

1

Proceedings of the 30th International Conference on Software Engineering (ICSE 2008), pages 371–380, ACM Press, New York, NY, 2008

Data Flow Testing of Service-Oriented Workflow Applications*†
Lijun Mei

The University of Hong Kong
Pokfulam, Hong Kong

ljmei@cs.hku.hk

W.K. Chan
City University of Hong Kong

Tat Chee Avenue, Hong Kong
wkchan@cs.cityu.edu.hk

T.H. Tse
‡

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

ABSTRACT

WS-BPEL applications are a kind of service-oriented application.
They use XPath extensively to integrate loosely-coupled
workflow steps. However, XPath may extract wrong data from the
XML messages received, resulting in erroneous results in the
integrated process. Surprisingly, although XPath plays a key role
in workflow integration, inadequate researches have been
conducted to address the important issues in software testing. This
paper tackles the problem. It also demonstrates a novel
transformation strategy to construct artifacts. We use the
mathematical definitions of XPath constructs as rewriting rules,
and propose a data structure called XPath Rewriting Graph (XRG),
which not only models how an XPath is conceptually rewritten
but also tracks individual rewritings progressively. We treat the
mathematical variables in the applied rewriting rules as if they
were program variables, and use them to analyze how information
may be rewritten in an XPath conceptually. We thus develop an
algorithm to construct XRGs and a novel family of data flow
testing criteria to test WS-BPEL applications. Experiment results
show that our testing approach is promising.
Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; D.2.8 [Software Engineering]: Metrics—Product metrics

General Terms
Measurement, Reliability, Verification

Keywords
WS-BPEL, XPath, Service-orientation, Workflow testing,
Testing, Rewriting rules, SOA, XML, XML document model

1. INTRODUCTION
Software engineers often employ a collection of heterogeneous
but closely related technologies, such as WS-BPEL [1], to
develop a service-oriented workflow application [4]. They may
design a company’s business workflow in BPEL [1], or source
(external) web services [2] to provide functions of individual
workflow steps. Furthermore, they specify the signatures and
resource locators (such as URLs) of their web services as WSDL
documents [1] so that BPEL can invoke these web services. To
facilitate XML-based communications and data transfers among
web services and individual BPEL steps, software engineers may
define the required message types by using XML schema [11].
Any concrete messages, WSDL documents, or definitions of
BPEL variables are, however, XML documents. XPath [3] is an
indispensable means to manipulate these documents, such as
extracting the required contents from an XML message returned
by a web service, or keeping the extracted contents in a BPEL
variable under the right variable definition. For instance, every
WS-BPEL application in an IBM Repository [4] uses XPath. A
mismatch among components (e.g., extracting the wrong contents
or failing to extract any content from a correct XML message)
may cause a WS-BPEL application to function incorrectly.

Surprisingly, although WS-BPEL is strongly advocated by
OASIS, IBM, Microsoft, BEA, SAP, and Oracle to be a platform
for building enterprise applications, inadequate researches have
been conducted to address their testing issues (see Section 6 for
details). In particular, even though XPath plays such a crucial role
in WS-BPEL applications, many existing verification and
validation (V&V) researches (such as in modeling and verification
[22][29], validation [25], unit testing [18], and test case generation
[12][28]) simply do not consider XPath or merely model it as a
function call without exploring deeply its implication from the
V&V perspective. Some (e.g., [10][11]) simulate XPath
expressions in another language using their styles of
programming. The conceptual structure of XPath and how various
parts of this structure may interact with BPEL remain unclear.

In a typical WS-BPEL application, for instance, XPath may
work in pair with a document model of XML messages (that is, an
XML schema [3]) to extract the required contents. Depending on
the structure of the XML schema, however, multiple paths may
fulfill the same XPath, but extract different contents from the
same XML message. Nevertheless, even different entities
specified in an XML schema may share the same primitive data
types such as string, they may serve distinct purposes. Using
incompatible (in the sense of semantics) extracted messages to
conduct follow-up workflow activities in a BPEL program may
result in integration errors. We shall give a motivating example in
Section 2.1 to elaborate our point.

* © ACM, 2008. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 30th
International Conference on Software Engineering (ICSE 2008), pages
371–380, ACM Press, New York, NY, 2008.
http://doi.acm.org/10.1145/1368088.1368139.
† This research is supported in part by the General Research Fund of the
Research Grants Council of Hong Kong (Project nos. 111107, 123207, and
716507).
‡ All correspondence should be addressed to Prof. T.H. Tse at Department
of Computer Science, The University of Hong Kong, Pokfulam, Hong
Kong. Tel: (+852) 2859 2183. Fax: (+852) 2858 4141. Email:
thtse@cs.hku.hk.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Administrator
 HKU CS Tech Report TR-2008-02

2

XPath should be studied deeply in testing research to improve
the quality of WS-BPEL applications [16]. To our best knowledge,
existing testing researches do not adequately address the
interactions among XPath, XML schema, and XML messages,
and their relationships with BPEL. In this paper, we study this
problem and propose a solution to tackle the testing challenges.

As the use of XPath is fundamental in developing a WS-BPEL
application, we firstly study how to reveal the implicit structure of
XPath, which should be close to its declarative semantics so that it
will not be biased to a particular BPEL engine implementation, as
well as study the interactions between BPEL and XPath. Gottlob
et al. [13] have shown that such paths are generally not decidable.
They also propose a decidable fragment, and a set of definitions to
capture the fragment.

Our model for XPath is built atop this fragment and these
definitions of XPath syntactic constructs. We treat the definitions
as “left-to-right” rewriting rules (similarly to the application of
axioms as rewriting rules in algebraic specifications [6]). Through
a series of application of these rules, we rewrite an XPath into a
normal form, which means that no more rewriting rules can be
applied, or a fixed point for recursive definitions has been
reached.

Furthermore, instead of merely analyzing the (final) normal
form, we record the series of (intermediate) rewriting results (see
Section 3). As such, our model captures how each applicable
rewriting rule uses its “left” part to unify with an XPath
sub-expression (of an intermediate result) to construct the next
level of intermediate results or the corresponding normal form via
the “right” part of the rule.

We develop a data structure (dubbed XPath Rewriting Graph or
XRG for short) to model an XPath in WS-BPEL. In the spirit of
data flow testing and analysis [8][20][26], we further innovatively
consider any variable generated as a variable definition, and the
use of a variable provided by a preceding node as a variable usage.
We note that such variables are conceptual in nature, and they are
not program variables because they never appear in a program
implementation. We thus term them as conceptual variables.
Together with the inputs to an XPath from a BPEL program and
its output variables defined to specify the data to be transferred
back to BPEL, this data structure forms an explicit artifact to
model different paths, conceptually defined in an XPath, on how
to provide query values to BPEL programs.

By also modeling a BPEL program as a control flow graph, we
propose an approach to identify the data flow associations
relevant to the conceptual variables in XPath and ordinary
variables in the BPEL program, and then formulate a set of test
adequacy criteria to measure the quality of test sets.

