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In spite of its importance in software reliability, testing

is labor intensive and expensive. It has been found

that software testing without a good strategy may not

be more effective than testing the system with random

data. Obviously, the effectiveness of testing relies

heavily on how well the test suite — the set of test

cases actually used — is generated. This is because the

comprehensiveness of the test suite will affect the scope

of testing and, hence, the chance of revealing software

faults.

There are two main approaches to generating test

suites: specification-based and code-based. The former

generates a test suite from information derived from the

specification, without requiring the knowledge of the

internal structure of the program [9, 10, 11]. The latter

approach, on the other hand, generates a test suite based

on the source code of the program [4, 8]. Neither of these

approaches is sufficient; they are complementary to one

another [1].

In software development, the requirements have to be

established before implementation, and the specification

should exist prior to coding. In this respect, the

specification-based approach to test suite generation is

particularly useful because test cases can be generated

before coding has been completed. This facilitates

software development phases to be performed in parallel,

thus allowing time for preparing more thorough test plans

and yet shortening the length of the whole process.

∗ c©ACM. This is the authors’ version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The

definitive version will be published in Communications of the ACM 53

(4) (2010). http://doi.acm.org/10.1145/1721654.1721687. Permission

to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made

or distributed for profit or direct commercial advantage and that copies

show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, to redistribute to

lists, or to use any component of this work in other works, requires prior

specific permission and/or a fee. Permissions may be requested from

Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036,

USA, fax +1 (212) 869-0481, or permissions@acm.org.

Problems in Specification-Based

Testing

Let us focus on the specification-based approach.

Specifications — the sources for generating test suites —

often exist in a spectrum of forms as depicted in

Figure 1. At the left extreme is the completely informal

specification primarily written in natural language. On

the other hand, the right extreme of the spectrum

corresponds to the completely formal specification written

in a mathematical notation. A specification, in general,

may be in a format lying somewhere between these two

extremes.

Formal specifications, because of their mathematical

basis, are more precise than informal specifications.

They can be analyzed rigorously for inconsistency.

Furthermore, the rigorous nature of formal specifications

eases the automatic generation of test suites. Hence,

there exist systematic and automated test suite generation

methods for various types of formal specification such

as Z [9] and Boolean [7] specifications. More

recent examples of generating test suites from formal

specifications include the modified condition/decision

coverage (MC/DC) strategy [7, 12] and the MUMCUT

strategy [7]. The MC/DC strategy can be classified

as either specification-based or code-based testing,

depending on whether the predicate information used to

generate a test suite is derived from the specification

or the source code. In particular, compliance of the

MC/DC strategy has been mandated in the commercial

aviation industry for the approval of airborne software [7].

Readers should note, however, that both strategies are

only applicable to the detection of failures in logical

decisions in Boolean specifications.

Despite the advantages of precision and rigor, formal

specifications and their associated test suite generation

methods are not as popular as they should be, mainly

because most software developers are not familiar

with the mathematical concepts involved and find the

techniques difficult to understand and use. How about

informal specifications? Are there any problems for
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Figure 1. Spectrum of different forms of specifications.

testing based on these specifications? If the answer is yes,

what are the problems?

Many informal specifications, especially those written

in natural language, are often wordy and unstructured,

making it difficult to generate test suites directly from

them. Several test suite generation methods based

on informal specifications have been developed by

researchers with a view to alleviating this problem.

Examples are the classification-tree method (CTM) [5]

and the category-partition method (CPM) [2]. They

require software testers to re-express the original

informal specification in a more concise and structured

intermediate form, such as a classification tree in CTM,

from which a test suite can be generated more easily. The

idea is to re-enact the original specification in a format

that lies somewhere between the two extremes of the

spectrum in Figure 1, so that:

(a) On one hand, the new representation supports

some degree of systematic test suite generation,

even though it may not be as rigorous as formal

specifications; and

(b) On the other hand, with a little training, software

testers in the large can understand and accept the new

format.

We support the approach of “formalizing” the original

specification, but observe that the degree of formalization

in both methods may not be sufficient. We have a few

concerns:

(i) For CPM, the original specifications are manually

converted into some intermediate representations.

This process is tedious and prone to human

errors, especially when the original specification is

complex.

(ii) CPM does not support consistency checking of

intermediate representations. If these representations

happen to be constructed incorrectly but the testers

are not aware of the mistakes, some testing scenarios

may not be covered.

(iii) We have done some work on CTM. We observed,

however, that it could not model some of the

essential constraints of the input domain because of

an inherent limitation of the tree structure. This

resulted in the generation of illegitimate test cases.

Although the problems could be solved by separate

techniques, an aggregation of independent solutions

might not be the most desirable in a method. This

observation has inspired us to change our focus to

the development of a choice relation framework as

described in this article.

