

1

ABSTRACT
Coverage-based fault-localization techniques find the fault-related
positions in programs by comparing the execution statistics of
passed executions and failed executions. They assess the fault sus-
piciousness of individual program entities and rank the statements
in descending order of their suspiciousness scores to help identify
faults in programs. However, many such techniques focus on
assessing the suspiciousness of individual program entities but
ignore the propagation of infected program states among them. In
this paper, we use edge profiles to represent passed executions and
failed executions, contrast them to model how each basic block
contributes to failures by abstractly propagating infected program
states to its adjacent basic blocks through control flow edges. We
assess the suspiciousness of the infected program states propa-
gated through each edge, associate basic blocks with edges via
such propagation of infected program states, calculate suspicious-
ness scores for each basic block, and finally synthesize a ranked
list of statements to facilitate the identification of program faults.
We conduct a controlled experiment to compare the effectiveness
of existing representative techniques with ours using standard
benchmarks. The results are promising.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging —Debug-
ging aids

General Terms: Experimentation, Verification

Keywords
Fault localization, edge profile, basic block, control flow edge

1. INTRODUCTION
Coverage-based fault-localization (CBFL) techniques [2][8][15]
[21][23][24] have been proposed to support software debugging.
They usually contrast the program spectra information [14] (such
as execution statistics) between passed executions and failed
executions to compute the fault suspiciousness [24] of individual
program entities (such as statements [15], branches [21], and
predicates [18]), and construct a list of program entities in des-
cending order of their fault suspiciousness. Developers may then
follow the suggested list to locate faults. Empirical studies
[2][15][18][19] show that CBFL techniques can be effective in
guiding programmers to examine code and locate faults.

During program execution, a fault in a program statement may
infect a program state, and yet the execution may further propa-
gate the infected program states [9][22] a long way before it may
finally manifest failures [23]. Moreover, even if every failed
execution may execute a particular statement, this statement is not
necessarily the root cause of the failure (that is, the fault that
directly leads to the failure) [9].

Suppose, for instance that a particular statement S on a branch B
always sets up a null pointer variable. Suppose further that this
pointer variable will not be used in any execution to invoke any
function, until another faraway (in the sense of control dependence
[5] or data dependence) statement S' on a branch B' has been
reached, which will crash the program. If S is also exercised in
many other executions that do not show any failure, S or its
directly connected branches cannot effectively be pinpointed as
suspicious. In this scenario, existing CBFL techniques such as
Tarantula [15] or SBI [24] will rank S' as more suspicious than S.
Indeed, in the above scenario, exercising B' that determines the
execution of S' always leads to a failure [24]. Thus, the branch
technique proposed in [24], for example, will rank B' as more
suspicious than B, which in fact is directly connected to the first
statement S. The use of data flow analysis may reveal the usage of

Postprint of article in Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundation of Software Engineering (ESEC ’09/FSE-17),

ACM, New York, NY, pp. 43–52 (2009)

Capturing Propagation of Infected Program States

*

†
Zhenyu Zhang W.K. Chan

‡ T.H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
City University of Hong Kong
Tat Chee Avenue, Hong Kong

The University of Hong Kong
Pokfulam, Hong Kong

zyzhang@cs.hku.hk wkchan@cs.cityu.edu.hk thtse@cs.hku.hk
 Bo Jiang Xinming Wang

The University of Hong Kong

Pokfulam, Hong Kong
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

 bjiang@cs.hku.hk rubin@cse.ust.hk

* © ACM (2009). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundation of Software Engineering (ESEC
’09/FSE-17), ACM, New York, NY, pp. 43–52 (2009).

† This research is supported in part by the General Research Fund of the
Research Grants Council of Hong Kong (project nos. 111107 and 716507).

‡ All correspondence should be addressed to Dr. W.K. Chan at Department
of Computer Science, City University of Hong Kong, Tat Chee Avenue,
Kowloon Tong, Hong Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788
8614. Email: wkchan@cityu.edu.hk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE ’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

Administrator
 HKU CS Tech Report TR-2009-14

2

the null pointer and help evaluate the suspiciousness of S, S', B,
and B'. However, data flow profiling is expensive [14][21].

A way out is to abstract a concrete program state as a control
flow branch, and abstract the propagation of fault suspiciousness
of these concrete program states by a “transfer function” of the
fault suspiciousness of one branch or statement to other branches
or statements. On one hand, existing techniques work at the indi-
vidual program entity level and assess the fault suspiciousness of
program entities separately. On the other hand, the transfer of fault
suspiciousness of one program entity to another will change the
fault suspiciousness of the latter. In the presence of loops, finding
a stable propagation is non-trivial. Moreover, even if a stable
propagation can be found, a direct implementation of such a
propagation-based technique may indicate that the technique
requires many rounds of iterations, which unfortunately are
computationally expensive. We propose a steady and efficient
propagation-based CBFL technique in this paper.

We first revisit a couple of terms for ease of subsequent dis-
cussions. A failed execution is a program execution that reveals a
failure (such as producing an incorrect output or causing the pro-
gram to crash). On the contrary, a passed execution is a program
execution that shows no failure.

We abstract a given program as a control flow graph (CFG),
sample a program execution as an edge profile [3], which indi-
cates which edges of the CFG have been traversed during the
execution, and quantifies every change of program state over an
edge with the number of executions of the edge. We then compute
a pair of mean edge profiles: the mean pass profile for all sampled
passed executions, and the mean failed profile for all sampled

failed executions. They capture abstractly the central tendency of
the program state in a passed execution and that in a failed execu-
tion, respectively. For each edge, we contrast such a state abstrac-
tion in the mean pass profile with that in the mean failed profile to
assess the fault suspiciousness of the edge. In our model, to
backtrack how much every basic block [3] contributes to the
observed program failures, we set up a system of linear algebraic
equations to express the propagation of the suspiciousness scores
of a basic block to its predecessor block(s) via directly connected
control flow edges — for each edge, we split a fraction of the
suspiciousness score to be propagated to a predecessor basic block.
Our model always constructs homogeneous equations and ensures
that the number of equations is the same as the number of
variables. Such a constructed equation set satisfies a necessary
condition of being solvable by standard mathematics techniques
such as Gaussian elimination [29]. By solving the set of equations,
our technique obtains the suspiciousness score for each basic
block. We finally rank the basic blocks in descending order of
their suspiciousness scores, and assign a rank for each statement.
We conduct controlled experiments to compare the effectiveness
of existing representative techniques with ours on four real-life
medium-sized programs. The empirical results show that our
technique can be more effective than peer techniques.

The main contribution of this work is twofold: (i) To the best of
our knowledge, the work is the first that integrates the propagation
of program states to CBFL techniques. (ii) We use four real-life
medium-sized programs flex, grep, gzip, and sed to conduct
experiments on our technique and compare them with five other

susp.: suspiciousness of a statement/edge in relation to a fault; rank: ranking of a statement/edge in the generated list

Statement Basic block
Test case

Tarantula
[24]

SBI
[24]

Jaccard
[1]

Branch
[21]

CP
(this paper)

t1 t2 t3 t4 t5 t6 t7 susp. rank susp. rank susp. rank susp. rank susp. rank
if (block_queue) { s1 b1 ● ● ● ● ● ● ● 0.50 9 0.29 9 0.29 9 0.71 9 0.11 9
 count = block_queue–>mem_count + 1; s2 ● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4
 n = (int) (count*ratio); s3 b2

(fault)
● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4

 proc = find_nth(block_queue, n); s4 ● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4
 if (proc) { s5 ● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4
 block_queue = del_ele(block_queue, proc); s6 b3

(block whose
execution
leads to
failure)

 ● 1.00 3 1.00 3 0.50 7 0.71 9 1.00 7
 prio = proc–>priority; s7 ● 1.00 3 1.00 3 0.50 7 0.71 9 1.00 7
 prio_queue[prio] =
 append_ele(prio_queue[prio], proc); s8

● 1.00 3 1.00 3 0.50 7 0.71 9 1.00 7

 } }
// next basic block s9 b4 ● ● ● ● ● ● ● 0.50 9 0.29 9 0.29 9 0.71 9 0.11 9

Control Flow Graph (CFG) for the code excerpt
above:

b2

b3

e3 b1 e2

e5 e4

b4

e1

e6
(We add a dummy block b4 containing statement s9,
and an edge e6 to make a complete CFG.)

