the rest of the paper.

5 CONSOLIDATION OF PRELIMINARY CHOICE

RELATION TABLES

5.1 Terminology of DESSERT

In addition to the important concepts described in Sec-
tion 3, we need the concept of overlapping choices [4]
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and the new concepts of header and trailer choices for
understanding our consolidation technique for preliminary
choice relation tables. The concept of overlapping choices
is introduced to address the scenario that two distinct
choices of the same category identified in two different
specification components have common elements, which
violates the basic requirement that choices of the same
category must correspond to nonempty disjoint subsets of
the input domain.

Definition 5 (Overlapping Choices). Given a category P ,
two distinct choices Px and Py are said to be overlapping if
and only if Px ∩ Py 6= ∅. In this case, P is a category with
overlapping choices.

Example 6 (Overlapping Choices). Refer to Example 1.
Suppose the category “Number of Years of Study” is now
identified with two associated choices “Number of Years
of Study6 3” and “Number of Years of Study> 3.” In this
case, the two choices are overlapping because the instance
(Number of Years of Study = 3) exists in both choices.
Furthermore, “Number of Years of Study” is a category with
overlapping choices. �

Readers are reminded that in all our previous discussions
before the introduction of Definition 5 (including the auto-
matic deductions and consistency checking of choice rela-
tions provided by CHOC’LATE [7]), choices are assumed to

be nonoverlapping. Overlapping choices may occur when
we consolidate preliminary choice relation tables together
into a new table, which will be explained in Section 5.2
below.

Before defining header and trailer categories/choices, we
need to introduce the following notation: 1. S denotes the
entire specification with n components Ci (i = 1, 2, . . . , n).
2. x 7→ y denotes the choice relation between x and y
with respect to the entire specification S. 3. D denotes a
nonempty subset of S. 4. x 7→D y denotes the choice relation
between x and y with respect to D. In particular, when
D = S, then x 7→D y becomes x 7→ y.

We can then define header and trailer categories/choices.

Definition 6 (Header and Trailer Categories/Choices in a
Choice Relation). Given any choice relation Px 7→D Qa, we
refer to P and Q as the header category and trailer category,
and Px and Qa as the header choice and trailer choice.

Example 7 (Header and Trailer Categories/Choices in a
Choice Relation). Consider the choice relation (Number
of Years of Study< 3) ⊏ (Status of F defined and nonempty)
in Example 5. “Number of Years of Study,” “Status
of F ,” “Number of Years of Study< 3,” and “Status
of F defined and nonempty” are the header category, trailer
category, header choice, and trailer choice, respectively, of
this relation. �
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5.2 Problems to be Solved by DESSERT

Step 3 of DESSERT (see Section 4 above) is complicated
because of the following problems:

1. Problem of different choice relations for the same
pair of choices. A specification component alone may
carry incomplete information about a particular choice
and its associated choice relations. Let us consider an
example. Suppose that two choices x and y always
coexist in an input with respect to the specification
component C1 but never occur together in any input
with respect to another component C2. One tester may
conclude that x ⊏{C1} y and y ⊏{C1} x by consider-
ing C1 alone, while another tester may conclude that
x ⊏6⊐{C2} y and y ⊏6⊐{C2} x from C2 alone. In fact, C1 and
C2 together suggest that the choice relations should be
x ⊏P {C1,C2} y and y ⊏P {C1,C2} x.

2. Problem of overlapping choices. Constructing prelim-
inary choice relation tables separately from individ-
ual specification components may result in the occur-
rence of overlapping choices across different prelimi-
nary choice relation tables. Such overlapping choices
can only be detected when considering different spec-
ification components simultaneously.

3. Problem of different choice relations and overlapping
choices. When problems 1 and 2 occur together, the
situation will become more complicated. We illustrate
this situation with an example. Consider two distinct
categories P and Q with the following properties:
3.1) Choices Px and Qa are identified from C1. The
choice relations Px ⊏{C1} Qa and Qa ⊏{C1} Px are then
defined. 3.2) Choices Py and Qa are identified from C2.
The choice relations Py ⊏6⊐{C2} Qa and Qa ⊏6⊐{C2} Py are
then defined. 3.3) Px 6= Py and Px ∩ Py 6= ∅. Here,
problems 3.1 and 3.2 correspond to problem 1, and
problem 3.3 corresponds to problem 2.
Let Pz = Px ∩ Py . Based on C1 alone, we can deduce
that Pz ⊏{C1} Qa and (Qa ⊏{C1} Pz or Qa ⊏P {C1} Pz),
because Pz ⊆ Px. On the other hand, based on C2 alone,
we can deduce that Pz ⊏6⊐{C2} Qa and Qa ⊏6⊐{C2} Pz ,
because Pz ⊆ Py . Hence, we have different choice
relations between Pz and Qa based on different specifi-
cation components. In such circumstances, we need to
redefine Px and Py by considering C1 and C2 together.
The redefinition will render the previously determined
choice relations Px ⊏{C1} Qa, Qa ⊏{C1} Px, Py ⊏6⊐{C2} Qa,
and Qa ⊏6⊐{C2} Py useless. Thus, the initial effort spent
on defining the original choices and choice relations
will be wasted. Note that problem 3 above will become
even more complicated if Qa in problem 3.2 is replaced
by Qb such that Qb overlaps with Qa in problem 3.1.

Obviously, the presence of problematic choices or choice
relations may also indicate that the full specification is
inconsistent. However, similarly to most other black-box

testing techniques, our DESSERT methodology assumes that
the specification is correct when it is used as the basis for
test case generation.

The following example describes part of our first study
using the specification of a commercial software system. Its
aims are to illustrate steps 1 and 2 of DESSERT as well as to
demonstrate the possible occurrence of the above problems
in these two steps in a real-life setting.

Example 8 (Processing Visitor Requests: Part 1). Our
first study involved the specification SVISIT of a Web-based
visitor administration system VISIT, a real-life commercial
software system now in use in an international airline,
which is simply referred to as AIR in this paper. The main
purposes of VISIT are to provide systematic and efficient
registration, authorization, access control, and reporting of
visitor activities at AIR.

To register an anticipated visitor to AIR, the staff member
concerned makes a request in VISIT. Information such as
the particulars of the staff member and the visitor, as well
as visiting details, is entered as part of the request. If the
visit

1. does not occur on a weekend or a public holiday,
2. is within office hours,
3. spans only a day or less, and
4. involves an access area within the default zone,

the request will go into the receptionist’s log. Otherwise,
the request is considered exceptional and will go into the
endorsement log, awaiting the approval of AIR Security. A
request will also go into the endorsement log if the visitor
is blacklisted in VISIT. If this happens, AIR Security can
waive (or reject) the visitor request. After AIR Security has
approved an exceptional request or waived a request in-
volving a blacklisted visitor, the request will be moved from
the endorsement log to the receptionist’s log. Later, when
the visitor arrives at any reception counter, the operator
will search the receptionist’s log for the appropriate visitor
request record. If found, it will be edited by the operator
before issuing a visitor access card.

The specification SVISIT contains various components such
as narrative descriptions of the system, state machines,
activity diagrams, data flow diagrams, and sample input
and output screens. Hence, SVISIT lends itself to being a
very good specification for our first study. Our study mainly
focused on the function “Process Visitor Requests,” which
is a core feature of VISIT. We recruited a volunteer for our
study, referred to as Participant A. He has a postgraduate
degree in IT and several years of commercial experience in
software development.

We found one activity diagram (denoted by ADREQUEST)
in SVISIT related to the processing of visitor requests. We
gave Participant A a copy of ADREQUEST and a one-page
executive summary of SVISIT (instead of the entire specifi-
cation), and asked him to construct from ADREQUEST a pre-
liminary choice relation table (denoted by τ ADREQUEST

) using
existing identification techniques such as the construction
algorithm provided in [4]. The executive summary served
mainly as a means to provide an overview of VISIT. This
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arrangement ensured that τ ADREQUEST
could be constructed

without the need for information from other specification
components. As a further precaution, we explicitly asked
Participant A not to refer to the executive summary when
constructing τ ADREQUEST

from ADREQUEST. Our subsequent
checking of τ ADREQUEST

confirmed that this was indeed the
case.

A close examination of τ ADREQUEST
revealed that Partici-

pant A defined five categories, each associated with two
choices. An example of these categories is “Type of Visitor”
with “Type of Visitor normal” and “Type of Visitor blacklisted”
as its two associated choices. To complete τ ADREQUEST

, Partic-
ipant A determined 100 (= (5 × 2)2 ) choice relations.

In relation to visitor request processing, we also found
one data flow diagram, one state machine, and one section
of narrative description in SVISIT. These are denoted by
DFDREQUEST, SMREQUEST, and NDREQUEST, respectively, in
this paper. We repeated the study of ADREQUEST for each
of these specification components to produce three more
preliminary choice relation tables τ DFDREQUEST

, τ SMREQUEST
,

and τ NDREQUEST
. The total numbers of categories (choices)

defined from ADREQUEST, DFDREQUEST, SMREQUEST, and
NDREQUEST were 5 (10), 3 (9), 1 (2), and 12 (30), respectively.
We noted that some of these categories and choices defined
independently from different components were identical.
After tallying, we found 12 categories and 32 choices that
were distinct. We also observed that none of the individual
components allowed Participant A to define all the cate-
gories and choices completely. This observation is consistent
with our earlier argument that an individual specification
component may only carry partial information about a
choice and its associated choice relations.