Overview of Choice Relation

Framework

In order to solve the above problems, we have

developed a CHOiCe reLATion framEwork, abbreviated

as CHOC’LATE, to support the generation of test suites

from specifications. Our framework [3] is an extension

of the original CPM but has incorporated many useful

features. When compared with CTM and CPM,

(a) CHOC’LATE captures relatively more formal infor-

mation from the specification by means of a highly

structured intermediate format (namely, a choice

relation table to be described later), which is closer

to the right of the spectrum in Figure 1. Because

of this, CHOC’LATE supports the automation of test

suite generation to a high degree. Although the

choice relation table is relatively more formal than

the intermediate representations in CTM and CPM, it

can be understood by software developers with little

formal training.

(b) CHOC’LATE provides a useful mechanism for

checking the consistency of the choice relation table

(see concern (ii)).

Besides, CHOC’LATE also incorporates two other useful

mechanisms, namely automatic deductions of choice
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relations (see concern (i)) and the prioritization of choices

for test suite generation. We have also developed a

prototype system according to the framework.

It would be worthwhile to compare CHOC’LATE with

pairwise testing [6, 10], which is another common test

suite generation method. Basically, pairwise testing

requires that, for each pair of input parameters of a

software system, every combination of valid values of

these two parameters be covered by at least one test

case [6, 10]. Consider, for example, a software system

with four input parameters; each of them can take three

different values. Using pairwise testing, the number

of test cases would be reduced from 34
= 81 to nine.

Although pairwise testing can reduce the number of

generated test cases so as to save testing resources, it

mainly focuses on faults caused by interactions between

any two parameters. In other words, faults caused by

interactions among three or more parameters may not be

effectively dealt with by pairwise testing. This problem,

however, does not exist in CHOC’LATE to be described as

what follows.

Basically, CHOC’LATE consists of the following steps:

1. Decompose the specification into functional units.

For each functional unit, repeat steps 2 to 6 below.

2. Identify categories and their associated choices.

3. Construct a choice relation table.

4. Construct a choice priority table and define the

appropriate parameters.

5. Generate a set of complete test frames (CTFs).

6. Randomly construct test cases from generated CTFs.

We shall explain these steps using the following

specification:

Specification for a Course Enrollment
System enroll:

Develop a software system enroll for use by

the academic secretariat of a university to process

course enrollments by students. In order to evaluate

whether an enrollment should be approved, enroll

accepts the following inputs regarding the students

concerned. [Each of the following inputs will affect the

functions of enroll. The details, however, are not

included here because they are not directly relevant

to our framework.]

• Student ID: A 7-digit number.

• Degree Level: “Undergraduate” or “Postgradu-

ate”.

• Degree Type: “Coursework” or “Research”.

Note that all undergraduate degrees are by

coursework, while postgraduate degrees can

be by research or coursework.

• Degree: Examples are “BA”, “BS”, “BEng”,

“MBA”, and “PhD”.

• Number of Courses Enrolled (N): “N = 0”, “1 6

N 6 8”, or “N > 8”.

Step 1: Decomposition of Specification. Given a large

and complex system, the tester should decompose it into

functional units that are smaller in size and manageable in

complexity, so that each unit can be tested independently

using CHOC’LATE. This will significantly ease the testing

process. On the other hand, if the system is smaller and

less complex, the tester can treat it as a single functional

unit and, hence, no decomposition is needed. This is the

case for the course enrollment system.

Step 2: Identification of Categories and Choices. The

input elements of a functional unit can be divided into two

types, namely parameters and environment conditions.

The former are the explicit inputs to the functional unit

supplied by the user or by another unit, whereas the

latter are the states of the system at the time of executing

the functional unit. The tester should identify all the

input elements in a functional unit. Otherwise, software

faults associated with a missing input element may not be

detected.

The tester then identifies the categories, which are

the properties or characteristics of a parameter or

environment condition. For example, two possible

categories for enroll are “Number of Courses Enrolled

(N)” and “Status of Student’s Record”. The former is

identified with respect to a parameter and the latter with

respect to an environment condition.

For each category X , its associated choices should be

identified. These choices are non-overlapping subsets of

the values of X . Taken together, they cover every possible

value of X . In enroll, for instance, the choices associated

with the category “Number of Courses Enrolled (N)” are

“N = 0”, “1 6 N 6 8”, and “N > 8”; while the choices

associated with the category “Status of Student’s Record”

are “Does Not Exist”, “Exists but Empty”, and “Exists

and Non-Empty”. See Figure 2(a) for the input screen

for the categories and their associated choices provided

by our prototype system for CHOC’LATE.

Step 3: Construction of Choice Relation Table. The

tester then defines the constraints of the input domain.