Edge

e1 ● ● ● ● ● ● ● 0.53 0.00
e2 ● ● ● ● 0.71 0.43
e3 ● ● ● 0.00 –1.00
e4 ● 0.71 1.00
e5 ● ● ● 0.41 0.11
e6 ● N/A 1.00

Pass/fail status P P F P P F P
% of code examined according to the

ranking of statements 78% 78% 78% 100% 44%

Ranking order of basic blocks b3 before b2
b2 and b3 have
the same rank

b2 before b3

Figure 1 : Faulty version v2 of program schedule and fault localization comparison.

3

techniques, namely Tarantula, SBI, Jaccard, CBI, and SOBER.
The empirical results show that our technique is promising.

The rest of this paper is organized as follows: Section 2 shows a
motivating example. Section 3 presents our technique. Section 4
presents further discussion on our technique, followed by an ex-
perimental evaluation in Section 5 and a literature review in
Section 6. Section 7 concludes the paper.

2. MOTIVATING EXAMPLE
This section shows an example on how the modeling of propaga-
tion of infected program states via control flow edges helps locate
faults effectively.

Figure 1 shows a code excerpt from the faulty version v2 of the
program schedule (from SIR [10]). The code excerpt manages a
process queue. It first calculates the index of a target process, and
then moves the target process among priority queues. We seed an
extra “+1” operation fault into statement s2 in Figure 1. It may
cause the program to select an incorrect operation for subsequent
processing, which will lead to a failure.

This code excerpt contains two “if” statements (s1 and s5),
which divide the code excerpt into three basic blocks [5] (namely,
b1, b2, and b3). The basic block b1 contains only one statement
s1. The result of evaluating “block_queue” in s1 determines
whether the statements s2 to s8 are skipped. The basic blocks b2
contains statements s2, s3, s4, and s5. The basic block b3

contains statements s6, s7, and s8. We also depict the code
excerpt as a control flow graph (CFG) in Figure 1. In this CFG,
each rectangular box represents a basic block and each arrow
represents a control flow edge that connects two basic blocks. For
example, e2 indicates that the decision in s1 has been evaluated
to be true in an execution, so it transits from b1 to b2. Since the
fault lies in b2, we use a weighted border to highlight the
rectangular box b2. Note that we add a dummy block b4 (as a
dashed rectangular box) and an edge e6 (as a dashed arrow) to
make this CFG more comprehensible.

We examine the program logic, and observe that many failures
are caused by the execution of b2 followed by b3, rather than
merely executing b2 without executing b3. Even if b2 is
executed and results in some infected program state, skipping b3
will not alter the priority queue, and thus the effect of the fault at
s2 is less likely to be observed through subsequent program
execution. On the other hand, executing b2 followed by b3 means
that an infected program state (such as incorrect values for the
variables count, n, or proc) at b2 is successfully propagated to b3
through the edge e4. Since previous studies suggest the compari-
son of execution statistics to assess the suspiciousness scores of
statements, they will be more likely to result in a wrong deci-
sion ― b3 will appear to be more suspicious than b2. The follow-
ing serves as an illustration.

In this example, we use seven test cases (dubbed t1 to t7).
Their statement and edge execution details are shown in Figure 1.
A cell with the “●” notation indicates that the corresponding state-
ment is exercised (or an edge is traversed) in the corresponding
test execution. For instance, let us take the first test case t1 (a
successful one, referred to as “passed”). During its execution, the
basic blocks b1, b2, and b4 are exercised; moreover, the control
flow edges e1, e2, and e5 are traversed. Other test cases can be
interpreted similarly. The passed/fail status of each test case is
shown in the “Pass/Fail status” row. We apply Tarantula [24],

Jaccard [1], and SBI

1 [24] to compute the suspiciousness score of
every statement, and rank statements in descending order of their
scores. Presuming that the programmer may check each statement
according to their ranks until reaching the fault [15][24], we thus
compute the effort of code examination to locate this fault
[15][24]. We show their effectiveness in the “susp.” and “rank”
columns, and the row “% of code examined according to the rank-
ing of statements” of Figure 1. We observe that b3, rather than b2,
is deemed to be the most suspicious basic block if we apply
Tarantula or SBI. When applying Jaccard, b2 and b3 are equally
deemed to be the most suspicious basic blocks. As a result, the
fault cannot be effectively located by any of these techniques. To
locate the fault, each examined technique needs to examine 78%
of the code.

Intuitively, the execution of b3 may lead to a failure, and yet it
is not the fault. On the other hand, b2 contains the fault, but its
execution does not lead to a failure as often as b3. Since existing
techniques find the suspicious program entities that correlate to
failures, they give higher ranks to those statements (such as b3)
whose executions frequently lead to failures, but give lower ranks
to those statements (such as b2) whose executions less often lead
to failures. If we always separately assess the fault suspiciousness
of individual statements (such as b2 and b3) and ignore their
relations, this problem may hardly be solved.

Since executing an edge can be regarded as executing both the
two basic blocks connected by the edge, do edge-oriented tech-
niques somehow capture the relationships among statements and
perform effectively on this example? We follow [21] to adopt br,
an edge-oriented technique (which we will refer to as Branch in
this paper) to work on this example. Branch assesses the suspi-
ciousness scores of control flow edges (say, e1 and e2), and then
associate their suspiciousness scores with statements that are
directly connected (in sense of incoming edges or outgoing edges).
Branch first ranks e2 and e4 as the most suspicious edges (both
having a suspiciousness score of 0.71). In a program execution,
traversing e2 means to enter the true branch of s1 followed by
executing b2, and traversing e4 means having executed b2 and
will continue to execute b3. We observe that executing b2
generates infected program states (on variables count, n, and proc),
which propagate to b3 through e4. We further observe that these
two highly ranked edges precisely pinpoint the fault location.
When associating edges to statements, the rules in Branch only
propagate the edge suspiciousness to those statements within the
same block as the conditional statement for the edge. However, a
fault may be several blocks away from the edge and the loop
construct may even feedback a faulty program state. For this
example, Branch assigns identical suspiciousness scores to all
statements and they cannot be distinguished from one another. As
a result, 100% code examination effort is needed to locate the fault.
Since the core of Branch is built on top of Ochiai [1], we have
iteratively replaced this core part of Branch by Tarantula, Jaccard,
and SBI. However, the fault-localization effectiveness results are
still unsatisfactory (100% code to be examined). In practice, the
propagation of infected program states may take a long way, such
as a sequence of edges, before it may finally result in failures. We
need a means to transfer over the edges information about infected
program states and failures.

1 In this paper, we use the term SBI to denote Yu et al.’s approach [24] of
applying Liblit et al.’s work CBI [18] at statement level. At the same time,
we still keep the term CBI when referring to the original technique in [18].

4

3. OUR MODEL
3.1 Problem Settings
Let P be a faulty program, T = {t1, t2, …, tu} be a set of test cases
associated with passed executions, and T' = {t'1, t'2, …, t'v} be a set
of test cases that are associated with failed executions. In the
motivating example, for instance, P is version v2 of schedule, T =
{t1, t2, t4, t5, t7}, and T' = {t3, t6}. Similar to existing
work (such as [15]), the technique assesses the fault suspicious-
ness of each statement of P and can also produce a list of state-
ments of P in descending order of the suspiciousness scores.

3.2 Preliminaries
We use G(P) = B, E to denote the control flow graph (CFG)
[3][5] of the program P, where B = {b1, b2, …, bn} is the set of
basic blocks (blocks for short) of P, and E = {e1, e2, …, em} is the
set of control flow edges (edges for short) of P, in which each
edge ei goes from one block to another (possibly the same block)
in B. Thus, we sometimes write ei as edg(bi1, bi2) to denote an edge
going from bi1 to bi2; this edge ei is called the incoming edge of bi2
and the outgoing edge of bi1. The block bi2 is a successor block of
bi1, and the block bi1 is a predecessor block of bi2. We further use
the notation edg(*, bj) and edg(bj, *) to represent the set of in-
coming edges and the set of outgoing edges of bj, respectively. In
Figure 1, for instance, edges e4 and e5 are the outgoing edges of
block b2, and block b3 is a successor block of b2 with respect to
edge e4; edg(b3, *) = {e6} is the set of outgoing edges of block
b3, and edg(*, b3) = {e4} is the set of incoming edges of block
b3.