Among the four preliminary choice relation tables,
we found 44 pairs of choice relations that exhibit
problem 1 as mentioned above. Examples of such
pairs of choice relations are (Duration of Visit > 1 day)
⊏6⊐{ADREQUEST}

(Dates of Visit outside weekends and public holidays)
and (Duration of Visit > 1 day) ⊏P {NDREQUEST} (Dates of
Visit outside weekends and public holidays). Consider the first
choice relation. Its relational operator is “⊏6⊐” because
no thread (an execution path in an activity diagram) in
ADREQUEST is associated with the two guard conditions
“> 1 day” and “outside weekends and public holidays.”
(See Fig. 3 for an excerpt from the activity diagram
ADREQUEST for illustration.) Now consider the second
choice relation. According to NDREQUEST, the duration and
the dates of visit are entered into VISIT as separate inputs.
Furthermore, for a visitor request that spans more than
a day, it may or may not include weekends and public
holidays. This explains why the relational operator for the
second choice relation is “ ⊏P ”.

We also found four pairs of overlapping choices (prob-
lem 2). For each of these pairs, the two overlapping choices
were defined from different specification components and
were, therefore, not detected by Participant A in the earlier
stages of the study. The following explains how these
overlapping choices occurred:

1. In ADREQUEST, Participant A found one decision
point associated with two guard conditions
“within office hours” and “outside office hours.”
With respect to these two guard conditions,
Participant A defined the category “Period of
Visit” with “Period of Visit within office hours” and
“Period of Visit outside office hours” as its associated
choices. On the other hand, NDREQUEST stated
that the starting and ending times of visit were
to be entered into VISIT as separate inputs. This
information caused Participant A to define the
category “Period of Visit” with three associated
choices, namely “Period of Visit within office hours,”
“Period of Visit partially outside office hours,” and
“Period of Visit completely outside office hours.” Since
(Period of Visit outside office hours) = (Period
of Visit partially outside office hours)∪ (Period of
Visit completely outside office hours), we have two pairs
of overlapping choices.

2. SMREQUEST indicated two states of a previously
issued visitor access card, namely “returned” and
“not yet returned.” This information resulted in
the definition of the category “Previous Access
Card” with “Previous Access Card returned” and
“Previous Access Card not yet returned” as its two
associated choices. On the other hand, NDREQUEST

stated that VISIT would process the visitor request
for a repeated visitor differently, depending on the
return status of the previously issued access card:
a) returned on time, b) returned late, and c) not yet
returned. This information resulted in the definition
of three choices “Previous Access Card returned on time,”
“Previous Access Card returned late,” and “Previous
Access Card not yet returned” for the category “Previous
Access Card.” Since (Previous Access Card returned)
= (Previous Access Card returned on time)∪ (Previous
Access Card returned late), there are two pairs of
overlapping choices.

Altogether, we found 246 choice relations
that involved overlapping choices. The numbers
of choice relations associated with overlapping
choices “Period of Visit outside office hours,” “Period
of Visit partially outside office hours,” “Period of
Visit completely outside office hours,” “Previous Access
Card returned,” “Previous Access Card returned on time,”
and “Previous Access Card returned late” were 19, 59, 59, 3,
59, and 59, respectively. 2

Because of the above problems, τ ADREQUEST
, τ DFDREQUEST

,
τ SMREQUEST

, and τ NDREQUEST
could not be directly consolidated

into a final choice relation table. Thus, the enormous effort
spent by Participant A in constructing the four preliminary

2. For some choice relations Px 7→D Qa in the study, Px overlapped
with Py contained in other choice relations and, at the same time, Qa

overlapped with Qb contained in other choice relations. This explains
why the sum of the numbers of choice relations associated with individual
overlapping choices (= 19 + 59 + 59 + 3 + 59 + 59 = 258) exceeded the
total number of choice relations containing overlapping choices (246).
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[Outside Weekends and Public Holidays]

[> 1 Day] Go into

[Include Weekends or Public Holidays]

* For each visitor request

Details

[< 1 Day]

Get Visit

Endorsement Log

Fig. 3. Excerpt from the activity diagram ADREQUEST.

choice relation tables was wasted. Furthermore, the task of
redefining the choices and their relations (by considering all
the specification components together in one go) in order
to get rid of the above problems was not easy to manage
without the support of systematic methodologies. �

In view of the possible occurrence of the above problems
in steps 1 and 2 of DESSERT, step 3 of DESSERT is decom-
posed into two substeps, namely, step 3.a that deals with
problem 1 and step 3.b that deals with problems 2 and 3,
as discussed below.

5.3 Step 3.a of DESSERT

To alleviate problem 1 highlighted in Section 5.2, we have
formulated Proposition 1 below, which is a simple, elegant,
and yet useful result. Given any pair of choices with their
relations identified separately from two distinct sets D1 and
D2 of specification components, the main purpose of the
proposition is to automatically deduce the choice relation with
respect to both D1 and D2 without any manual definition
process. For the rest of this paper, an automatically deduced
choice relation will simply be referred to as a deduced choice
relation, whereas a manually defined choice relation will
simply be known as a defined choice relation.

Proposition 1 (Choice Relations in Different Sets of Spec-
ification Components). Let 1) P and Q be distinct categories,
2) Px and Qa be choices, and 3) D1 and D2 be different
sets of specification components. If the relational operators for
Px 7→D1

Qa and Px 7→D2
Qa are identical, then Px 7→D1∪D2

Qa

has the same relational operator as Px 7→D1
Qa and Px 7→D2

Qa.
Otherwise, the relational operator for Px 7→D1∪D2

Qa is “⊏P .”

The proofs of all the propositions in this paper are given
in the Appendix.

We next present our integration algorithm for merging
two or more preliminary choice relation tables accord-
ing to Proposition 1 (see, in particular, step 2.a1). We
have three assumptions behind the algorithm: 1) Every
preliminary choice relation table τi involves at least two
distinct categories, because the integration of preliminary
choice relation tables is only meaningful when every such
table contains choice relations whose header and trailer
categories are different. 2) Before integration starts, all the
categories, choices, and choice relations in every τi have

been properly determined with respect to Ci corresponding
to τi. 3) Overlapping choices do not exist within an individ-
ual preliminary choice relation table.

Algorithm integration to Merge Preliminary Choice
Relation Tables

Suppose τ1, τ2, . . . , τn (where n > 2) are the preliminary
choice relation tables to be merged. Let S = {C1, C2, . . . , Cn}
be the set of all specification components such that Ci (i =

1, 2, . . . , n) correspond to the preliminary choice relation tables
τi (i = 1, 2, . . . , n). Let Dj and Dl be any nonempty subsets of
S. We will use a linked list L to capture the result of merging τ1,
τ2, . . . , τn. Each element Lk of the linked list L (where k > 1)
points to an associated nonempty linked list LLk. Each LLk is
used to store the choice relations determined with respect to the
nonempty subset Dk of S. Each choice relation is stored as a pair
of choices and their relational operator.

1. Initialization of Linked List /* Process τ1 */
Initialize L as an empty linked list. For every choice relation
Px 7→{C1} Qa in τ1 (where P and Q are distinct categories),
store it in LL1 associated with L1 in L.

2. Integration of Preliminary Choice Relation Tables
/* Process τ2 to τn */
Incrementally integrate the choice relations in τ2, τ3, . . . , τn

into those relations already stored in the linked lists associ-
ated with L (if applicable) by repeating the following steps
for every τi (i = 2, 3, . . . , n):

a. For every unprocessed choice relation Px 7→{Ci} Qa

(where P and Q are distinct categories):

a1. If there exists some Lj in L pointing to an associ-
ated linked list LLj that contains a choice relation
Px 7→Dj

Qa, then: (i) Use Proposition 1 to deduce
Px 7→Dl

Qa from Px 7→{Ci} Qa and Px 7→Dj
Qa, where

Dl = {Ci} ∪ Dj . (ii) Delete Px 7→Dj
Qa from LLj

associated with Lj in L. (iii) Store Px 7→Dl
Qa in LLl

associated with Ll in L.

a2. Otherwise, store Px 7→{Ci} Qa in LLi associated with
Li in L.

b. For every empty LLk, delete Lk from L.

