
 

 

Journal of Software 20 (10): 2637–2654 (2009) 

Experimental Study to Compare the Use of Metamorphic Testing and Assertion 

Checking
 

 

ZHANG Zhenyu1,  CHAN W. K.2+,  TSE T. H.3,  HU Peifeng3  

1(Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong) 

2(Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong) 

3(Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong) 

3(China Merchants Bank, Central, Hong Kong) 

+ Corresponding author: Phone: +852 2788 9684, Fax: +852 2788 8614, E-mail: wkchan@cs.cityu.edu.hk, 

http://www.cs.cityu.edu.hk/~wkchan/ 

Abstract: A test oracle in software testing is a mechanism for checking whether the program under test behaves 

correctly for any execution. In some practical situations, oracles can be unavailable or too expensive to apply. 

Metamorphic testing (MT) was proposed to alleviate this problem so that software can be delivered under the 

time-to-market pressure. However, the effectiveness of MT has not been studied adequately. This paper conducts a 

controlled experiment to investigate the cost effectiveness of using MT. The fault detection capability and time cost 

of MT are compared with the standard assertion checking method. Our results show that MT has potentials to detect 

more faults than the assertion checking method. The experimental results also show a trade-off between the two 

testing methods: MT can be less efficient but more effective, and can be defined at a coarser level of granularity th an 

the assertion checking method. 

Key words: Metamorphic testing, assertion checking, test oracle, controlled experiment, empirical evaluation 

1 Introduction 

Software testing is a key activity in any software development project. It assures applications by executing 

programs over test cases with the intent to reveal failures [2]. To conduct testing, software testers usually evaluate 

the test results through an oracle, which is a mechanism for checking whether a program behaves correctly [3]. 

Many programs do not have a full specification, and many of them are developed without similar versions for 

reference. In these situations, oracles may be unavailable or too expensive to apply. This is known as the test oracle 

problem [3]. The oracle problem is not limited to the above kind of scenarios. For instance, for programs involving 

complex computations (such as partial differential equations [4], graphics-based software [5][6], database 

applications [7], large-scale components, web server, or operating systems [7]), their outputs are difficult to verify. 

In current software practices, the oracle is often a human tester who checks the testing results manually. The manual 

                                                                 

 © 2009 Journal of Software. This material is presented to ensure timely dissemination of scholarly and technical work. Personal 

use of this material is permitted. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying 

this information are expected to adhere to the terms and constraints invoked by each author‟s copyright. In most cases, these  works may 

not be reposted without the explicit permission of the copyright holder. Permission to reprint/republish this material for advertising or 

promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any c opyrighted 

component of this work in other works must be obtained from Journal of Software. 

 This research is supported in part by grants of the Research Grants Council of Hong Kong (project numbers 111107 and 717308)  

and the Australian Research Council (project number DP0984760). A preliminary version of this paper was presented at the 3rd 

International Workshop on Software Quality Assurance (SOQUA 2006) in conjunction with the 14th ACM SIGSOFT Symposium on 

Foundations of Software Engineering (SIGSOFT 2006/FSE-14) [1]. 

Administrator
  HKU CS Tech Report TR-2009-01



 

 

2 

 

checking of program output acutely limits the efficiency of testing and increases its cost, especially when there is a 

need to verify the results of a large number of test cases. Assessing the correctness of program outcomes has, 

therefore, been recognized as “one of the most difficult tasks in software testing” [8]. 

As we shall review in Section 2, metamorphic testing (MT) [4][9][10][11][12] and assertion checking [13][14] 

are techniques to alleviate the oracle problem. Assertion checking verifies the test result or intermediate states of the 

program when executing a test case. It directly confirms the execution behavior of a program in terms of a checking 

condition of program states or individual outputs. MT takes another direction, which verifies follow-up test cases 

based on an initial set of test cases. Apart from test case generation, MT also helps verify the relations among the 

results of these initial test cases and their follow-up test cases. In other words, MT indirectly verifies the behaviors 

of multiple program executions in terms of a checking condition of (input and output) data. It would be interesting 

to compare the two approaches on their performance in identifying failures. As an analogy, if we view a test case, its 

execution, and the output collectively as an entity (as in entity-relationship diagrams), assertion checking verifies 

the correctness of individual entities, whereas MT further verifies the correctness of the relationships among 

entities. 

To measure the performance of a testing technique, it is popular in academic research to study its effectiveness. 

However, effectiveness and efficiency are complementary so that they give a proper performance picture of a testing 

technique. In this paper, we study both dimensions. 

There have been various case studies in applying metamorphic testing to different types of programs, ranging 

from conventional programs and object-oriented programs, to pervasive programs and web services. Chen et al. [4] 

reported on the testing of programs for solving partial differential equations. They [15] further investigated the 

integration of metamorphic testing with fault-based testing and global symbolic evaluation. Gotlieb and Botella [16] 

developed an automated framework to check against a class of metamorphic relations. Chan and colleagues applied 

metamorphic approach to the unit testing [17] and integration testing [9] of context-sensitive middleware-based 

applications. Chan and others [11][18] also developed a metamorphic approach to online testing of service-oriented 

software applications. The improvement on the binary classification approach to alleviate the test oracle problem for 

graphics-intensive applications has been investigated in [5][6]. Throughout these studies, both the testing and the 

evaluation of experimental results were conducted by the researchers themselves.  There is a need for systematic 

empirical research on how well MT can be applied in practical and yet generic situations and how effective MT is 

compared with other testing strategies. 

Like other comparisons of testing strategies such as between control flow and data flow test adequacy criteria 

[19] and among different data flow test adequacy criteria [1], controlled experimental evaluations are essential. They 

should answer the following research questions: (a) Can testers be trained to apply MT properly? (b) How does the  

fault detection effectiveness of MT compare with other effective strategies? (c) What is the time cost to apply MT? 

(d) What is the cost to apply MT if some artifacts of MT implementation are faulty? 

In this paper, we report and discuss the results in a controlled experiment setting with a view to answering the 

above questions. The subject participants were 38 postgraduate students enrolled in an advanced software testing 

course. They have completed a bachelor degree in computer science or equivalent. Before doing the experiment, 

they were taught the concepts of MT and a reference strategy (namely, assertion checking [13]) to alleviate the 

oracle problem. The training sessions for either concept were similar in duration. Three open-source programs were 

selected as target programs. The subjects were required to apply both MT and assertion checking strategies to test 

these programs independently. We ran their test cases over a representative set of faulty versions of the target 

programs to assess the capability of these two testing strategies in detecting faults [5][20]. The raw data were 

analyzed with a view to comparing the costs and effectiveness between MT and assertion checking. We further ran 



 

 

3 

 

test cases having faulty metamorphic relations over faulty versions of the target programs to assess whether faulty 

metamorphic relations may seriously affect the effectiveness of applying MT. 

The main contribution of this paper is six-fold: (i) It is the first controlled experiment to compare metamorphic 

testing and assertion checking. (ii) The experiment shows that metamorphic testing is more effective than assertion 

checking as a means to identify faults. (iii) It provides empirical evidence to resolve the speculation whether 

subjects have difficulty formulating metamorphic relations and implementing MT. Indeed, the results of the 

experiment show that all subjects manage to propose metamorphic relations for the target programs after a brief 

general introduction on MT, and identical or very similar metamorphic relations are proposed by different subjects. 