An edge is said to have been covered by a program execution if
it is traversed at least once. For every program execution of P,
whether an edge is covered in E can be represented by an edge
profile. Suppose tk is a test case. We denote the edge profile for tk
by P(tk) = θ(e1, tk), θ(e2, tk), …, θ(em, tk), in which θ(ei, tk) means
whether the edge ei is covered in the corresponding program
execution of tk. In particular, θ(ei, tk) = 1 if ei is covered by the
execution, whereas θ(ei, tk) = 0 if ei is not covered. Take the
motivating example in Figure 1 for illustration. The edge profile
for test case t1 is P(t1) = θ(e1, t1), θ(e2, t1), θ(e3, t1),
θ(e4, t1), θ(e5, t1), θ(e6, t1) = 1, 1, 0, 0, 1, 0.

3.3 CP: Our Fault-Localization Model
We introduce our fault-localization model in this section.

A program execution passing through an edge indicates that the
related program states have propagated via the edge. Therefore,
we abstractly model a program state in a program execution as
whether the edge has been covered by the program execution, and
contrast the edge profiles in passed executions to those of failed
executions to Capture the suspicious Propagation of program
states abstractly. We name our model as CP.

In Section 3.3.1, CP first uses equation (1) to calculate the mean
edge profile for the corresponding edge profiles of all passed
executions, and another mean edge profile for those of all failed
executions. Such mean edge profiles represent the central tenden-
cies of the program states in the passed executions and failed
executions, respectively. CP contrasts the two mean edge profiles
to assess the suspiciousness of every edge. The formula to
compute the suspiciousness score is given in equation (2) and
explained with the aid of equation (3).

During a program execution, a block may propagate program
states to adjacent blocks via edges connecting to that block. In
Section 3.3.2, we use equation (4) to calculate the ratio of the

propagation via each edge, and use such a ratio to determine the
fraction of the suspiciousness score of a block propagating to a
predecessor block via that edge. We use backward propagation to
align with the idea of backtracking from a failure to the root cause.
For each block, CP uses a linear algebraic equation to express its
suspiciousness score by summing up such fractions of suspicious-
ness scores of successor blocks of the given block. Such an equa-
tion is constructed using equation (5) or (6), depending on whether
the block is a normal or exit block. By solving the set of equations
(by Gaussian elimination), we obtain the suspiciousness score for
each block involved.

As presented in Section 3.3.3, CP ranks all blocks in descend-
ing order of their suspiciousness scores, then assigns a rank to
each statement, and produces a ranked list of statements by sorting
them in descending order of their suspiciousness scores.

3.3.1 Calculating the Edge Suspiciousness Score
In Section 2, we have shown that edges can provide useful correla-
tion information for failures. However, the size of T may be very
different from that of T'. To compare the sets of edge profiles for T
with those for T', we propose to compare their arithmetic means
(that is, central tendencies).

If an edge is never traversed in any execution, it is irrelevant to
the observed failures. There is no need to compute the propagation
of suspicious program states through that edge. We thus exclude
them from our calculation model in Sections 3.3.1 and 3.3.2.

 In our model, we use the notation P√= θ√(e1), θ√(e2), …,
θ√(em) to denote the mean edge profile for T, and P× = θ×(e1),
θ×(e2), …, θ×(em) for T', where θ√(ei) and θ×(ei) for i = 1 to m are
calculated by:

(݁) = ݑ1 ሾθ(݁,)ሿ௧ೖݐ ∈் ;		×(݁) = ݒ1 ሾθ(݁, ∈்ᇲ	ᇱ)ሿ௧ᇲೖݐ . (1)

Note that the variables u and v in equation (1) represent the total
numbers of passed and failed test cases, respectively. Intuitively,
θ√(ei) and θ×(ei) stand for the probabilities of an edge being
exercised in a passed execution and failed execution, respectively,
over the given test set. For example, θ×(e4) = (θ(e4, t3) + θ(e4,
t6)) / 2 = (1 + 0) / 2 = 0.5 and, similarly, θ√(e4) = 0.

Edge suspiciousness calculation. We calculate the suspicious-
ness score of any given edge ei using the equation

∆(݁) = ×(݁) − (݁)
×(݁) + (݁), (2)

which contrasts the difference between the two mean edge profiles.
Intuitively, θ∆(ei) models the (normalized) difference between the
probability of ei being traversed in an average passed execution
and the probability of an average failed execution. When θ∆(ei) is
positive, it reflects that the probability of edge ei being covered in
P× is larger than that in P√. Since such an edge is more frequently
exercised in failed executions than in passed executions, it may be
more likely to be related to a fault. When θ∆(ei) = 0, the edge ei has
identical probabilities of being covered in P× and P√. Such an edge
is deemed to be less likely to be related to a fault than an edge
having a positive suspiciousness score. When θ∆(ei) is negative, it
means that ei is less frequently executed in P× than in P√.

In short, for an edge ei, the higher the values of θ∆(ei), the more
suspicious the edge ei is deemed to be, and the more suspicious the
propagation of program states via ei is deemed to be.

5

To understand why equation (2) is useful for ranking edges ac-
cording to their suspiciousness, let Prob(ei) denote the (unknown)
probability that the propagation of infected program states via ei
will cause a failure. The proof in Appendix A shows that ܾܲݎ(݁) = ݒ ⋅ ×(݁)ݒ ⋅ ×(݁) + ݑ ⋅ (݁) (3)

is the best estimate for this probability. It is also proved in
Appendix B that, no matter whether equation (2) or (3) is chosen
to estimate the fault-relevance of edges, sorting edges in descend-
ing order of the results always generates the same edge sequence
(except tie cases). In other words, we can also determine the order
of the suspiciousness of the edges through equation (3), or
determine the probability that an edge causes a failure by using
equation (2).

We will adopt equation (2) rather than equation (3) because the
value range of equation (2), which is from −1 to 1 and symmetric
with respect to 0, favors follow-up computation. For example,
equation (3) always generates positive values. However, summing
up positive operands always generates an operation result that is
greater than each operand, and hence there may not be a solution
for the constructed equation set (see Section 3.3.2).

Take the motivating example as an illustration. Prob(e1) = (2 ×	 1.00) / (2 ×	 1.00 + 5	 ×	 1.00) = 0.29. Similarly, Prob(e2) = 0.50,
Prob(e3) = 0.00, Prob(e4) = 1.00, Prob(e5) = 0.33, and Prob(e6)
= 1.00. Furthermore, θ∆(e1) = (1.00 – 1.00) / (1.00 + 1.00) = 0.00.
Similarly, θ∆(e2) = 0.43, θ∆(e3) = −1.00, θ∆(e4) = 1.00, θ∆(e5) =
0.11, and θ∆(e6) = 1.00. By sorting e1 to e6 in descending order
of their values using equation (2), we obtain {e4, e6}, e2, e5,
e1, e3, where e4 and e6 form a tie case. Based on the two most
suspicious edges (e2 and e6), we can focus our attention to trace
from b2 to b3 via e4, and then to b4 via e6. However, one still
does not know how to rank the fault suspiciousness of the blocks
(other than examining all three blocks at the same time). In the
next section, we will show how we use the concept of propagation
to determine the suspiciousness score of each block.

3.3.2 Solving Block Suspiciousness Score
By contrasting the mean edge profiles of the passed executions
and the failed executions, we have computed the suspiciousness of
edges in the last section. In this section, we further associate edges
with blocks, and assess fault suspiciousness score of every block.
To ease our reference, we use the notation BR(bj) to represent the
suspiciousness score of a block bj.

Let us first discuss how a program execution transits from one
block to another. After executing a block bj, the execution may
transfer control to one of its successor blocks. Suppose bk is a
successor block of bj. The program states of bj may be propagated
to bk via the edge edg(bj, bk). Rather than expensively tracking the
dynamic program state prorogation from bj to bk, we approximate
the expected number of infected program states of bj observed at
bk as the fraction of the suspiciousness score of bj from that of bk.
This strategy aligns with our understanding that we can only
observe failures from outputs rather than from inputs.