The main contributions of this paper are multifold: (i) It
demonstrates a novel strategy that transforms schema-based
definitions, which are recursively defined, into explicit artifacts.
(ii) A data structure, XPath Rewriting Graph, is proposed to
model XPath at a conceptual level. (iii) This paper is among the
first work on WS-BPEL testing that tackles the complexity of
XPath. (iv) We identify a new type of dataflow entity to capture
the characteristics of XPath. (v) We propose a family of test
adequacy criteria to measure the quality of test sets. (vi) To our
best knowledge, we provide the first set of experiments to
evaluate the impact of XPath for services testing research using
open-source programs. It shows that our approach is promising.

The rest of the paper is organized as follows: Section 2 outlines
the technical preliminaries and testing challenges for WS-BPEL
applications. Section 3 presents the algorithm of constructing an
XRG, and our effort to model WS-BPEL applications. Section 4
introduces our data flow model and testing criteria to measure the
comprehensiveness of test sets. Section 5 reports an experimental
evaluation of our proposal, and followed by a literature review
and conclusions in Sections 6 and 7, respectively.

2. WS-BPEL APPLICATIONS
This section presents a motivating example and introduces the
technologies in typical WS-BPEL applications [1].

2.1 Motivating Example
Our motivating example to illustrate the challenges in the testing
of WS-BPEL applications is adapted from the Apache WSIF
project [27]. It involves a Digital Subscriber Line (DSL)
application that offers DSL query services. Since the code (in
XML format) is quite lengthy, we use an activity diagram in
Figure 1 to depict the business process (IsServiceAbailable) of the
example, in which each node denotes a BPEL activity, and each
link denotes a transition between two activities. We also annotate
the nodes with additional information, such as the input and
output parameters of the activities, or any XPath Query used by
the activities in the BPEL code. We number the nodes as A1,
A2, …, A8 to ease subsequent discussions. The service
IsServiceAbailable is described as follows:

(1) A1 invokes the service AddressBookLookup, which retrieves
the address information from the address book by searching the
given user name through the BPEL variable UserName, and stores
the returned XML message in the BPEL variable UserAddress.

(2) A2 extracts the city name from UserAddress via the XPath
//city/ and assigns the city name to the BPEL variable City.

(3) A3 invokes the service City2GeoService, which looks up the
zip information based on the given City, and keeps the result in
the variable ZipInforamtion.

(4) A4 checks whether the city name in UserAddress is the
same as that in ZipInformation by extracting their city fields
through the XPaths //city/ and //*[local-name()='city'],
respectively, where local-name() is an XPath function that
returns the name of an element.

(5) If A4 detects no problem, A6 further extracts the zip code
from UserAddress via the XPath //zip/ and assigns it to the BPEL
variable ZipCode. Then, A7 executes the service ServiceAvailable
to obtain the service availability status, and finally A8 returns the
ServiceAvailability information to the caller.

(6) If A4 detects a problem, A5 will execute a fault handler.
The definition of the structure of any BPEL variable is kept in

an XML schema. For example, the variables UserAddress and
ZipInformation in Figure 1 are defined by the schemas address
and LatLongReturn, respectively, in Figure 2. The elements state
(lines 2 and 10), city (lines 3 and 11), and zip (lines 4 and 12),
defined in both the schemas address and LatLongReturn, record
the state, city, and zip information, respectively. In addition, to
indicate whether or not a city belongs to any state, it uses the
schemas Municipality and City to define the elements state and
city, where the element city may also be a child node of the
element state (type: Municipality) in line 21.

We give a scenario that reveals a fault in the application. Ziyi
Zhang, living in the city HuangShan, wants to find the DSL
service status of her city. Hence, she inputs her name for enquiry.

3

By searching the database with the given input, the name
HuangShan is retrieved. The service City2GeoSerivce then finds
out the corresponding zip information of HuangShan. Finally,
through the zip code, the service ServiceAvailable provides the
DSL service status of HuangShan.

Input:
ZipCode
Output:
ServiceAbailability

ZipCode =
XPath_Query

(UserAddress, //zip/)

XPath_Query(UserAddress, //city/)
==

XPath_Query(ZipInformation,
//*[local‐name()=’city’])

Input: UserName
Output: UserAddress

A4:
Validate

City

A5: Fault Handling

A6: Assign ZipCode

A7: Invoke ServiceAvailable

A8: Reply ServiceAvailability

City =
XPath_Query(UserAddress, //city/)

Input: City
Output: ZipInformation

No Yes

A1: Invoke AddressBookLookup

A2: Assign City

A3: Invoke City2GeoService

Figure 1. Business Process IsServiceAvailable

1 <xsd:complexType name="address">
2 <xsd:element name="state" type="xsd:Municipality"/>
3 <xsd:element name="city" type="xsd:City"/>
4 <xsd:element name="zip" type="xsd:string" />
5 <xsd:element name="StreetNum" type="xsd:int"/>
6 <xsd:element name="StreetName" type="xsd:string"/>
7 <xsd:element name="County" type="xsd:string" />
8 </xsd:complexType>
9 <xsd:complexType name="LatLongReturn">
10 <xsd:element name="state" type="xsd:Municipality "/>
11 <xsd:element name="city" type="xsd: City"/>
12 <xsd:element name="zip" type="xsd:string" />
13 <xsd:element name="County" type="xsd:string" />
14 <xsd:element name="FromLongitude" type="xsd:decimal"/>
15 <xsd:element name="FromLatitude" type="xsd:decimal"/>
16 <xsd:element name="ToLongitude" type="xsd:decimal" />
17 <xsd:element name="ToLatitude" type="xsd:decimal" />
18 </xsd:complexType>
19 <xsd:complexType name="Municipality" >
20 <xsd:element name="name" type="xsd:string"/>
21 <xsd:element name="city" type="xsd:City"/>
22 </xsd:complexType>
23 <xsd:simpleType name="City" typle="xsd:string"/>

Figure 2. XML Schemas for address and LatLongReturn

In fact, there are two cities called HuangShan in Anhui, China.
For the ease of discussion, we refer to them as HuangShanA and
HuangShanB. Although Ziyi lives in HuangShanA, she may obtain
the DSL service status of HuangShanB instead, because
City2GeoSerivce merely uses the name of a city as the input to the
zip information query. For HuangShan, it may return either of the
two zip codes for HuangShanA and HuangShanB, and hence the
XPath may select the wrong one and assign it to ZipCode.

Intuitively, good application systems may provide a list of cities
for users to choose under such a situation. However, given the

application in the motivating example, and without revealing a
relevant failure, it is difficult to identify the fault in the first place.

Following [28], the business process in Figure 1 can be
modeled as a control flow graph (CFG), as shown in Figure 3. The
mapping between the two figures is omitted. In Figure 3, we use a
more concise notation XQ to represent XPath_Query in Figure 1.

In Figure 3, the XPath //city/ searches the targeted city based
on the variable UserAddress. According to the address schema in
Figure 2, some cities (such as Hong Kong and Beijing) may not
belong to any state, whereas other cities may belong to some
states. Two conceptual paths /state/city/ and /city/ may reach a
city field in an address. Figure 4 shows four scenarios with
different contents in UserAddress.