(iv) It shows that there is a tradeoff between metamorphic testing and assertion checking when applying them to 

alleviate the test oracle problem. The empirical results indicate that metamorphic testing is worth applying in terms 

of time cost whereas assertion checking is more efficient to apply. (v) This paper further reports the first experiment 

to evaluate the effectiveness of (correct and faulty) metamorphic relations in MT. The result shows that a test suite 

can effectively identify failures from faulty target programs despite the presence of faulty metamorphic relation 

implementations. (vi) Our analysis on raw data also indicates that the granularity of using MT is coarser than 

assertion checking in failure detection. 

The paper is organized as follows: Section 2 reviews the related literature. Section 3 introduces the 

fundamental notions and procedures of metamorphic testing. Section 4 describes the controlled experiment, and the 

result is presented and discussed in Section 5. Finally, Section 6 concludes the paper. 

2 Related Work 

Many approaches have been proposed to alleviate the test oracle problem. Rather than checking the test output 

directly, they usually propose to construct various types of oracle variant to verify the correctness of the program 

under test. Chapman [21] suggested that a previous version of a program could be used to verify the correctness of 

the current version. It is now a popular practice in regression testing. However, using this approach, testers need to 

identify whether the test case is applicable to the previous version.  

Weyuker [3] suggested checking whether some identity relations would be preserved by the program under test.  

This notion of equivalence has been well-adopted in practice. 

Blum and others [22][23] proposed a program checker, which was an algorithm for checking the output of 

computation for numerical programs. Their theory was subsequently extended into the theory of 

self-testing/correcting [24]. 

Xie and Memon [25] studied different types of oracle for graphic user interface (GUI) testing. Binder [13] 

discussed four categories and eighteen oracle patterns in object-oriented program testing. 

Assertion checking [26] is another method to verify the execution results of programs. An assertion, which is 

usually embedded directly in the source code of the program under test, is a Boolean expression that verifies 

whether the execution of a test case satisfies some necessary properties for correct implementation. Assertions are 

supported by many programming languages and are easy to implement. It has been incorporated in the 

Microsoft .Net platform. Assertion checking has been widely used in testing. For example, state invar iants [13][27], 

represented by assertions, can be used to check the stated-based behaviors of a system. Briand et al. [28] 

investigated the effectiveness of using state-invariant assertions as oracles and compared it with the results using 

precise oracles for object-oriented programs. It was shown that state-invariant assertions were effective in detecting 

state-related errors. Since our target programs are also object-oriented programs, we have chosen assertion checking 

as the alternative testing strategy in our experimental comparison.  Assertion checking is also popular in unit testing 

framework such as JUnit, in which verification of the program states or outputs of a test case can be done during or 



 

 

4 

 

after the test execution. 

The design by contract methodology [29] uses contracts to construct reliable software. Contracts, which are 

made of assertions, take the form of routine pre-conditions, post-conditions, and class invariants coded into the 

program under test. 

Some researchers have proposed to prepare test specifications, either manually or automatically, to alleviate the 

test oracle problem. Memon et al. [29] assumed that a test specification of internal object interactions was available 

and used it to identify nonconformance of the execution traces. This type of approach is common in conformance 

testing for telecommunication protocols. Sun et al. [17] proposed a similar approach to testing the harnesses of 

applications. Last and colleagues [30][31] trained pattern classifiers to learn the casual input-output relationships of 

a legacy system. They then used the classifiers as test oracles. Chan et al. [5] further investigated the feasibility of 

using pattern classification techniques when the test outputs cannot be accurately determined. Podgurski and 

colleagues [32][33] classified failure reports into categories via classifiers, and then refined the classification with 

the aim to extract more information to help testers diagnose program failures. Bowring et al. [34] used a progressive 

approach to train a classifier to ease the test oracle problem in regression testing. Chan et al. [35] used classifiers to 

identify different types of behaviors related to the synchronization failures of objects in a multimedia application.  

Beydeda [36] proposed to use metamorphic testing as a means to improve the testability of program 

components. Wu [37] observed that follow-up test cases can be initial test cases of the next round, and thus, 

proposes to apply MT iteratively to utilize metamorphic relations more economically. Chan et al.  [6] proposed a 

methodology to integrate MT with the pattern classification technique. Murphy [38] explored the application of 

metamorphic testing to support field testing. 

3 Preliminaries of Metamorphic Relations and Testing 

This section introduces metamorphic testing. As we have discussed in Section 1, metamorphic testing relies on 

a checking condition that relates multiple test cases and their results in order to reveal failures. Such a checking 

condition is known as a metamorphic relation. In this section, we revisit metamorphic relations and discuss how 

they can be used in the metamorphic approach to software testing. 

3.1 Metamorphic relations 

A metamorphic relation (MR) is a relation over a series of distinct inputs and their corresponding results for 

multiple evaluations of a target function [20]. Consider, for instance, the sine function. We have the following 

relation: If x2 =  – x1, then sin x2 = –sin x1. We note from this example that a metamorphic relation consists of two 

parts. The first part (denoted by r in the definition below) relates x2 to x1. The second part (denoted by r' ) relates the 

results of the function. If the MR above is not satisfied for some input, we deem that a failure is revealed.  

 

 Definition 1 (metamorphic relation) [10] Let x1, x2, …, xk be a series of inputs to a function f ,           

where k ≥ 1, and let f (x1), f (x2), …, f (xk) be the corresponding series of results. Suppose                                            

f (xi1), f (xi2), …, f (xim) is a subseries, possibly an empty subseries, of f (x1), f (x2), …, f (xk). Let              

xk+1, xk+2, …, xn be another series of inputs to f , where n ≥ k + 1, and let f (xk+1), f (xk+2), …, f (xn) be the 

corresponding series of results. Suppose, further, that there exists relations r ( x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), 

xk+1, xk+2, …, xn ) and r′ ( x1, x2, …, xn, f (x1), f (x2), …, f (xn) ) such that r′ must be true whenever r is satisfied. Here, 

r and r’ can be any mathematics relation of aforementioned parameters. We say that 



 

 

5 

 

 MR = { x1, x2, …, xn, f (x1), f (x2), …, f (xn) 

 | r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1, xk+2, …, xn) 

 → r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn)) } 

is a metamorphic relation. When there is no ambiguity, we simply write the metamorphic relation as  

 MR: If r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1, xk+2, …, xn) 

  then r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn)). 

Furthermore, x1, x2, …, xk are known as initial test cases and xk+1, xk+2, …, xn are known as follow-up test cases. 

 

Similar to assertions in the mathematical sense, metamorphic relations are also necessary properties of the 

function to be implemented. They can, therefore, be used to detect inconsistencies in a program. They can be any 

relations involving the inputs and outputs of two or more executions of the target program. They may include 

inequalities, periodicity properties, convergence properties, subsumption relationships, and other properties. 

Intuitively, human testers are needed to study the problem domain related to a target program and formulate 

metamorphic relations accordingly. This is akin to requirements engineering, in which humans instead of automatic 

requirements engines are necessary for formulating systems requirements. In some domains where the requirements 

of an implementation are best specified mathematically, metamorphic relations may readily be identified. Is there a 

systematic methodology guiding testers to formulate metamorphic relations like the methodologies that guide 

systems analysts to specify requirements? This remains a challenging question. We shall further investigate along 

this line in the future. We observe that other researchers are also beginning to formulate important properties in the 

form of specifications to facilitate the verification of system behaviors [19]. 

3.2 Metamorphic testing 

In practice, if the program is written by a competent programmer, most test cases will be passed test cases, 

which are test cases that do not reveal any failure. These passed test cases have been considered useless in conven-

tional testing. Metamorphic testing (MT) uses information from such passed test cases, which will be referred to as 

initial test cases. 