In the above algorithm, for each element Lk of L, the
corresponding LLk stores the choice relations determined
with respect to the nonempty subset Dk of S. There are
no overlapping choices within the same LLk. However,
Px 7→Dj

Qa and Py 7→Dl
Qb (where j 6= l) may have over-

lapping choices. After applying integration, a) the choice
relation involving Px as the header choice and Qa as the
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trailer choice is unique with respect to L, that is, there is
a unique Lk such that the corresponding LLk contains this
choice relation, and b) L has at most 2n−1 elements, where
n is the number of specification components in S, because
each element of L corresponds to an nonempty subset of
S. Step 1 involves a one-off initialization and step 2 is
iterated n−1 times. Suppose r is the total number of choice
relations across all the preliminary choice relation tables.
With each execution of step 2, every element of τi will be
processed once with respect to all the relations stored in the
associated linked lists of the current L. Thus, the worst-case
complexities of step 2 and the algorithm are of the order r2

and nr2, respectively.
In steps 1 and 2 of integration, any choice relation whose

header and trailer choices belong to the same category does
not need to be stored in any linked list associated with L.
This is because, given any category P and nonempty subset
D of S, by Definition 4, the relational operator for Px 7→D Px

and Px 7→D Py (where Px and Py are distinct and nonover-
lapping choices) must be “⊏” and “⊏6⊐”, respectively. Thus,
such choice relations can be automatically deduced in the
next algorithm refinement to be introduced in Section 5.4
later.
Example 9 (Processing Visitor Requests: Part 2). Let us
continue from Example 8. When Participant A simulated
the integration algorithm to merge the four preliminary
choice relation tables, he encountered an unanticipated
problem. Only one category was defined from SMREQUEST.
This phenomenon contradicted an assumption in the algo-
rithm that every preliminary choice relation table involves
two or more categories. To solve this problem, we asked
Participant A to consider DFDREQUEST and SMREQUEST to-
gether as one single C (denoted by MREQUEST). Using this
approach, four categories and 11 choices were defined
from MREQUEST. Subsequently, Participant A constructed the
corresponding preliminary choice relation table, denoted
by τ MREQUEST

, by defining the relation between every pair
of choices. At this stage, three preliminary choice relation
tables, namely τ ADREQUEST

, τ MREQUEST
, and τ NDREQUEST

, remained
and their respective dimensions were 10 × 10, 11 × 11, and
30 × 30.

Participant A then applied the integration algorithm to
consolidate the three preliminary choice relation tables.
During the consolidation process, he found 44 pairs of
choice relations to which Proposition 1 could be applied.
One such pair of choice relations is (Duration of Visit > 1 day)
⊏6⊐{ADREQUEST}

(Dates of Visit outside weekends and public holidays)
and (Duration of Visit > 1 day) ⊏P {NDREQUEST} (Dates of
Visit outside weekends and public holidays). The application
of Proposition 1 to this pair of choice relations
in step 2.a1 of the algorithm results in (Duration
of Visit > 1 day) ⊏P {ADREQUEST, NDREQUEST} (Dates of
Visit outside weekends and public holidays).

On the completion of integration, 856 choice relations
were stored in linked lists associated with L. These choice
relations involved a total of 32 distinct choices. Despite
the large number of choice relations associated with L,
no manual effort was required in this process because
integration could be fully automated. �

5.4 Step 3.b of DESSERT

The integration algorithm is good enough to solve problem 1
highlighted in Section 5.2. Problems 2 (overlapping choices)
and 3 (different choice relations and overlapping choices),
however, may still persist after executing integration. Here,
we discuss our solutions to these two problems. Let us first
focus on problem 2 and consider a hypothetical scenario as
follows:

Example 10 (Overlapping Choices and their Choice Rela-
tions). A specification consists of two distinct components
C1 and C2. Three distinct categories P , Q, and R and
their associated choices are identified from C1. The relations
among these choices are determined and captured in τ1 as
shown in Table 2. Three distinct categories P , Q, and W and
their associated choices are identified from C2. The relations
among these choices are determined and captured in τ2 as
shown in Table 3. Overlapping choices do not exist within
τ1 and τ2 individually.

Suppose Qb in τ1 overlaps with Qc and Qd in τ2 such
that Qb = Qc ∪ Qd. Software testers may not be aware
of these overlapping choices when constructing τ1 and τ2

separately, because Qb exists only in τ1 but not τ2, whereas
Qc and Qd exist only in τ2 but not τ1. Note that, in this
hypothetical case, only one category (namely Q) involves
overlapping choices. Without doubt, the case will become
more complicated if P also contains overlapping choices.

To solve the problem, a straightforward approach is to
replace Qb in τ1 by Qc and Qd, and to manually define
new choice relations involving Qc and Qd in τ1 after the
replacement. We do not, however, recommend such an
approach because software testers need to put extra effort
in defining the new replacement choice relations, which
would mean that the previous effort spent on determining
numerous choice relations in τ1 is wasted. (About 31 percent
of the choice relations are affected in this example.) It
will be desirable if there is a refinement mechanism that
will automatically deduce the new replacement choices and
their choice relations as far as possible.

Note that this overlapping problem, involving Qb, Qc,
and Qd, is only related to problem 2. The case will become
further complicated (corresponding to problem 3) if, after
refining Qb into Qc and Qd in τ1, some choice relations
involving Qc and Qd defined from C1 are different from
their counterpart choice relations defined from C2 (corre-
sponding to problem 1). �

With this need in mind, we have developed a refinement
mechanism for overlapping choices and their choice rela-
tions. An appealing feature of the refinement technique is
the incorporation of both the original version (introduced
in [7] ) and our extended version of the mechanisms for the
automatic deductions and consistency checking of choice
relations. While the original version can only be applied
to nonoverlapping choices such as Properties 1 and 2 in
Section 3, our extended version can be used for overlapping
choices.

Before we present our refinement algorithm, we first
introduce the following two propositions, which serve as
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TABLE 2

Preliminary Choice Relation Table τ1

Px Py Qa Qb Re Rf

Px ⊏{C1} ⊏6⊐{C1}
⊏{C1} ⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C1}

Py ⊏6⊐{C1}
⊏{C1} ⊏{C1} ⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C1}

Qa ⊏P{C1} ⊏P{C1} ⊏{C1} ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}

Qb ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}
⊏{C1} ⊏6⊐{C1}

⊏6⊐{C1}

Re ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C1}

⊏{C1} ⊏6⊐{C1}

Rf ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}
⊏{C1}

TABLE 3

Preliminary Choice Relation Table τ2

Px Py Qa Qc Qd Wp Wq

Px ⊏{C2} ⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

Py ⊏6⊐{C2}
⊏{C2} ⊏P{C2} ⊏P{C2} ⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

Qa ⊏6⊐{C2}
⊏P{C2} ⊏{C2} ⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}

Qc ⊏6⊐{C2}
⊏P{C2} ⊏6⊐{C2}

⊏{C2} ⊏6⊐{C2}
⊏P{C2} ⊏6⊐{C2}

Qd ⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

⊏{C2} ⊏6⊐{C2}
⊏P{C2}

Wp ⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏P{C2} ⊏6⊐{C2}

⊏{C2} ⊏6⊐{C2}

Wq ⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

⊏{C2} ⊏6⊐{C2}
⊏{C2}

the basis. See also Fig. 2 for their purposes and uses.
As can be seen in Examples 8 and 10, the overlap of

choices is a core problem when merging preliminary choice
relation tables into one final table. Consider the overlap
of header choices first. Proposition 2 below is developed to
refine choice relations having overlapping header choices.
It aims to a) deduce new nonoverlapping header choices
to replace the overlapping ones, and b) deduce, as far
as possible, the choice relations for these newly deduced
choices.

Proposition 2 (Refinement of Overlapping Header
Choices). Let P , Q, and R be categories and Px, Py, Qa, and
Rb be choices such that 1) P 6= Q and P 6= R, 2) Px 7→D1

Qa

and Py 7→D2
Rb for two distinct sets D1 and D2 of specification

components, and 3) Px and Py are distinct and overlapping
and, hence, Px ∩ Py 6= ∅ and (Px 6⊆ Py or Py 6⊆ Px). Without
loss of generality, suppose Px 6⊆ Py . Let Pz = Px ∩ Py and
Px′ = Px \ Py. We have: 1) If Px ⊏D1

Qa, then Pz ⊏D1
Qa

and Px′ ⊏D1
Qa. 2) If Px ⊏P D1

Qa, then any combinations of
relational operators for Pz 7→D1

Qa and Px′ 7→D1
Qa are possible

except for “Pz ⊏D1
Qa and Px′ ⊏D1

Qa” and “Pz ⊏6⊐D1
Qa

and Px′ ⊏6⊐D1
Qa.” 3) If Px ⊏6⊐D1

Qa, then Pz ⊏6⊐D1
Qa and

Px′ ⊏6⊐D1
Qa.

Next, we will explain how to use Proposition 2 to resolve
the problem of overlapping header choices, such as Px and
Py defined in D1 and D2, respectively. Suppose Px 6⊆ Py .
The first step is to decompose Px such that Px = Pz ∪ Px′ ,
Pz = Px ∩ Py , and Px′ = Px \ Py. Obviously, Px′ does
not overlap with Py or Pz . Proposition 2 is then used to
determine the new choice relations involving Pz and Px′

in the context of D1, which replace Px 7→D1
Qa involving

the overlapping header choice Px. As a result, Px can be
replaced by Pz and Px′ .

We have two possible scenarios: Py may or may not be
a subset of Px. If Py ⊂ Px, then 1) Pz is just Py, and

2) we need to apply Proposition 1 to deduce the choice
relation involving Py in the context of D1∪D2, if necessary.
(When Q = R and Qa = Rb, Proposition 1 can be applied
to Py 7→D2

Rb and the newly determined Py 7→D1
Qa.)

Otherwise, there exists some Py′ = Py \ Px 6= ∅. The
next step is to decompose Py such that Py = Pz ∪ Py′ .
Thereafter, the pair of overlapping header choices Px and
Py are replaced by new header choices Pz , Px′ , and Py′ ,
which do not overlap with one another. Proposition 2 is
then applied again to determine the new choice relations
involving Pz and Py′ in the context of D2. Note that there
may be two new choice relations involving Pz , one in the
context of D1 and one in the context of D2. Proposition 1
can then be used to deduce the choice relation involving Pz

in the context of D1 ∪ D2, if necessary.
Similarly, the case of overlapping trailer choices can be

resolved by means of the following proposition, which is a
dual of Proposition 2.

