
1

To appear in Proceedings of the 33rd Annual International Computer Software and Applications Conference
(COMPSAC 2009), IEEE Computer Society Press, Los Alamitos, CA (2009)

An Empirical Study of the Use of Frankl-Weyuker Data Flow Testing Criteria

to Test BPEL Web Services*

Lijun Mei
The University of

Hong Kong
Pokfulam, Hong Kong

ljmei@cs.hku.hk

W. K. Chan†
City University of

Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse
The University of

Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Fei-Ching Kuo
Swinburne University of

Technology
Melbourne, Australia
dkuo@ict.swin.edu.au

Abstract—Programs using service-oriented architecture

(SOA) often feature ultra-late binding among components.
These components have well-defined interfaces and are known
as web services. Messages between every pair of web services
dually conform to the output interface of a sender and the
input interface of a receiver. Unit testing of web services
should not only test the logic of web services, but also assure
the correctness of the web services during input, manipulation,
and output of messages. There is, however, little software test-
ing research in this area. In this paper, we study the unit
testing problem to assure components written in orchestration
languages, WS-BPEL in particular. We report an empirical
study of the effectiveness of the Frankl-Weyuker data flow
testing criteria (particularly the all-uses criterion) on WS-
BPEL subject programs. Our study shows that conventional
data flow testing criteria can be much less effective in revealing
faults in interface artifacts (WSDL documents) and message
manipulations (XPath queries) than revealing faults in BPEL
artifacts.

Keywords—WS-BPEL; XPath; data flow testing

I. INTRODUCTION

Programs using service-orientation as the architectural
style often feature ultra-late binding among components.
These components, known as web services, have well-
defined interfaces to specify their input and output ports and
their semi-structured messages to be passed. For instance,
messages between every pair of web services should dually
conform to the output interface of one web service and the
input interface of the other. Thus, unit testing of web
services should not only test the logic of web services, but
also assure the correctness of the web services with respect
to the input, manipulation, and output of messages.

Web Services Business Process Execution Language
(WS-BPEL) [26] is an orchestration language that coordi-
nates web services from the perspective of individual web
services. A typical application written in WS-BPEL usually
comprises BPEL code, WSDL documents, and Web
Services. Testing the correctness of WS-BPEL applications
should, therefore, address the integration complexity arising
from the presence of heterogeneous kinds of artifacts.

We propose to consider the functional testing of
WS-BPEL applications at three levels, namely the BPEL
level, the WSDL level, and the Web Service level. The
BPEL level considers BPEL code only. This level is con-
cerned with the correctness of the business logic specified in
a process (written in BPEL). Many existing techniques,
including process modeling and verification [21], test case
generation [9][29], and exception handling [4], indeed focus
on this level. The second level is the WSDL level. A WSDL
document specifies the interface of a service. This interface
specification supplies the syntactic quantifications of the
semi-structured messages (such as in XML). An incorrect
WSDL specification may result in integration failures. At
this level, testing should consider both BPEL code and
WSDL documents (as well as other semi- structured
design-time artifacts). A few techniques such as unit testing
criteria [19] have been proposed. At the Web Service level
[23], the integration between BPEL code and web services

© 2009 IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permis-
sion of the copyright holder. Permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works must be obtained from the
IEEE.

* This research is supported in part by the General Research Fund of the
Research Grants Council of Hong Kong (project nos. 111107, 123207,
717308, and 717506) and a discovery grant of the Australian Research
Council (project no. DP0984760).
☨All correspondence should be addressed to Dr. W. K. Chan at Department
of Computer Science, City University of Hong Kong, Tat Chee Avenue,
Hong Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk.

Administrator
 HKU CS Tech Report TR-2009-08

2

should be taken into account. Techniques such as analysis
[7][8] and testing of service composition [1] can be
considered at this level.

What kinds of artifacts can traditional testing techniques
be applied effectively to reveal failures in them? Knowing
the answer to this question helps researchers propose new
testing techniques. It also helps practitioners understand
how well the conventional testing techniques that they may
have mastered can be applied effectively to testing WS-
BPEL applications at different levels.

Mei et al. [19] observe that XPath is important in testing
the integration of BPEL code, WSDL documents, and Web
Services. XPath Query (or XPath for short) [26] is a query
language designed to express or retrieve data in XML
format (that is, data stored in XML documents). In a
WS-BPEL application, XPath is chiefly responsible for
retrieving data from XML messages or BPEL variables [14].
Each XML message has its document model, such as a
Document Type Definition (DTD), to govern its structure.
Depending on the structures of different XML messages, an
XPath may retrieve different data sets and then update
BPEL variables or enable an activity transition, thus mod-
ifying the dynamic state of the program execution. Many
existing techniques, such as [7][8], simplify an XPath as an
atomic functional operation. Almost all existing techniques
[9][15] have not addressed the impact of XPath on the
testing of service-oriented programs.