Consider a program p for a target function f in the input domain D. A series of initial test cases T = t1, t2, …, tk 

can be selected according to any test case selection strategy. Executing the program p on T produces outputs p(t1), 

p(t2), …, p(tk). When there is a test oracle, the test results can be verified against f(t1), f(t2), …, f(tk). If these results 

reveal any failure, testing stops. On the other hand, when there is no test oracle or when no failure is revealed, the 

metamorphic testing procedure can continue to be applied to automatically generate follow-up test cases T’ = {tk+1, 

tk+2, …, tn} based on the initial test cases T so that the program can be verified against metamorphic relations.  

 

 Definition 2 (metamorphic testing) [10] Let P be an implementation of a target function f. The metamorphic 

testing of the metamorphic relation 

 MR: If r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1, xk+2, …, xn), 

  then r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn) ) 

involves the following steps: (i) Given a series of initial test cases x1, x2, …, xk and their respective results P(x1), 

P(x2), …, P(xk), generate a series of follow-up test cases xk+1, xk+2, …, xn according to the relation r (x1, x2, …, xk, 

P(xi1), P(xi2), …, P(xim), xk+1, xk+2, …, xn) over the implementation P. (ii) Check the relation r′ (x1, x2, …, xn, P(x1), 

P(x2), …, P(xn) ) over P. If r′ is false, then the metamorphic testing of MR reveals a failure.  

 



 

 

6 

 

3.3 Metamorphic testing procedure 

Gotlieb and Botella [16] developed an automated framework for a class of metamorphic relations. The 

framework translates a specification into a constraint logic programming (CLP) program. Test cases can be 

automatically generated according to the CLP program using a constraint solving approach. Their framework works 

on a subset of the C language, but it is not clear whether the framework is applicable to test cases involving objects. 

Since we want to apply MT to object-oriented programs, we adopt the original procedure [39], which is described as 

follows: 

First, testers identify and formulate metamorphic relations MR1, MR2, …, MRn from the target function f. For 

each metamorphic relation MRi, testers construct a function geni to generate follow-up test cases from the initial test 

cases. Next, for each metamorphic relation MRi, testers construct a function veri, which will be used to verify 

whether multiple inputs and the corresponding outputs satisfy MRi. After that, testers generate a set of initial test 

cases T according to a preferred test case selection strategy. Finally, for every test case in T, the test driver invokes 

the function geni to generate follow-up test cases and apply the function veri to check whether the test cases satisfy 

the given metamorphic relation MRi. If a metamorphic relation MRi is violated by any test case, veri reports that an 

error is found in the program under test. 

4 Experiment 

This section describes the set up of the controlled experiment. It first formulates the research questions to be 

investigated and then describes the experimental design and experimental procedure. 

4.1 Research questions 

The research questions to be investigated are summarized as follows:  

(a) Can the subjects properly apply MT after training? Can the subjects identify correct and useful metamor-

phic relations from target programs? Can the same metamorphic relations be discovered by multiple 

subjects? 

(b) Is MT an effective testing method? Does MT have a comparative advantage over other testing strategies 

such as assertion checking in terms of the number of mutants detected? To address this question, we shall 

use the standard statistical technique of null hypothesis testing.  

 

Null Hypothesis H0: There is no significant difference between MT and assertion checking in 

terms of the number of mutants detected. 

Alternative Hypothesis H1: There is a significant difference between MT and assertion checking in 

terms of the number of mutants detected. 

 

We aim at applying the standard concept of the p-value in the Mann-Whitney test to find the confidence 

level that H0 should be rejected, with a view to supporting our claim that the difference between MT and 

assertion checking is statistically significant rather than by chance.  

(c) What is the effort, in terms of time cost, in applying MT? 

(d) If an MR is faulty, what is the cost of applying MT (in terms of the number of mutants detected)? 



 

 

7 

 

4.2 Design of experiment 

Our experiment identifies four independent and three dependent variables. The independent variables are 

testing strategies, subjects, target programs, faulty versions of target programs, and faulty versions of metamorphic 

relation programs. The dependent variables are time cost, number of metamorphic relations/assertions, and testing 

effectiveness in terms of mutation detection ratio. For the variable on testing strategies, we incorporate MT and 

assertion checking. In the rest of this section, we describe the other three independent variables. Section 5 will 

analyze the results according to the dependent variables.  

Subjects: All the 38 subjects were graduate students in computer science or equivalent who attended the course 

“Advanced Topics in Software Engineering: Software Testing” at The University of Hong Kong. These students had 

at least a bachelor degree in computer science, computer engineering, or electronic engineering. The majo rity of 

them were part-time MSc students with some industrial experience. The rest were MPhil and PhD students. We 

controlled that the training sessions of either approach are comparable in duration and in content.  The number of 

subjects used our controlled experiment is similar to those in other software engineering controlled experiments. For 

instance, the experiments in [40][41] use 44 subjects. 

Since differences in software engineering background might affect the students‟ capability to apply 

metamorphic testing or assertion checking, we conducted a brief survey prior to the experimentation. The survey 

asks subjects their experiences in the industrial environment in each of the following four areas: object-oriented 

design, Java programming, software testing, and assertion checking.  

 

 

 

 

 

 

 

 

 

Fig.1  Experiences of subjects in object-oriented design, Java, testing, and assertions 

Figure 1 lists the survey result. The overall survey result showed that most of them had real-life or academic 

experience. As most of subjects were knowledgeable about object-oriented design and Java programming, they were 

deemed to be competent in the tasks in the controlled experiment. On the other hand, we found a few students 

having rather limited experience in software testing and assertion checking. Since they did not have prior concepts 

of metamorphic testing either, the experiment did not specifically favor the metamorphic approach.  

Target Programs: We used three open-source programs as target programs. All of them were Java programs 

selected from real-world software systems. 

The first target program Boyer is a program using the Boyer-Moore algorithm to support the applications in 

Canadian Mind Products, an online commercial software company (available at http://mindprod.com/ 

products1.html). The program returns the index of the first occurrence of a specified pattern within a given text.  

OO design 

(months of experience) 

>24 

months 

34% 

7–12 

months 

13% 

0–2 

months 

19% 

3–6 

months 

16% 
13–24 

months 

18% 

Java 

(months of experience) 

>24 

months 

24% 

7–12 

months 

13% 

0–2 

months 

24% 

3~6 

months 

29% 

13–24 

months 

10% 

Testing 

(months of experience) 

>24 

months 

8% 7–12 

months 

11% 

0–2 

months 

60% 

3–6 

months 

16% 

13–24 

months 

5% 

Assertion 

(months of experience) 

>24 

months 

13% 
7–12 

months 

5% 

0–2 

months 

74% 

3–6 

months 

5% 

13–24 

months 

3% 



 

 

8 

 

The second target program BooleanExpression evaluates Boolean expressions and returns the resulting 

Boolean values. For example, the program may evaluate the expression “!(true && false) || true” and returns “true”. 

The program is a core part of a popular open-source project jboolexpr (available at http://sourceforge.net/projects/ 

jboolexpr) in SourceForge (URL http://www.sourceforge.net), the largest open-source project website. 

The third target program is TxnTableSorter. It is taken from a popular open-source project Eurobudget 

(available at http://eurobudget.sourceforge.net) in the SourceForge website. Eurobudget is an office application 

written in Java, similar to Microsoft Money or Quicken. 