Constructing an equation set. To determine the fraction men-
tioned above, we compute the sum of suspiciousness scores of the
incoming edges of bk, and compute the ratio of propagation via the
edge edg(bj, bk) as the ratio of the suspiciousness score of this
particular edg(bj, bk) over the total suspiciousness score for all
edges. The formula to determine this ratio is:

ܹ൫ ܾ, ܾ൯ = θ∆൫edg(ܾ, ܾ)൯ ൣθ∆(edg(∗, ܾ))൧∀ ୣୢ(∗,ೖ)

(4)

W(bj, bk) models the portion of the contribution of edg(bj, bk) with
respect to the total contribution by all incoming edges of bk. Intui-
tively, it represents the ratio of the observed suspicious program
states at bk that may be prorogated from bj.

The fraction of the suspiciousness score that bk contributes to bj
is, therefore, the product of this ratio and the suspiciousness score
of bk (that is, BR(bk) × W(bj, bk)).

In general, a block bj may have any number of successor blocks.
Hence, we sum up such a fraction from every successor block of bj
to give BR(bj), the suspiciousness score of bj, thus: ܴܤ൫ ܾ൯ = (ܾ)ܴܤൣ ⋅ ܹ(ܾ, ܾ)൧∀ ୣୢ(ೕ,ೖ) (5)

Let us take the motivating example for illustration: b2 has two
outgoing edges connecting to two successor blocks b3 and b4,
respectively. Its suspiciousness score BR(b2) is, therefore, calcu-
lated as BR(b3) · W(b2, b3) + BR(b4) · W(b2, b4). The propa-
gation rate W(b2, b4) is calculated as (b2, b4) = θ∆(e5) / (θ∆(e3)
+ θ∆(e5) + θ∆(e6)) = 0.11 / (−1.00 + 0.11 + 1.00) = 1. The
propagation rate W(b2, b3) is calculated as θ∆(e4) / θ∆(e4) =
1.00 / 1.00 = 1.

Handling exception cases. We normally calculate the suspicious-
ness score of a block via its successor blocks. Let us consider an
exception case where a block may have no successor. For a block
containing, say, a return, break, or exit() function call, or for a
block that crashes, the program execution may leave the block, or
cease any further branch transitions after executing the block. In
our model, if a block is found not to transit the control to other
successor blocks in the same CFG (as in the case of a return
statement or callback function), we call it an exit block. Since exit
blocks have no successor block, we do not apply equation (5) to
calculate its suspiciousness score. Instead, we use the equation ܴܤ൫ ܾ൯ = ൣθ∆൫edg(∗, ܾ)൯൧∀ ୣୢ(∗,ೕ) , (6)

which sums the suspiciousness scores of all the incoming edges to
calculate the suspiciousness score of the exit block. Consider the
motivating example again. There is no successor for b4 in the CFG
in Figure 1. Hence, BR(b4) = θ∆(e3) + θ∆(e5) + θ∆(e6) = −1.00 +
0.11 + 1.00 = 0.11. (We should add that there are alternative ways
to model the suspiciousness score for an exit block, such as using
the formulas for block-level CBFL techniques.)

We have constructed an equation of BR(bj) for every block bj
(including exit blocks). In other words, we have set up an equation
set containing n homogenous equations (one for each block) and n
variables as the left-hand side of each equation (one for each
suspiciousness score of that block). In such a case, the equation set
satisfies a necessary condition of being solvable by existing effi-
cient algorithms for solving equation sets (such as Gaussian elimi-
nation [29], which we also adopt in the experiment in Section 5).
In the motivating example, we can set up an equation set {BR(b4)
= 0.11, BR(b3) = 9 × BR(b4), BR(b2) = BR(b4) + BR(b3),
BR(b1) = −9 × BR(b4) + BR(b2)}. We can solve it to give BR(b4)
= 0.11, BR(b3) = 1.00, BR(b2) = 1.11, and BR(b1) = 0.11.

6

3.3.3 Synthesizing a Ranked List of Statements
After obtaining the suspiciousness score for every block, we
further group those statements not in any block (such as global
assignment statements) into a new block, and give it a lower
suspiciousness score than that of any other ranked block. We also
merge those blocks having identical suspiciousness scores, and
produce a ranked list of blocks in descending order of their suspi-
ciousness scores. All the non-executable statements and state-
ments that are not exercised by any given executions are consoli-
dated into one block, which is appended to the end of the ranked
list and given the lowest suspiciousness score. Finally, one may
assign ranks for statements. Following previous work [15], the
rank of a statement is assigned as the sum of total number of
statements in its belonging block and the total number of
statements in the blocks prior to its belonging block. The CP
column of Figure 1 shows the ranks of statements by our method,
which only needs 44% code examination effort to locate a fault.

4. DISCUSSIONS
In previous work, a tie-break strategy (see [21][24]) is further
employed to optimize the baseline fault-localization techniques.
They give a better ranking list when one follows the ranking list to
locate faults. However, they do not modify the computed
suspicious scores of the program entities by those techniques. Our
technique can also be optimized in exactly the same way.

In our technique, we capture the propagation of infected
program states via CFG. In fact, other flow-graph representations
of program executions, such as program dependency graphs [3] or
data flow graphs, may be employed to replace CFG. We do not
iteratively show how to adapt each of them in our technique.

The space and time complexity of our technique is analyzed as
follows: With the same problem settings (u passed executions, v
failed executions, n blocks, and m edges), the space complexity is
mainly determined by the space needed to maintain the mean edge
profiles for the passed executions and the failed executions, and
the suspiciousness scores for edges, which are O(um), O(vm), and
O(m), respectively. Therefore the space complexity of our tech-
nique is O(um + vm). The time complexity is determined by the
time used to solve the set of equations. If Gaussian elimination is
adopted, the time complexity of our technique will be O(n3).

5. EXPERIMENTAL EVALUATION
In this section, we conduct a controlled experiment to evaluate the
effectiveness of our technique.

5.1 Setup of Experiment
5.1.1 Subject Programs
We use four UNIX programs, namely, flex, grep, gzip, and sed, as
subject programs. They are real-life medium-sized programs, and
have been adopted to evaluate other CBFL techniques (as in
[14][23][26]). We downloaded the programs (including all ver-
sions and associated test suites) from SIR [10] on January 10,
2008. Each subject program has multiple (sequentially labeled)
versions. Table 1 shows the real-life program versions, numbers of
lines of executable statements (LOC), numbers of applicable
faulty versions, and the sizes of the test pools. Take the program
flex as an example. The real-life versions include flex-2.4.7 to flex-
2.5.4, and have 8571 to 10124 lines of executable statements. 21
single-fault versions are used in the experiment. All these faulty
versions share a test suite that consists of 567 test cases. Following
[12], we apply the whole test suite as inputs to individual subject
programs.

Following the documentation of SIR [10] and previous experi-
ments [12][15][18][19], we exclude any single-fault version
whose faults cannot be revealed by any test case. This is because
both our technique and the peer techniques used in the experiment
[1][18][19][24] require the existence of failed executions. More-
over, we also exclude any single-fault version that fails for more
than 20% of the test cases [10][12]. Besides, as Jones et al. have
done in [15], we exclude those faulty versions that are not sup-
ported by our experimental environment and instrumentation tool
(we use the Sun Studio C++ compiler and gcov to collect edge
profile information on program versions). All the remaining 110
single-fault versions are used in the controlled experiment (see
Table 1).

5.1.2 Peer Techniques
In our experiment, we select five representative peer techniques to
compare with our technique. Tarantula [24] and Jaccard [1] are
two statement-level techniques. They are often chosen as alterna-
tives for comparison in other evaluations of fault-localization tech-
niques. CBI [18] and SOBER [19] are predicate-level techniques.
Since they make use of predicates (such as branch decisions) to
locate suspicious program positions, which are related to the edge
concept in our technique, we decide to compare these techniques
with ours. Note that CBI originally proposed to use random
sampling to collect predicate statistics to reduce overhead. In our
evaluation on CBI, we sample all the predicates (as in [19]) via
gcov. In Yu et al.’s work [24], CBI is modified to become a
statement-level technique (SBI [24]), and we also include SBI for
comparison with our technique. Note that a tie-breaking strategy is
included in Tarantula as stated in [24]. CP uses no tie-breaking
strategy in our experiment.