In this paper, we report an empirical study of the
effectiveness of applying the Frankl-Weyuker data flow
testing criteria [6] to service-oriented programs. In particular,
we study the all-uses criterion in detail because, on average,
it tends to be more effective than other coverage criteria and
testing techniques. For instance, many previous studies such
as [6][11] have compared the all-uses criterion more
favorably than other structural testing criteria and random
testing. Furthermore, mutation testing can be more
comprehensive than data flow testing but incurs much more
cost. Taking these into account, therefore, if the all-uses
criterion turns out to be ineffective in revealing faults in a
particular kind of artifact, our findings will also cast doubt
on whether other rivaling techniques can be effective.

The main contribution of the paper is twofold: (i) We
report the first empirical study of the effectiveness of the
all-uses criterion at the WSDL level. (ii) The experimental
results show that, on average, the all-uses criterion is more
effective in revealing faults on BPEL code than revealing
faults in WSDL or XPath artifacts. This difference in effec-
tiveness is noticeable and may indicate that faults in
non-executable artifacts are harder to be detected than
executable counterparts if we apply conventional structural
testing techniques. It provides empirical evidence on the
need to develop new techniques that should also consider
non-executable artifacts.

The rest of the paper is organized as follows: Section II
outlines the technical preliminaries in testing WS-BPEL
programs, and revisits the all-uses criterion. Section III

presents the experiment and analyzes the experiment data.
Section IV reviews related work. We conclude the paper in
Section V.

II. PRELIMINARIES

This section introduces the key constructs of WS-BPEL,
shows a motivating example, and revisits the Frankl-
Weyuker data flow testing concepts.

A. WS-BPEL

A WS-BPEL program consists of three components,
namely BPEL, XPath, and Web Services (defined by
WSDL). We review each of them in this section.

1) BPEL.
BPEL is a combination of two languages: the Web

Services Flow Language (WSFL) of IBM and XLANG of
Microsoft. In general, BPEL is a language to compose web
services.

In conventional testing techniques (such as [7]), BPEL
can be represented as a control flow graph (CFG), and we

TABLE 1. TRANSLATION FROM BPEL TO CFG
B

P
E

L

Sample Code
Example in

CFG Notation

as
si

gn

<assign>
 <copy>
 <from variable="…"… />
 <to variable="…"/>
 </copy>

</assign>

zipOnly.zipCode = XQ(Exp, I)

re
ce

iv
e <receive …

 operation="…"
 variable="…" />

userName = Input()

in
vo

ke

<invoke name="…"
 partnerLink="…"
 portType="…"
 operation="…"
 inputVariable="…"
 outputVariable="…">

</invoke>

zipInformation = City2geo(city)

se
qu

en
ce

<sequence>
 <…act1…>
 <…act2…>

</sequence>

act 1

act 2

fl
ow

 <flow>
 < [condition1] seq1>
 < [condition2] seq2 seq3>

</flow>

seq 1

seq 3

seq 2

[Condition 1]
[Condition 2]

va
ri

ab
le

 <variables>
 <variable name="…"

messageType="…"/>
</variables>



3

adopt their approaches to construct the CFG nodes and
edges in our model. For illustration purpose, Table 1 shows
sample BPEL code and the corresponding translation into
CFG notation. Based on the CFG, one can then apply
conventional CFG-based testing approaches (such as [6]) to
test WS-BPEL programs.

A brief description according to the BPEL specification
[26] is as follows: The <flow> construct specifies one or
more activities to be performed concurrently. The
<sequence> construct defines a collection of activities to be
performed sequentially. The <invoke> construct allows the
business process to invoke a service in a one-way or in a
request-and-response operation using a “portType” offered
by a partner. The <assign> construct updates the values of
variables with new data. The <receive> construct allows the
business process to wait for a matching message to arrive.
Finally, the <variable> construct declares a variable. The full
description can be found in [26].

2) XPath.
In WS-BPEL programs, an XPath [26] specification is

used as both the query language and expression language. In
this paper, we focus on the use of XPath by BPEL to
retrieve data from XML messages when invoking web
services and receiving their responses. The structure of an
XML message is defined by a WSDL specification.