Table 1 shows the statistics of the three target programs. The first program is a piece of commercial software. 

The second program is a core part of a standard library. The third one is selected from real office software with 

hundreds of classes and more than 100,000 lines of code in total. All of them are open source.  The sizes of these 

programs are in line with the sizes of target programs used in typical software testing researches such as [20], in 

which it uses the Siemens suites. 

Faulty Versions of Target Programs: To investigate the relative effectiveness of metamorphic testing and 

assertion checking, we used mutation operators [42] to seed faults to programs. A previous study [20] showed that a 

set of well-defined mutation operators can simulate the real environment for testing experiments. 

Table 1  Statistics of target programs 

Program Number of LOC Number of methods Number of output-affecting methods 

Boyer 241 16 9 

BooleanExpression 231 15 12 

TxnTableSorter 281 18 15 

In our experiment, mutants were seeded using the tool muJava [43]. The tool supports two levels of mutation 

operators: class level and method level. Class level mutation operators are operators specific to generating faults in 

object-oriented programs at the class level. Method level mutation operators defined in [26] are operators specific 

for statement faults. We only seeded method level mutation operators to the programs under study because our 

experiment focused on unit testing and because this set of operators had been studied extensively in the software 

engineering research community [5][20][26][28][32][44]. Table 2 list all the mutation operators used in the 

controlled experiment. 

Table 2  Categories of mutation operators 

Category Description 

AOD  Delete Arithmetic Operator  
AOI  Insert Arithmetic Operator  

AOR  Replace Arithmetic Operator  

ROR  Replace Relational Operator  

COR  Replace Conditional Operators  

COI  Insert Conditional Operator  

COD  Delete Conditional Operator  

SOR  Replace Shift Operator  

LOR  Replace Logical Operator  

LOI  Insert Logical Operator  

LOD  Delete Logical Operator  

ASR  Replace Assignment Operators  

 

http://sourceforge.net/projects/jboolexpr
http://sourceforge.net/projects/jboolexpr


 

 

9 

 

Generally speaking, muJava examines each statement in a given program and then applies each applicable 

mutation operator to generate a variant of the program. In other words, for each statement and each applicable 

mutation operator, it produces a single-fault version of the given program. It has been well-recognized in the 

software engineering research community that single-fault mutants couple well with high-order mutants and real 

faults and using them to conduct test experiment can adequately simulate realism [20][26]. On the other hand, 

research on finding an adequate subset of mutation operators to replace the entire set is still going on [44]. Many 

software engineering researchers continue to use the full set of mutants constructed from a tool to conduct test 

experiments. 

A total of 151 mutants were generated by muJava for the class Boyer, 145 for the class BooleanExpression, 

and 378 for TxnTableSorter. Note that faults were only seeded into the methods supposedly covered by the test 

cases for unit testing. Table 3 lists the number of mutants under each category of operators.  We created a faulty 

version for each mutant. Finally, we used all the 674 (151+145+378) single-fault versions in the controlled 

experiment. 

Table 3  Number of single-fault programs by mutation operator category 

Program AOD AOI AOR COD LOI ROR LOR COR COI ASR Total 

Boyer 1 85 14 0 24 16 3 2 1 5 151 

BooleanExpression 3 86 3 1 22 27 0 3 0 0 145 

TxnTableSorter 8 226 16 0 71 43 2 7 5 0 378 

4.3 Experimental procedure 

Before the experiment, the subjects were given a six-hour training to use MT and assertion checking. We 

carefully monitored the time durations so that the time allocated to train either technique was roughly equal to each 

other. (We could not have identical durations for both techniques; otherwise, the same testing background such as 

the concept of test oracles in general would needlessly be introduced twice to the subjects.) The target programs and 

the tasks to be performed were also presented to the subjects. The subjects were briefed about the main functionality 

of each target program and the algorithm used, thus simulating the process in real -life in which a tester acquires the 

background knowledge of the program under test. They were blind to the use of any mutants in the controlled 

experiment. For each program, the subjects were required to apply MT strictly following the procedure described in 

Section 3.3, as well as to add assertions to the source code for checking. We did not restrict the number of 

metamorphic relations and assertions to be associated with individual target programs. The subjects were told to 

develop metamorphic relations and assertions as they considered suitable, with a view to thoroughly test each target 

program. 

We did not mandate the use of a particular testing case generation strategy, such as all-def-use criterion or 

random testing or specification-based approach, for either MT or assertion checking. The subjects were simply 

asked to provide adequate test cases for testing the target programs. This avoided the possibility that some particular 

test case selection strategy, when applied in large scale, might favor either MT or assertion checking.  

We asked the students to submit metamorphic relations, functions to generate follow-up test cases, functions to 

verify metamorphic relations, test cases for metamorphic testing, source code with inserted assertions, and test cases 

for assertion checking. They were also asked to report the time costs in applying metamorphic testing and assertion 

checking. Before testing the faulty versions with these functions, assertions, and test cases, we checked the ir 

submissions carefully to ensure that there was no implementation error.  



 

 

10 

 

4.4 Threats to validity 

We describe the threats to validity in this section before we present our main results in the next section. 

Internal Validity: Internal validity refers to whether the observed effects depend only on the intended 

experimental variables. For this experiment, we provided the subjects with all the background materials and 

confirmed with them that they had sufficient time to perform all the tasks. On the other hand, we appreciate that 

students might be interrupted by minor Internet activities when they performed their tasks. Hence, the time costs 

reported by the subjects should be viewed and analyzed conservatively. Furthermore, the subjects did not know the 

nature and details of the faults seeded. This measure ensured that their “designed” metamorphic relations and 

assertions were unbiased with respect to the seeded faults. 

We use test cases provided by our subjects to conduct the experiment. We do not know whether these test cases 

may favor assertion checking, metamorphic testing, or neither of them. We do not disclose the purpose of the 

experiment to any subjects, and only request them to produce test cases that they consider sufficient for both 

metamorphic testing and assertion checking. To address the threat to internal validity, we use all test cases from 

different subjects on every applicable MR. Since subjects do not communicate with one another in the experiment, 

this setting helps disassociate test cases from particular MRs. 

Readers may be concerned whether the target programs can be faulty. We have carefully checked the classes 

before the experiment. Furthermore, none of the subjects has reported any errors in the target programs. Another 

concern is whether the developed MRs may contain faults. To address this threat, we have run all test cases by all 

subjects as well as our own test cases on all these MRs for the target programs. We observe no failure in the 

verification exercise. To further address this risk, we have also conducted a verification experiment to explicitly test 

the mutants of the implementations of the metamorphic relations.  

External Validity: External validity is the degree to which the results can be generalized to the testing of 

real-world systems. The programs used in our experiment are from real-life applications. For example, Eurobudget 

is widely used and has been downloaded more than 10,000 times from SourceForge. On the other hand, some 

real-world programs can be much larger and less well documented than the open-source programs studied. More 

future studies may be in order for the testing of large complex systems using the MT method.  We use the MR 

implementations produced by our subjects. Other testers of other target programs may produce other MR 

implementations. Additional experiments should always be helpful in improving the generalization of the results that 

we obtain and present in this paper. 

We use Java programs in the experiments, and all MR implementations are naturally written in Java. Although 

Java programs are widely used in practice, an MR is inherently a property. It may also be intuitive to implement an 

MR using a rule-based approach via logic programming. It is not immediately obvious to us whether the use of a 

rule-based approach may produce different comparison results. 

We use the test cases produced by the subjects. The use of other schemes (such as statement coverage) may 

produce different sets of test cases. 

