
1

Postprint of article in Proceedings of the IEEE International Conference on Web Services (ICWS ’10),

IEEE Computer Society, Los Alamitos, CA (2010)

Taking Advantage of Service Selection: A Study on the Testing of

Location-Based Web Services through Test Case Prioritization

*

Ke Zhai, Bo Jiang W.K. Chan

† T.H. Tse
The University of Hong Kong City University of Hong Kong The University of Hong Kong

Pokfulam, Hong Kong Tat Chee Avenue, Hong Kong Pokfulam, Hong Kong
{kzhai, bjiang}@cs.hku.hk wkchan@cityu.edu.hk thtse@cs.hku.hk

Abstract—Dynamic service compositions pose new verification

and validation challenges such as uncertainty in service

membership. Moreover, applying an entire test suite to loosely

coupled services one after another in the same composition can

be too rigid and restrictive. In this paper, we investigate the

impact of service selection on service-centric testing tech-

niques. Specifically, we propose to incorporate service selection

in executing a test suite and develop a suite of metrics and test

case prioritization techniques for the testing of location-aware

services. A case study shows that a test case prioritization

technique that incorporates service selection can outperform

their traditional counterpart — the impact of service selection

is noticeable on software engineering techniques in general and

on test case prioritization techniques in particular. Further-

more, we find that points-of-interest-aware techniques can be

significantly more effective than input-guided techniques in

terms of the number of invocations required to expose the first

failure of a service composition.

Keywords—test case prioritization, location-based web ser-

vice, service-centric testing, service selection

I. INTRODUCTION

Location-based service (LBS) is indispensable in our
digital life [20]. According to a keynote speech presented at
ICWS 2008 [7], many interesting mobile web-based services
can be developed on top of LBS [7]. In the social network
application Loopt [8], for instance, we receive notifications
whenever our friends are nearby, where each “friend” found

* © 2010 IEEE. This material is presented to ensure timely dissemination

of scholarly and technical work. Personal use of this material is permitted.

Copyright and all rights therein are retained by authors or by other copy-

right holders. All persons copying this information are expected to

adhere to the terms and constraints invoked by each author’s copyright.

In most cases, these works may not be reposted without the explicit

permission of the copyright holder. Permission to reprint / republish this

material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained

from the IEEE.

† This research is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project no. CityU 123207 and

HKU 717308) and Strategic Research Grants of City University of Hong

Kong (project nos. 7008039 and 7002464).

‡ All correspondence should be addressed to Dr. W.K. Chan at Department

of Computer Science, City University of Hong Kong, Tat Chee Avenue,

Hong Kong. Tel: (+852) 2788 9684. Email: wkchan@cs.cityu.edu.hk.

is known as a point of interest (POI) [9][18], a specific
location that users may find useful or interesting. A faulty
location-based service composition may annoy us if it
erroneously notifies us the presence of a stranger in another
city, or fails to notify us even if a friend is just in front of us.
In this paper, we use the terms “composite service” and
“service composition” interchangeably.

After fixing a fault or modifying a service composition, it
is necessary to conduct regression testing (i.e., retesting soft-
ware following the modification) to assure that such fixing or
modifications do not unintentionally change the service
composition. Test case prioritization permutes a set of test
cases (known as a test suite) with the aim of maximizing a
testing goal [17][24]. One popular goal used by researchers
is the fault detection rate, which indicates how early the
execution of a permuted test suite can expose regression
faults [5][6][17][23]. Prioritization does not discard any test
case, and hence does not compromise the fault detection
capability of the test suite as a whole.

Existing work [5][6][11][23] has studied code-coverage-
based techniques for test case prioritization. Such techniques
use the heuristics that faster code coverage of the application
under test may lead to a faster fault detection rate. However,
coverage information is not available until the corresponding
test cases have been executed on the application. These tech-
niques may approximate the required information using the
coverage information achieved by the same test case on a
preceding version of the application. However, such an
approximation may be ineffective when the amount of code
modification is large, which is the case for dynamic service
composition. Furthermore, these techniques require
instrumentation to collect the code coverage information.
Nonetheless, such instrumentation often incurs significant
execution overhead, which may prevent an LBS service from
responding in a timely manner.

When performing test case prioritization on cooperative
services, many researchers assume that a service composi-
tion has already been formed. In the other words, cooperative
services form a service composition through static binding
rather than dynamic service selection. To perform regression
testing on such statically bound composite services, existing
techniques [13][14] usually execute all test cases on every
possible service composition, which can be costly when the
pool of candidate services is large.