5.1.3 Effectiveness Metrics
Each of Tarantula, SBI, Jaccard, and CP produces a ranked list of
all statements. For every technique, we check all the statements in
ascending order of their ranks in the ordered list, until a faulty
statement is found. The percentage of statements examined (with
respect to all statements) is returned as the effectiveness of that
technique. This metric is also used in previous studies [14][24].
We note also that statements having the same rank are examined
as a group.

CBI and SOBER generate ranked lists of predicates. To the best
of our knowledge, the metric T-score [20] is used to evaluate their
effectiveness in previous studies [19]. T-score uses a program
dependence graph to calculate the distance among statements.
Starting from some top elements in a ranked list of predicates, T-
score conducts breadth-first search among the statements to locate
a fault. The search terminates when it encounters any faulty state-
ment, and the percentage of statements examined (with respect to
all statements) is returned as the effectiveness of that technique
[20]. Since it is reported in [19] that the “top-5 T-score” strategy
gives the highest performance for CBI and SOBER, we follow suit

Table 1: Statistics of Subject Programs

Real-life
versions

Program
Description

LOC
No. of

single-fault
versions

No. of
test

cases

flex 2.4.7–2.5.4 lexical parser 8571−10124 21 567
grep 2.2–2.4.2 text processor 8053−9089 17 809
gzip 1.1.2–1.3 compressor 4081−5159 55 217
sed 1.18–3.02 text processor 4756−9289 17 370

7

to choose the top-5 predicates and report the top-5 T-score results
as their effectiveness in our experiment.

If a fault is in a non-executable statement (such as the case of a
code omission fault), dynamic execution information cannot help
locate the fault directly. To reflect the effectiveness of a technique,
we follow previous studies (such as [14]) to mark the directly
infected statement or an adjacent executable statement as the fault
position, and apply the above metrics.

5.1.4 Experiment Environment and Issues
The experiment is carried out in a Dell PowerEdge 1950 server (4-
core Xeon 5355 2.66GHz processors, 8GB physical memory, and
400GB hard disk) serving a Solaris UNIX with the kernel version
Generic_120012-14. Our framework is compiled using Sun C++
5.8.

When applying our technique, an exceptional case is that the
denominator in equation (4) may be zero. For every occurrence of
a zero denominator in the experiment, the tool automatically re-
places it by a small constant. 10−10 is chosen as the constant,
which is less than any intermediate computing result by many
degrees of magnitude. We have varied this constant from to 10−11
to 10−9 and compared the effectiveness results of CP, and con-
firmed that the results are the same.

In the experiment, the time needed to generate a ranked list for
one faulty version is always less than 1 second. The mean time
spent for one faulty version is about 0.455 seconds.

5.2 Data Analysis
In this section, we compare our technique with Tarantula, SBI,
Jaccard, CBI, and SOBER, and report their effectiveness on the
110 single-fault program versions. In the following subsections,
the data related to “Tarantula”, “SBI”, “Jaccard”, “CBI”, and
“SOBER” are worked out using the techniques described in the
papers [24], [24], [1], [18], and [19], respectively. The data related
to “CP” are worked out using our technique. For every plot in

Figure 2 and Figure 3, we use the same set of x-axis labels and
legends.

5.2.1 Overall Results
To evaluate the overall effectiveness of a technique, we first take
the average of the effectiveness results on the four subject pro-
grams. The results are shown in Figure 2. In the plot in Figure 2(a),
the x-axis means the percentage of code that needs to be examined
in order to locate the fault (according to the effectiveness metrics).
We also refer to it as the code examination effort in this paper. The
y-axis means the mean percentage of faults located. Take the
curve for CP in Figure 2(a) for illustration. On average, CP can
locate 48.24% of all faults by examining up to 5% of the code in
each faulty version. The curves of Tarantula, Jaccard, CBI, SBI,
and SOBER can be interpreted similarly. Note that the effective-
ness of Tarantula, SBI, and Jaccard are very close, and hence
their curves in Figure 2 and Figure 3 almost completely overlap.

Figure 2(a) gives the overall effectiveness of CP, Tarantula,
SBI, Jaccard, CBI, and SOBER. Each of the six curves starts at the
point (0%, 0%) and finally reaches the point (100%, 100%).
Obviously, it reflects the fact that no fault can be located when
examining 0% of the code, while all the faults can be located
when examining 100%. We observe from the figure that CP can
locate more faults than CBI and SOBER in the range from 1% to
99% of the code affordable to be examined. Moreover, the figure
also shows that CP can locate more faults than Tarantula, SBI,
and Jaccard almost in the entire range of the first one third (from
2% to 33%) of the code examination effort.

When comparing the mean effectiveness, although one cannot
meaningfully conclude the results from outliner segments (such as
those data points beyond three standard deviations), previous
studies such as [19] once reported the results on the first 20% code
examination range. Therefore, we further zoom in (to the range of
[0%, 20%]) as shown in Figure 2(b).

(b) overall results in zoom-in range of [0%, 20%]

(a) overall results in full range of [0%, 100%] (c) weighted overall results in range of [0%, 20%]

Figure 2 : Overall effectiveness comparison

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP (our paper)

Tarantula [23]

SBI [23]

Jaccard [1]

CBI [17]

SOBER [18]

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP (our paper) Tarantula [23]
SBI [23] Jaccard [1]
CBI [17] SOBER [18]

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20%

w
ei

gh
te

d
 %

 o
f

fa
u

lt
 lo

ca
te

d

% of code examined

CP (our paper) Tarantula [23]
SBI [23] Jaccard [1]
CBI [17] SOBER [18]

8

The figure shows that, if only 1% of the code is affordable to be
examined, Tarantula, SBI, and Jaccard can locate 31.99% of all
faults, CP can locate 24.50%, CBI can locate 8.54%, while
SOBER cannot locate any fault. If 2% of the code is affordable to
be examined, encouragingly, CP not only catches up with Taran-
tula, SBI, and Jaccard, but also exceeds them a lot. For example,
CP, Tarantula, SBI, Jaccard, CBI, and SOBER locate 41.55%,
33.18%, 32.45%, 32.90%, 11.48%, and 0.00% of the faults in all
faulty versions, respectively. In the remaining range (from 2% to
20%) in Figure 2(b), CP always locates more faults than the peer
techniques. For example, when examining 8%, 9%, and 10% of
the code, CP locates 55.31%, 57.86%, and 57.86% of the faults,
respectively; Tarantula locates 38.75%, 40.67%, and 42.03% of
the faults; SBI locates 38.75%, 40.67%, and 42.49%; and Jaccard
locates 38.46%, 40.39%, and 41.75%. In summary, by examining
up to 20% of the code, CP can be more effective than the peer
techniques.

In previous studies, a weighted average method has also been
used [8]. For example, Chilimbi et al. [8] uses the total number of
faults located in all programs as the y-axis (in the sense of Figure
2(b)), rather than the average percentage of faults located. To
enable reader to compare previously published results with ours,
we follow [8] to present such a plot as Figure 2(c). From this
figure, we observe that if 2% to 16% of the code is examined, CP
performs better than the other five techniques. However, Taran-
tula, SBI, and Jaccard catch up with CP gradually. The range (21%
to 99%) is not shown in this paper owing to space limit, and yet
we do observe that the effectiveness of CP, Tarantula, SBI, and
Jaccard are very similar. More detailed statistical comparisons
can be found in Section 5.2.3.

Overall, the experiment shows that CP can be effective. At the
same time, it also shows that CP can be further improved.

5.2.2 Results on Individual Subject Programs
We further compare the effectiveness of CP against the peer tech-
niques on each subject program. Figure 3 shows the corresponding
results on the programs flex, grep, gzip, and sed, respectively.
Take the curve for SBI in Figure 3(a) for illustration. Like Figure
2(a), the x-axis means the percentage of code examined, and the y-
axis means the percentage of faults located by SBI within the

given code examination effort (specified by the respective value
on the x-axis). The curves for CP, Tarantula, Jaccard, CBI, and
SOBER can be interpreted similarly.