Construct Validity: Construct validity refers to whether we are measuring what we intent to measure. We 

measure the effectiveness of metamorphic testing and assertion checking via a mutation detection ratio. Mutatio n 

analysis has been used and verified to be reliable for testing experiments that stimulate real fault scenarios for 

deterministic, procedural programs (written in C) [20]. The use of mutation detection ratio can be regarded as a 

reliable measure of the fault detection capability of a testing technique.  

In our experiment, to compare metamorphic testing and assertion checking, we use the same test pool and only 

use the method level of mutation operators to produce mutants in procedural program style. Moreover, the target 



 

 

11 

 

programs are deterministic; and thus, they produce the same output every time that a program executes a particular 

test case. Therefore, the failures shown in the outputs are also deterministic. However, our target programs are in 

Java, which is not the same as the C language. The set of mutation operators is not identical to that used by Andrews 

et al. [20]. On the other hand, many testing experiments use mutation analysis as the means to assure the 

effectiveness of various testing techniques. 

To measure the time cost for applying MT and assertion checking, we use the time spent by individual subjects 

on individual target programs. We do not control how a subject conducts their tasks. Thus, a subject may make a 

mistake when doing a task, find out a similar mistake when working on another task, and then go back to the former 

task to rectify the first mistake. Thus, a preceding task may be over-estimated in terms of the time spent, while the 

later task may benefit from the development experience of the preceding task and be under-estimated. We treat this 

factor as random noise in the experiment. We measure the times reported by each subject on applying MT and on 

applying assertion checking. 

5 Experimental Results 

This section presents the experimental results of applying metamorphic testing and assertion checking. They 

are structured according to the dependent variables presented in the last section.  

5.1 Feasibility of MR development and assertion development 

A critical and difficult step in applying MT and assertion checking is to develop metamorphic relations and 

assertions for the target programs. Table 4 reports on the number of metamorphic relations and assertions identified 

by the subjects for the three target programs. The mean numbers of metamorphic relations developed by the subjects 

for the respective programs were 2.79, 2.68, and 5.00. The total numbers of distinct metamorphic relations identified 

by all subjects for the respective programs were 18, 39, and 25. The mean numbers of assertions for the respective 

programs were 6.96, 11.35, and 10.97. 

Table 4  Number of metamorphic relations and assertions 

Program Total 
No. of metamorphic relations No. of assertions 

Mean Max Min StdDev Mean Max Min StdDev 

Boyer 18 2.79 5 1 1.66 6.96 43 1 8.94 

BooleanExpression 39 5.00 12 1 3.01 11.35 49 1 9.69 

TxnTableSorter 25 2.68 7 1 1.59 10.97 36 2 10.97 

First, we observe that all the subjects could properly create metamorphic relations and assertions after training. 

We further inspect their metamorphic relations and assertions, and find that many of the identified artifacts overlap 

among subjects. Take Boyer as an example. There are 38 subjects in total. They collectively identify 18 distinct 

metamorphic relations, and on average, each subject identifies 2.79 metamorphic relations. In other words, if all the 

metamorphic relations identified were distinct, there should be 108 metamorphic relations. It means that, on 

average, each distinct metamorphic relation is discovered by six subjects (or 15.7% of the population). We also 

observe a similar result for assertion checking. This result is encouraging. It indicates that the identification of 

metamorphic relations can be practical and may share among different developers. It further answers another 

important research question on whether the same metamorphic relation can be discovered by more than one subject. 

The answer is “yes”. 

To observe the variations in the feasibility of discovering metamorphic relations and assertions, we further 

normalize the standard derivations against the corresponding mean values in Table 4 for each of the programs. The 



 

 

12 

 

results are shown in Table 5. We observe that the standard deviations for discovering metamorphic relations are 

much larger than those for discovering assertions. In addition, we observe that the normalized standard deviations 

for discovering metamorphic relations across the three programs are quite consistent (close to 0.60 in each case). On 

the other hand, for assertions, the standard deviations trends vary from 0.20 to 0.30, which indicate a relatively 

larger fluctuation among programs. This initial finding may indicate that discovering metamorphic relations can be 

less dependent on the type of program being studied than discovering assertions. In other words, it suggests that 

there may be some hidden dominant factors (independent of the nature of target programs) governing the discovery 

of metamorphic relations. It will be interesting to identify these factors in the future. 

On the other hand, we observe from Table 5 that the absolute values of the normalized standard deviations for 

discovering assertions are much smaller than those of metamorphic relations. It shows that our subjects prod uce 

more predictable number of assertions. It may give project managers good guidelines to allocate project resources if 

they assign their programmers to do assertion checking in their software applications.  

Table 5  Normalized standard derivations 

Program Metamorphic relation Assertion checking 

Boyer 0.59 0.21 

BooleanExpression 0.60 0.20 

TxnTableSorter 0.59 0.30 

5.2 Size and granularity of metamorphic relations and assertions per program 

In general, the subjects could identify a larger number of assertions than metamorphic relations. As shown in 

Table 4, the maximum number of metamorphic relations discovered by subjects is almost the same as the mean 

number of assertions discovered by subjects. This suffices to indicate that there is a significant difference between 

the numbers of artifacts produced by the two testing methods.  

We also observe that the subjects‟ abilities to identify metamorphic relations and assertions vary. This is 

understandable and agrees with the intuition that different developers may have quite diverse programming abilities. 

Take BooleanExpression as an example. Some subjects can identify 12 metamorphic relations and 49 assertions, 

while some others can only identify one metamorphic relation and one assertion.  

We further observe from Table 4 that, for the three target programs, the ratios of the mean number of identified 

metamorphic relations to the mean number of identified assertions are 0.40, 0.44, and 0.24, respectively. If the 

effectiveness between the use of metamorphic testing and the use of assertion checking to identify failures is 

comparable, these ratios indicate that metamorphic relations can achieve a more coarse-grained granularity than 

assertions. If so, we believe that MT helps developers raise the level of abstraction more than assertion checking 

does. Our data analysis to be presented in the next section will validate whether the effectiveness of the two methods 

are comparable. 

5.3 Comparison on fault detection capabilities 

We use the subjects‟ metamorphic relations, assertions, and source and follow-up test cases to test the faulty 

versions of the target programs. The mutation detection ratio [20][26][42] is used to compare the fault detection 

capabilities of MT and assertion checking strategies. The mutation detection ratio of a test set is defined as the 

number of mutants detected by the test set over the total number of mutants  [42]. For metamorphic testing, a mutant 

is detected if a source test case and follow up test cases executed on the mutant do not satisfy some metamorphic 

relations. For assertion checking, a mutant is detected if a mutated statement is executed by a test case to e nter an 



 

 

13 

 

erroneous state that triggers an assertion statement. 

For the sake of fairness, we applied these two methods to the same set of test cases separately. The source and 

follow-up test cases from metamorphic testing were both applied to assertion checking. 

The average sizes of the test suites (including source and follow-up test cases) used by all students for the three 

programs were 19.9, 22.2, and 16.8, respectively. We also analyzed all the mutants manually before testing and 

removed the equivalent mutants. There were 19, 18, and 61 equivalent mutants for program Boyer, 

BooleanExpression, and TxnTableSorter, respectively. We did not include them when calculating mutation 

detection ratios as these mutants cannot be detected by any test cases.  