Administrator
 HKU CS Tech Report TR-2010-04

2

We observe at least two technical challenges for a
technique to support the testing of dynamic service composi-
tions: First, the exact service composition cannot be known
until a dynamic service selection has been made. There is no
guarantee that members in a previous service composition
that executed a test case can be discovered and selected to
form a service composition again for regression testing of the
same test case. Second, the number of possible service com-
positions can be huge. Testing all combinations maximizes
the fault detection capability but makes testing expensive.
We argue that the testing of dynamic service compositions
requires a low-cost and yet highly effective testing strategy.
To address the first challenge, we bring in service selection
into a test case prioritization technique. To address the
second challenge, we optimize the technique by not
selecting/binding a web service that has already been found
to be faulty.

The main contribution of the paper is threefold: (i) We
propose a novel approach to integrating service selection and
test case prioritization and formulate a family of black-box
test case prioritization techniques. (ii) We empirically study
the impact of service selection on the effectiveness of
software engineering techniques in general and test case
prioritization techniques in particular. (iii) We propose a
suite of location-based metrics and evaluation metrics to
measure the proximity/diversity between points of interests
and locations in the test cases.

We organize the rest of paper as follows: We first
highlight a case study in Section II that has motivated us to
propose our prioritization techniques. Then, we discuss our
service-selection-aware test case prioritization techniques in
Section III. We present our case study on a location-based
web service in Section IV. Finally, we review related work in
Section V, and conclude the paper in Section VI.

II. MOTIVATING STUDY

We motivate our work via an adapted location-based
service composition City Guide as shown in Figure 1. It con-
sists of a set of main web services (denoted by , i = 1,
2, ..., n), each binding to a map service and a Case-Based
Reasoning (CBR) service, which in turns binds to a data
service. The main web services are registered in a UDDI
registry. Each client of City Guide is written in Android run-
ning on a smart phone. Our example adapts the application to
let the service-selection service receive a blacklist of service
URLs. The service filters out these blacklisted services and
selects a remaining using its original approach. For
instance, to select a web service, it applies GPS data to every
discovered service and selects the one that produces the larg-
est number of POIs.

On receiving GPS (i.e., location) data, a client binds itself
to and invokes, say, , to obtain the best-matched POIs
(e.g., hotels) based on the given locations as well as user
preferences kept by the client. in turn invokes a map
service using the user’s location and passes the map instance
and user preference data to a CBR service. Each case in the
case base (stored in data service) is described by the GPS
locations, user preferences, and the identity of the best-
matched POI. The CBR service computes the similarity

between a given query and the stored cases, and then replies
to the client with a set of best-matched POIs. Service con-
sumers may confirm the returned POIs, which will be passed
back to the CBR service and retained as a new case for future
reasoning.

WS nWS1

Communication Bus

WS i

CBR Service i Map Service iData Service i

Client 1 Client 2 Client n UDDISelection Service

Figure 1. Architecture of City Guide.

In this scenario, services of each type may have multiple
implementations. Moreover, each use of the City Guide
application triggers a dynamic selection of concrete services
of any kind followed by a dynamic formation of a service
composition. However, a software service can be faulty. Our
verification objective is to assure dynamically any service
composition by using test cases that may dynamically be dis-
patched to verify the service composition. One may invoke
all possible service compositions for all possible test cases,
but such a simple approach incurs significant overheads.

A. Service Selection

Table I shows a test suite containing six ordered test

cases  and their fault detection capability on
four faulty web services in City Guide.
A cell marked as “failed” means that the execution of the
service (row) over the test case (column) produces a failure;
otherwise, the test case is deemed as successful. We are
going to use the example to illustrate a problem of existing
techniques in testing dynamic service compositions.

TABLE I. TEST CASES AND THEIR RESULTS

 failed failed

 failed failed failed

 failed failed

 failed failed

Traditional Regression Testing Techniques [17] can be

ineffective in revealing faults in web services. For instance,
test case prioritization techniques in [24] require each test
case to be executed on every web service. To do so, a tech-

nique may, in the worst case, construct 24 (= 6  4) service
compositions. However, as we have mentioned above, there
is no guarantee that a given service is re-discoverable and
bound to form a required service composition so as to apply
the same test case again. Indeed, in City Guide, service dis-
covery and selection are performed by the application. It is

3

hard to apply traditional testing techniques to assure City
Guide.

Even if service compositions could be constructed, tradi-
tional techniques can still be ineffective. Let us consider a
scenario: Initially, all four web services run in turn and
 is detected to be faulty. Since has been shown to be
faulty, it is undesirable to select it for follow-up service
compositions. Subsequently, if is run, only 3 services
(, , and) need to be invoked in turn. Following
the same scheme, one may easily count that the numbers of
service invocations for , , , and are 2, 2, 1, and 0.
respectively, and the total number of service invocations is
therefore 12. We observe that for all 12 invocations in the
above scenario, only four (33%) reveal any fault. Hence, two
third of the service invocations are wasted.