This step is very important because the correctness

of the constraints affects the quality of the generated

CTFs. An example of a constraint in enroll is that
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Figure 2. Sample screens of our prototype system.

the choices “Undergraduate” and “PhD” in the categories

“Degree Level” and “Degree”, respectively, should not be

combined to form part of any CTF. If this constraint were

ignored, some of the generated CTFs might not correspond

to legitimate inputs to the system.

In our framework, given a pair of choices x and y, their

choice relation must be in one of three types, namely

full embedding (x ⊏ y), partial embedding (x ⊏P y), and

nonembedding (x 6⊏ y). Please refer to the callout “Types

of Choice Relation” for an explanation of these relations.

Basically, these choice relations aim at capturing the

constraints of the input domain. They indicate how x and

y should be combined to form part of a CTF. We use a

choice relation table to capture these constraints. In order

to improve on the effectiveness and efficiency of defining

choice relations, we have identified numerous properties

for these relations. These properties, then, form the

basis for automatic deductions and consistency checking

of choice relations, whose details will be described later.

Readers may refer to Chen et al. [3] for a full list of these

properties. We only list two of them here for illustration:

(Property 1) Given three choices x, y, and z, if

x ⊏ y and x ⊏P z, then y ⊏P z.

(Property 2) Given three choices x, y, and z, if

x ⊏ y and z 6⊏ x, then y ⊏P z or y 6⊏ z.

The “then” part of Property 1 consists of a definite relation

and, hence, provides a basis for automatic deductions of

choice relations. More specifically, if x ⊏ y and x ⊏P z are

manually defined by the tester, y ⊏P z can be automatically

deduced without human intervention. We have used four

real-life commercial systems (or modules) to conduct a

total of 20 trial runs, with a view to determining the

effectiveness of the automatic deduction mechanism. The

results of our studies show that, on average, 42 percent of

choice relations can be deduced automatically [3].

As for Property 2, the “then” part contains two possible

relations. Although this property cannot be used for

automatic deduction, it nevertheless allows us to check the

consistency of the relations among choices. For example,

we know that x ⊏ y, z 6⊏ x, and y ⊏ z cannot coexist,

or else they would contradict Property 2. The results

of our studies show that almost all the choice relations

incorrectly defined by the tester can be automatically

detected as inconsistencies by CHOC’LATE immediately

after these mistakes are made [3].

In summary, by means of the automatic deduction
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Test Frames and Their Completeness:

This callout refers to the enroll system described in the main body of the article.

A test frame TF is a set of choices. For example,

TF1 = {Exists and Non-Empty, Postgraduate, Research, PhD, 1 6 N 6 8 }

is a test frame for enroll that contains five choices.

A TF is said to be complete if, whenever a single value is selected from each choice, a standalone input (that is, a test

case) will be formed. Otherwise, it is incomplete. Consider the following combination of values:

C = {Exists and Non-Empty, Postgraduate, Research, PhD, N = 4 }.

C is formed by selecting a single value from each choice in the test frame TF1 above. C cannot serve as a test case,

however, because we also need the student ID in order to execute enroll for testing. Hence, TF1 is incomplete.

Readers are reminded not to confuse the elements “Exists and Non-Empty”, “Postgraduate”, “Research”, and “PhD”

in TF1 and C. Take “PhD” as an example. It is a choice in TF1. This choice happens to have only one value, also

known as “PhD”. The latter is listed in C.

mechanism, the number of choice relations manually

defined by the tester is significantly reduced. Further-

more, for those choice relations defined manually, their

correctness will be verified by the consistency checking

mechanism. These mechanisms thus decrease the chance

of human errors. Readers may refer to Figure 2(b) for

the input screen for the relation between a pair of distinct

choices. Figure 2(c) shows a screen of our prototype

system, which informs the tester that an inconsistency

among relations has been detected, and asks the tester to

pick the erroneous relation to be corrected.

Readers may note the check box (with the caption

“Click the left box if the above relation also applies

to all other choices of the second category”) near the

bottom of the input screen in Figure 2(b). The check

box provides the tester with an option of defining group

constraints through one single manual definition. This

will further reduce the number of manual definitions

required. Because of this option, according to the results

of our studies [3], on average, an extra 28 percent of

choice relations need not be defined individually. Thus,

when considering the automatic deduction mechanism

and group constraint definitions together, the amount of

human effort is significantly reduced — only about 30

percent of the total number of choice relations have to be

specified manually.