Table 6  Mutation detection ratios for metamorphic testing and assertion checking 

Program 
Metamorphic testing Assertion checking Result of 

p-value of 

Mann-Whitney test Mean Max Min StdDev Aggregate Mean Max Min StdDev Aggregate 

Boyer 60% 93% 44% 0.13 98% 40% 66% 27% 0.12 81% < 0.001 

BooleanExpression 63% 89% 46% 0.11 95% 39% 66% 30% 0.10 78% < 0.001 

TxnTableSorter 59% 74% 32% 0.14 83% 37% 58% 22% 0.11 63% < 0.001 

Table 6 reports on the mutation detection ratios for each program using the two testing methods. It shows that 

the mutation detection ratios by applying MT ranged from 44% to 93% for program Boyer, from 46% to 89% for 

program BooleanExpression, and from 32% to 74% for program TxnTableSorter. 

Under the “Aggregate” columns are the percentages of mutants detected by all subjects. For MT, the mutation 

detection ratios were 98%, 95%, and 83%, respectively. Each entry was significantly better than the corresponding 

mutation detection ratio for assertion checking. This result, again, is encouraging. 

The p-value of the standard Mann-Whitney test was less than 0.001 in all cases. Hence, we reject the null 

hypothesis H0 on the effectiveness of fault detection at a 99.9% confidence level. In other words, MT may not only 

be comparable to assertion checking, but outperforms the latter. We have used the same set of test cases when 

applying the Mann-Whitney test. 

This setting and hypothesis testing result indicate that the difference is attributed by the ability to violate the 

constraints specified via metamorphic relations and those specified via assertion checking. We observe that the 

difference between the two testing methods in our experiment is whether the constraint is specified for one 

execution or for multiple executions. The former type of constraint is for assertion checking, and the latter type is 

for metamorphic relation. In the other words, the result indicates that using the test results of multiple executions to 

identify failures collectively is more effective than just using one execution. 

Although our empirical results show that metamorphic testing can be effective, there is a need to develop 

systematic methods for creating metamorphic relations and assertions (because individual tester‟s results were lower 

than the aggregated results of all testers in either approach). The average differences between the mean column and 

the aggregate column for MT and assertion checking were 41.3% and 35.3%, respectively. The standard derivations 

did not differ much statistically. They ranged from 0.10 to 0.14, as shown in Table 6. 

5.4 Comparison of time cost 

We would like to compare the time costs between metamorphic testing and assertion checking. From the 

subjects‟ submissions, we found that they spent less time on applying assertion checking than metamorphic testing. 



 

 

14 

 

Table 7  Statistics of time costs for applying MT and assertion checking 

 
Smallest 

observation 

Lower 

quartile 

Lower 

notch 
Median 

Upper 

notch 

Upper 

quartile 

Largest 

observation 

Boyer 
MT 0.58 1.73 1.99 2.51 5.01 5.11 9.82 

Assertion 0.58 1.03 1.03 1.48 1.99 2.12 2.18 

BooleanExpression 
MT 0.32 2.25 2.51 3.28 6.03 8.02 12.71 

Assertion 0.45 1.35 1.48 1.99 3.02 5.01 7.77 

TxnTableSorter 
MT 0.26 2.51 3.02 3.98 6.03 6.99 11.68 

Assertion 0.52 1.03 1.28 1.99 3.02 3.98 6.74 

Table 7 shows the statistics of the time costs for applying the respective strategies to the target programs. Each 

entry in the column “Smallest Observation” stands for the smallest value (time cost in terms of hours) in the 

respective data set. Each entry in the column “Largest Observation” stands for the largest value in the respective 

data set. Each entry under “Median” captures the 50th percentile in the data. The entries under “Lower Quartile” and 

“Upper Quartile” capture the values of the 25th and 75th percentiles (in the order from small to large) in the data, 

respectively. The entries under “Lower Notch” and “Upper Notch” display the variability of the median in the data 

set. 

We observe from Table 7 several interesting tradeoffs between MT and assertion checking. First, the smallest 

observation in assertion checking is consistently larger than that in MT. Although applying MT is apparently more 

complex than assertion checking, this result shows that, for the most effective testers, the effort t o design and 

implement metamorphic relations is less than the effort to design and implement assertions. Second, for each of the 

three target programs, the median and the largest observation in MT are always greater than the corresponding 

values in assertion checking. It indicates that designing and implementing MRs is generally more time-consuming 

than designing and implementing assertions. Third, from the lower quartiles and upper quartiles in MT and assertion 

checking for these programs, we further observe that the time spent on MT varies more drastically than the time on 

assertion checking. 

Intuitively, many developers have developed skills to understand program logic from source code and are 

comfortable in conducting program comprehension. Furthermore, developers are used to modifying an existing 

program to implement new changes to the source code. In view of the above intuition, we believe that adding 

assertions to source code is a more familiar and handy task for the subjects than formulating and implementing MRs. 

 

Figure 2 Box-and-Whisker plots of time costs for applying MT and assertion checking 

To analyze the differences between these two testing approaches to alleviate the test oracle problem, we further 

represent their time costs using box-and-whisker plots. Figure 2 shows the plots for applying the respective 

strategies to the target programs. The time cost for MT includes the time to identify and formulate test cases, write 

functions to generate follow-up test cases, and write functions to verify the identified metamorphic relations. The 

time cost for assertion checking includes the time spent on adding assertions to the source code. 

BooleanExpression- 

Assertion 

BooleanExpression- 

MT 

TxnTableSorter- 

Assertion 

TxnTableSorter- 

MT 

Boyer- 

Assertion 

Boyer- 

MT 

12 

10 

8 

6 

4 

2 

0 



 

 

15 

 

The vertical axis of Figure 2 shows the time cost in number of hours. The bottom and top horizontal lines of 

each box indicate the lower and upper quartiles. The whiskers, drawn as dotted vertical lines, show the full range of 

the data. The median is drawn as a horizontal line inside each box. A notch is added to each  box to show the 

uncertainty interval for each median. If two median notches do not overlap, it indicates that there is a statistically 

significant difference between the two medians at a 95% confidence level. 

For Boyer and TxnTableSorter, there is a significant difference between the times spent in applying 

metamorphic testing and assertion checking. The difference is less statistically significant for BooleanExpression. 

The exact values of the respective notches can be found in Table 7. 

The difference in time cost is acceptable for a number of reasons. First, the time costs for MT implementations 

include the generation of follow-up test cases, whereas the time costs for assertion checking do not include the 

generation of any test cases. Second, some subjects have had prior experience in assertion checking. We believe that 

the extra time spent on developing programs to generate follow-up test cases have paid off because, as discussed in 

Section 5.2, these (follow-up) test cases have demonstrated to be very useful in detecting failures of the target 

programs. Furthermore, although there is a statistically significant difference in time costs (especially if we view  

Table 7 in relative terms), we also note that the actual median difference in absolute terms range between one to two 

hours in the experiment. 

Figure 2 further indicates that the time cost for applying MT to object-oriented testing at the class level is 

acceptable compared to that of assertion checking. When we consolidate the comparisons in Section s 5.2 and 5.3, 

we find that MT provides a stronger oracle check with a tradeoff of slightly more time for preparation. 

5.5 Comparison of MT with and without faulty MR implementations 

As we have highlighted in Section 3.1, an MR is a property that the correct version of a program under test 

should exhibit. To apply MT automatically, testers need to execute the implementations of the MRs for the program 

under test. In the controlled experiment, these MR implementations are constructed by the subjects. It is crucial  to 

know whether MT can still be effective if MR implementations can be faulty.  