The four plots in Figure 3 give the overall effectiveness of CP,
Tarantula, SBI, Jaccard, CBI, and SOBER on each subject pro-
gram. If 5% of the code has been examined, CP can locate faults
in 47.61%, 52.94%, 21.81%, and 70.58% of the faulty versions of
the programs flex, grep, gzip, and sed, respectively. On the other
hand, Tarantula can locate 52.38%, 0.00%, 18.18%, and 70.58%
of the faults, respectively; SBI can locate 52.38%, 0.00%, 20.00%,
and 70.58%; Jaccard can locate 52.38%, 0.00%, 21.81%, and
70.58%; CBI can locate 9.52%, 29.41%, 0.00%, and 35.29%; and
SOBER can locate 0.00%, 5.88%, 0.00%, and 0.00%. The other
points on the curves can be interpreted similarly.

Similarly to Section 5.2.1, let us discuss the first 20% of the
code examination range. For flex and gzip, we observe that CP
performs better than CBI or SOBER, and performs comparably
with Tarantula, SBI and Jaccard. For grep and sed, CP locates
more faults than Tarantula, SBI, Jaccard, CBI, and SOBER within
the first 20% code examination range. In summary, CP performs
outstandingly in this range.

5.2.3 Statistics Analysis on Individual Faulty Versions
In this section, we further use popular statistics metrics to compare
different techniques. Table 2 lists out the minimum (min),
maximum (max), medium, mean, and standard derivation (stdev)
of the effectiveness of these techniques, on the 110 single-fault
versions. The effectiveness of each technique is evaluated using
the same metric as in the previous section; therefore, the smaller
the magnitude, the better is the effectiveness. We observe that in
each row, CP gives the best (smallest) value among the six
techniques, which further strengthens our belief that CP can be
effective on locating faults.

To further find the relative merits on individual versions, we
compute the difference in effectiveness between CP and each peer
technique, and the results are shown in Table 3. Take the cell in
column “CP−Tarantula” and row “< −5%” as an example It

(a) flex (b) grep (c) gzip (d) sed

Figure 3 : Effectiveness on individual programs.

Table 2: Statistics of effectiveness

CP

(this paper)
Tarantula

[24]
SBI
[24]

Jaccard
[1]

CBI
[18]

SOBER
[19]

min 0.01% 0.01% 0.01% 0.01% 0.26% 2.97%
max 93.55% 97.50% 97.50% 97.50% 100.00% 100.00%

medium 11.67% 12.86% 12.48% 12.48% 40.74% 42.84%
mean 17.98% 19.63% 19.74% 19.26% 40.55% 42.96%
stdev 20.92% 22.47% 22.63% 22.39% 27.89% 23.98%

Table 3: Statistics of differences in effectiveness

Difference (percentage difference)

CP−Tarantula CP−SBI CP−Jaccard CP−CBI CP−SOBER
 < −1% 47 (42.72%) 48 (43.63%) 46 (41.81%) 86 (78.18%) 95 (86.36%)

−1% to 1% 19 (17.27%) 18 (16.36%) 19 (17.27%) 6 (5.45%) 2 (1.81%)
> 1% 44 (40.00%) 44 (40.00%) 45 (40.90%) 18 (16.36%) 13 (11.81%)

 < −5% 42 (38.18%) 41 (37.27%) 40 (36.36%) 80 (72.72%) 91 (82.72%)
−5% to 5% 41 (37.27%) 43 (39.09%) 42 (38.18%) 16 (14.54%) 7 (6.36%)

> 5% 27 (24.54%) 26 (23.63%) 28 (25.45%) 14 (12.72%) 12 (10.90%)
 < −10% 31 (28.18%) 31 (28.18%) 30 (27.27%) 71 (64.54%) 82 (74.54%)

−10% to 10% 60 (54.54%) 60 (54.54%) 60 (54.54%) 28 (25.45%) 18 (16.36%)
> 10% 19 (17.27%) 19 (17.27%) 20 (18.18%) 11 (10.00%) 10 (9.09%)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP (our paper)
Tarantula [23]
SBI [23]
Jaccard [1]
CBI [17]
SOBER [18]

9

shows that, for 42 (38.18%) of the 110 faulty versions, the code
examination effort of using CP to locate a fault is less than that of
Tarantula by more than 5%. Similarly, for the row “> 5%”, only
27 (24.54%) of the 110 versions, the code examination effort of
CP is greater than that of Tarantula by more than 5%. For 41
(37.27%) of the faulty versions, the effectiveness between CP and
Tarantula cannot be distinguished at the 5% significance level.

We therefore deem that, at the 5% significance level, the prob-
ability of CP performing better than Tarantula on these subject
programs is higher than that of Tarantula performing better than
CP. We further vary the significance level from 5% to 1% and
10% to produce the complete table. The experimental result shows
that the probability of CP performing better than its peer technique
is consistently higher than that for the other way round.

5.2.4 Discussions of Multi-Fault Programs
In this section, we use a real-life multi-fault program to validate
the effectiveness of CP. Our objective here is to study CP rather
than comparing CP with peer techniques.

Version v3 of flex has the largest number of feasible faults (9 in
total) and flex is the largest subject program in the entire
experiment. Therefore, we enable all the nine faults of this version
to simulate a 9-fault program. Part of the code excerpt is shown in
Figure 4. After enabling all nine feasible faults, we execute the
test pool in the 9-fault program. It results in 136 failed executions
and 431 passed executions.

We apply CP to this 9-fault program, and locate the first fault in
line 3369 after examining 0.11% of the code. This fault is on an
incorrect logical operator. By analyzing the faulty Boolean ex-
pression, we find that the fault is enabled only if the decision of
the Boolean expression is true. As such, this edge (namely, the
true decision made in line 3369) rightly reveals failures due to the
fault, and CP locates this fault effectively. We simulate the fixing
of this fault by reverting the statement to the original version. We
rerun all the test cases, and find that failed executions have been
reduced to 123. We re-apply CP and locate the second fault in line
620 after examining 1.21% of the code. The fault is an incorrect
assignment of the variable yy_chk. In this version, the first
statement that uses the variable yy_chk is in line 985; it is the root
cause of failures. We manually examine the corresponding CFG
between the block (dubbed ba) containing the statement in line 620
and the block (dubbed bb) containing the statement in line 985.
There are many blocks and edges. We observe that, since none of
them uses or redefines yy_chk, the infected program state of ba has
successfully been propagated to bb along the edges. Finally, even
though the statement that outputs the failure is far away from the
fault position, CP successfully locates the fault. According to pre-
vious studies [11], both of these two faults frequently occur in C
programs. CP seems to be effective in locating certain popular

faults, although more experiments are required to confirm this
conjecture.

For space reason, we do not describe the remaining faults in
detail. The next six faults are located in lines 1030, 1361, 1549,
3398, 2835, and 11058, respectively. The code examination efforts
for locating them are 1.12%, 8.50%, 7.25%, 21.19%, 13.82%, and
88.2%, respectively. The last fault, which results in 6 failures
among 567 test cases, is found in line 12193. It is an incorrect
static variable definition. Since this fault is seeded in a global
definition statement and the compiler tool gcov fails to log its
execution, we mark its directly affected statement (say, line 12193)
as the fault position. However, CP needs to examine 93.55% of
the code to locate this fault. We scrutinize the case and find it to
be a coincidence. For 7 out of 567 test cases that do not reveal
failures, this branch statement is never covered. For the 6 test
cases that reveal failures and the remaining 560 passed test cases,
both the true branch and the false branch are covered. For more
than 90% of the cases, the number of times that each branch is
covered is very close to each other (with less than 5% difference).
It is hard for CP to distinguish these two edges. We view that this
practical scenario provides a hint for further improving CP, even
though the current experiment shows that CP is promising.