New Idea. We illustrate our new idea with a testing strat-
egy that potentially reduces the number of service invoca-
tions. Let us revisit the test case execution scenario in the last
paragraph. For each test case, we invoke only one service,
chosen by the selection service that maintains a blacklist of
services shown to be faulty. The list is initially empty. A
technique passes the blacklist to the service-selection service,
which discovers all four web services and picks to be
invoked because it is not blacklisted. Unfortunately, the first
test case does not reveal any fault in . The technique
then applies the second test case. It passes the latest blacklist
to the service-selection service, which also discovers all four
web services (i.e., all services that have not been shown to be
faulty) and resolves to choose for . This invocation for
test case reveals that is faulty. Hence, the technique
adds to the blacklist. The technique repeats the above
procedure with for , for , for , and
for in turn. Noticeably, the total number of service invoca-
tions drops to 6. Our insight is that service selection has an
impact on the effective application of a testing and analysis
technique.

B. POI Proximity

The effectiveness of a test suite in detecting the presence
of a fault in web services can be further improved by using
test case prioritization [13][14]. Figure 2 shows a fault in the
computation of location proximity in City Guide, in which a
multiplication operator is mistakenly replaced by a division
operator [12]. Two test cases are shown in Figure 3. Each
time when the web services recommend three hotels, the
client chooses the closest one as the best hotel, which,
together with user’s GPS location, will be added as a new
case in the case base for future reasoning and query.

public class GpsLocationProximity {

 public double compute(Gps loc1, Gps loc2) {

 //...

 double t = Math.sin(dLat/2) * Math.sin(dLat/2)

 + Math.cos(lat1) / Math.cos(lat2)

 // Bug, should be:

 // + Math.cos(lat1) * Math.cos(lat2)

 * Math.sin(dLong/2) * Math.sin(dLong/2);

 //...

 }

}

Figure 2. Faulty code with wrong operator

Figure 3. Test cases with different POI coverage

Consider test case #1, where the user’s locations are
close to the POIs. The correct distances of POIs #7 and #9
from the third GPS location (114.1867, 22.2812) are
0.2569 km and 0.2545 km, respectively, and POI #9 is the
closest. However, the distances computed by the faulty code
are 0.2570 km and 0.2704 km, respectively, and POI #7
becomes the closest POI. Although the fault only incurs a
marginal error in the distance calculation, the small differ-
ence seriously affects future POI results because the user will
mistakenly confirm a POI that is not optimal. As a result, test
case #1 exposes a failure.

On the contrary, test case #2 does not reveal any failure.
Although the distance is wrongly computed whenever the
function is called, it leads only to a small error because the
locations are always far away from any POIs, which does not
affect the POI ranking. As a result, POIs #1, #2, and #3 are
always ranked as closest.

The above example shows that the closer a GPS location
sequence is in relation to the POIs, the more effective can be
the sequence for detecting faults in location-based web
services. To achieve better regression testing effect, we
propose several POI-aware test case prioritization techniques
in Section III.

III. SERVICE-CENTRIC TESTING TECHNIQUE

Based on Section II, we now present how we address the
technical challenges. The first challenge is addressed by in-
corporating service selection into test case prioritization. For
our service-centric testing technique, a test suite is executed
only once. During the execution, the binding between the
client and the other web services is dynamic. In particular,
for each round of execution, the client program passes a
blacklist to a service-selection service, which returns a
selected service for the former service to construct a service
composition (see Figure 4). Hence, test cases in the test suite
will not necessarily be bound to the same web service, and
more than one web service can be tested by each run of the
same test suite.

Our service-centric testing technique is formulated as
follows. Suppose that is an ordered test set

provided by a non-service-centric test case prioritization
technique (such as in [10][14][17]), and is a service
selection function, which accepts a blacklist of services
and a set of candidate services , and returns a service from
the set . Let be the blacklist obtained before

executing the test case and let be an empty set. A

service-centric testing technique will set if the test

114.14 114.15 114.16 114.17 114.18 114.19

22.27

22.28

22.29

22.3

Longitude

L
at

it
u

d
e

#1
#2

#3

#4 #7
#9

POIs

test case #1

test case #2

start point

retained location

4

case does not reveal a failure and set

if reveals a failure from executing the service composition

constructed from using over the test case .

WS1

WS2

Client

t1 <l11, l12, …>

t2 <l21, l22, …>

…

tn <ln1, ln2, …>

binding
Executing test case 1

WS1

WS2

Client

t1 <l11, l12, …>

t2 <l21, l22, …>

…

tn <ln1, ln2, …>

binding

Executing test case 2

Figure 4. Our service-centric testing technique.