Referring to [10][20], we present a fragment of XPath
syntax to show how to manipulate XML messages via
XPath. In the fragment, ‘*’ denotes a label wildcard, and ‘.’
denotes the current node. The constructs ‘/’ and ‘//’ mean
child and descendant navigations, respectively, while ‘[]’
denotes a predicate. An XPath expression is defined with
the following grammar [20]:

][|//|/|.|*| qqqqqqnq 

As explained in [20], the following fragment specifies a
representative part of XPath syntax and is sufficient to be
used for research on XPath:

*
1 2 1 2

1 2 1 2

() { | (,) (), () }

*() { | (,) ()}

.() { }

(/)() { | (), (,) (), ()}

[]() { | (), () }

n x y x y EDGES t LABEL y n

x y x y EDGES t

x x

q q x z y q x y u EDGES t z q u

q q x y y q x q y

  
 


   
  

We list the fragment to help readers understand the
motivating example in Section II-B. Owing to space limit,
we will not explain the details.

3) Web Services.
Web Services is a kind of service-oriented architecture

implementation that is both platform- and language-
independent, and is accessible via standardized protocols. In
WS-BPEL applications, they are invoked by BPEL similarly
to external subroutine calls by traditional programs. In this
paper, we are concerned about testing of messages returned

by web services. We treat web services simply as invoca-
tions of external functions.

B. Motivating Example

We use an example adapted from the Apache WSIF
project [27] to illustrate the testing challenges on a
WS-BPEL application. The complete source code can be
found in [3].

 [Part 1]

1 <variables>
2 <variable name="zipInformation"
3 messageType="City2geo:GetLatLongSoapOut"/>
4 </variables>

[Part 2]
5 <partnerLinks>
6 <partnerLink name="City2Geo"
7 partnerLinkType="tns:City2GeoPLT"/>
8 </partnerLinks>

[Part 3]
9 <process name="dslservice" suppressJoinFailure="yes"…>

[Part 3A]
10 <variables>
11 <variable name="userName" messageType=
12 "addressbook:GetAddressFromNameRequestMessage"/>
13 <variable name="userAddress" messageType=
14 "addressbook:GetAddressFromNameResponseMessage"/>
15 </variables>

[Part 3B]
16 <invoke name="invokeAddressBookLookup"......
17 inputVariable="userName" outputVariable="userAddress"/>
18 <assign><copy><from variable="userAddress" part="address"
19 query="//city/"/><to variable="city"/></copy></assign>
20 <invoke name="invokeCity2GeoService" partnerLink=
21 "City2Geo" portType="city2geo:City2GeoSoap"
22 operation="GetLatLong" inputVariable="city"
23 outputVariable="zipInformation">
24 <source linkName="errorLink" transitionCondition=
25 "bpws:getVariableData('userAddress','address','//city/')!=
26 bpws:getVariableData('zipInformation','GetLatLongResult',
27 '//*[local-name()="City"]')"/>
28 </invoke>

[Part 4]
29 <assign><copy>
30 <from variable="userAddress" part="address" query="//zip/"/>
31 <to variable="zipOnly" part="zipCode"/>
32 </copy></assign>
33 <invoke name="invokeServiceAvailability"
34 partnerLink="ServiceAvailability"
35 portType="serviceavailability:CheckAvailabilityPortType"
36 operation="checkAvailability" inputVariable="zipOnly"
37 outputVariable="serviceAvailability"/>
38 <reply name="sendReply" partnerLink="User"
 portType="tns:DSLServicePT" operation="isServiceAvailable"
39 variable="serviceAvailability"/>
40 </process>

Figure 1. Example code in dslservice.bpel.

4

[Part 5]
41 <portType name="City2GeoSoap">
42 <operation name="GetLatLong">
43 <input message="s0:GetLatLongSoapIn" />
44 <output message="s0:GetLatLongSoapOut" />
45 </operation>
46 </portType>

[Part 6]
47 <message name="GetLatLongSoapOut">
48 <part name="parameters" element="s0:GetLatLongResponse"/>
49 </message>

[Part 7]
50 <s:element name="GetLatLongResponse">
51 <s:complexType><s:sequence>
52 <s:element name="GetLatLongResult"
53 type="s0:LatLongReturn" />
54 </s:sequence></s:complexType>
55 </s:element>

[Part 8]
56 <s:complexType name="LatLongReturn">
57 <s:sequence>
58 <s:element ... name="City" type="s:string" />
59 <s:element ... name="StateAbbrev" type="s:string" />
60 <s:element ... name="ZipCode" type="s:string" />
61 <s:element ... name="County" type="s:string" />
62 <s:element ... name="FromLongitude" type="s:decimal" />
63 <s:element ... name="ToLongitude" type="s:decimal" />
64 </s:sequence>
65 </s:complexType>

Figure 3. Example code in city2geo.wsdl.