ServiceAvailability =
ServiceAvailable(ZipCode);

XQ(ZipInformation, XPath1) ==
XQ(UserAddress, XPath2)

Yes

Fault
Handling

ZipCode =
XQ(UserAddress, XPath3)

XPath1: //*[local-name()=’city’] XPath2: //city/ XPath3: //zip/
XQ(Variable, Exp): XPath Query with input variable and XPath expression

UserAddress =
AddressBookLookup(UserName);

N1

N2

N5

N6

N7

N8

ZipInformation = City2geo(City);

Return ServiceAvailability;

N3

City = XQ(UserAddress, XPath2);

N4

No

Ne

Ns

Figure 3. CFG for Business Process IsServiceAvailable

<address>
<state>

<name>Beijing</name>
<city>Beijing</city>

</state>
<city>Beijing</city>
<zip>10001</zip>
……

</address >
Scenario 1 Scenario 2 Scenario 3 Scenario 4

<address>
<state />
<city>Beijing</city>
<zip>10002</zip>
……

</address >

<address>
<state>

<name>Beijing</name>
<city />

</state>
<city />
<zip>10003</zip>
……

</address>

<address>
<state />
<city />
<zip />
……

</address>

Figure 4. Scenarios for XQ(UserAddress, //city/)
For scenario 1, either /state/city/ or /city/ returns “Beijing” as

the city. For scenarios 3 and 4, both /state/city/ and /city/ return
no result. For scenario 2, if /state/city/ is used, we obtain no
result, but if /city/ is used instead, the value “Beijing” will be
returned. They are different.

We further study how the procedure of XPath affects the
execution of workflow steps. Suppose there are three records for
Beijing, as in scenarios 1 to 3. Considering the following two
cases: (i) For scenarios 2 and 3, both XQ(UserAddress, XPath2)
and XQ(ZipInformation, XPath1) may either return “Beijing” or
no result, and hence the predicate at N4 is not decidable. (ii) For
scenarios 1 and 2, even when the predicate at N4 is satisfied, if
scenario 1 is used, the zip code will be 10001, and if scenario 2 is
used, it will be 10002. This is an anomaly. It will pose an
integrated problem if a follow-up service, e.g., ServiceAvailable,
only uses the zip code to determine the availability of the DSL

4

service. Suppose 10001 is the correct zip code for “Beijing” while
10002 is wrong. Then ServiceAvailable will return correct
information under scenario 1 but will fail under scenario 2.

The testing challenge illustrated by the motivating example is
that XPath may retrieve different data from XML messages
according to XPath expressions as well as the structure of the
XML schema. However, the interactions between these two types
of artifact are not coded explicitly in a WS-BPEL application. In
the next section, we review the preliminaries of WS-BPEL. Then,
in Sections 3 and 4, we present our proposal to address the issue.

2.2 Fundamentals
We use WS-BPEL (previously known as BPEL4WS) [1] in this
paper. Three critical parts in WS-BPEL are BPEL, XPath, and
web services. In this paper, we focus on the interactions between
XPath and BPEL, and treat web services as external services. The
testing of web services is not within the scope of the paper. We
introduce XPath in this section.

We adopt the definition of XPath expressions in [21]. Thus, an
XPath expression is defined recursively using the following
grammar:

][|//|/|.|*| qqqqqqnq →

where n∈∑ is any label, “*” denotes a wildcard label, and “ .” (the
dot symbol) denotes the current node. The constructs / and //
mean child and descendant navigations, respectively, and []
denotes a predicate. The symbols in ∑ represent element labels,
attribute labels, and text values that can occur in XML documents.
The set of all trees are denoted by T∑, and each tree represents an
XML document satisfying an XML schema Ω. To simplify the
presentation, we also use Ω to represent the set of labels that can
occur in the XML schema Ω. An XML schema is also an XML
document. An XPath Query q(t), which performs a query on a tree
t∈T∑ using an XPath expression, returns a set of nodes in t. For a
tree t∈T∑, NODES(t) and EDGES(t) denote the sets of nodes and
edges, respectively. LABEL(x) is the label at node x, and
LABEL(x)∈∑. EDGES*(t) denotes the reflexive and transitive
closure of EDGES(t). By induction on the structure of q, reference
[21] gives the following definitions to represent a fragment of
XPath, and we label them as Rules 1 to 6. According to [21], this
provides a representative XPath fragment sufficient as a basis for
the study of XPath.

n(x)
*(x)
.(x)

(q1/q2)(x)
(q1//q2)(x)
(q1[q2])(x)

=
=
=
=
=
=

Rule
1
2
3
4
5
6

…
…
…
…
…
…

{y | (x, y)∈EDGES(t), LABEL(y) = n}
{y | (x, y) ∈EDGES(t)}

{x}
{z | y∈q1(x), z∈q2(y)}
{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}
{y | y∈q1(x), q2(y)≠Ø}

Figure 5. Syntax of a Representative Fragment of XPath [21]

Each definition in Figure 5 is of the form left = right. We treat
these definitions as left-to-right rewriting rules [6]. We further
group these rules into two categories according to whether a rule
can be recursively defined using other rules: A-Rules (namely
Rules 1, 2, and 3) and C-Rules (Rules 4, 5, and 6), representing
atomic and complex XPaths, respectively. If an XPath expression
q is a C-Rule expression, it may be rewritten into a composition of
multiple sub-terms, each of which is an A-Rule, a C-Rule, or an
atomic relation (such as {(y, u)∈EDGES*(t)} in Rule 5). For
instance, the XPath expression //city/ can be considered as

//city/ or just *//city/ in practice. If q is an A-Rule, it cannot
be further rewritten using other rules. To ease our discussion, we
refer to q1(x) and q2(y) in Rules 4, 5 and 6 as the left and right
sub-terms, respectively, of the rule. For Rule 5, besides the left
and right sub-terms q1(x) and q2(u), there is also a middle sub-term
{u | (y, u)∈EDGES*(t)}, which means all the nodes u in t reachable
from y. We define Rule 7 as

//(x) = {y | (x, y)∈EDGES*(t)} … Rule 7
Rule 7 is also an A-Rule. Since it is only used in Rule 5, we do
not process it like other rules.

3. OUR MODEL FOR WS-BPEL
This section proposes our effort, using the X-WSBPEL model, to
capture the interactions between BPEL and XPath.

3.1 XPath Rewriting Graph (XRG)
In the motivating example, we have illustrated that different paths
taken by an XPath may result in integration problems to
WS-BPEL applications. In this section, we propose an XPath
Rewriting Graph (XRG), which forms an explicit artifact to
represent different paths conceptually defined in an XPath
expression over a schema Ω.

An XPath expression over a schema Ω can be conceptually
rewritten into another form (Section 2.2) by using Rules 1 to 6.
Following the nature of rewriting rules, we model such a rewriting
step as a directed edge (a, b) of a graph, which links up a node a
that the rewriting rule will be applied to, and a node b that
represents the result after applying the rule.