Proposition 3 (Refinement of Overlapping Trailer
Choices). Let P , Q, and R be categories and Px, Ry , Qa, and
Qb be choices such that 1) P 6= Q and R 6= Q, 2) Px 7→D1

Qa

and Ry 7→D2
Qb for two distinct sets D1 and D2 of specification

components, and 3) Qa and Qb are distinct and overlapping
and, hence, Qa ∩ Qb 6= ∅ and (Qa 6⊆ Qb or Qb 6⊆ Qa). Without
loss of generality, suppose Qa 6⊆ Qb. Let Qc = Qa ∩ Qb and
Qa′ = Qa \Qb. We have: a) If Px ⊏D1

Qa, then (Px ⊏D1
Qc and

Px ⊏6⊐D1
Qa′), (Px ⊏P D1

Qc and Px ⊏P D1
Qa′), or (Px ⊏6⊐D1

Qc

and Px ⊏D1
Qa′). b) If Px ⊏P D1

Qa, then (Px ⊏P D1
Qc and

Px ⊏P D1
Qa′), (Px ⊏P D1

Qc and Px ⊏6⊐D1
Qa′), or (Px ⊏6⊐D1

Qc

and Px ⊏P D1
Qa′). c) If Px ⊏6⊐D1

Qa, then Px ⊏6⊐D1
Qc and

Px ⊏6⊐D1
Qa′ .

Following the same argument for applying Propositions 1
and 2 to resolve the problem of overlapping header choices,
Propositions 1 and 3 can be similarly applied to resolve the
problem of overlapping trailer choices.
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To explain how to apply Propositions 2 and 3 (and pos-
sibly Proposition 1) iteratively to refine overlapping choices
and their relations, consider a pair of choice relations in-
volving overlapping choices. Let D1 and D2 be two different
sets of specification components. Suppose we identify a
pair of choices Px and Qa (where P 6= Q) from D1 and
define their relation Px 7→D1

Qa; and identify another pair of
choices Ry and Wb (where R 6= W ) from D2 and define their
relation Ry 7→D2

Wb. Table 4 lists all the possible scenarios
of Px 7→D1

Qa and Ry 7→D2
Wb that involve overlapping

choices. The last column shows the proposition(s) to be
applied for each scenario.

Here, we explain why Table 4 is an exhaustive list of all
the possible scenarios. As a reminder, if P = R, Px may
be identical to Ry or may overlap with it. If Px and Ry

(= Py) are overlapping, there are three possible overlapping
situations, namely, (Px ∩ Py 6= ∅, Px 6⊆ Py , and Py 6⊆ Px),
(Px ⊂ Py), and (Py ⊂ Px). Since there is no additional
constraint between Px and Py, these three overlapping
situations fall only under two different types (which we
call scenarios in Table 4), namely, (Px ∩ Py 6= ∅, Px 6⊆ Py ,
and Py 6⊆ Px) and (Px ⊂ Py), because (Py ⊂ Px) can be
grouped under the same scenario as (Px ⊂ Py).

Similarly, if Q = W , Qa may be identical to Wb or may
overlap with it. Given Px 7→D1

Qa and Ry 7→D2
Wb with

overlapping choices, we have three cases:

1. Px and Ry are in the same category but Qa and Wb are
in two different categories (that is, P = R and Q 6= W ).
In this case, Px and Ry (= Py) must be overlapping.
There are two possible types of overlapping for Px and
Ry, corresponding to scenarios 13 and 14.

2. Qa and Wb are in the same category but Px and Ry are
in two different categories (that is, Q = W and P 6= R).
In this case, Qa and Wb (= Qb) must be overlapping.
There are two possible types of overlapping for Qa and
Wb, corresponding to scenarios 15 and 16.

3. Px and Ry are in one category while Qa and Wb are in
another category (that is, P = R and Q = W ). We have
the following two cases:

3.1. Either Px = Ry or Qa = Wb. Note that (Px = Ry

and Qa = Wb) is not possible. When Px = Ry ,
Qa and Wb must be overlapping. There are two
possible types of overlapping, corresponding to
scenarios 3 and 4. Similarly, when Qa = Wb,
scenarios 1 and 2 apply.

3.2. Px 6= Ry and Qa 6= Wb. We have the following three
subcases: i) Px and Ry are overlapping while Qa

and Wb are not. Since there are two possible types
of overlapping for Px and Ry, we have scenarios 5
and 6. ii) Qa and Wb are overlapping while Px and
Ry are not. Since there are two possible types of
overlapping for Qa and Wb, we have scenarios 7
and 8. iii) Px and Ry are overlapping, and so are Qa

and Wb. Let us consider Px and Ry first. We have
two possible types of overlapping: (Px ∩ Ry 6= ∅,
Px 6⊆ Ry , and Ry 6⊆ Px) and (Px ⊂ Ry). In the
context of a specified relation between Px and Ry ,

we need to consider all three possible overlapping
situations for Qa and Wb. When (Px ∩ Ry 6= ∅,
Px 6⊆ Ry, and Ry 6⊆ Px), we have scenarios 9
and 10. Scenario 9 covers the situation (Qa ∩Wb 6=
∅, Qa 6⊆ Wb, and Wb 6⊆ Qa) while scenario 10
covers the remaining two situations (Qa ⊂ Wb) and
(Wb ⊂ Qa) because (Wb ⊂ Qa) can be grouped
under the same scenario as (Qa ⊂ Wb). When
Px ⊂ Ry, we have scenarios 11 and 12. Scenario 11
covers the situation (Qa ∩ Wb 6= ∅, Qa 6⊆ Wb, and
Wb 6⊆ Qa), and scenario 12 covers the remaining
two situations (Qa ⊂ Wb) and (Wb ⊂ Qa).

We have chosen scenario 9, which is one of the most
difficult cases, for illustration below. Other scenarios can
be handled similarly.

Scenario 9 Suppose Px 7→D1
Qa and Py 7→D2

Qb such
that 1) P and Q are distinct categories; 2) Px ∩ Py 6= ∅,
Px 6⊆ Py , and Py 6⊆ Px; and 3) Qa ∩ Qb 6= ∅, Qa 6⊆ Qb, and
Qb 6⊆ Qa. Let Pz = Px ∩ Py, Px′ = Px \ Py , Py′ = Py \ Px,
Qc = Qa ∩ Qb, Qa′ = Qa \ Qb, and Qb′ = Qb \ Qa. We have
both overlapping header choices and overlapping trailer
choices. We need to deduce or define new choice relations
for Pz 7→D1

Qa, Pz 7→D1
Qc, Pz 7→D1

Qa′ , Px′ 7→D1
Qa,

Px′ 7→D1
Qc, Px′ 7→D1

Qa′ , Pz 7→D2
Qb, Pz 7→D2

Qc,
Pz 7→D2

Qb′ , Py′ 7→D2
Qb, Py′ 7→D2

Qc, Py′ 7→D2
Qb′ , and

Pz 7→D1∪D2
Qc as follows: 3

1. The aim of this step is to replace choice relations with
an overlapping header choice Px or Py by new relations
with a nonoverlapping header choice Pz , Px′ , or Py′ . We
apply Proposition 2 to determine the following new
choice relations: 4 a) Pz 7→D1

Qa and Px′ 7→D1
Qa, which

replace Px 7→D1
Qa. b) Pz 7→D2

Qb and Py′ 7→D2
Qb,

which replace Py 7→D2
Qb.

2. This step aims to replace the choice relations deter-
mined in step 1, which involve a nonoverlapping
header choice Pz , Px′ , or Py′ and an overlapping trailer
choice Qa or Qb, by new relations with a nonoverlapping
trailer choice Qc, Qa′ , or Qb′ . Here, we apply Proposi-
tion 3 to determine the following new choice relations:

a. Px′ 7→D1
Qc and Px′ 7→D1

Qa′ , which replace
Px′ 7→D1

Qa.
b. Py′ 7→D2

Qc and Py′ 7→D2
Qb′ , which replace

Py′ 7→D2
Qb.

c. Pz 7→D1
Qc and Pz 7→D1

Qa′ , which replace
Pz 7→D1

Qa. Pz 7→D2
Qc and Pz 7→D2

Qb′ , which
replace Pz 7→D2

Qb.

3. This step applies Proposition 1 to deduce a new choice
relation Pz 7→D1∪D2

Qc and use it to replace Pz 7→D1
Qc

and Pz 7→D2
Qc, determined in steps 2.c and 2.d.

3. Among these newly deduced or defined choice relations,
Px′ 7→D1

Qa, Py′ 7→D2
Qb, Pz 7→D1

Qa, Pz 7→D1
Qc, Pz 7→D2

Qb,
and Pz 7→D2

Qc are intermediate results used to determine the final
choice relations Px′ 7→D1

Qa′ , Px′ 7→D1
Qc, Py′ 7→D2

Qb′ , Py′ 7→D2
Qc,

Pz 7→D1
Qa′ , Pz 7→D2

Qb′ , and Pz 7→D1∪D2
Qc.