[Part 9]
66 <xsd:complexType name=”address”>
67 <xsd:sequence>
68 <xsd:element name="state" type="xsd:string"/>
69 <xsd:element name="city" type="xsd:string"/>
70 <xsd:element name="streetNum" type="xsd:int"/>
71 <xsd:element name="streetName" type="xsd:string"/>
72 </xsd:sequence>
73 </xsd:complexType>

Figure 4. Example code in dslservice.wsdl.

The motivating example is a Digital Subscriber Line
service application that offers DSL query services. Let us
discuss the DSL availability check service isServiceAvailable.
This web service takes a user name as input, looks up the
user address from the address book, then retrieves the
corresponding zip information based on the given city name.
The web service further verifies the given city name with
the city name in the zip information, and finally determines
whether the DSL service of the city is available.

The code excerpt consists of three parts: the BPEL
process isServiceAvailable defined in dslservice.bpel, the
web service City2Geo defined in city2geo.wsdl, and the
schema of user address defined in dslservice.wsdl.
City2Geo takes a city name as an input and returns the
corresponding geographical information (including the zip).
Figures 1, 2 and 3 show the annotated sample code extracted
from these files to facilitate discussions.

N1

N2

N3

N
6

N4
zipOnly.zipCode=

XQ(userAddress.address, XPath3)

Fault
Handling N5

XPath1: ’//*[local-name()=’City’]’
XPath2: '//city/'
XPath3: '//zip/‘
XQ(Variable, XPathExp): XPath Query with input variable and XPath expression
WS(Variable): Web Service invocation with input variable

userAddress = AddressBookLookup (userName)
city = XQ(userAddress.address, XPath2)

return
serviceAvailability

No

if XQ(userAddress.address, XPath2))
== XQ(zipInformation, XPath1)

zipInformation =
City2geo:City2GeoSoap:getLatLong (city)

serviceAvailability =
serviceavailability:CheckAvailability
PortType:checkAvailability (zipOnly)

Yes

Ns

Ne

see Part 3B
in Figure 1

see Part 4
in Figure 1

Figure 2. CFG for IsServiceAvailable.

5

BPEL Code. Figure 1 shows a BPEL code fragment.
Part 1 defines the variable zipInformation. Part 2 defines a
partner link named City2Geo. Part 3 shows a process that
consists of two subparts. First, Part 3A defines two local
variables userName and userAddress. Then, Part 3B shows
a web service invocation. Web service AddressBookLookup
is invoked, using userName as input and userAddress as
output. Part 3B further queries the name of the city from the
address part of the userAddress variable using XPath
//city/, and assigns the query result to the variable city.
The assignment is followed by the invocation of a web
service City2GeoService using city as input and
zipInformation as the variable to receive the output from the
web service. Further verification is carried out to check the
consistency between the city name in userAddress and that
in zipInformation.

Part 4 extracts the zip code from the address and keeps it
in the variable zipOnly.zipCode. The code also invokes the
web service ServiceAvailability to check whether the DSL
service of the zip code is availability.

WSDL Documents. Figure 2 shows the WSDL content
for the web service City2Geo, in which Parts 5, 6, 7, and 8
define a port type, a message type, a definition for the
method GetLatLongResponse, and the type of the return
data, respectively. Figure 3 shows the document model of
the XML message of the DSL service, in which Part 9
defines the schema for type address.

Based on Table 1, we can translate a BPEL program
(e.g., lines 1 to 40 in Figure 1) into a CFG (e.g., Figure 2).
In Figure 2, Ni is a CFG node representing a BPEL
statement. (Owing to the page limit, we do not list all the
source code in Figure 1 for the CFG in Figure 2.)

For instance, Ns models the statements on lines 16 and
20. Similarly, N2 models the state on lines 20 to 23. The
edge N1, N2 models the state transition from N1 to N2 as
coded. The state transitions on lines 24 to 27 are defined by
two edges, namely N2, N3 and N2, N4, representing
whether the error transition condition (line 24) is satisfied.
Other nodes and edges can be interpreted in the same way.

Fault. A program fault occurs in Part 3B (on lines 24 to
27) and an illustration of the fault is as follows: Different
cities may share the same name. For example, there are two
cities known as HuangShan in Anhui, China. For ease of
discussion, we refer to these two cities as HuangShan_A and
HuangShan_B. When one uses the WS-BPEL application
targeting to look for the zip code of HuangShan_A by
inputting the city name “HuangShan”, it may return the zip
code of HuangShan_B instead. This is because the web
service City2Geo may return a message containing these
two cities, and yet the XPath in the BPEL code may
select only one of them and assign it to the variable
zipOnly.zipCode.