< //city/, X={ROOT},(q1//q2)>

< city/*, V,(q3/q4)>

q3(U),q3=(city) q4(V), q4=*

q1(X), q1= * q2(U), q2=(city/*)

R1

R2R3 R4

R5 R6

XQ(UserAddress, //city/)

< *, X,Y, {y|(x, y)
∈EDGES*(t), x∈X }>

< city, U, V, {v|(u, v)∈EDGES*(t),
LABEL(v)=city, u∈U }>

< *, V ,W, {w|(v, w)
∈EDGES*(t),v∈V }>

Rewriting Node Rewritten Node

< //, Y, U, {u|(y, u)
∈EDGES*(t), y∈Y }>

Figure 6. Example of XPath Rewriting Graph

Thus, there are two types of node in our model, as illustrated in
Figure 6: (i) Rewriting node 〈q, Lc, rule〉, where q is a query
expression; Lc (⊆NODES(Ω)) is the current set of nodes in Ω
located by the previous query step; and rule denotes the rewriting
rule used to generate the sub-terms in this node. Initially, Lc is
assigned to {ROOT}, where ROOT is the root node of Ω.
(ii) Rewritten node 〈q, Lc, Ln, S〉, where q and Lc carry the same
meaning as in rewriting node; Ln (⊆NODES(Ω)) denotes the set of
nodes in Ω to be located by q starting from some node in Lc; and S
is a set-theoretic representation of the result of q (directly obtained
according to the rules in Figure 5).

For an XML document satisfying Ω (say, a returned message
from a web service), Lc of a rewriting node or Ln of a rewritten
node represents a set of tags, relevant to a query q, that may
appear in the XML document. In Figure 4, for instance, the tag of
the value “10001” is “zip”, which will be an element in Lc or Ln,
depending on the given XPath query. Applying Rule 5, we obtain
S as {z | y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}, in which u, x, y, and
z are called conceptual variables.

5

The definition for XRG is given in Definition 1. It is followed
by an algorithm to construct an XRG.

Definition 1 (XPath Rewriting Graph) An XPath Rewriting
Graph (XRG) for an XPath Query is a 5-tuple 〈q, Ω, Nx, Ex, Vx〉:
(a) q is an XPath expression for the XPath Query, and Ω is an

XML schema that describes the XML document to be
queried on.

(b) Nx is a set of rewriting and rewritten nodes identified by the
algorithm Compute_XRG, and Vx is a set of conceptual
variables defined at the nodes in Nx.

(c) Ex is a set of edges (sc, sn), each of which represents a
transition from sc to sn, where sc is a rewriting node and sn is
either a rewriting node or a rewritten node. All the edges are
also computed by the algorithm Compute_XRG. □

The algorithm Compute_XRG is used to construct an XRG. It
takes an XPath expression q, the schema Ω of some XML
document, and a set of currently located nodes X of Ω as
parameters, and outputs the corresponding XRG. X is initially
assigned as a singleton set containing the root of the schema [21].
The query q starts with this value of X to search for other nodes.

The following auxiliary functions are used: (i) Function
Root(XRG) returns the root node of XRG. (ii) Function match(q, p)
returns true when q can be rewritten in the form specified by the
pattern p, and returns false otherwise. (iii) Function
getLastNode(Z) returns the last rewritten node in Z, and function
getLastChild(n, Z) returns the last rewritten child node of n in Z,
both using standard inorder traversal [14]; (iv) Functions
setLeftChild(n,nl), setMidChild(n,nm), and setRightChildNode(n,nr)
set nl, nm, and nr as the left, middle, and right child nodes for n,
respectively. As we shall explain in Section 4, the left, middle,
and right child labels are important for identifying the conceptual
paths of an XPath expression over Ω. In our algorithm, each label
in a set is associated with the variable that locates it. (v) Functions
LabelVarDef(X, x, n) and LabelVarUse(X, x, n) mark the variable
x as the definition and use occurrences at node n, respectively, and
associate such occurrences of the variable to every element in X.
In addition, we define “xοy” as the attribute y of x.
1 Global Variables Nx, Ex, Vx. /* Initially, Nx ← Ø, Ex ← Ø, Vx ← Ø. */
2 Algorithm Compute_XRG
3 Input XPath expression q, XML schema Ω,
 Set of located nodes X
4 Output XRG
5 let XRG be 〈q, Ω, Nx, Ex, Vx〉.

/* Process A-Rule (rules that cannot be further rewritten) */
/* Process Rule 1 */

6 if match(q, “n”) {
7 New variables x, y. Vx ← Vx∪{x, y}.
8 Y ← {y | (x, y)∈EDGES(Ω) ∧ LABEL(y) = q, x∈X }.
9 n ← 〈q, X, Y, {y | (x, y)∈EDGES(Ω) ∧ LABEL(y) = q}〉.
10 LabelVarUse(X, x, n). LabelVarDef(Y, y, n).
11 Nx ← Nx∪{n}. /* New rewritten node */
12 }

/* Process Rule 2 */
13 else if match(q, “*”) {
14 New variables x, y. Vx ← Vx∪{x, y}.
15 Y ← {y | (x, y)∈EDGES(Ω), x∈X }.
16 n ← 〈q, X, Y, {y | (x, y)∈EDGES(Ω)}〉. /* New rewritten node */
17 LabelVarUse(X, x, n). LabelVarDef(Y, y, n).
18 Nx ← Nx∪{n}.
19 }

/* Process Rule 3 */
20 else if match(q, “.”) {
21 n ← 〈q, X, X, {x | x∈X}〉. /* New Rewritten Node */
22 LabelVarUse(X, x, n). LabelVarDef(X, x, n).
23 Vx ← Vx∪{x}. Nx ← Nx∪{n}.
24 }

/* Process C-Rule (rules that can be further rewritten) */
/* Process Rule 4 */

25 if match(q, “q1/q2”) {
26 New variable y, z. Vx←Vx∪{y, z}.
27 n ← 〈q, X, Rule 4〉. /* New rewriting node */
28 if (nl ← CheckRecursion(q1, X, Nx)) =Ø then {
29 XRG1 ← Compute_XRG(q1, Ω, X).
30 nl ← Root (XRG1). nlast ← getLastNode(XRG1).
31 Ex←Ex∪XRG1οE. Nx←Nx∪XRG1οN. Vx←Vx∪XRG1οV. }
32 else { nlast ← getLastChild(nl, XRG). }
33 let Y be nlastοLn.
34 if (nr←CheckRecursion(q2, Y, Nx)) =Ø then {
35 XRG2 ← Compute_XRG(q2, Ω, Y).
36 nr ←Root (XRG2).
37 Ex←Ex∪XRG2οE. Nx←Nx∪XRG2οN. Vx←Vx∪XRG2οV. }
38 LabelVarUse(X, x, nl). LabelVarDef(Y, y, nl).