4. If we are to apply Proposition 2.1 (when Px ⊏D1
Qa or Py ⊏D2

Qb)
or 2.3 (when Px ⊏6⊐D1

Qa or Py ⊏6⊐D2
Qb), the new choice relations can be

automatically deduced. On the other hand, if we are to apply Proposition 2.2
(when Px ⊏P D1

Qa or Py ⊏P D2
Qb), manual definitions of new choice

relations (supported by automatic consistency checks) are needed.
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TABLE 4

Possible Scenarios of Two Choice Relations Involving Overlapping Choices

Overlapping

Header Trailer Propositions

Scenario Choice Relations Choices Choices Overlapping Situation to Apply

1 Px 7→D1
Qa, Py 7→D2

Qa
√

N/A Px ∩ Py 6= ∅, Px 6⊆ Py , Py 6⊆ Px 1, 2

2 Px 7→D1
Qa, Py 7→D2

Qa
√

N/A Px ⊂ Py 1, 2

3 Px 7→D1
Qa, Px 7→D2

Qb N/A
√

Qa ∩ Qb 6= ∅, Qa 6⊆ Qb, Qb 6⊆ Qa 1, 3

4 Px 7→D1
Qa, Px 7→D2

Qb N/A
√

Qa ⊂ Qb 1, 3

5 Px 7→D1
Qa, Py 7→D2

Qb

√ × Px ∩ Py 6= ∅, Px 6⊆ Py , Py 6⊆ Px, Qa ∩ Qb = ∅ 2

6 Px 7→D1
Qa, Py 7→D2

Qb

√ × Px ⊂ Py , Qa ∩ Qb = ∅ 2

7 Px 7→D1
Qa, Py 7→D2

Qb × √
Px ∩ Py = ∅, Qa ∩ Qb 6= ∅, Qa 6⊆ Qb, Qb 6⊆ Qa 3

8 Px 7→D1
Qa, Py 7→D2

Qb × √
Px ∩ Py = ∅, Qa ⊂ Qb 3

9 Px 7→D1
Qa, Py 7→D2

Qb

√ √
Px ∩ Py 6= ∅, Px 6⊆ Py , Py 6⊆ Px, 1, 2, 3
Qa ∩ Qb 6= ∅, Qa 6⊆ Qb, Qb 6⊆ Qa

10 Px 7→D1
Qa, Py 7→D2

Qb

√ √
Px ∩ Py 6= ∅, Px 6⊆ Py , Py 6⊆ Px, Qa ⊂ Qb 1, 2, 3

11 Px 7→D1
Qa, Py 7→D2

Qb

√ √
Px ⊂ Py , Qa ∩ Qb 6= ∅, Qa 6⊆ Qb, Qb 6⊆ Qa 1, 2, 3

12 Px 7→D1
Qa, Py 7→D2

Qb

√ √
Px ⊂ Py , (Qa ⊂ Qb or Qb ⊂ Qa) 1, 2, 3

13 Px 7→D1
Qa, Py 7→D2

Wb
∗ √

N/A Px ∩ Py 6= ∅, Px 6⊆ Py , Py 6⊆ Px 2

14 Px 7→D1
Qa, Py 7→D2

Wb
∗ √

N/A Px ⊂ Py 2

15 Px 7→D1
Qa, Ry 7→D2

Qb
† N/A

√
Qa ∩ Qb 6= ∅, Qa 6⊆ Qb, Qb 6⊆ Qa 3

16 Px 7→D1
Qa, Ry 7→D2

Qb
† N/A

√
Qa ⊂ Qb 3

∗ Q and W are distinct categories † P and R are distinct categories

The above illustration shows that new choice relations,
involving more “fine grain” choices, can be automatically
deduced as far as possible by applying Propositions 1, 2,
and 3. Even in some situations where automatic deductions
are not possible, automatic consistency checking of manu-
ally defined choice relations can be provided. For example,
in step 1(i) of scenario 9 involving the application of
Proposition 2(b) when Px ⊏P D1

Qa, we know that the com-
bination “Pz ⊏D1

Qa and Px′ ⊏D1
Qa” is not possible. The

features of automatic deductions and consistency checking
greatly contribute to the effectiveness of determining choice
relations. 5

So far, we have illustrated how to iteratively apply
Propositions 1, 2, and 3 to refine a pair of choice relations
having overlapping choices. We now extend our refinement
mechanism to handle more than two choice relations. In the
following algorithm, steps 2.b and 2.c refine choice relations
with overlapping header choices and overlapping trailer
choices, respectively, while step 3 stores the choice relations
after refinement in the final choice relation table T and ap-
ply the construction algorithm provided by CHOC’LATE [7],
[16] to complete the construction of T .

Algorithm refinement to Refine Choice Relations Having
Overlapping Choices

We follow the notation used in the integration algorithm. Given
a linked list L with m elements L1, L2, . . . , Lm (where m > 1)
and given m associated nonempty linked lists LL1, LL2, . . . , LLm

5. Readers are reminded not to confuse our techniques for automatic
deductions and consistency checking described above with the similar
techniques developed for CHOC’LATE [7], [16]. Our techniques for auto-
matic deductions and consistency checking are specifically developed for
overlapping choices, while the techniques in [7], [16] apply to nonover-
lapping choices only.

(which are the output results of the integration algorithm for stor-
ing choice relations, each LLi containing all the choice relations
determined with respect to a nonempty subset Di of S), perform
the following steps:

1. Initialization of Set of Choice Relations
/* Process LL1 */
Initialize E as an empty set. Then, for every choice relation
in LL1, store it in E.
/* Each element of a nonempty E is a choice relation. */

2. Refinement of Choice Relations with Overlapping Choices
/* Process LL2 to LLm */
For every LLi (i = 2, 3, . . . , m), incrementally refine the
choice relations with overlapping choices by repeating the
following steps:

a. For every choice relation in LLi, store it in E.

b. Refining Overlapping Header Choices and their Choice Rela-
tions
For every pair of choice relations Px 7→Dj

Qa (where
P 6= Q) and Py 7→Dk

Rb (where P 6= R) in E such that
Px overlaps with Py and Px 6⊆ Py , do the following:

b1. Apply Proposition 2 to refine the overlapping header
choice Px into new nonoverlapping header choices,
of which new choice relations will need to be de-
termined. Whenever possible, perform automatic de-
ductions of new choice relations according to Propo-
sition 2. Perform consistency checks for all the new,
manually defined choice relations using the proposi-
tion. If any inconsistency is detected, alert the users
about the problem and prompt them to undo the step
immediately. Replace the processed Px 7→Dj

Qa in E
by the newly determined relations.

b2. Repeat b1 above on the overlapping header choice Py ,
if necessary. /* Apply this substep if Py 6⊆ Px */

b3. Because of the newly determined relations in
steps 2.b1–2.b2, E may contain choice relations with
the same pairs of header and trailer choices but
determined with respect to different subsets of S. If
this happens, apply Proposition 1 to integrate these
relations together. Then, replace the processed choice
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relations by the newly deduced one in E.

c. Refining Overlapping Trailer Choices and their Choice Rela-
tions
Perform similar refinement tasks as in step 2.b above
to refine overlapping trailer choices and their choice
relations. During the refinement process, use Proposi-
tion 3 instead of Proposition 2. Also use Proposition 1,
if applicable.

3. Construction of Choice Relation Table T
a) Initialize T as an empty table. b) For the choice relations
remaining in E (which do not involve any overlapping
choices), store them in T . c) Apply the choice relation table
construction algorithm provided by CHOC’LATE [7], [16]
(which includes the techniques for automatic deductions and
consistency checking of nonoverlapping choices) to determine
all the yet-to-be-defined relational operators in T .

As discussed in the paragraph immediately after the
integration algorithm, the maximum possible number of
linked lists LLi associated with L is (2n − 1), where n is
the number of specification components. It should be noted
that the maximum number of choice relations stored in the
linked lists associated with L is

(

k2−
∑g

j=1[N(Pj)]
2
)

, where
g is the total number of categories, k is the total number
of nonoverlapping choices across all categories, and N(Pj)
is the total number of nonoverlapping choices in Pj after
executing the refinement algorithm. 6 Since each associated
linked list must contain at least one choice relation, the
maximum number of associated linked lists will be the
minimum of (2n − 1) and

(

k2 −
∑g

j=1[N(Pj)]
2
)

. Step 1 of
the refinement algorithm involves a one-off initialization
of E. Each of steps 2.b and 2.c involves picking up a
choice relation from E and then comparing it with all
the remaining choice relations in E. Thus, the worst-case
complexity of steps 2.b and 2.c is of the order r2, where r
is the total number of choice relations across all preliminary
choice relation tables. Since the number of iterations in
step 2 is bounded by the number of linked lists associated
with L, the maximum number of iterations of step 2 will
not exceed min

(

2n − 1, k2 −
∑g

j=1[N(Pj)]
2
)

. Furthermore,
as discussed in [7], the computational complexity of step 3
is of the order r2. Hence, the worst-case complexity of the
algorithm is of the order r2 min

(

2n−1, k2−
∑g

j=1[N(Pj)]
2
)

.

Example 11 (Refining Choice Relations with Overlapping
Choices). Refer to Example 10 again. Given Tables 2
and 3, after we have applied the integration algorithm and
part of the refinement algorithm (after executing step 3.b),
the partially constructed choice relation table is shown in
Table 5. On close examination of Table 5, we have the
following observations:

1. While Qb (in Table 2) overlaps with Qc and Qd (in
Table 3) before executing integration, none of the choice
relations in Table 5 involves overlapping choices.