5.3 Threats to Validity
We used gcov to implement our tool in which coverage profiling is
completely conducted. The generation of the equation set by the
tool is relatively straightforward. The equations are solved using a
standard Gaussian elimination implementation. We have imple-
mented the peer techniques ourselves and checked that the
implemented algorithms adhere strictly to those published in the
literature. We have also conducted trial runs on toy programs with
limited test cases to assure the implementations of CP and other
peer techniques.

Currently, we follow [19] to use T-score when evaluating CBI
and SOBER. Some researchers have reported limitations in T-
score (see [9], for example). A P-score has been proposed in [27]
and may be considered for future studies.

CP, Tarantula, SBI, and Jaccard produce ranked lists of state-
ments, while CBI and SOBER generate ranked list of predicates.
Consequently, the experiment has used two effectiveness metrics
to report the results of different techniques. It is unsuitable to com-
pare CP on a par with CBI and SOBER. In this connection, the
comparison and the discussion of CP in relation to CBI and
SOBER should be interpreted carefully.

We use flex, grep, gzip, and sed as well as their associated test
suites to evaluate our technique. These programs are real-life
programs with realistic sizes, and they have been used in previous
studies [14][23][26]. It is certainly desirable to evaluate CP further
on other real-life subject programs and scenarios.

6. RELATED WORK
Comparing program executions of a faulty program over different
test cases and considering program states are frequently used
fault-localization strategies. Delta debugging [9] isolates failure-
causing inputs, produces cause effect chains and locates the root
causes of failures. It considers a program execution (of a failure-
causing test case) as a sequence of program states. Each state
induces the next state, until a failure is reached. Since delta
debugging is not a CBFL technique [23], we do not include it in
our detail study. Predicate switching [26] is another technique to
locate a fault by checking the execution states. It switches a
predicate’s decision at execution time to alter the original control

620

985

3369

11825

12193

do_yywrap = …; // Fault F_AA_4
…
if (! do_yywrap)
…
if ((need_backing_up && ! nultrans) …) // Fault F_AA_3
…
static yyconst short int yy_chk[2775] = { …
 836, 836, 599, … // Fault F_AA_2 …
}
…
while (yy_chk […] != …)

Figure 4 : Excerpts from multi-fault program.

10

flow of a failure-causing test case, aiming at locating a predicate
such that a switch of the decision will produce correct output.
Their latest version [14] works on the value set of all variables and
the result looks promising.

Tarantula [15] first calculates the fraction of failed (passed)
executions that executes the statement over all failed (passed)
executions. It uses the former fraction over the sum of the two
fractions as an indicator to represent the suspiciousness of
individual statements. CBI [18] estimates the chance of a predicate
being evaluated to be true in all executions and the chance of the
predicate being evaluated to be true in only failed executions. It
then calculates the increase from the former to the latter, and uses
such an increase as the measure of the suspiciousness score of the
predicate. SOBER [19] introduces the concept of evaluation bias to
express the probability that a predicate is evaluated to be true in an
execution. By collecting such evaluation biases of a statement in
all failed executions and those in all passed executions, SOBER
compares the two distributions of evaluation biases, and accor-
dingly estimate how much the predicate is suspicious. Jones et al.
[16] further use Tarantula to explore how to cluster test cases to
facilitate multiple developers to debug a faulty program in
parallel. Baudry et al. [6] observe that some groups of statements
(known collectively as a dynamic basic block) are always
executed by the same set of test cases. To optimize Tarantula,
they use a bacteriologic approach to find out a subset of original
test set that aims to maximize the number of dynamic basic
blocks. Liblit et al. [2] further adapt CBI to handle compound
Boolean expressions. Chilimbi et al. [8], in their work Holmes,
conduct statistical fault localization using paths instead of predi-
cates. Zhang et al. [28] empirically show that short-circuit rules in
the evaluation of Boolean expressions may significantly affect the
effectiveness of predicate-based techniques. In Yu et al.’s work
[24], CBI has been adapted to the statement level.

Edge profiles have been developed for years. Bond et al. [7]
propose a hybrid instrumentation and sampling approach for con-
tinuous path and edge profiling. It has been used in fault localiza-
tion. Santelices et al. [21] investigate the effectiveness of using
different program entities (statements, edges, and DU-pairs) to
locate faults. They show that the integrated results of using
different program entities may be better than the use of any single
kind of program entity. Slicing is also a means of locating faults.
Gupta et al. [13] propose to narrow down slices using a forward
dynamic slicing approach. Zhang et al. [26] integrate forward and
backward dynamic slicing approaches for debugging.

7. CONCLUSION
Fault localization is a process to find the faults in failed programs.
Existing coverage-based fault-localization approaches use the
statistics of test case executions to serve this purpose. They focus
on individual program entities, generate a ranked list of their
suspiciousness, but ignore the structural relationships among
statements.

In this paper, we assess the suspiciousness scores of edges, and
set up a set of linear algebraic equations over the suspiciousness
scores of basic blocks and statements, which abstractly models the
propagation of suspicious program states through control flow
edges in a back-tracking manner. Such equation sets can be
efficiently solved by standard mathematical techniques such as
Gaussian elimination. The empirical results on comparing existing
techniques with ours show that our technique can be effective.

We have further conducted a case study on a multi-fault
program to examine the effectiveness of our technique, and find

cases that inspire future work. In order to further enhance the
effectiveness of our approach, another prospective is to extend our
edge profile technique to cover path profiles or data flow profiles
as well.

8. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. On the accuracy of

spectrum-based fault localization. In Proceedings of TAICPART-
MUTATION ’07, pages 89–98. IEEE Computer Society, Los
Alamitos, CA, 2007.

[2] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical
debugging using compound Boolean predicates. In Proceedings of
ISSTA ’07, pages 5–15. ACM, New York, NY, 2007.

[3] G.K. Baah, A. Podgurski, and M.J. Harrold. The probabilistic
program dependence graph and its application to fault diagnosis. In
Proceedings ISSTA ’08, pages 189–200. ACM, New York, NY, 2008.

[4] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow.
In Proceedings of AADEBUG ’93 volume 749 of Lecture Notes in
Computer Science, pages 206–222. Springer, London, UK, 1993.

[5] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path profil-
ing: the showdown. In Proceedings of POPL ’98, pages 134–148.
ACM, New York, NY, 1998.

[6] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for
efficient fault localization. In Proceedings of ICSE ’06, pages 82–91.
ACM, New York, NY, 2006.

[7] M.D. Bond and K.S. McKinley. Continuous path and edge profiling.
In Proceedings of MICRO ’05, pages 130–140. IEEE Computer
Society, Los Alamitos, CA, 2005.

[8] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani. Holmes:
effective Statistical Debugging via Efficient Path Profiling. In Pro-
ceedings of ICSE ’09. IEEE Computer Society, Los Alamitos, CA,
2009.

[9] H. Cleve and A. Zeller. Locating causes of program failures. In Pro-
ceedings of ICSE ’05, pages 342–351. ACM, New York, NY, 2005.

[10] H. Do, S.G. Elbaum, and G. Rothermel. Supporting controlled expe-
rimentation with testing techniques: an infrastructure and its potential
impact. Empirical Software Engineering, 10 (4): 405–435, 2005.

[11] J.A. Durães and H.S. Madeira. Emulation of software faults: a field
data study and a practical approach. IEEE Transactions on Software
Engineering, 32 (11): 849–867, 2006.

[12] S.G. Elbaum, G. Rothermel, S. Kanduri, and A.G. Malishevsky.
Selecting a cost-effective test case prioritization technique. Software
Quality Control, 12 (3): 185–210, 2004.

[13] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using
failure-inducing chops. In Proceedings ASE ’05, pages 263–272.
ACM, New York, NY, 2005.

[14] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value
replacement. In Proceedings of ISSTA ’08, pages 167–178. ACM,
New York, NY, 2008.

[15] J.A. Jones and M.J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Proceedings of ASE ’05,
pages 273–282. ACM, New York, NY, 2005.

[16] J.A. Jones, M.J. Harrold, and J.F. Bowring. Debugging in parallel. In
Proceedings of ISSTA ’07. ACM, New York, NY, pages 16–26, 2007.

[17] A.J. Ko and B.A. Myers. Debugging reinvented: asking and
answering why and why not questions about program behavior. In
Proceedings of ICSE ’08, pages 301–310. ACM, New York, NY,
2008.