 LabelVarUse(Y, y, nr). LabelVarDef(Z, z, nr).
39 setLeftChild(n, nl). setRightChild(n, nr).
40 Ex ← Ex∪{(n, nl), (n, nr)}. Nx← Nx∪{n, nl, nr}.
41 }

/* Process Rule 5 */
42 else if match(q, “q1//q2”) {
43 New variable y, u, z. Vx←Vx∪{y, u, z}.
44 n ← 〈q, X, Rule 5〉. /* New rewriting node */
45 if (nl ← CheckRecursion(q1, X, Nx)) = Ø then {
46 XRG1 ← Compute_XRG(q1, Ω, X).
47 nl ← Root(XRG1). nlast ← getLastNode(XRG1).
48 Ex ← Ex∪XRG1οE. Nx ← Nx∪XRG1οN. Vx ← Vx∪XRG1οV. }
49 else { nlast ← getLastChild(nl, XRG). }
50 let Y be nlastοLn.
51 U ← {u | (y, u)∈EDGES*(Ω), y∈Y}.
52 nm← 〈“//”, Y, U, {u | (y, u)∈EDGES*(Ω), y∈Y}〉.
 /* New rewritten node */
53 if (nr ←CheckRecursion(q2, U, Nx)) =Ø {
54 XRG2 ← Compute_XRG(q2, Ω, U).
55 nr ← Root(XRG2).
56 Ex ← Ex∪XRG2οE. Nx ← Nx∪XRG2οN. Vx ← Vx∪XRG2οV. }
57 LabelVarUse(X,x,nl). LabelVarDef(Y,y,nl). LabelVarUse(Y,y,nm).

 LabelVarDef(U,u,nm). LabelVarUse(U,u,nr). LabelVarDef(Z,z,nr).
58 setLeftChild(n, nl). setMidChild(n, nm). setRightChild(n, nr).
59 Ex ← Ex∪{(n, nm), (n, nl), (n, nr)}.
60 Nx← Nx∪{n, nm, nl, nr}.
61 }

/* Process Rule 6 */
62 else if match(q, “q1[q2]”) then {
63 New variable y, z. Vx ← Vx∪{y, z}.
64 n ← 〈q, X, Rule 6〉. /* New rewriting node */
65 if (nr ← CheckRecursion(q1, X, Nx)) = Ø then {
66 XRG1 ← Compute_XRG(q1, Ω, X).
67 nr ← Root(XRG1). nlast1 ← getLastNode(XRG1).
68 Ex ←Ex∪XRG1οE. Nx ← Nx∪XRG1οN. Vx ←Vx∪XRG1οV. }
69 else { nlast1 ← getLastChild(nr, XRG). }
70 let Y be nlast1οLn.
71 if (nl ← CheckRecursion(q2, Y, Nx)) = then {
72 XRG2 ← Compute_XRG(q2, Ω, X).

6

73 nl ← Root(XRG2). nlast2 ← getLastNode(XRG2).
74 Ex ← Ex∪XRG2οE. Nx ← Nx∪XRG2οN. Vx ← Vx∪XRG2οV. }
75 else { nlast2 ← getLastChild(nl, XRG). }
76 let Z be nlast2οLn.
77 Y ← Y – {y | ∄z∈Z, (y, z)∈EDGES*(Ω), y∈Y }.
78 LabelVarUse(X, x, nr). LabelVarDef(Y, y, nr).
 LabelVarDef(Z, z, nl). LabelVarUse(Z, z, nl).
79 setLeftChild(n, nl). setRightChild(n, nr).
80 Ex ← Ex∪{(n, nl), (n, nr)}.
81 Nx ← Nx∪{n, nl, nr}.
82 }
83 return XRG. /* XRG is finally returned */

84 Function CheckRecursion(q, L, Nx)
85 if ∃n∈Nx, q = nοq ∧ L⊆nοLc then { return n. }
86 else { return Ø. }

The algorithm Compute_XRG processes Rules 1 to 6 in lines
6–12, 13–19, 20–24, 25–41, 42–61, and 62–83, respectively.
Since Rules 1, 2, and 3 are A-Rules, only one rewritten node n is
created in each case (lines 9, 16 and 21). Rules 4, 5 and 6 are
more complex. We use Rule 4 as an example to illustrate the
processing. Rules 5 and 6 are processed similarly.

Rule 4 is processed as follows: Firstly, a rewriting node n is
created (line 27). Then, the algorithm recursively processes q1 and
q2. Since there may be recursions when rewriting a node, we
check the occurrence of recursions using the function
CheckRecursion (lines 84–86) for both q1 (lines 28–32) and q2
(lines 34–37). If there is a node nl or nr for q1 or q2 (lines 28 and
34) involving recursions, then nl or nr is set as the left or right
child node for n (line 39). If there is no recursion for q1 or q2, then
the algorithm generates XRG1 and XRG2 (lines 29 and 35), and the
root nodes of XRG1 and XRG2 (lines 30 and 36) will be denoted as
nl and nr and are set as the left and right child nodes of n (line 39).
Note that the input parameter X to compute XRG2 comes from the
output of the computation of XRG1. The algorithm uses the
function getLastNode to find the last rewritten node nlast in XRG1
(line 30) when there is no recursion for q1; and uses the function
getLastChild to find the last rewritten child node nlast in XRG (line
32) when there is a recursion. nlast is assigned as 〈qlast, Lc

last, Y,
Sn

last〉, and Y denotes the set of nodes used as an input parameter
for constructing XRG2. We associate each label of X with the
variable definition of x at node nl (line 38). Other variable
definitions and usages are processed similarly. Hence, the XRG
for an XPath Query satisfying Rule 4 is generated.

We also use XQ(UserAddress, //city/) at N2 in Figure 3 to
illustrate the algorithm. The output of the algorithm is depicted in
Figure 6. To ease readers’ understanding, we annotate the edges
with rewriting sub-terms in Figure 6. XQ(UserAddress, //city/) is
firstly identified by Rule 5 (q1=* and q2=city/*) (line 42), and
hence rewriting node R1 is generated (as n in line 44). Next, the
algorithm recursively processes three sub-terms: //, *, and city/*.
The middle sub-term // matches Rule 7, but the conceptual
variables have been discovered by processing q1 and q2, and so R2
is generated (as nm in line 52). The left sub-term * matches Rule 2,
and hence rewritten node R3 is generated (as n in line 16). The
right sub-term city/* matches Rule 4, and therefore rewriting
node R4 is generated (as n in line 27). R4 is further rewritten into
R5 (as nl in line 28 or 30) and R6 (as nr in line 34 or 36). R5 and R6
are the left and right children nodes of R4, respectively. R5 and R6,
which match Rule 1 and 2, respectively, are both rewritten nodes.
Since there is no recursion for //, *, and city/*, R2, R3 (the root

node of XRG1, line 47), and R4 (the root node of XRG2, line 55)
are set to be the middle, left, and right child nodes of R1 (line 58),
respectively. We thus finish constructing the required XRG.

We can also use Figure 6 to illustrate Definition 1. The XRG
〈q, Ω, Nx, Ex, Vx〉 for XQ(UserAddress, //city/) is as follows: q is
//city/, and Ω is the schema address (Figure 2) for the variable
UserAddress. Vx is constructed by the algorithm directly, and Vx =
{x, y, u, v, w}. Nx is {R1, R2, R3, R4, R5, R6}. Ex is {(R1, R2), (R1,
R3), (R1, R4), (R4, R5), (R4, R6)}. The rewriting nodes are R1 and R4
while the rewritten nodes are R2, R3, R5, and R6.