A quality application may provide a city list for users to
pick the target city [19]. However, given the above motivat-
ing example, and without revealing a relevant failure,
identifying the fault is hard in the first place.

C. Frankl-Weyuker Data Flow Testing

In this section, we revisit the definitions in [6] for the
concepts related to conventional data flow testing.

Let n, m1, …, mr, n' be nodes in a CFG. A path
n, m1, …, mr, n'  is said to be def-clear with respect to the
variable x when none of m1, …, mr defines x. A def-use
association is a triple x, nd, nu such that the variable x is
defined at node nd and used in node nu, and there is a
def-clear path with respect to x from nd to nu. We refer
readers to [6] for more details.

Based on the CFG in Figure 2, one can compute the test
requirements of the all-uses criterion [6]. A test suite is said
to satisfy the all-uses criterion if and only if the test suite
executes every def-use association of the program unit at
least once.

III. EMPIRICAL STUDY

This section reports our empirical study that evaluates
the effectiveness of applying the Frankl-Weyuker data flow
testing criteria to WS- BPEL programs. We have explained
in Section I why the all-uses criterion has specifically been
chosen for experimentation.

A. Experimental Setup

In the experiment, we use 8 open-source WS-BPEL
programs that are publicly available on the Internet [2],
namely atm [3], buybook [22], dslservice [3], gymlocker [3],
loanapproval [3], marketplace [3], purchase [3], and
TripHandling [3]. For instance, loanapproval and buybook
are used in the sample projects to introduce WS-BPEL
programs by IBM and Oracle, respectively. These programs
have also been frequently used in previous WS-BPEL
research.

To create faulty versions, we invited developers, who
are non-authors and have experience in developing
service-oriented applications, to seed faults to create
multiple single-fault versions of each WS-BPEL application.
We did not impose any restriction to the developers on the
nature of faults injected. In total, 60 faults were injected in
these subject applications.

We developed a prototype tool to randomly generate a
test pool of 1000 test cases for each application. We adopted
the following process to generate a test suite for the all-uses
criterion: For each target version of an application, the tool
randomly selects a test case from the appropriate test pool
and executes it on the target version. The tool adds the test
case to the test suite under construction only if this test case
increases the coverage (with respect to the all-uses criterion)
[6][12][15] of the test suite. After a number of tryouts, we
set the process to terminate if either 100% coverage of the
criterion had been attained, or an upper bound of 200 trials
had been reached.

The tool used the outputs of test case executions on the
original programs as test oracles. In other words, for each
test case, it compared the output of a faulty version with that

6

of the original program to tell whether a failure has been
detected.

We repeated the test suite construction process 100
times to obtain 100 test suites for each benchmark
application. We executed the experiment on Dell GX260,
Pentium 4 CPU 2.26 GHz, 512 M RAM.

To collect various statistics information for evaluation,
we developed a simple WS-BPEL simulation engine for
WS-BPEL programs. The simulator was designed to test
WS-BPEL programs and to meet the BPEL specification
requirements in executing the subject programs. We referred
to the basis path testing approach [31] to implement our
simulation engine.

Finally, WS-BPEL programs may, in general, have
internal concurrency, and their data associations among data
flow entities are different from the sequential counterparts
when programs are executed concurrently [30]. In the ex-
periment, we applied the notion of forced deterministic test-
ing for concurrent programs [12] to conduct the evaluation.

B. Data Analysis

We present the empirical results in this section. We first
summarize the coverage percentage of all-uses associations
for each benchmark program in Table 2. The table TABLE

2shows the minimal, average, and maximal coverage that
can be achieved by the 100 test suites on each program. We
observe that, on average, these test suites achieve high
coverage.

TABLE 2. TEST SUITE COVERAGE STATISTICS

Application Min. Avg. Max.
atm 0.941 0.969 1.000

buybook 0.923 0.923 0.923
dslservice 0.824 0.824 0.824
gymlocker 1.000 1.000 1.000

loanapproval 1.000 1.000 1.000
marketplace 1.000 1.000 1.000

purchase 0.833 0.833 0.833
triphandling 1.000 1.000 1.000

Overall 0.940 0.944 0.947

We further analyze the fault-detection capability of the
testing criterion. We partition the 60 faults into three
categories (in-BPEL, in-XPATH, and in-WSDL) according
to the types of artifacts that the individual faults reside.
There are 21 faults in BPEL programs, 21 faults on XPath
Query, and 18 faults in WSDL documents, respectively. The
fault-detection rate [11] of a test suite for a category of
faults is defined by X / Y, where X is the number faults
detected by the test suite and Y is the total number of faults
in the category.