We next present how we address the second technical
challenge for testing location-aware service compositions. In
the rest of this section, we will introduce five proposed
techniques using five different metrics: sequence variance
(Var), centroid distance (CDist), polyline entropy (Entropy),
polyline distance (PDist), and POI coverage (PCov).

We categorize our proposed techniques as either input-
guided or POI-aware. For the former category, we apply the
concept of test case diversity as discussed in [2]. Indeed, our
previous work [22] has demonstrated that the more diverse a
context sequence is, the more effective they will be in fault
detection. For location-based services, the input-guided tech-
niques prioritize a test suite in descending order of the
diversity of locations in test cases. For the latter category,
following our observation in Section II, POI-aware tech-
niques prioritize test cases that are closer to POIs or cover
more POIs.

We first formulate some concepts for ease of discussion.
Let be a test suite with test cases. Each
test case is a sequence of GPS locations.

Every GPS location is an ordered couple of

real numbers representing the longitude and latitude of a
location. POIs are a set of GPS loca-
tions. Each POI is also denoted by an ordered couple
 . The objective is to prioritize into an
ordered test sequence , where

is a permutation of .
In our proposed techniques, the test sequence is

determined by sorting the test cases in according to the
value of the quantitative metric over . This can be
described as a sorting function . Typically, a
sorting function is defined either in ascending order
or descending order . Moreover, our proposed
techniques use different quantitative metrics to guide the
sorting progress to obtain a desirable value of a goal function
 , which indicates how well scores with

respect to . Without loss of generality, let us assume that a
larger value of indicates a better satisfaction of by is
either a POI-aware metric or an input-guided metric

 The following subsections describe our proposed tech-
niques in more detail.

A. Sequence Variance (Var)

Sequence variance is an input-guided metric to measure
the variations in a sequence. It is defined as the second-order
central moment of the sequence:

where denotes a test case and

is the centroid of all GPS locations in the sequence. Intui-
tively, a larger variance indicates more diversity, and hence
the sorting function is used for this tech-

nique.

B. Polyline Entropy (Entropy)

A test case consists of a sequence of

GPS locations. If we plot these locations in a two-
dimensional coordinate system and connect every two
consecutive locations with a line segment, we obtain a poly-
line with vertices and segments. Polyline entropy is
a metric gauging the complexity of such a polyline. We
adapt this metric from the concept of entropy of a curve.

The entropy of a curve comes from the thermodynamics
of curves developed by Mendès France [15] and Dupain [4].
Consider a finite planar curve of length . Let be the
convex hull of , and be the length of ’s boundary. Let
 be a random line, and be the probability that
intersects with at points, as illustrated in Figure 5.
According to [15], the entropy of the curve is given by

 (1)

By the classical computation in [15], one can easily obtain
(see refs. [4][15]) the function that computes the
entropy of a planar curve as

We follow the concept of entropy of a curve in [4][15]
and compute the entropy of a test case using the function

where is the length of the polyline represented by , and
is the boundary length of the convex hull of the polyline. A
test case with higher entropy contains a more complex
polyline. We sort the test cases in descending order of their
entropies, that is, we use .

Figure 5. Illustration of the number of intersect points.

n=4
n=3



5

C. Centroid Distance (CDist)

Centroid distance represents the distance from the
centroid of a GPS location sequence to the centroid of the
POIs. Because POI information is used in the computation,
centroid distance is a POI-aware metric. It directly measures
how far a test case is from the centroid of the POIs. We
formulate this metric as

where is the centroid of all POIs. The sorting
function used with CDist is .

D. Polyline Distance (PDist)

Similar to Entropy, we may regard each test case as a
polyline whose vertices are GPS locations. The polyline
distance measures the mean distance from all POIs to this
polyline. Let denote the distance from a POI
 to a polyline The polyline

distance PDist(t, P) of a test case is give by

Similar to CDist, we use as the

sorting function for PDist.

E. POI Coverage (PCov)

POI coverage evaluates the impact of POIs on each test
case. To compute the PCov value of a test case , we first
compute the distance from each POI to the
polyline represented by . Then, we use a threshold value
to classify whether a POI is covered by the polyline, by
checking whether the distance is no greater than .
Hence, the PCov metric is given by

where

Here, we use the sorting function .

We summarize all the proposed techniques in Table II.