Let us further use Figure 6 to illustrate how we handle the two
paths (/state/city/ and /city/) of //city/ in the XRG. We first
obtain {state, city}⊆Y (Y∈R3) from schema address. Then, if the
value of y in R2 is state, u will be city; whereas if the value of y is
city, u will be undefined. Since u is the child node of y in the
schema, we thus obtain the two paths /state/city/ and /city/.

We note that such rewriting can be stopped at some upper
bound (say, for a huge XPath or for fragments that are not
decidable). This tracks XPath at a conceptual level in a stepwise
and hierarchical fashion.

3.2 X-WSBPEL Model
The structure of an XPath is denoted by an XPath Rewriting
Graph in our model. We associate each control flow graph [8] of
a BPEL program (e.g., the CFG for IsServiceAvailable in Figure 3)
with a set of XRGs to represent a WS-BPEL application.

Definition 2 (X-WSBPEL Model) An X-WSBPEL Model is a
couple 〈CFGB, XPATH〉 such that
(a) CFGB is a control flow graph representing a BPEL program P;

CFGB = 〈Nb, Eb, Vb, sb, eb〉, where: Nb is a set of nodes that
represent the program nodes of P; Eb is a set of edges that
represent the transitions between two nodes, Vb is a set of
variables defined or used in BPEL; sb is the entry node of P,
and eb is the exit node of P, sb, eb∈N.

(b) XPATH is a set of XPath Rewriting Graphs denoting the
occurrences of XPath in CFGB. □

We use Figure 3 to illustrate CFGB in the X-WSBPEL model of
IsServiceAvailable: sb is Ns; eb is Ne; Vb = {UserAddress, UserName,
City, ZipInformation, ZipCode, ServiceAvailablity}; Nx = {Ns, Ne, N1,
N1, N2, N3, N4, N5, N6, N7, N8}; and Eb = {(Ns, N1), (N1, N2), (N2,
N3), (N3, N4), (N4, N5), (N4, N6), (N6, N7), (N7, N8), (N5, Ne), (N8,
Ne)}. We also have XPATH = {XRGXPath1, XRGXPath2, XRGXPath3},
where XRGXPath2 means the XRG for XPath2 //city/ (such as
Figure 6), and XRGXPath1 and XRGXPath3 are interpreted similarly.
In X-WSBPEL, we assume that either CFGB or XRG starts with a
unique entry node and ends at a unique exit node.

4. DATA FLOW ENTITIES & CRITERIA

4.1 Data Flow Associations for WS-BPEL
4.1.1 Conventional Data flow Associations
This section recalls the data flow definitions from [8][20]. A CFG
is a couple (V, E), where V is a set of nodes representing
statements in a program unit and E is a set of directed edges
representing the transitions among statements. A complete path in
a CFG is a path starting from the entry node and ending with an
exit node. A variable x is defined or has a definition occurrence at
node n if the value of x is stored or updated at n. A variable x is
used or has a use occurrence at n if the value of x is fetched or

7

referenced at n. A sub-path 〈ni, …, nj〉 is said to be definition-clear
with respect to the variable x when none of ni, …, nj defines or
undefines x. A def-use association is a triple 〈x, nd, nu〉 such that
the variable x is defined at node nd and used at node nu, and there
is a definition-clear sub-path (possibly empty) with respect to x
from nd to nu, exclusively.

In an X-WSBPEL model, a WS-BPEL application consists of a
CFGB associated with a set of XRGs. Def-use associations on
CFGB in the X-WSBPEL model can be identified in the same style
as [8]. In Figure 3, for instance, the variable City has a definition
occurrence at node N2 and a usage occurrence at N3. Since there is
no definition between N2 and N3, the path from N2 to N3 is
definition-clear, and hence there is a def-use association for the
variable City, denoted by 〈City, N2, N3〉.

4.1.2 Conceptual Paths in XRG
In the Compute_XRG algorithm, we have explicitly marked some
child nodes as left child, right child, and middle child. This
marking is important. For example, let us consider the children
nodes (R2, R3, and R4) of R1 in Figure 6. The output set Y, which is
defined by the variable y at R3, will be used at R2 as a part of a
condition to define U. The set U is used by the child graph
(actually R5) with R4 as the root. The traversal of the graph is
important; otherwise, a proper conceptual relationship among
variables cannot be obtained.

To apply data flow analysis and testing to an XRG, we should,
therefore, respect such ordering of nodes; otherwise one may
construct illegitimate data flow associations or miss legitimate
ones [8]. We have designed the Compute_XRG algorithm to
support the inorder traversal algorithm of [14] for constructing
the path sets of a given XRG so that path sets can be treated as if
they were paths in the CFG of a program unit [8]. We note,
however, that a path in an XPath Rewriting Graph is only a model
of an XPath and will never be executed by any actual program.
Hence, we call them conceptual paths. Despite such philosophical
difference, data flow associations [8] can be computed from a
CFG transformed from an XRG based on the inorder traversal
algorithm, where nodes of the CFG are nodes of the XRG, and
there is an edge (a, b) in the CFG if (a, b) is a subsequence of a
conceptual path of the XRG.

4.1.3 Special Handling for XRG
This section discusses def-use associations in XRGs. In an XRG,
a rewriting node is used to identify a rewriting rule, where any left,
right, or middle sub-term of an XPath expression will be rewritten
to one or more rewritten nodes. Hence, a rewritten node contains
the rule matching information. Also, since every rewriting node
contains no variable definition or usage, we choose to hide them
in the CFG constructed from an XRG. For instance, Figure 7
shows an example path of Figure 6 obtained by inorder traversal
starting from R1 without showing any rewriting nodes. One may
observe that, in such a conceptual path, the variables on each node
are captured in set-theoretic notation. Also, every label on a
rewritten node is marked as a definition, usage, or both. At
run-time, when the set Ln of a preceding node (e.g., Y in R3) is
empty, the variables in the succeeding node (e.g., R2) as well as
the variable y at R3 will be undefined. When the XPath query is
completed, it will assign values (probably empty in this case) to
N2 for the BPEL program. Hence, a path in Figure 7 actually
represents 4 paths that may be taken by an XPath Query at
runtime: 〈R3, N2〉, 〈R3, R2, N2〉, 〈R3, R2, R5, N2〉, 〈R3, R2, R5, R6, N2〉.

In other words, there are implicit predicates in the conceptual
path to decide the legitimate path to be taken. In Figure 7, if no
element in the XML document can be selected as “y” in R3, the set
Y will be empty. This will result in the selection of path 〈R3, N2〉.

City = w

City = XQ(UserAddress, //city/)

R3

R2

R6

R5

< //, Y, U, {u|(y, u)∈EDGES*(t), y∈Y }>

< *, V ,W, {w|(v, w)∈EDGES*(t), v∈V} >

< city, U, V, {v|(u, v)∈EDGES*(t),
LABEL(v)=city, u∈U }>

< *, X,Y, {y|(x, y)∈EDGES*(t), x∈X }>

N2

1
√

√

2
√

√

√

3
√

√

√

√

4
√

√

√

√

√

Figure 7. Example Conceptual Path of XRG

In a rewritten node, we treat each unique occurrence of a
variable associated with the label sets Lc as a variable usage, and
each unique occurrence of a variable associated with the label set
Ln as a variable definition. The latter is defined through the last
element S of each node in standard set-theoretic notation
{A | predicate(A)}. In addition, any occurrence of a variable in A
is a variable definition, and any occurrence of a variable in
predicate(A) but not in A is a variable usage. For example, the
occurrence of y in R3 is a use and the occurrence of x in R3 is a
definition. Based on the above, we present variable definitions
and usages for conceptual variables in XRGs. Since they are
related to an XPath Query at runtime, we call them q-def and
q-use, respectively.