Hutchins et al. [11] have concluded that a test set with
full def-use coverage (100%) is much more valuable than
that with lower def-use coverage (such as 90% or 95%).
Therefore, we follow [11] to use the full all-uses coverage
(100%) test sets to examine their fault-detection rates. The
results are listed in Table 3.

TABLE 3. FAULT-DETECTION RATES BY CATEGORIES
(ON TEST SUITES WITH 100% ALL-USES COVERAGE)

Category
Fault-Detection Rate

Min. Avg. Max.
in-BPEL 0.727 0.916 1.000
in-XPath 0.547 0.737 1.000
in-WSDL 0.500 0.688 1.000
Overall 0.600 0.790 1.000

The table shows that the all-uses criterion has a much

higher fault-detection rate in revealing failures due to the
faults on the BPEL artifacts than revealing those in either
the XPath or WSDL artifacts when using test sets with
100% all-uses coverage. The former is better than the latter
two by 18% and 23%, respectively. As the all-uses criterion
is generally considered to be effective, the results show that
the performance difference on detecting different categories
of faults is huge. It shows that data flow testing criteria that
covers BPEL code without considering other artifacts is not
highly effective in detecting failures owing to the presence
of faults in the latter kinds of artifacts.

C. Threats to Validity

This section discusses the threats to validity of the
experiment.

We use a set of open-source programs as subjects. This
enables us to access the source code for applying data flow
testing. On the other hand, the number of subject programs
and their sizes are not large. In the future, we will gain more
insights by finding larger subject programs to study how the
fault-detection effectiveness of testing criteria may vary
with the increase of program size.

We also observe from Table 2 that the maximum
coverage achieved by some test suites may not reach 100%.
As explained in Section III-A, we use 200 trials as the upper
bound for adding more test cases to the test suite under
construction. This parametric value (200) is chosen after
several tryouts during initial experimentation. We observe
that the overall average coverage is already high. Therefore,
we do not further increase the number of trials. However,
the results of fault-detection rates are likely to change when
higher coverage can be achieved. At this stage, we do not
have effective means to construct such test cases. In the
future, we should study the effect of different levels of
coverage.

In addition, in this paper, we are mainly concerned with
three categories of faults, namely BPEL faults, XPath faults,
and WSDL faults. Other faults such as web service faults
have not been studied in the experiment. We thus assume
flawless messages (related to interactions with other web
services) in the experiment. Also, the CFG model and the
execution of WS-BPEL are based on the perspective of
sequential programs, so that we use forced deterministic
testing to execute programs. The use of other execution
models may change the experimental results. In the future,
we should investigate how the relaxation of the above

7

assumptions may affect the testing of WS-BPEL applica-
tions.

IV. RELATED WORK

This section reviews the literature related to the testing
of WS-BPEL programs.

First, we review the research related to WS-BPEL in
general. WS-BPEL is an area with active research studies.
Such research studies can be grouped briefly into several
interesting subareas, including WS-BPEL modeling and
verification, interoperability analysis between BPEL pro-
grams and web services, and WS-BPEL test case genera-
tion.

The subarea of WS-BPEL modeling and verification has
been studied by many researchers. Take the work of
Mongiello et al. [21] as an example. They propose to use
formal methods to construct a model and formalize the
correctness properties about the reliability of business
process design methods. Since WS-BPEL programs are
often too complex to be formalized adequately, a lot of
research just focuses on the finite state machine (FSM) of
the WS-BPEL specification. However, such techniques may
be ineffective in revealing faults related to the WSDL and
XPath artifacts. Our experiment verifies this point.

The modeling of service composition has been studied in
[5][7]. They analyze the interactions between BPEL
programs and web services using WS-BPEL as the
specification. Analysis tools such as WSAT [25] have been
developed to conduct formal analysis of web services. For
instance, Mandell and McIlraith [18] propose a bottom-up
analysis approach that describes the interactions among web
services. However, they have not studied XPath and WSDL
documents.

The selection of test cases for WS-BPEL programs is
another valuable research area for testing WS-BPEL
programs. Some researchers (such as García-Fanjul et al. [9])
treat a WS-BPEL program as a finite state machine and use
mutation analysis to generate faulty versions. In [9], they
check each mutated program against a given temporal
property using SPIN, and transform the counterexample
(containing violations of the property) thus generated to
specify test cases. Some researchers consider the testing of
the concurrency aspect of WS-BPEL programs [29]. They
model WS-BPEL as a set of concurrent finite state machines,
and use a heuristic approach to conduct reachability analysis
to find concurrent paths for the set of FSMs, and use such
concurrent paths as test cases.