TABLE II. SUMMARY OF PROPOSED TECHNIQUES

Acronym Type Description

Var

Input-guided

Sort in descending order of the variance of
the GPS location sequence

Entropy
Sort in descending order of the entropy of
the polyline represented by each test case

CDist

POI-aware

Sort in ascending order of the distance
between the centroid of the GPS locations
and the centroid of the POIs

PDist
Sort in ascending order of the mean distance
from the POIs to the polyline

PCov
Sort in descending order of the number of
POIs covered by each test case

IV. CASE STUDY

In this section, we evaluate the effectiveness of our
black-box testing prioritization techniques for location-based
web services through a case study.

A. Research Questions

In this section, we present our research questions.

RQ1: Is the proposed service-centric testing technique
significantly more cost-effective than traditional non-service-
centric techniques? The answer to this question will tell us
whether incorporating services selection will have an impact
on the effectiveness of software engineering techniques in
general and test case prioritization techniques in particular.

RQ2: Is the diversity of locations in test cases a good
indicator for early detection of failures? The answer to this
question will tell us whether prioritization techniques based
on the diversity of locations in test cases can be promising.

RQ3: Is the proximity of locations in test cases in
relation to POIs a good indicator for early detection of
failures? The answer to this question will tell us whether test
case prioritization techniques based on such proximity is
heading towards a right direction.

B. Subject Pool of Web Services

In the experiment, we used a realistic location-based
service composition City Guide, which contains 3289 lines
of code. (This will be the only subject used in our empirical
study, as the implemented codes of other backend services
are not available to us.)

We treat the given City Guide as a “golden version”. We
used MuClipse [12] to generate a pool of faulty web services
and followed the procedure in [12] to eliminate mutants that
are unsuitable for testing experiments. All the remaining 35
faulty web services constituted our subject pool. We applied
our test pool (see Section IV.E) to these faulty web services.
Their average failure rate is 0.0625.

C. Experimental Environment

We conduct the experiment on a Dell PowerEdge 1950
server running Solaris UNIX and equipped with 2 Xeon
X5355 (2.66Hz, 4 core) processors and 8GB memory.

D. Effectiveness Metrics

Some previous work uses the average percentage of fault
detection (APFD) [6] as the metric to evaluate the effective-
ness of a test case prioritization technique. However, the
APFD value depends on test suite size. For example, append-
ing more test cases to an ordered test suite will jack up the
probability to a value quite close to 1. Hence, it is undesira-
ble to use APFD when test suites are large, but regression
test suites in many industrial settings are usually large in size.

We propose to use another metric, the Harmonic Mean
(HM), which is independent of the test suite size. HM is a
standard mathematical average that combines different rates
(which, in our case, is the rate of detecting individual faults)
into one value. Let be a test suite consisting of n test cases
and F be a set of m faults revealed by . Let be the first
test case in the reordered test suite of that reveals fault .
Then, the harmonic mean of is given by

6

We also propose to use another measure to evaluate the
cost of detecting each fault. As service invocations can be
expensive, a technique should aim at lowering the number of
service invocations for failure detection. Suppose the number
of service invocations for detecting fault is . We propose
the use the harmonic mean of , given by

Although both and measure the fault detec-
tion rate, is arguably more accurate than because
 reflects the actual number of service execution needed
to reveal an average fault, whereas reflects the number
of test cases executed to reveal a fault. The latter ignores the
possible dynamic binding of services and is an indirect meas-
ure of the testing effort.

E. Experiment and Discussions

As introduced in Section II, our subject program City
Guide is a location-based service composition. We used a
regression test pool containing 2000 test cases, each of which
was a GPS location sequence. For each test case, we used the
POIs returned by the golden version over the last location in
a test case as the test oracle. We used the POIs extracted
from the test oracles to populate the case base.

We proposed five prioritization metrics: Var, Entropy,
CDist, PDist, and PCov. Together with random ordering,
therefore, there are six techniques, each of which can be
combined with service selection (denoted by service-centric)
or be used alone (denoted by non-service-centric). Thus,
there are twelve techniques in total. To show the average
performance of our techniques on different test suites, we
randomly constructed 50 test suites from the test pool. Each
test suite contained 1024 test cases. Each technique was
evaluated on all test suites to obtain an average. In the
experiment, each service-centric technique used the adapted
service-selection service of City Guide to implement  (see
Section III for details).

We compute the distribution for all techniques,
and group the results into two box-and-whisker plots
(Figures 6 (a) and (c)) depending on whether a technique is
service-centric. For each plot, the x-axis represents the
prioritization metric used (or random ordering) and the y-axis
represents the distributions for all test suites. The
horizontal lines in the boxes indicate the lower quartile,
median, and upper quartile values. If the notches of two
boxes do not overlap, then the median values of the two
groups differ at a significance level of 5%. Similarly, we
calculate the distribution and draw two plots as shown
in Figures 6 (b) and (d), where the y-axis represents the
distribution for all test suites.