We thus conducted a follow-up experiment to validate whether MT is robust enough if faulty metamorphic 

relations are used to detect failures in the subject programs. We used the set of mutation operators of muJava 

mentioned above to generate single-fault mutants of the MR implementations. In total, muJava produced 88, 71, 

and 89 MR mutants for the three subject programs, respectively. If an MR mutant cannot be killed by any test case, 

we excluded such a mutant from the follow-up experiment. We also excluded similar target program mutants. We 

then selected a test suite of 20 test cases randomly from the test pool for each target program and computed the 

mutation detection ratio accordingly. We note that, in this validation experiment, a revealed failure may be a mistake 

(namely, a false positive case) produced by a faulty MR implementation, a failure of the faulty target program, or 

both. We repeated the experiment by selecting the test suites 10 times. 

Table 8  Mutation detection ratios for metamorphic testing 

with and without faulty metamorphic relation implementations 

Program 
With correct MR implementations only With both correct and faulty MR implementations 

Mean Max Min StdDev Median Mean Max Min StdDev Median 

Boyer 59% 100% 2% 0.25 56% 95% 100% 85% 0.03 95% 

BooleanExpression 72% 100% 34% 0.27 85% 91% 100% 80% 0.08 94% 
TxnTableSorter 66% 100% 6% 0.22 57% 91% 100% 67% 0.05 90% 



 

 

16 

 

The result is shown in Table 8. First, if we only use correct MRs to identify failures, the mean fault detection 

rate in the validation experiment is close to the mutation detection rate shown in Table 6. It indicates that the results 

of the validation experiment are comparable to the above-mentioned experiment that compares MT and assertion 

checking. Second, if MR implementations can be faulty, the mean value is much higher (consistently over 90% as 

shown in the rightmost column of Table 8). The result indicates that a test suite is likely to detect problems in the 

combination of a faulty target program and a set of faulty MRs. This finding is encouraging because MT can still be 

reasonably applied even if some MR implementations may be faulty. If a faulty MR implementation can be 

debugged successfully, we believe that the failure detection rate of the test suite will drop, as indicated by the 

comparison in Table 7. However, fixing the faults in the MR implementations will incur additional time cost. It may 

make the difference in time cost between metamorphic testing and assertion checking more noticeable. Thus, it 

warrants more study to find the extent that testers should stop further maintenance of a faulty MR implementation in 

order to balance the development cost and product quality. 

5.6 Further discussions on MT 

In general, we observe that the more MRs being used, the higher will be the mutation detection ratio. As we 

have indicated in Section 5.2, there is a need to propose more systematic methods to construct the implementation of 

metamorphic relations. The utilization of an MR implementation also increases as testers increase the number of 

initial test cases applicable to the MR. Since the resources in software testing are often limited, it is also worth 

investigating the number of test cases adequate for MT. 

Moreover, testers may apply a number of metamorphic relations in order to test a program. In general, different 

metamorphic relations have non-identical fault detection capabilities. Let us, for instance, analyze the experimental 

results of the Boyer program. The subjects have identified 18 metamorphic relations in total. We observe that four 

subjects have only identified one and the same metamorphic relation (MR1 in Table 9). The implementation of this 

metamorphic relation constructs a follow-up test case by appending an arbitrary string to the string in the initial test 

case and reusing the given pattern in the initial test case. It also checks whether the Boyer program over the two test 

cases will give the same outputs if the program locates successfully the given pattern in the initial string.  The 

mutation detection ratios resulting from these MR implementations by the subjects are no more than 60% no matter 

how many test cases they used. We also find that some subjects using the other metamorphic relations (MR2 and 

MR3 in Table 9) achieve mutation detection ratios higher than 80%, although they only propose four initial test 

cases. It indicates that the quality of metamorphic relations can be a key factor in determining the effectiveness of 

MT. 

Table 9  Examples of metamorphic relations for program Boyer 

Index Metamorphic relation  

MR1 
If (x1 = concatenate (x2, x3))  (find (x2, x4) > −1), 

then find (x1, x4) = find (x2, x4). 

MR2 
If (x1 = concatenate (x2, x3))  (find (x2, x4) = −1)  (find (x3, x4) > −1), 

then find (x1, x4) ≤ length (x2) + find (x3, x4). 

MR3 
If (x1 = concatenate (x2, x3))  (find (x1, x4) = length (x2)), 

then find (x3, x4) = 0. 

The function concatenate (x, y) returns the result of concatenating string x and string y. The function 

find (x, y) returns the zero-based index of string y within the string x if x contains y; otherwise, it 

returns −1. 



 

 

17 

 

6 Conclusion 

This paper has reported a controlled experiment to study the application of metamorphic testing (MT) and 

assertion checking as the means to alleviate the test case problem. A main objective is to evaluate whether MT is a 

useful and viable strategy and to assess its cost and effectiveness. We choose to compare MT with a popular testing 

method, namely, assertion checking. The experiment indicates that, after training, the subjects could apply MT to 

test programs effectively. For all the three open-source programs under study, the subjects could identify many 

useful metamorphic relations. The results also suggest that MT is a  more effective testing strategy than assertion 

checking in terms of fault detection capability. The time cost of applying MT is acceptable when compared with 

assertion checking. However, assertion checking is more efficient. Our study also reveals that the granularity of 

MRs is coarser than that of assertion checking. It may indicate that MRs provide a high level of abstraction for 

testers to deal with testing tasks. 

Future research includes the following: In our experiments, the subjects must identify metamorphic relations 

and develops programs manually to apply MT. It will be desirable to automate, even in part, the formulation and 

generation of metamorphic relations. Other future experiments include the impact of experience levels of subjects on 

applying MT, and the use of other subjects, programs and MRs. It is also interesting to study how MT integrates 

with test case adequacy criteria, and the role of program development environments to lower the barrier to applying 

MT in practice. Our empirical study only examines the effectiveness and time cost of metamorphic testing and 

assertion checking. We have not formulated the underpinning theory to explain the differences. We hope that our 

study provides an initial set of empirical evidence for researchers to explore this inadequately researched and yet 

important area. 

Acknowledgement 

We would like to thank Fan Liang of The University of Hong Kong for conducting the validation experiment. 

References 

[1] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse. An empirical comparison between direct and indirect test result checking approach es. In 

Proceedings of the 3rd International Workshop on Software Quality Assurance (SOQUA 2006) in conjunction with the 14th ACM 

SIGSOFT Symposium on Foundations of Software Engineering (SIGSOFT 2006/FSE-14), pages 6–13. ACM Press, New York, NY, 

2006. 

[2] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, NY, 1990. 

[3] E. J. Weyuker. On testing non-testable programs. The Computer Journal, 25 (4): 465–470, 1982. 

[4] T. Y. Chen, J. Feng, and T. H. Tse. Metamorphic testing of programs on partial differential equations: a case study. In Proceedings of 

the 26th Annual International Computer Software and Applications Conference (COMPSAC 2002), pages 327–333. IEEE Computer 

Society Press, Los Alamitos, CA, 2002. 

[5] W. K. Chan, S. C. Cheung, J. C. F. Ho, and T. H. Tse. PAT: a pattern classification approach to automatic reference oracles for the  

testing of mesh simplification programs. Journal of Systems and Software, 2008. doi.10.1016/j.jss.2008.07.019. 

[6] W. K. Chan, J. C. F. Ho, and T. H. Tse. Piping classification to metamorphic testing: an empirical study towards better effectiveness 

for the identification of failures in mesh simplification programs. In Proceedings of the 31st Annual International Computer Software 

and Applications Conference (COMPSAC 2007), volume 1, pages 397–404. IEEE Computer Society Press, Los Alamitos, CA, 2007. 