[18] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan. Scalable
statistical bug isolation. In Proceedings of PLDI ’05, pages 15–26.
ACM, New York, NY, 2005.

11

[19] C. Liu, L. Fei, X. Yan, S.P. Midkiff, and J. Han. Statistical debug-
ging: a hypothesis testing-based approach. IEEE Transactions on
Software Engineering, 32 (10): 831–848, 2006.

[20] M. Renieris and S.P. Reiss. Fault localization with nearest neighbor
queries. In Proceedings of ASE ’03, pages 30–39. IEEE Computer
Society, Los Alamitos, CA, 2003.

[21] R. Santelices, J.A. Jones, Y. Yu, and M.J. Harrold. Lightweight fault-
localization using multiple coverage types. In Proceedings of ICSE
’09. IEEE Computer Society, Los Alamitos, CA, 2009.

[22] J.M. Voas. PIE: a dynamic failure-based technique. IEEE
Transactions on Software Engineering, 18 (8): 717–727, 1992.

[23] X. Wang, S.C. Cheung, W.K. Chan, and Z. Zhang. Taming coinci-
dental correctness: refine code coverage with context pattern to
improve fault localization. In Proceedings of ICSE ’09, pages 45–55.
IEEE Computer Society, Los Alamitos, CA, 2009.

[24] Y. Yu, J.A. Jones, and M.J. Harrold. An empirical study of the effects
of test-suite reduction on fault localization. In Proceedings of ICSE
’08, pages 201–210. ACM, New York, NY, 2008.

[25] A. Zeller. Isolating cause-effect chains from computer programs. In
Proceedings of SIGSOFT ’02/FSE-10, pages 1–10. ACM, New York,
NY, 2002.

[26] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. In Proceedings of ICSE ’06, pages 272–281.
ACM, New York, NY, 2006.

[27] Z. Zhang, W.K. Chan, T.H. Tse, P. Hu, and X. Wang. Is non-
parametric hypothesis testing model robust for statistical fault local-
ization? Information and Software Technology, 51 (11): 1573–1585,
2009.

[28] Z. Zhang, B. Jiang, W.K. Chan, and T.H. Tse. Debugging through
evaluation sequences: a controlled experimental study. In Proceed-
ings of COMPSAC ’08, pages 128–135. IEEE Computer Society, Los
Alamitos, CA, 2008.

[29] D.G. Zill and M.R. Cullen. Advanced Engineering Mathematics.
Jones and Bartlett Publishers, Sudbury, MA, 2006.

APPENDIX A. Proof of equation (3)
Let Prob(ei) be the probability that the propagation of infected program

states via ei causes a failure.
Let T = {t1, t2, …, tu} be a set of test cases associated with passed

executions, and T' = {t'1, t'2, …, t'v} be a set of test cases associated with
failed executions. Let θ(ei, tk) denote whether the edge ei is covered in the
corresponding program execution of tk. We would like to estimate the
value of Prob(ei) from the subsets T1 = {tk | θ(ei, tk) = 1} ⊂ T and T2 = {t’k |
θ(ei, t’k) = 1} ⊂ T’ because the executions in these two subsets correlates
with the traversal of ei. The expected number of failed executions in the
sample set of T1 ∪ T2 is Prob(ei) × |T1 ∪ T2|. This estimate is unbiased.

To maximize the value of Prob(ei), we set the expected number of
failed executions in the sample set to be equal to the actual number of
failed executions. That is, we set Prob(ei) × |T1 ∪ T2| = |T1|. We then solve
for Prob(ei) and obtain equation (3). The details of the proof are straight-
forward.

APPENDIX B. Proof that sorting of edges
always produces the same sequence no matter
whether equation (2) or (3) is used

We need an auxiliary function for the proof. We define a sign function
such that sgn[x] = −1 if x < 0, sgn[x] = 0 if x = 0, and sgn[x] = 1 if x > 0.

Suppose ei and ej are two edges in E satisfying the conditions (i) θ×(ei)
 ≠ 0 ∨ θ√(ei) ≠ 0 and (ii) θ×(ej) ≠ 0 ∨ θ√(ej) ≠ 0. We make use of the sign
function to express their relative ranking order with respect to equation (3)
as ܾݎܲൣܖܛ(݁) − ൫ܾݎܲ ݁൯൧. Similarly, we express their relative ranking
order with respect to equation (2) as ൣܖܛθ(݁) − θ൫ ݁൯൧.

Case 1 (θ×(ei) = 0). By equation (3), ܾܲݎ(݁) = 0. Also by equation (3), ܾܲݎ൫ ݁൯ =
௩×൫ೕ൯௩×൫ೕ൯ା௨൫ೕ൯ ≥ 0. Hence, ܾݎܲൣܖܛ(݁) − ൫ܾݎܲ ݁൯൧ ×൫ൣܖܛ−= ݁൯൧. Similarly, by equation (2), ൣܖܛθ(݁) − θ൫ ݁൯൧ ×൫ൣܖܛ−= ݁൯൧. Thus, ܾݎܲൣܖܛ(݁) − ൫ܾݎܲ ݁൯൧ = θ(݁)ൣܖܛ − θ൫ ݁൯൧.

Case 2 (θ√(ei) = 0). Similarly to the proof of case 1, we have ܾݎܲൣܖܛ(݁) − ൫ܾݎܲ ݁൯൧ = θ(݁)ൣܖܛ − θ൫ ݁൯൧.
Case 3 (θ×(ei) ≠ 0 ∧ θ√(ei) ≠ 0 ∧ (θ×(ej = 0) or θ√(ej) = 0)). Similarly to

case (1), ܾݎܲൣܖܛ(݁) − ൫ܾݎܲ ݁൯൧ = θ(݁)ൣܖܛ − θ൫ ݁൯൧.
Case 4 (θ×(ei) ≠ 0 ∧ θ√(ei) ≠ 0 ∧ θ×(ej) ≠ 0 ∧ θ√(ej) ≠ 0). We first discuss

the value of ܖܛ ×()
() − ×൫ೕ൯

൫ೕ൯൨. Since none of θ×(ei), θ√(ei), θ×(ej), and

θ√(ej) is 0, each of them should be a positive number. Suppose a, b, and c
are any positive numbers, and d is any number. We have ܖܛ ×(݁)

(݁) − ×൫ ݁൯
൫ ݁൯൩ = ܖܛ− (݁)

×(݁) − ൫ ݁൯
×൫ ݁൯൩ = ܖܛ− ܾ (݁)

×(݁) + ܽ − ܾ ൫ ݁൯
×൫ ݁൯ − ܽ൩

= ܖܛ− ܽ×(݁) + ܾ(݁)
×(݁) − ܽ×൫ ݁൯ + ܾ൫ ݁൯

×൫ ݁൯ ൩
= ܖܛ ×(݁)ܽ×(݁) + ܾ(݁) − ×൫ ݁൯ܽ×൫ ݁൯ + ܾ൫ ݁൯൩ = ܖܛ ܿ ×(݁)ܽ×(݁) + ܾ(݁) − ݀ − ܿ ×൫ ݁൯ܽ×൫ ݁൯ + b൫ ݁൯ + ݀൩
= ܖܛ ×()ିௗቆ×()ା()ቇ×()ା() − ×൫ೕ൯ିௗቆ×൫ೕ൯ା൫ೕ൯ቇ×൫ೕ൯ା൫ೕ൯ .

By setting a = u, b = v, c = u, and d = 0, we have ܖܛ ×()
() − ×൫ೕ൯

൫ೕ൯൨ (݁)ܾݎܲൣܖܛ= − ൫ܾݎܲ ݁൯൧.	Similarly, by setting a = 1, b = 1, c = 2, and d

= 1, we have ܖܛ ×()
() − ×൫ೕ൯

൫ೕ൯൨ = θ(݁)ൣܖܛ − θ൫ ݁൯൧. Hence, we

obtain ܾݎܲൣܖܛ(݁) − ൫ܾݎܲ ݁൯൧ = θ(݁)ൣܖܛ − θ൫ ݁൯൧.
Thus, the relative ranking order of any two edges computed by equation

(2) is the same as that computed by equation (3).