6. Note that k2 is the dimension of the choice relation table T , and
Pg

j=1[N(Pj)]
2 is the total number of choice relations Px 7→ Px and Px 7→

Py in T , where Px and Py are distinct and nonoverlapping choices. As
explained before, by Definition 4, the relational operator for Px 7→ Px and
Px 7→ Py must be “⊏” and “⊏6⊐,” respectively. Hence, these relations need
not be stored in the linked lists associated with L but can be automatically
deduced in step 3.c of refinement.

2. In Table 5, all the choice relations determined with
respect to both C1 and C2 are automatically deduced
in step 2.a1 of integration or in step 2.b or 2.c of
refinement. These choice relations involve categories P
and Q because these two categories are identified from
both C1 and C2.

3. In Table 5, all the choice relations with Re or Rf as
header or trailer choices (but not both) are determined
with respect to {C1} only. This is because Re and Rf

are not identified from C2 initially and, hence, neither
of these choices appears as a header or trailer choice in
any choice relation in τ2 (shown in Table 3) before the
execution of integration. Consequently, steps 2.b and 2.c
of refinement will not deduce any choice relation (with
respect to {C1, C2}) having Re or Rf as its header
or trailer choice. Similarly, since Wp and Wq are not
identified from C1 initially, all the choice relations with
Wp or Wq as header or trailer choices (but not both) are
determined with respect to {C2} only.

4. All the choice relations in Table 5 can be considered to
be determined with respect to the entire specification
S. This can be explained as follows. On completion
of step 2 of refinement, all the choice relations de-
termined with respect to {C1, C2} can be considered
to be determined with respect to S, because C1 and
C2 together constitute S. On the other hand, for all
the choice relations determined with respect to {C1}
or {C2} only, they are effectively the same as those
relations determined with respect to S. Consider, for
instance, Px ⊏6⊐{C2} Wp in Table 5. As pointed out
in observation (c) above, C1 does not contain any
information leading to the identification of category W
and its associated choices. Thus, when the testers look
into the choice relation Px 7→ Wp, they can determine
Px ⊏6⊐ Wp only if the entire S is taken into account.

When step 3.c of refinement commences, by Definition 4,
CHOC’LATE will first automatically assign the relational
operators “⊏” and “⊏6⊐” to every choice relation Zm 7→D Zm

and Zm 7→D Zn

(

where (Z = P , Q, R, or W ) and (m, n = x,
y, a, c, d, e, f , p, or q)

)

respectively, in T1. Eight yet-
to-be-defined choice relations, whose header and trailer
choices belong to different categories, will remain after this
process. All of them involve (Re or Rf ) and (Wp or Wq) as
their header or trailer choices. These choice relations occur
because of the fact that category R and its associated choices
are identified from C1 (but not C2), whereas category W
and its associated choices are identified from C2 (but not
C1). Thus, τ1 and τ2 (shown in Tables 2 and 3) do not
contain any choice relation Ri 7→{Ck} Wj or Wj 7→{Ck} Ri

before executing integration, where i = e or f , j = p or
q, and k = 1 or 2. All eight of these yet-to-be-defined
relations will be determined in step 3.c of refinement,
by applying the table construction algorithm provided by
CHOC’LATE [7], [16]. When defining choice relations, the
testers may need additional information from sources other
than the specification, such as end users and software
designers. �
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TABLE 5

Interim Choice Relation Table T1 Constructed after Step 3.b of refinement

Px Py Qa Qc Qd Re Rf Wp Wq

Px ⊏P{C1,C2} ⊏6⊐{C1,C2}
⊏6⊐{C1,C2}

⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C2}
⊏6⊐{C2}

Py ⊏P{C1,C2} ⊏P{C1,C2} ⊏6⊐{C1,C2}
⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C2}

⊏6⊐{C2}

Qa ⊏P{C1,C2} ⊏P{C1,C2} ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C2}
⊏6⊐{C2}

Qc ⊏6⊐{C1,C2}
⊏P{C1,C2} ⊏6⊐{C1}

⊏6⊐{C1}
⊏P{C2} ⊏6⊐{C2}

Qd ⊏6⊐{C1,C2}
⊏6⊐{C1,C2}

⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C2}
⊏P{C2}

Re ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}

Rf ⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}
⊏6⊐{C1}

⊏6⊐{C1}

Wp ⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏P{C2} ⊏6⊐{C2}

Wq ⊏6⊐{C2}
⊏6⊐{C2}

⊏6⊐{C2}
⊏6⊐{C2}

⊏{C2}

The following example completes our first study involv-
ing the visitor administration system VISIT by presenting
the results of applying the refinement algorithm:

Example 12 (Processing Visitor Requests: Part 3). Refer
to Examples 8 and 9 again. Participant A applied the refine-

ment algorithm to refine the 246 choice relations involving
overlapping choices that remained after the execution of
the integration algorithm. After step 2 of refinement, no
overlapping choice remained. After step 3 of refinement, a
choice relation table (denoted by TREQUEST) was constructed
with a dimension of 30 × 30 for the function “Process
Visitor Requests” of VISIT. TREQUEST, with all its 900 choice
relations completely determined, could now be further
processed by CHOC’LATE to generate a set of complete test
frames for testing the function “Process Visitor Request.” A
summary of the results of our first study is shown in the
first line of Table 7. �

6 CASE STUDIES

We evaluated the effectiveness of DESSERT using three com-
mercial specifications. They include the specification SVISIT

discussed earlier, a specification SCHECK-IN for a passenger
self-service check-in system CHECK-IN in the same airline
as VISIT, and a specification SCAR for a company car and
expense claim system CAR in a multinational trading firm.
CHECK-IN allows selected groups of passengers (such as
privileged club members of AIR) to perform self-service
check-in via the Internet or at any kiosks convenient to
them. On the other hand, CAR assists the regional sales
directors of the firm in determining the fee to be charged to
each sales manager for any excessive mileage in the use of
the company car, and in processing reimbursement requests
regarding various kinds of expenses such as airfare, hotel
accommodation, meals, and phone calls. We will refer to
the studies involving SVISIT, SCHECK-IN, and SCAR as studies 1,
2, and 3, respectively. Studies 2 and 3 were conducted in
a manner similar to study 1. Participant A was recruited
again to conduct study 3 whereas another participant (also
with a postgraduate degree in IT) was recruited for study 2.

Tables 6, 7, and 8 highlight the experimental data and
results of these three studies. Table 6 shows that problems 1
and 2 also occurred in SCHECK-IN and SCAR, just like SVISIT. It
can be computed from Table 6 that, before executing inte-

gration, the percentages of choice relations with problem 1

in relation to the total numbers of choice relations in the
choice relation tables for SVISIT, SCHECK-IN, and SCAR were
9.8 percent (= 88

900 × 100%), 0.0 percent (= 0
1 849 × 100%),

and 4.5 percent (= 20
441 × 100%), respectively (see the last

column of Table 7). 7 It can also be calculated from Table 6
that the percentages of choice relations with problem 2
in relation to the total numbers of choice relations in the
choice relation tables for SVISIT, SCHECK-IN, and SCAR were
27.3 percent (= 246

900 × 100%), 21.3 percent (= 394
1 849 × 100%),

and 43.5 percent (= 192
441 × 100%), respectively. Furthermore,

the table shows that problems 1 and 2 escalated during the
table consolidation process. For SVISIT, for example, only
nine choices having problem 1 gave rise to 88 problem-
atic choice relations, and only four pairs of overlapping
choices (that is, problem 2) gave rise to 246 problematic
choice relations. Table 7 shows the results after executing
integration and refinement, respectively. L had 5, 5, and 3
elements for our three studies, which were smaller than
the corresponding theoretically maximum sizes for L (7, 15,
and 15, respectively). Finally, Table 8 shows some statistics
about the application of Propositions 1, 2, and 3. From its
leftmost four columns, we know that Proposition 1 has been
applied 136 (= 92 + 44), 54 (= 54 + 0), and 378 (= 372 + 6)
times in integration for the three studies, respectively, and
68 (= 36 + 32), 18 (= 12 + 6), and 18 (= 18 + 0) times in
refinement for the three studies. Also note the two rightmost
columns of the table, which show that there were a total
of 112 (= 32 + 40 + 40) deduced choice relations and a
total of 228 (= 36 + 152 + 40) manually defined choice
relations, that is, on average, 33 percent (= 112

340 × 100%)
of the choice relations were automatically deduced by
Proposition 2 or 3. Even when manual definitions of choice
relations were needed in the refinement algorithm, they
were supported by the consistency check mechanism that
ensured the correctness of the defined relations whenever
appropriate.