Definition 3 (Q-DEF OF VARIABLES) Given an X-WSBPEL
〈CFGB, XPATH〉, a q-def (or defq for short) of a variable v is either
(i) an occurrence of v at node n in CFGB such that v is assigned by
the return value of the XPath Query, or (ii) a definition occurrence
of v at node n of an XRG∈XPATH. □

For simplicity, a variable definition in an X-WSBPEL such that
it does not satisfy Definition 3 is named as defb. We denote the set
of all defq in a WS-BPEL application by Defq, and the set of all
defb by Defb. In Figure 3, for instance, the definition occurrence of
the variable ZipInformation at N3 is a defb. The variable City is
assigned by XQ(UserAddress, //city/) at N2 and, according to
Figure 7, XQ(UserAddress, //city/) returns the conceptual
variable w. Hence, we further determine that the variable City is
defined by w (so that it is a defq). We also find in Figure 7 that the
conceptual variable y at R3 is defined by “y | (x, y)∈EDGES*(t)”.
This definition occurrence is also a defq.

Definition 4 (Q-USE OF VARIABLES) Given an X-WSBPEL
〈CFGB, XPATH〉, a q-use (or useq for short) of a variable v is
either (i) an occurrence of v at node n of CFGB such that v is the
input parameter of an XPath Query in n, or (ii) a use occurrence of
v at node n of an XRG∈XPATH. □

Similar to variable definitions, a variable usage that does not
satisfy Definition 4 is named as useb. We denote the set of all useq
in an X-WSBPEL by Useq, and the set of all useb by Useb. For
example, the use occurrence of the variable UserName at N3 is a
useb. In Figure 7, the conceptual variable x at R3, as used by “y |
(x, y)∈EDGES*(t)”, is also a useq. Based on the definitions of q-def
and q-use, we proceed to define def-use associations in our model.

8

Definition 5 (QUERY-DU) A query-def-use (or query-du)
association α for a variable v is a triple 〈v, nd, nu〉 such that v is a
q-def at nd and a q-use at nu, and there is a definition-clear
sub-path (using inorder traversal) with respect to v from nd to nu.□

We note that, by a simple and mechanical translation, the
definitions and usages for an ordinary BPEL variable can be
expressed using XPath. Consider the following example, in which
UserAddress.ZipCode is assigned by ZipOnly.ZipCode.

<assign><copy>
<from variable="UserAddress" part="ZipCode" query="."/>
<to variable="ZipOnly" part="ZipCode"/>

</copy></assign>

We can use the XPath Query “.” to denote the fetching of the
value(s) of the variable UserAddress.ZipCode, that is,
“.(UserAddress.ZipCode) = {UserAddress.ZipCode}”. In this way, in
addition to XPath expressions, our approach can be applied to
other BPEL variables. We further distinguish variable occurrences
in a predicate (such as Rule 6 in Section 2.2) (in the sense of p-use
in standard terminology [8]) from the rest in the set of query-du
associations. We call them query-pu associations.

4.2 Test Adequacy Criteria for WS-BPEL
This section proposes a set of testing criteria to measure the
quality of test sets to test WS-BPEL applications.
 Our first test criterion is to exercise each XRG at least once.
Such an adequate test set should cover all XRGs in the WS-BPEL
application under test.

Criterion 1 (ALL QUERIES) A test set T satisfies the
all-queries criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and
only if, for each XRG∈XPATH, the complete path of at least one
test case t∈T executes XRG at least once. □

Nevertheless, executing an XPath Query at least once may not
evaluate all conceptual variables. In Figure 6, for instance,
exercising XQ(UserAddress, //city/) once may not execute the
definition for the variable w at R6 because, when V at R5 is empty,
R6 will not be evaluated. In other words, a test set that satisfies the
all-queries criterion may not cover all the def-use associations of
variables in X-WSBPEL. Our next criterion explores the structure
of XPath. It requires a test set to cover all query-du associations.

Criterion 2 (ALL QUERY-DU) A test set T satisfies the
all-query-du criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and
only if, for each query-du association α, there is at least one test
case t∈T such that def_clear(α) is evaluated to be true. □

As predicates are important for identifying conceptual paths in
an XRG, we require a test set to cover all predicates and call the
criterion all-query-pu. We note that all-query-du subsumes [8][15]
all-query-pu because all p-uses and c-uses are evaluated in
all-query-du. Also, any query should have at least one query-pu
occurrence because each query may encounter a scenario in which
the required value cannot be extracted by the query from an XML
document. Hence, all-query-pu subsumes all-queries.

Criterion 3 (ALL QUERY-PU) A test set T satisfies the
all-query-pu criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and
only if, for each predicate query-def-use association α, if the
variable usage occurs in a predicate, then for each branching of
the predicate, there is at least one test case t∈T that exercises the
definition-clear path. □

We generically treat host programs as CFGs. Flow-based
testing criteria on these programs (see [8][9][15][28]) can readily
be integrated with the control flow structures or data flow entities
captured by an XRG to construct other testing criteria.

5. EVALUATION
This section reports the experimentation of our proposal.

5.1 Design of Experiment
We use eight open-source WS-BPEL applications [4][24][27] to
evaluate our work, as shown in the second column of Table 1.
These programs are frequently used in WS-BPEL studies such as
[10][18][28]. Furthermore, LoanApproval and BuyBook are the
sample projects that IBM and Oracle, respectively, shipped with
their BPEL modeling tools. The columns “Element” and “LOC”
show the number of XML elements and lines of code of each
application. We implement a tool to automate the evaluation. It
reports that, in total, there are 23 XPath expressions, 87
query-p-use, and 209 query-du associations. Their breakdowns are
shown in the rightmost three columns of Table 1. Although the
numbers of XPath in the subject programs are small, as we shall
show later, the differences in effectiveness exhibited in the
experiment are already significant.

Table 1. Subject programs and their descriptive statistics

Ref. Applications Element LOC Query Query-pu Query-du
A ATM [4] 94 180 3 12 35
B BuyBook [24] 153 532 3 15 26
C DSLService [27] 50 123 3 11 47
D GYMLocker [4] 23 52 2 9 23
E LoanApproval [4] 41 102 2 11 19
F MarketPlace [4] 31 68 2 9 17
G Purchase [4] 41 125 2 6 9
H TripHandling [4] 94 170 6 14 33

Next, we generate different faulty versions by seeding one fault
into each copy of the original subject program. To our best
knowledge, these faulty versions do not exist in repositories. We
(members of our research group who have experience in SOA
development and are non-authors) follow [15][20] to seed faults.
In total, we create 60 faulty versions.