For service-centric techniques, we also conduct multiple
comparison analysis [11] to find those techniques whose
means differ significantly from others. The distributions of
 and values for each technique are shown in
Figures (e) and (f), respectively, as a horizontal line with a
dot in the center, which denotes the mean value. If the lines
corresponding to two techniques do not overlap, then their
mean values are different at a significance level of 5%.

1) Answering RQ1. By comparing Figures 6 (b) and (d),
we observe that service selection remarkably reduces the
number of service invocations. Take the metric Var as an
example. The service-centric technique that incorporates
service selection achieves 126.88 in terms of the median
 . However, the median for the non-service-
centric counterpart is 270.97. Thus, service selection leads
to a 53.18% reduction of service invocations, which is an
encouraging improvement. Similarly, the reductions for
random ordering, Entropy, CDist, PDist, and PCov are
24.24%, 0.51%, 29.69%, 40.61%, and 23.88%, respectively.
The average improvement is 28.69%, which is significant.
On the other hand, the variance is large.

Comparing Figures 6 (a) and (c), we observe that the
number of test cases that exposes a fault increases from using
a non-service-centric version to a service-centric version of
the same technique. However, as discussed in the last sub-
section, is more accurate and the improvement of
 through service selection is large. It further indicates
that the use of traditional idea to count test cases as an effec-
tiveness metric for service-oriented testing may not be
helpful.

Hence, we can answer RQ1 that the proposed service-
centric techniques are, on average, significantly more cost-
effective in detecting faults than the non-service-centric
counterparts.

2) Answering RQ2. We observe from Figures 6 (a), (b),
(e), and (f) that, in general, the two input-guided techniques
are significantly more effective than random ordering. In
particular, we see from Figure 6 (b) that the median
values of Var and Entropy are 126.88 and 149.58, respec-
tively, and the median value of random ordering is
176.83. From Figure 6 (f), the mean values of random
ordering, Var, and Entropy are 182.24, 141.79, and 144.54,
respectively. These figures indicate that, compared with
random ordering, Var or Entropy has the potential to reduce
the average number of service invocations. Moreover, Var
outperforms Entropy in that Var leads to fewer service
invocations than Entropy. Hence, we can answer RQ2 that
the diversity of locations in test cases can be a good indica-
tor to guide test case prioritization to detect failures earlier
than random ordering.

3) Answering RQ3. We observe from the box-and-
whisker plots in Figures 6 (a) and (b) that the three POI-
aware techniques (CDist, PDist, and PCov) are significantly
better than random ordering and the two input-guided
techniques (Var and Entropy) at a significance level of 5%.

If we further examine the results of multiple comparisons
[11] in Figures 6 (e) and (f), there is no overlap of POI-aware
techniques with Var, Entropy, or random ordering in the
respective notches. It indicates that the POI-aware techniques
can be more effective than Var, Entropy, and random order-
ing in terms of mean values at a significance level of 5%.
Among all techniques, CDist is the most effective metric to
guide test case prioritization and the difference between
CDist and each of other techniques is statistically significant.
Moreover, based on Figure 6 (d), CDist achieves 78.4 in
terms of the mean , which is substantially smaller than

7

that of random ordering (176.83). Based on the analysis, the
proximity of locations in test cases in relation to POIs can be
promising in guiding the detection of failures in location-
based web services.

F. Summary

Our empirical results provide a piece of evidence that
service selection does carry impacts on the effectiveness of
software engineering techniques. According to the case study,
on average, it helps improve the effectiveness of test case
prioritization to assure web services remarkably.

We also observe that use of the proximity/diversity of
locations is promising in guiding a testing technique to detect
failures in location-based web services notably and is signifi-
cantly more cost-effective than random ordering. Further-
more, the use of the locations of POIs captured by test cases
can be more effective than using test inputs only. On
average, POI-aware techniques detects the first failure of
each fault in a location-based web service by invoking web
services much fewer number of times than random ordering
of test cases.

Owing to the probabilistic nature of service selection in
City Guide, some faults may fail to be exposed. Encoura-
gingly, we observe empirically that a fault is missed by

random ordering in just one test suite out of 50, and none of
the other techniques fail to expose any fault using any test
suite.

We have repeated our experiment on smaller test suites
and found that, although the use of a smaller test suite tends
to miss more faults, the total number of missed faults is still
small. For example, for test suites of size 256, on average,
our proposed techniques detect at least 80% of all faults.
Owing to the page limit, we do not include the detailed
results on smaller test suites in this paper.