There are two limitations in our current studies. First,
they only involved two software practitioners and three
specifications. It would be better if more human subjects
and specifications were involved. We must point out, how-
ever, that obtaining large and complex specifications from

7. Note that new choice relations with problem 1 have occurred for
SVISIT and SCHECK-IN during the execution of refinement (see the fourth
column of Table 8).
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TABLE 6

Occurrence of Problems 1 and 2 in Three Commercial Specifications

Before Executing integration and refinement

No. of No. of No. of

No. of Choice Pairs of Choice Relations

No. of No. of No. of Choices Relations Overlapping with Overlapping

Specifi- Specification Distinct Distinct with with Choices Choices

cation Components Categories Choices Problem (A) Problem (A) (Problem (B)) (Problem (B))

SVISIT 4 ∗ 12 32 9 88 4 246

SCHECK-IN 4 17 46 0 0 7 394

SCAR 4 9 22 4 20 2 192

∗ The number of specification components has become 3 after merging DFDREQUEST and SMREQUEST into MREQUEST

TABLE 7

Results after Executing integration and refinement Algorithms

After Executing integration After Executing refinement

Maximum No. of Actual No. of No. of Choice No. of No. of

No. of Linked Lists Linked Lists Relations Distinct and Choice Relations

Specifi- Specification Associated Associated Associated Nonoverlapping in Choice Relation

cation Components (n) with L ∗ with L with L † Choices (k) Table ‡

SVISIT 3 @ 7 5 856 30 900

SCHECK-IN 4 15 5 1 018 43 1 849

SCAR 4 15 3 366 21 441

∗ = min
`

2n − 1, k2 −
Pg

j=1
[N(Pj)]

2
´

, where N(Pj) = total no. of nonoverlapping choices in category Pj after executing refinement and
g = total no. of categories after executing refinement

@ After merging DFDREQUEST and SMREQUEST into MREQUEST
† After eliminating problem 1 but not yet dealing with problem 2 ‡ After eliminating problems 1 and 2

TABLE 8

Details of Executing integration and refinement Algorithms

No. of Times of Applying Proposition 1 Applying Propositions 2 and 3

In integration ∗ In refinement @ † in refinement † ‡

Involving Pairs of Choice Relations with No. of No. of

Specifi- Same Relational Different Relational Same Relational Different Relational Deduced Choice Defined Choice

cation Operators Operators § Operators Operators § Relations Relations

SVISIT 92 44 36 32 32 36

SCHECK-IN 54 0 12 6 40 152

SCAR 372 6 18 0 40 40

∗ In step 2.a1 of the integration algorithm † In steps 2.b and 2.c of the refinement algorithm
@ Corresponding to problem 3 ‡ Corresponding to problem 2 § Corresponding to problem 1

the industry is difficult because most companies are hesitant
to release them for external use. In any case, our studies
still provide a convincing demonstration of the effectiveness
of DESSERT for such specifications. After all, our work is
not an attempt to test hypotheses or causal relationships
among variables and, hence, a large number of subjects
and specifications is not a must. Second, it would be
better if a comparison between DESSERT and other similar
methodologies were made. Nevertheless, as pointed out in
Section 2.2, we are not aware of any category/choice meth-
ods that explicitly address large and complex specifications.
Thus, such a comparison is not applicable. This issue, in
fact, clearly demonstrates the novelty and contribution of
DESSERT.

7 SUMMARY AND CONCLUSION

In this paper, we have introduced a DividE-and-conquer
methodology for identifying categorieS, choiceS, and
choicE Relations for Test case generation, abbreviated

as DESSERT. The purpose is to alleviate a major
problem of CHOC’LATE (and also several other related
methodologies) in generating test cases for large and
complex specifications, or more specifically, the difficulty
in consolidating preliminary choice relation tables into
a final table for subsequent test case generation. The
divide-and-conquer approach of DESSERT should appeal
to software practitioners because the methodology can be
effectively applied to large commercial software systems
whose specifications are often complex and contain many
different components.

We have discussed in detail how to

1. consolidate preliminary choice relation tables
constructed from different specification components
into a choice relation table T ,

2. correct inconsistent relations for the same pair of
choices due to partial information from different
specification components,

3. refine choice relations involving overlapping choices
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defined from different specification components, and
4. apply consistency checks and automatic deductions for

choice relations involving overlapping choices in the
construction of T .

The theoretical backbone and techniques underlying these
procedures have also been discussed.

We have also conducted case studies to evaluate DESSERT

using three real-life commercial specifications that contain
several different specification components. The results have
confirmed that DESSERT provides a systematic approach to
construct a T in which all the choices are nonoverlapping
and all the choice relations are properly determined. Once
a T is constructed, it can then be processed by CHOC’LATE

for test case generation. As such, DESSERT contributes to
the industry by alleviating the difficulties and improving
the effectiveness of testing.
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APPENDIX

PROOFS OF PROPOSITIONS

In order to prove Propositions 1 to 3, which are the
basis of our DESSERT methodology, we need the following
Definition 7 and Lemmas 1 to 4:

Definition 7 (Set of Test Cases Related to a Choice). Let
TC denote the set of possible test cases, which is in fact the
input domain. Given any choice x, we define the set of test
cases related to x as TC (x) = {tc ∈ TC | v ∈ tc for some
v ∈ x}.

Lemma 1 (Instance of a Choice in a Test Case). Given any
choice x, any test case tc ∈ TC (x) contains one and only one
instance v ∈ x.

Proof. The lemma follows immediately from Definitions 1
and 7. �

Lemma 2 (Choice Relations and Test Cases). For any
choices x and y: 1) x ⊏ y if and only if TC (x) ⊆ TC (y).
2) x ⊏P y if and only if

(

TC (x) ∩ TC (y) 6= ∅ and TC (x) 6⊆
TC (y)

)

. 3) x ⊏6⊐ y if and only if TC (x) ∩ TC (y) = ∅.

Proof. We need only prove parts 1 and 3 of the lemma.
Part 2 follows immediately.

1. For any choices x and y, by Definition 4.1,
(

x ⊏ y
)

⇔
(

TF (x) ⊆ TF (y)
)

⇔
(

for any complete test frame B,
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x ∈ B implies y ∈ B
)

⇔
(

for any test case tc, (v ∈ x
for some v ∈ tc implies v′ ∈ y for some v′ ∈ tc)

)

⇔
(

TC (x) ⊆ TC (y)
)

.

3. For any choices x and y, by Definition 4.3,
(

x ⊏6⊐ y
)

⇔
(

TF (x) ∩ TF (y) = ∅
)

⇔
(

there does not exist any
complete test frame B such that x, y ∈ B

)

⇔
(

there
does not exist any test case tc such that v ∈ x for some
v ∈ tc and v′ ∈ y for some v′ ∈ tc

)

⇔
(

TC (x) ∩
TC (y) = ∅

)

. �

Fig. 4 illustrates the possible relations between TC (x) and
TC (y) in Lemma 2.

Lemma 3 (Overlapping Characteristics of Choices and
their Related Test Cases). For any choices Px and Py :
1) Px ⊆ Py if and only if TC (Px) ⊆ TC (Py). 2)

(

Px ∩ Py 6= ∅
and Px 6⊆ Py

)

if and only if
(

TC (Px) ∩ TC (Py) 6= ∅
and TC (Px) 6⊆ TC (Py)

)

. 3) Px ∩ Py = ∅ if and only if
TC (Px) ∩ TC (Py) = ∅.

Proof. The lemma follows immediately from Lemma 1. �

Lemma 4 (Overlapping Choices and Corresponding
Property of Choice Relations). Let (i) P and Q be distinct
categories, (ii) Px, Py , and Qa be choices, and (iii) Px ⊂ Py .
We have: 1) If Py ⊏ Qa, then Px ⊏ Qa. 2) If Py ⊏6⊐ Qa, then
Px ⊏6⊐ Qa.

Proof. Let P and Q be any distinct categories and let Px,
Py , and Qa be any choices such that Px ⊂ Py.

1. Suppose Py ⊏ Qa. By Lemma 2.1, we have TC (Py) ⊆
TC (Qa). It follows immediately from Lemma 3.1 and
Definition 7 that Px ⊂ Py if and only if TC (Px) ⊂
TC (Py). Since Px ⊂ Py , we have TC (Px) ⊂ TC (Py).
Hence, TC (Px) ⊂ TC (Qa). Thus, by Lemma 2.1, we
must have Px ⊏ Qa.

2. Suppose Py ⊏6⊐ Qa. By Lemma 2.3, we have TC (Py) ∩
TC (Qa) = ∅. Since Px ⊂ Py, by Lemma 3.1 and
Definition 7, we also have TC (Px) ⊂ TC (Py). Hence,
TC (Px) ∩ TC (Qa) = ∅. Thus, by Lemma 2.3, we must
have Px ⊏6⊐ Qa. �

In essence, Lemma 2 states a one-to-one correspondence
between the choice relation and the subset relation between
related sets of test cases; Lemma 3 states a one-to-one corre-
spondence between the overlapping characteristics of two
choices and the subset relation between their corresponding
sets of test cases; and Lemma 4 describes how to deduce
new choice relations from overlapping choice relations.

Proof of Proposition 1 (Choice Relations in Different Sets
of Specification Components)

First, suppose that the relational operators for Px 7→D1
Qa

and Px 7→D2
Qa are identical. It follows directly from the

definition of “⊏”, “ ⊏P ”, and “⊏6⊐” that Px 7→D1∪D2
Qa

will have the same relational operator as Px 7→D1
Qa or

Px 7→D2
Qa. Next, we consider the remaining cases as

follows:

1. Suppose Px ⊏D1
Qa and Px ⊏P D2

Qa. If we assumed
Px ⊏D1∪D2

Qa, it would mean that, with respect to both
D1 and D2, any complete test frame containing Px must
also contain Qa, which would contradict Px ⊏P D2

Qa.
On the other hand, if we assumed Px ⊏6⊐D1∪D2

Qa, it
would mean that, with respect to both D1 and D2,
every complete test frame containing Px would not
contain Qa. This situation would contradict Px ⊏D1

Qa

and Px ⊏P D2
Qa. Since “⊏”, “ ⊏P ”, and “⊏6⊐” are exhaus-

tive, we must have Px ⊏P D1∪D2
Qa.