[7] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen. Testing context-sensitive middleware-based software applications. In 

Proceedings of the 28th Annual International Computer Software and Applications Conference  (COMPSAC 2004), volume 1, pages 

458–465. IEEE Computer Society Press, Los Alamitos, CA, 2004. 



 

 

18 

 

[8] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware middleware-centric programs: a data flow approach and an RFID-based 

experimentation. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering 

(SIGSOFT 2006/FSE-14), pages 242–252. ACM Press, New York, NY, 2006. 

[9] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau. A metamorphic approach to integration testing of context-sensitive 

middleware-based applications. In Proceedings of the 5th International Conference on Quality Software (QSIC 2005), pages 241–249. 

IEEE Computer Society Press, Los Alamitos, CA, 2005. 

[10] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau. Integration testing of context-sensitive middleware-based applications: a 

metamorphic approach. International Journal of Software Engineering and Knowledge Engineering, 16 (5): 677–703, 2006. 

[11] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. A metamorphic testing approach for online testing of service-oriented software 

applications. International Journal of Web Services Research, 4 (2): 60–80, 2007. 

[12] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based testing without the need of oracles. Information and Software Technology, 45 (1): 

1–9, 2003. 

[13] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison Wesley, Reading, MA, 2000. 

[14] R. N. Taylor. Assertions in programming languages. ACM SIGPLAN Notices, 15 (1): 105–114, 1980. 

[15] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Semi-proving: an integrated method based on global symbolic evaluation and metamorphic 

testing. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2002), pages 

191–195. ACM Press, New York, NY, 2002. 

[16] A. Gotlieb and B. Botella. Automated metamorphic testing. In Proceedings of the 27th Annual International Computer Software and 

Applications Conference (COMPSAC 2003), pages 34–40. IEEE Computer Society Press, Los Alamitos, CA, 2003. 

[17] Y. Sun and E. L. Jones. Specification-driven automated testing of GUI-based Java programs. In Proceedings of the 42nd Annual 

Southeast Regional Conference (ACM-SE 42), pages 140–145. ACM Press, New York, NY, 2004. 

[18] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. Towards a metamorphic testing methodology for service-oriented software 

applications. The 1st International Conference on Services Engineering (SEIW 2005) . In Proceedings of the 5th International 

Conference on Quality Software (QSIC 2005), pages 470–476. IEEE Computer Society Press, Los Alamitos, CA, 2005. 

[19] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User guidance for creating precise and accessible property specifications. In 

Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering  (SIGSOFT 2006/FSE-14), 

pages 208–218. ACM Press, New York, NY, 2006. 

[20] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments?. In Proceedings of the 27th 

International Conference on Software Engineering (ICSE 2005), pages 402–411. ACM Press, New York, NY, 2005. 

[21] D. Chapman. A program testing assistant. Communications of the ACM, 25 (9): 625–634, 1982. 

[22] S. Ar, M. Blum, B. Codenotti, and P. Gemmell. Checking approximate computations over the reals. In Proceedings of the 25th Annual 

ACM Symposium on Theory of Computing (STOC ’93), pages 786–795. ACM Press, New York, NY, 1993. 

[23] M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM, 42 (1): 269–291, 1995. 

[24] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. Journal of Computer and 

System Sciences, 47 (3): 549–595, 1993. 

[25] Q. Xie and A. M. Memon. Designing and comparing automated test oracles for GUI-based software applications. ACM Transactions 

on Software Engineering and Methodology, 16 (1): Article No. 4, 2007. 

[26] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determination of sufficient mutant operators. ACM 

Transactions on Software Engineering and Methodology, 5 (2): 99–118, 1996. 

[27] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: specifying behavioral compositions in object -oriented systems. In 

Proceedings of the 5th Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’90), 

ACM SIGPLAN Notices, 25 (10): 169–180, 1990. 



 

 

19 

 

[28] L. C. Briand, M. Di Penta, and Y. Labiche. Assessing and improving state-based class testing: a series of experiments. IEEE 

Transactions on Software Engineering, 30 (11): 770–783, 2004. 

[29] B. Meyer. Applying „design by contract‟. IEEE Computer, 25 (10): 40–51, 1992. 

[30] M. Last, M. Friedman, and A. Kandel. The data mining approach to automated software testing. In Proceedings of the 9th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pages 388–396. ACM Press, New York, 

NY, 2003. 

[31] M. Vanmali, M. Last, and A. Kandel. Using a neural network in the software testing process. International Journal of Intelligent 

Systems, 17 (1): 45–62, 2002. 

[32] P. Francis, D. Leon, M. Minch, and A. Podgurski. Tree-based methods for classifying software failures. In Proceedings of the 15th 

International Symposium on Software Reliability Engineering (ISSRE 2004), pages 451–462. IEEE Computer Society Press, Los 

Alamitos, CA, 2004. 

[33] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang. Automated support for classifying software failure 

reports. In Proceedings of the 25th International Conference on Software Engineering (ICSE 2003), pages 465–475. IEEE Computer 

Society Press, Los Alamitos, CA, 2003. 

[34] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for automatic classification of software behavior. In Proceedings of the 

2004 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2004), pages 195–205. ACM Press, New 

York, NY, 2004. 

[35] W. K. Chan, M. Y. Cheng, S. C. Cheung, and T. H. Tse. Automatic goal-oriented classification of failure behaviors for testing 

XML-based multimedia software applications: an experimental case study. Journal of Systems and Software, 79 (5): 602–612, 2006. 

[36] S. Beydeda. Self-metamorphic-testing components. In Proceedings of the 30th Annual International Computer Software and 

Applications Conference (COMPSAC 2006), volume 1, pages 265–272, IEEE Computer Society Press, Los Alamitos, CA, 2006. 

[37] P. Wu. Iterative metamorphic testing. In Proceedings of the 29th Annual International Computer Software and Applications 

Conference (COMPSAC 2005), volume 1, pages 19–24. IEEE Computer Society Press, Los Alamitos, CA, 2005. 

[38] C. Murphy. Using runtime testing to detect defects in applications without test oracles. In Companion to Proceedings of the 16th ACM 

SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), ACM Press, New York, NY, 

2008. 

[39] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu. Application of metamorphic testing in numerical analysis. In 

Proceedings of the IASTED International Conference on Software Engineering (SE ’98), pages 191–197. ACTA Press, Calgary, 

Canada, 1998. 

[40] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta. A controlled experiment in maintenance comparing design patterns 

to simpler solutions. IEEE Transactions on Software Engineering, 27 (12): 1134–1144, 2001. 

[41] M. Vokáč, W. Tichy, D. I. K. Sjoberg, E. Arisholm, and M. Aldrin. A controlled experiment comparing the maintainability of 

program designed with and without design patterns: a replication in a real programming environment. Empirical Software 

Engineering, 9 (3):149–195, 2004. 

[42] W. E. Howden. Weak mutation testing and completeness of test sets. IEEE Transactions on Software Engineering, SE-8 (4): 371–379, 

1982. 

[43] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon. MuJava: an automated class mutation system. Software Testing, Verification and Reliability, 

15 (2): 97–133, 2005. 

[44] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Sufficient mutation operators for measuring test effectiveness. In Proceedings of the 

30th International Conference on Software Engineering (ICSE 2008), pages 351–360, ACM Press, New York, NY, 2008. 

 