In the rest of this section, we review related data flow
testing research. Souter and Pollack [24] propose a way to
construct contextual def-use associations, in which each
definition and use of an object is associated with contexts.
The effect of environment information in pervasive context-
aware software is studied in [16]. They take the environ-
ment information relevant to an application program as
contexts, and then propose context-aware data flow associa-
tions and testing criteria. Their approach is verified in an

experiment on an RFID-based location sensing software. In
this paper, we study the capability of conventional data flow
testing (particularly the all-uses criterion) in testing service-
oriented business (WS-BPEL) applications.

A family of test adequacy criteria that are used to assess
the quality of test suites for database-driven applications is
proposed by [13]. Their test adequacy criteria also cover

data associations between database-driven applications and
the environment (that is, the database). However, unlike our
approach in constructing a CFG to parse the domain
structure, they do not consider how to parse a query in their
database domain model.

Other related work on test adequacy problems has been
reviewed in [16][32]. In particular, Lu et al. [17] studies
how to test programs when its contexts may be affected by
connected services. Mei et al. [19] presents a new data
structure to quantify XPath and new testing criteria to assure
WS-BPEL programs. The effectiveness of conventional data
flow testing criteria has not been reported.

V. CONCLUSION

In service–oriented testing, many existing proposals
conjecture that conventional techniques are ineffective and
aim to develop new ones. There is, however, little empirical
evidence in the literature to show that existing techniques
are indeed ineffective.

In this paper, we report an empirical study of how well
the Frankl-Weyuker data flow testing criteria (particularly
the all-uses criterion) reveal the presence of faults in
service-oriented implementations. We use a set of WS-
BPEL programs to evaluate the all-uses criterion at the
WSDL level, which considers both BPEL code and WSDL
artifacts. Our experiment finds that the all-uses criterion is
noticeably less effective in revealing the faults in XPath and
WSDL artifacts than revealing those in BPEL code. This
preliminary evidence provides a solid justification to
develop new techniques to assure service-oriented applica-
tions. More generally, our experiment indicates that testing
techniques that are developed on top of executable artifacts
may be ineffective in revealing the faults in non-executable
artifacts in general applications.

For future work, we plan to study the test case genera-
tion problem for WS-BPEL applications. We also plan to
study the relationship between the level of coverage and the
fault-detection rate for such applications.

REFERENCES

[1] B. Benatallah, R. M. Dijkman, M. Dumas, and Z. Maamar.
Service composition: concepts, techniques, tools and trends.
In Service-Oriented Software System Engineering: Chal-
lenges and Practices, Stojanovic Z. and Dahanayake A.,
Eds., pages 48–66. Idea Group, Hershey, PA, 2005.

[2] BPEL Code Samples. Available at http://www.
bpelsource.com/resources/code.html. (Last access on
April 30, 2009.)

8

[3] BPWS4J: a Platform for Creating and Executing BPEL4WS
Processes. Version 2.1. IBM, 2002. Available at http://
www.alphaworks.ibm.com/tech/bpws4j.

[4] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana.
Exception handling in the BPEL4WS language. In Business
Process Management, W. M. P. van der Aalst et al., Eds.,
volume 2678 of Lecture Notes in Computer Science, pages
276–290. Springer, Berlin, Germany, 2003.

[5] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of Web service compositions. In Proceedings of
the 18th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2003), pages 152–161. IEEE Com-
puter Society Press, Los Alamitos, CA, 2003.

[6] P. G. Frankl and E. J. Weyuker. An applicable family of data
flow testing criteria. IEEE Transactions on Software Engin-
eering, 14 (10): 1483–1498, 1988.

[7] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
Web services. In Proceedings of the 13th International Con-
ference on World Wide Web (WWW 2004), pages 621–630.
ACM Press, New York, NY, 2004.

[8] X. Fu, T. Bultan, and J. Su. Model checking XML
manipulating software. In Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2004), pages 252–262. ACM Press, New
York, NY, 2004.

[9] J. Garcia-Fanjul, J. Tuya, and C. de la Riva. Generating test
cases specifications for BPEL compositions of Web services
using SPIN. In Proceedings of the International Workshop on
Web Services: Modeling and Testing (WS-MaTe 2006), pages
83–94. Palermo, Sicily, Italy, 2006.