2. Suppose Px ⊏D1
Qa and Px ⊏6⊐D2

Qa. Similar to the
proof of 1) above, we can show that Px ⊏P D1∪D2

Qa.

3. Suppose Px ⊏P D1
Qa and Px ⊏6⊐D2

Qa. Similar to the
proof of 1) above, we can show that Px ⊏P D1∪D2

Qa.
�

Proof of Proposition 2 (Refinement of Overlapping
Header Choices). Let P , Q, and R be categories and Px,
Py , Qa, and Rb be choices such that (i) P 6= Q and P 6= R,
(ii) Px 7→D1

Qa and Py 7→D2
Rb for two distinct sets D1

and D2 of specification components, and (iii) Px and Py

are distinct and overlapping and, hence, Px ∩ Py 6= ∅ and
(Px 6⊆ Py or Py 6⊆ Px). Without loss of generality, suppose
Px 6⊆ Py . Let Pz = Px ∩ Py and Px′ = Px \ Py . We have
Pz ⊂ Px and Px′ ⊂ Px.

1. Suppose Px ⊏D1
Qa. By Lemma 4.1, we have Pz ⊏D1

Qa

and Px′ ⊏D1
Qa.

2. Suppose Px ⊏P D1
Qa. By Definition 4.2, we have

TF (Px) ∩ TF (Qa) 6= ∅ and TF (Px) 6⊆ TF (Qa).
Because Pz ⊂ Px and Px′ ⊂ Px, “TF (Pz) ⊆ TF (Qa)
and TF (Px′) ⊆ TF (Qa)” and “TF (Pz) ∩ TF (Qa) = ∅
and TF (Px′) ∩ TF (Qa) = ∅” are impossible. In
turn, by Definitions 4.1 and 4.3, “Pz ⊏D1

Qa and
Px′ ⊏D1

Qa” and “Pz ⊏6⊐D1
Qa and Px′ ⊏6⊐D1

Qa” are
impossible. On the other hand, by Lemmas 2 and 3,
the other seven remaining combinations of relational
operators for Pz 7→D1

Qa and Px′ 7→D1
Qa are possible,

as illustrated by the examples in Fig. 5. In other words,
any combinations of Pz 7→D1

Qa and Px′ 7→D1
Qa are

possible except for “Pz ⊏D1
Qa and Px′ ⊏D1

Qa” and
“Pz ⊏6⊐D1

Qa and Px′ ⊏6⊐D1
Qa.”

3. Suppose Px ⊏6⊐D1
Qa. By Lemma 4.2, we have Pz ⊏6⊐D1

Qa

and Px′ ⊏6⊐D1
Qa. �

Proof of Proposition 3 (Refinement of Overlapping Trailer
Choices). Let P , Q, and R be categories and Px, Ry,
Qa, and Qb be choices such that (i) P 6= Q and R 6= Q,
(ii) Px 7→D1

Qa and Ry 7→D2
Qb for two distinct sets D1

and D2 of specification components, and (iii) Qa and Qb

are distinct and overlapping and, hence, Qa ∩ Qb 6= ∅ and
(Qa 6⊆ Qb or Qb 6⊆ Pa). Without loss of generality, suppose
Qa 6⊆ Qb. Let Qc = Qa ∩ Qb and Qa′ = Qa \ Qb. We have
Qc ⊂ Qa and Qa′ ⊂ Qa.

1. Suppose Px ⊏D1
Qa. By Lemma 2.1, we have TC (Px) ⊆

TC (Qa). There are three possible scenarios for consid-
eration: Px ⊏D1

Qc, Px ⊏P D1
Qc, and Px ⊏6⊐D1

Qc.
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First, suppose Px ⊏D1
Qc. By Lemma 2.1, we have

TC (Px) ⊆ TC (Qc). Since Qc ∩ Qa′ = ∅, by Lemma 3.3,
we have TC (Qc) ∩ TC (Qa′) = ∅. We can, in turn,
conclude that TC (Px) ∩ TC (Qa′) = ∅. It therefore
follows from Lemma 2.3 that Px ⊏6⊐D1

Qa′ .

Next, suppose Px ⊏P D1
Qc. By Lemma 2.2, we have

TC (Px) ∩ TC (Qc) 6= ∅ and TC (Px) 6⊆ TC (Qc).
Since Qc ∩ Qa′ = ∅, by Lemma 3.3, we have
TC (Qc) ∩ TC (Qa′) = ∅. Since TC (Px) ∩ TC (Qc) 6= ∅
and TC (Qc) ∩ TC (Qa′) = ∅, we can, in turn, conclude
that TC (Px) 6⊆ TC (Qa′). Hence, by Lemma 2.1,

“Px ⊏D1
Qa′” is impossible. Thus, the remaining

possible relations for Px 7→D1
Qa′ are “Px ⊏P D1

Qa′”
and “Px ⊏6⊐D1

Qa′ .” Let us assume that Px ⊏6⊐D1
Qa′ . By

Lemma 2.3, we would have TC (Px) ∩ TC (Qa′) = ∅.
Since we also have TC (Px) ⊆ TC (Qa), it would mean
that TC (Px) ⊆ TC (Qc) because Qc = Qa \ Qa′ . This
contradicts TC (Px) 6⊆ TC (Qc). In other words, we
must have Px ⊏P D1

Qa′ .

Finally, suppose Px ⊏6⊐D1
Qc. By Lemma 2.3, we have

TC (Px) ∩ TC (Qc) = ∅. Since we also have TC (Px) ⊆
TC (Qa), it would mean that TC (Px) ⊆ TC (Qa′)
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because Qa′ = Qa \ Qc. Thus, by Lemma 2.1, we have
Px ⊏D1

Qa′ .

Similarly, we can prove that (i) when Px ⊏D1
Qa′ , we

must have Px ⊏6⊐D1
Qc, (ii) when Px ⊏P D1

Qa′ , we must
have Px ⊏P D1

Qc, and (iii) when Px ⊏6⊐D1
Qa′ , we must

have Px ⊏D1
Qc.

In short, the only possible combinations of relational
operators for Px 7→D1

Qc and Px 7→D1
Qa′ are

“Px ⊏D1
Qc and Px ⊏6⊐D1

Qa′ ,” “Px ⊏P D1
Qc and

Px ⊏P D1
Qa′ ,” and “Px ⊏6⊐D1

Qc and Px ⊏D1
Qa′ .”

2. Suppose Px ⊏P D1
Qa. By Lemma 2.2, we have TC (Px) 6⊆

TC (Qa). It follows immediately from Lemma 3.1 and
Definition 7 that Qc ⊂ Qa if and only if TC (Qc) ⊂
TC (Qa). Since Qc ⊂ Qa, we have TC (Qc) ⊂ TC (Qa).
We can, in turn, conclude that TC (Px) 6⊆ TC (Qc). If
Px ⊏D1

Qc, we would have a contradiction because,
according to Lemma 2.1, Px ⊏D1

Qc implies TC (Px) ⊆
TC (Qc). Thus, the remaining possible relations for
Px 7→D1

Qc are “Px ⊏P D1
Qc” and “Px ⊏6⊐D1

Qc.” Simi-
larly, we can prove that the only possible relations for
Px 7→D1

Qa′ are “Px ⊏P D1
Qa′” and “Px ⊏6⊐D1

Qa′ .”

Thus, there are at most four possible combinations of
relational operators for Px 7→D1

Qc and Px 7→D1
Qa′ ,

namely “Px ⊏P D1
Qc and Px ⊏P D1

Qa′ ,” “Px ⊏P D1
Qc

and Px ⊏6⊐D1
Qa′ ,” “Px ⊏6⊐D1

Qc and Px ⊏P D1
Qa′ ,”

and “Px ⊏6⊐D1
Qc and Px ⊏6⊐D1

Qa′ .” Consider the last
combination, where Px ⊏6⊐D1

Qc and Px ⊏6⊐D1
Qa′ . By

Lemma 2.3, we have TC (Px) ∩ TC (Qc) = ∅ and
TC (Px) ∩ TC (Qa′) = ∅. Since Qa = Qc ∪ Qa′ , it
would mean that TC (Px) ∩ TC (Qa) = ∅. On the
other hand, since Px ⊏P Qa, by Lemma 2.2, we have
TC (Px) ∩ TC (Qa) 6= ∅. Here, we have a contradiction,
indicating that the last combination is impossible.

Furthermore, by Lemmas 2 and 3, the other three
remaining combinations are possible, as illustrated by
the examples in Fig. 6. In other words, the only possible
combinations of relational operators for Px 7→D1

Qc

and Px 7→D1
Qa′ are “Px ⊏P D1

Qc and Px ⊏P D1
Qa′ ,”

“Px ⊏P D1
Qc and Px ⊏6⊐D1

Qa′ ,” and “Px ⊏6⊐D1
Qc and

Px ⊏P D1
Qa′ .”

3. Suppose Px ⊏6⊐D1
Qa. It follows directly from Defi-

nition 4.3 that Qa ⊏6⊐D1
Px. By Lemma 4.2, we have

Qc ⊏6⊐D1
Px and Qa′ ⊏6⊐D1

Px, which in turn concludes
that Px ⊏6⊐D1

Qc and Px ⊏6⊐D1
Qa′ . �
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