V. RELATED WORK

Many existing test case prioritization techniques are
coverage-based. For instance, Wong et al. [23] propose to
combine test suite minimization and test case prioritization to
select test cases based on the additional cost per additional
coverage requirement. Srivastava et al. [19] propose to
compare different program versions at machine code level
and then prioritize test cases to cover the modified parts of
the program maximally. Walcott et al. [21] propose a time-
aware prioritization technique based on a generic technique
to permute test cases under given time constraints. Li et al.
[11] propose to apply evolutionary algorithms for test case
prioritization with the goal of increasing the coverage rate.

0

50

100

150

200

250

ra
n

d
o

m va
r

en
tr

o
p

y

cd
is

t

p
d

is
t

p
co

v

H
M

 o
f

T
F

50

100

150

200

250

300

ra
n

d
o

m

va
r

en
tr

o
p

y

cd
is

t

p
d

is
t

p
co

v

H
M

 o
f

In
vo

ca
ti

o
n

 N
u

m
b

er

 (a) Distribution analysis for service-centric techniques (b)

H
M

 o
f

T
F

0

5

10

15

20

25

30

ra
n

d
o

m

va
r

en
tr

o
p

y

cd
is

t

p
d

is
t

p
co

v

0

100

200

300

400

500

600

700

800

900

ra
n

d
o

m va
r

en
tr

o
p

y

cd
is

t

p
d

is
t

p
co

v

H
M

 o
f I

nv
o

ca
ti

o
n

N
um

b
er

 (c) Distribution analysis for non-service-centric techniques (d)

0 20 40 60 80 100 120 140

pcov

pdist

cdist

entropy

var

random

5 groups have means significantly different from random

Te
ch

ni
qu

es

60 80 100 120 140 160 180 200

pcov

pdist

cdist

entropy

var

random

5 groups have means significantly different from random

Te
ch

ni
qu

es

 (e) Multiple Comparison for Service-centric techniques (f)

Figure 6. Experimental results.

8

Researchers have also investigated the challenges in
regression testing of service-oriented applications. Mei et al.
[14] propose a hierarchy of test case prioritization techniques
for service-oriented applications by considering different
levels of services including business process, XPath, and
WSDL specifications. In [13][14], they also study the prob-
lem of black-box test case prioritization of service-oriented
applications based on the coverage information of WSDL
tags. Different from their work that explore XML message
structure exchanged between services to guide prioritization,
we utilize the distributions of location and POI information
to guide prioritization and do not need to analyze commu-
nication messages, which are linked to location-based soft-
ware cohesively.

Adaptive random testing [2][3] improves the perfor-
mance of random test case generation by evenly spreading
test cases across the input domain. Jiang et al. [10] proposed
a family of adaptive random test case prioritization
techniques that spread the coverage achieved by any prefix
of a prioritized sequence of test cases as evenly as possible to
increase the fault detection rate.

Locations-based web service is a popular application that
can benefit both mobile network operators and end users
[16]. There are many standards [1] and techniques for
location-based web services. In future work, one may
generalize our techniques so that they will be applicable to a
broader range of location-based web services.

VI. CONCLUSION

The testing of dynamic service compositions must solve
the problem that a dynamically selected service may not be
selected and bound in another execution of the same test
case. Moreover, the number of possible service compositions
can be huge. Both problems need to be addressed by non-
traditional testing ideas and the understanding of the impact
of service selection on software engineering techniques is
vital.

To tackle these two issues, we have proposed to integrate
service selection in test case prioritization to support regres-
sion testing. Furthermore, we have also proposed a family of
black-box service-centric test case prioritization techniques
that guide the prioritization based on Point of Interest (POI)
information. Our case study on a medium-sized location-
based web service City Guide has shown that service selec-
tion significantly improves the effectiveness of regression
testing. The result demonstrates that service selection has a
large impact on the effectiveness of software engineering
techniques in general and test case prioritization techniques
in particular. Moreover, POI-aware prioritization techniques
are much more effective than random ordering. The experi-
ment has also shown that the use of proximity or diversity of
locations, particularly the POI-aware properties, can be
promising in cost-effectively detecting failures in location-
based web services. Our future work includes incorporating
advanced service selection strategies to a wider class of soft-
ware engineering techniques.

REFERENCES

[1] P.M. Adams, G.W.B. Ashwell, and R. Baxter. Location-based

services: an overview of the standards. BT Technology Journal, 21

(1): 34–43, 2003.

[2] T.Y. Chen, F.-C. Kuo, R.G. Merkel, and T.H. Tse. Adaptive random

testing: the ART of test case diversity. Journal of Systems and Soft-

ware, 83 (1): 60–66, 2010.