Step 4: Construction of Choice Priority Table and

Definition of Parameters. Many real-life situations

impose resource constraints on testing and, hence, not all

the CTFs generated will actually be used in the testing

process. Intuitively, it would be more effective to have

an idea of the kinds of fault that are most probable or

most damaging, and then generate CTFs that are likely to

reveal these significant faults. One approach is to define

the relative priorities for the choices based on expertise in

testing and experience in the application domain. In this

way, the choices with higher priorities can first be used

to generate test frames (TFs). This generation process

will continue until the number of generated TFs reaches

the ceiling allowed by the testing resources. The relative

priorities of the choices are captured in a choice priority

table. In this table, choices with higher relative priorities

are expected to have higher chances of revealing more

significant faults.

Besides constructing the choice priority table, the

tester also needs to define the ceiling permitted by the

testing resources. This is achieved through the parameter

preferred maximum number of test frames (M). The word

“preferred” implies that M is not absolute, as the ceiling

may be overwritten by the parameter to be described in

the next paragraph.

In addition to M, we have another parameter, which

indicates the minimal priority level. Any choice having a

relative priority higher than this minimum will always be

selected for inclusion as part of a TF, no matter whether

the number of generated TFs exceeds M. In essence,

the minimal priority level guarantees that the choices

more likely to detect significant faults will always be

used to form TFs irrespectively of the testing resources.

Figure 2(d) shows an input screen that allows testers to

define the relative priority for every choice, M, and the

minimal priority level.

Step 5: Generation of Complete Test Frames.

CHOC’LATE adopts an incremental approach to

generating TFs based on the choice relation table, the

choice priority table, M, and the minimal priority level.

Most parts of the generation process are automatically

performed by CHOC’LATE without human intervention.

This is achieved by means of automatic deduction of the

relation between a single choice x and a TF, which is
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Figure 3. A test frame for enroll.

similar to the automatic deduction mechanism for a pair

of choices as described in step 3. Readers may refer to

Chen et al. [3] for details. Figure 3 shows a TF generated

by our prototype system for enroll.

Step 6: Generation of Test Cases from Complete Test

Frames. For every CTF, the tester then randomly selects a

single element from each choice. The set of elements thus

selected in every CTF will constitute a test case. Consider,

for example, the TF shown in Figure 3. We can randomly

select a test case from it:

Exists and Non-Empty, 0411875, Postgraduate,

Research, PhD, N = 4

When generating the above test case, “0411875” and

“N = 4” are randomly selected from the choices “Student

ID” and “Number of Courses Enrolled (N)”, respectively.

Instead of randomly picking an element from each

choice, another approach is to use the concept of boundary

value analysis (BVA). This concept is based on the

observation that test cases exploring boundary conditions

have a higher payoff in revealing failures than test

cases that do not. Here, boundary conditions are those

situations directly on, above, and beneath the edges of

partitions (which are similar to choices in CHOC’LATE).

Consider, for instance, the choice “1 ≤ N ≤ 8” in the

category “Number of Courses Enrolled (N)”. According

to BVA, boundary values such as 1 and 8 are better

candidates for test case generation than other elements

such as 4 and 5.

As mentioned in step 3 above, we have successfully

applied CHOC’LATE to four real-life commercial systems

(or modules) [3]. They include the inventory registration

module and the purchase-order generation module of an

inventory management system used by a group of public

hospitals, an online telephone inquiry system used in a

large telecom company, and the meal scheduling module

of a meal ordering system used by an international airline

catering company. We also note that CTM has been

successfully used in several industrial applications, such

as modules in an airfield lighting system and an adaptive

cruise control system. Since CHOC’LATE is similar to

CTM with respect to the identification of categories,

choices, and constraints (but with many improvements

such as automatic deductions and consistency checks of

choice relations), it is not difficult to see that CHOC’LATE

can also be applied to these application domains. In

short, CHOC’LATE can be applied to software systems in

different application domains, provided that these systems

can be decomposed into functional units which can be

tested independently (step 1 in our framework), and that

categories, choices, and choice relations can be identified

(steps 2 and 3 in our framework).

Summary and Conclusion

Specification-based testing remains a popular approach

of software testing, for which numerous test suite

generation methods have been proposed by researchers.

These methods, however, suffer from similar problems

that hinder their effective application. We have developed

a choice relation framework CHOC’LATE with a view

to solving these problems. CHOC’LATE outperforms

other methods in several aspects. First, the concept

of choice relations allows testers to systematically re-

enact an unstructured informal specification in a more

formal representation — a choice relation table — from

which a test suite can be effectively generated and the

generation process can be automated. This degree of

formalization does not exist in other generation methods.

Secondly, unlike formal specifications, the choice relation

table is easy to understand by software developers with

little formal training. Thirdly, CHOC’LATE incorporates

mechanisms for the consistency checking and automatic

deductions of choice relations, as well as the prioritization

of choices for test suite generation. These useful features

have contributed to the uniqueness of the framework.

Because of these merits, we believe that CHOC’LATE

will have a significant contribution to software quality

assurance in the industry.
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