[10] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The
complexity of XPath query evaluation and XML typing.
Journal of the ACM, 52 (2): 284–335, 2005.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software Engineering
(ICSE '94), pages 191–200. IEEE Computer Society Press,
Los Alamitos, CA, 1994.

[12] G. H. Hwang, K.-C. Tai, and T. L. Huang. Reachability
testing: an approach to testing concurrent software. Interna-
tional Journal of Software Engineering and Knowledge
Engineering, 5 (4): 246–255, 1995.

[13] G. M. Kapfhammer and M. L. Soffa. A family of test
adequacy criteria for database-driven applications. In Pro-
ceedings of the Joint 9th European Software Engineering
Conference and 11th ACM SIGSOFT International Sympo-
sium on Foundation of Software Engineering (ESEC 2003/
FSE-11), pages 98–107. ACM Press, New York, NY, 2003.

[14] C. Koch. On the role of composition in XQuery. In
Proceedings of the 8th International Workshop on the Web
and Databases (WebDB 2005), pages 37–42. Baltimore,
Maryland, 2005.

[15] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang. BPEL4WS unit
testing: framework and implementation. In Proceedings of
the IEEE International Conference on Web Services (ICWS

2005), pages 103–110. IEEE Computer Society Press, Los
Alamitos, CA, 2005.

[16] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an
RFID-based experimentation. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT 2006/FSE-14), pages
242–252. ACM Press, New York, NY, 2006.

[17] H. Lu, W. K. Chan, and T. H. Tse. Testing pervasive
software in the presence of context inconsistency resolution
services. In Proceedings of the 30th International Conference
on Software Engineering (ICSE 2008), pages 61–70. ACM
Press, New York, NY, 2008.

[18] D. J. Mandell and S. A. McIlraith. Adapting BPEL4WS for
the semantic Web: the bottom-up approach to Web service
interoperation. In Proceedings of the 2nd International
Semantic Web Conference (The Semantic Web—ISWC 2003),
volume 2870 of Lecture Notes in Computer Science, pages
227–241. Springer, Berlin, Germany, 2003.

[19] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of
service-oriented workflow applications. In Proceedings of the
30th International Conference on Software Engineering
(ICSE 2008), pages 371–380. ACM Press, New York, NY,
2008.

[20] G. Miklau and D. Suciu. Containment and equivalence for a
fragment of XPath. Journal of the ACM, 51 (1): 2–45, 2004.

[21] M. Mongiello and D. Castelluccia. Modelling and verifica-
tion of BPEL business processes. In Proceedings of the 4th
Workshop on Model-Based Development of Computer-Based
Systems and the 3rd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MBD-MOMPES 2006), pages 144–148. IEEE Computer
Society Press, Los Alamitos, CA, 2006.

[22] Oracle BPEL Process Manager. Oracle Technology Network.
Available at http://www.oracle.com/technology/
products/ias/bpel/. (Last access on April 30, 2009.)

[23] C. Peltz. Web services orchestration and choreography. IEEE
Computer, 36 (10): 46–52, 2003.

[24] A. L. Souter and L. L. Pollock. The construction of contex-
tual def-use associations for object-oriented systems. IEEE
Transactions on Software Engineering, 29 (11): 1005–1018,
2003.

[25] Web Service Analysis Tool. University of California, Santa
Bababra, CA. Available at http://www.cs.ucsb.edu/
~su/WSAT. (Last access on April 30, 2009.)

[26] Web Services Business Process Execution Language Version
2.0. OASIS, 2007. Available at http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[27] Web Services Invocation Framework: DSL Provider Sample
Application. Available at http://svn.apache.org/
viewvc/webservices/wsif/trunk/java/samples/dsl
provider/README.html?view=co. (Last access on April
30, 2009.)

[28] XML Path Language (XPath) Recommendation. World Wide
Web Consortium, 2007. Available at http://www.w3.org
/TR/xpath20/.

9

[29] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang. BPEL4WS
unit testing: test case generation using a concurrent path
analysis approach. In Proceedings of the 17th International
Symposium on Software Reliability Engineering (ISSRE
2006), pages 75–84. IEEE Computer Society Press, Los
Alamitos, CA, 2006.

[30] R.-D. Yang and C.-G. Chung. Path analysis testing of
concurrent programs. Information and Software Technology,
34 (1): 43–56, 1992.

[31] G. Zhang, R. Chen, X. Li, and C. Han. The automatic
generation of basis set of path for path testing. In Proceed-
ings of the 14th Asian Test Symposium (ATS 2005), pages
46–51. IEEE Computer Society Press, Los Alamitos, CA,
2005.

[32] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Computing Surveys, 29 (4):
366–427, 1997.