[3] T.Y. Chen, H. Leung, and I.K. Mak. Adaptive random testing. In

Advances in Computer Science: Proceedings of the 9th Asian Compu-

ting Science Conference (ASIAN ’04), volume 3321 of Lecture Notes

in Computer Science, pages 320–329. Springer, Berlin, Germany,

2004.

[4] Y. Dupain, T. Kamae, and M. Mendès France. Can one measure the

temperature of a curve? Archive for Rational Mechanics and

Analysis, 94 (2): 155–163, 1986.

[5] S.G. Elbaum, A.G. Malishevsky, and G. Rothermel. Test case priori-

tization: a family of empirical studies. IEEE Transactions on Soft-

ware Engineering (TSE), 28 (2): 159–182, 2002.

[6] S.G. Elbaum, G. Rothermel, S. Kanduri, and A.G. Malishevsky.

Selecting a cost-effective test case prioritization technique. Software

Quality Control, 12 (3): 185–210, 2004.

[7] C. Gonzales. Keynote 3: mobile services business and technology

trends. 6th International Conference on Web Services (ICWS ’08).

Beijing, 2008. Abstract available at https://doi.org/10.1109/

SERVICES-2.2008.48.

[8] http://www.loopt.com/. Last access February 2010.

[9] C.-W. Jeong, Y.-J. Chung, S.-C. Joo, and J.-W. Lee. Tourism guided

information system for location-based services. In Advanced Web and

Network Technologies, and Applications, volume 3842 of Lecture

Notes in Computer Science, pages 749–755. Springer, Berlin,

Germany, 2006.

[10] B. Jiang, Z. Zhang, W.K. Chan, and T.H. Tse. Adaptive random test

case prioritization. In Proceedings of the 24th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE ’09),

pages 233–244. IEEE Computer Society, Los Alamitos, CA, 2009.

[11] Z. Li, M. Harman, and R.M. Hierons. Search algorithms for regres-

sion test case prioritization. IEEE TSE, 33 (4): 225–237, 2007.

[12] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: a mutation system for

Java. In Proceedings of the 28th International Conference on Soft-

ware Engineering (ICSE ’06), pages 827–830. ACM, New York, NY,

2006.

[13] L. Mei, W.K. Chan, T.H. Tse, and R.G. Merkel. Tag-based tech-

niques for black-box test case prioritization for service testing. In

Proceedings of the 9th International Conference on Quality Software

(QSIC ’09), pages 21–30. IEEE Computer Society, Los Alamitos,

CA, 2009.

[14] L. Mei, Z. Zhang, W.K. Chan, and T.H. Tse. Test case prioritization

for regression testing of service-oriented business applications. In

Proceedings of the 18th International Conference on World Wide

Web (WWW ’09), pages 901–910. ACM, New York, NY, 2009.

[15] M. Mendès France. Les courbes chaotiques. Le Courrier du Centre

National de la Recherche Scientifique, 51: 5–9, 1983.

[16] B. Rao and L. Minakakis. Evolution of mobile location-based

services. Communications of the ACM, 46 (12): 61–65, 2003.

[17] G. Rothermel, R.. Untch, C. Chu, and M.J. Harrold. Prioritizing test

cases for regression testing. IEEE TSE, 27 (10): 929–948, 2001.

[18] W. Schwinger, Ch. Grün, B. Pröll, and W. Retschitzegger. A light-

weight framework for location-based services. In On the Move to

Meaningful Internet Systems 2005: OTM Workshops, volume 3762 of

Lecture Notes in Computer Science, pages 206–210. Springer, Berlin,

Germany, 2005.

9

[19] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in

development environment. In Proceedings of the 2002 ACM

SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’02), pages 97–106. ACM, New York, NY, 2002.

[20] S. Steiniger, M. Neun, and A. Edwardes. Foundations of location

based services. CartouCHe Lecture Notes on LBS, version 1.0.

Department of Geography, University of Zurich, Switzerland, 2006.

[21] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer, and R.S. Roos.

TimeAware test suite prioritization. In Proceedings of the 2006 ACM

SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’06), pages 1–12. ACM, New York, NY, 2006.

[22] H. Wang and W.K. Chan. Weaving context sensitivity into test suite

construction. In Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’09). Pages

610−614, IEEE Computer Society, Los Alamitos, CA, 2009.

[23] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal. A study of

effective regression testing in practice. In Proceedings of the 8th

International Symposium on Software Reliability Engineering (ISSRE

’97), pages 264–274. IEEE Computer Society, Los Alamitos, CA,

1997.

[24] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei. Time-aware test-

case prioritization using integer linear programming. In Proceedings

of the 2009 ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’09), pages 213–224. ACM, New York,

NY, 2009.