Our tool then generates test suites for our testing criteria and for
random testing [8][18]. When generating each test suite for our
testing criteria, the tool randomly selects a test case from a test
pool and executes a target version over the test case. The test case
is added to the test suite for a testing criterion only if it improves
the coverage specified by the criterion. After a number of trials,
we set the process to terminate if either 100% coverage of a
criterion has been attained, or an upper bound of 50 trials has been
reached. (We note from the experiment that the tool has
consistently achieved 100% coverage for all criteria (except the
all-query-du criterion) at the termination of the process.) For each
version, we repeat this process 100 times. A similar approach is
adapted by [15][20]. For random testing, we randomly select a test
suite whose size should be the same as the maximum number of
test cases in all test suites for our testing criteria on the same
program version. We choose the fault detection rate [15] as the
effectiveness measure in the experimentation, which is defined as
the proportion of the number of test suite that can expose the
fault(s) in a version to the size of the test suite.

9

5.2 Data Analysis
We present the results of the experiment in this section. We first
calculate the coverage percentages of the test suite on the faulty
versions for the respective testing criteria. The minimal, mean and
maximal coverages that have been achieved by the test suites are:
all-queries (100%, 100%, 100%), all-quer-pu (100%, 100%,
100%), and all-query-du (94.8%, 97.7%, 100%). When a test suite
cannot yield 100% coverage, we deem the outstanding coverage
requirements infeasible.

We partition the 60 faults into three categories (in-BPEL,
in-XPATH, and in-WSDL) according to the type of artifact that
each fault resides, as shown in Table 2. Columns A–H correspond
to the respective references of these applications in Table 1. There
are 21 faults in BPEL programs, 21 faults in XPath expressions or
XML schemas, and 18 faults WSDL documents.

Table 2. Distributions of faults

Category A B C D E F G H
in-BPEL 3 2 3 3 3 2 2 3
in-XPath 3 2 3 3 3 2 2 3
in-WSDL 2 3 2 1 2 2 3 3

Total 8 7 8 7 8 6 7 9

Table 3 summarizes the fault-detection rates of the three
categories of faults and the aggregated results of the experiment.
As shown in the overall section of the table, random testing
exhibits the worst mean effectiveness among all four criteria. It is
around 20%–24% less effective than our criteria. As expected, our
all-query-du criterion shows the best mean fault detection ability,
with a fault detection rate of 97.6% in the experiment. The
all-query-du criterion also performs well in each category.
Table 3. Fault-detection rates of testing criteria by categories

Fault-detecting rates Box-whisker usage Category
Criterion Min. Mean Max. Median 25% 75%

Random 0.286 0.843 1.000 0.910 0.730 0.980
All-queries 0.524 0.928 1.000 0.930 0.860 1.000
All-query-pu 0.524 0.938 1.000 0.950 0.880 1.000 in-BPEL
All-query-du 0.667 0.976 1.000 1.000 0.990 1.000
Random 0.095 0.722 1.000 0.740 0.660 0.770
All-queries 0.524 0.932 1.000 1.000 0.870 1.000
All-query-pu 0.524 0.937 1.000 1.000 0.880 1.000 in-XPath
All-query-du 0.571 0.977 1.000 1.000 0.960 1.000
Random 0.167 0.621 1.000 0.650 0.470 0.763
All-queries 0.556 0.904 1.000 0.970 0.803 1.000
All-query-pu 0.556 0.915 1.000 0.975 0.823 1.000 in-WSDL
All-query-du 0.778 0.974 1.000 1.000 1.000 1.000
Random 0.183 0.734 1.000 0.745 0.615 0.910
All-queries 0.533 0.922 1.000 0.970 0.860 1.000
All-query-pu 0.533 0.931 1.000 0.975 0.870 1.000

Overall

All-query-du 0.667 0.976 1.000 1.000 0.980 1.000

The all-query-du criterion, taking q-def and q-use (including
both computation-use and predicate-use) into account, detects
more faults than the all-query-pu criterion in the in-XPATH
category (0.977 vs. 0.937) and in the in-WSDL category (0.974 vs.
0.915). We also compare random testing with our testing criteria,
as shown in the three rightmost columns in Table 3. It shows that,
in terms of box-whisker standards (the median and the 25% and
75% ranges), our criteria are more effective in detecting faults
specified with XPath and WSDL. The average times to construct
test sets for our criteria are in the range 0.45s–1.2s, running on an
Intel 2.4 GHz CPU with 512 MB memory.

To compare the effectiveness of different criteria based on
comparable cost [9][20], we increase the size of every test suite

for random testing so that the expanded test suite will give the
same mean effectiveness as the base test suite of a compared
testing criterion (or when an upper bound of 200 trials has been
reached). We repeat this experiment 10 times to obtain the
average result in each case. The results are listed in Table 4.
Columns 2 to 4 list the average size of the expanded test suite for
random testing (X) against that of the base test suite for our
criterion (Y), that is X / Y. Table 4 shows that our criteria use only
about 20% of the mean number of test cases for random testing to
attain the same effectiveness.

Table 4. Comparable test suite sizes of various criteria

Subject Random
/ all-queries

Random
/ all-query-pu

Random
/ all-query-du

Atm 2.16 2.13 1.81
BuyBook 9.84 9.66 8.91

DSLService 3.61 3.59 2.78
GYMLocker 2.38 2.37 2.18

LoanApproval 8.13 8.01 7.97
MarketPlace 13.40 13.13 12.06

Purchase 3.31 3.18 2.85
TripHanding 3.47 3.40 2.48

Average 5.13 5.05 4.29

In summary, the experimental results show that our approach
detects over 90% of all faults and uses much fewer test cases than
random testing to achieve the same effectiveness. In the future, we
shall study how to detect subtle faults more effectively.

5.3 Threats to Validity and other Discussions
We have carefully developed a tool to perform instrumentation
and collect statistical information for evaluation. We only use a
limited number of programs and certain types of fault in our
experiments. Like most other empirical studies, the result of our
empirical study may not be generalized to cover all cases.
WS-BPEL applications support program concurrency. We apply
the notion of forced deterministic testing for concurrent programs
to conduct the experiment.

XPath has been included in Java 6 (see javax.xml.xpath). By
modeling Java as a CFG and XPath as an XRG, our approach can
readily be applied to a host language with such XPath support.

One may wonder how program instrumentation can be done in
BPEL programs. The following is a sample solution: the web
service instrument is used to output the value of the variable
ZipOnly.ZipCode and the XPath expression “.” at runtime. With
such instrumentation, necessary information for computing the
coverage of test suite can be obtained.

<from variable="UserAddress" part="ZipCode" query="."/>
<to variable="ZipOnly" part="ZipCode"/>
<invoke name="instrument".variable="UserAddress.ZipCode" query="."/>

6. RELATED WORK
Broy and Krüger [5] study an interacting component and a service
in the system as total behavior and partial behavior, respectively.
They model a service having dual properties based on the notion
of processes and partial functions. They do not study testing,
however. Ye et al. [29] models a service as a process, and studies
the encapsulation effects of actions on atomicity to support
service transactions. Neither work considers XPath in services.

Modeling BPEL and web service components using a state
model is popular. Mongiello and Castelluccia [22] translate a
BPEL program into such a model and apply model checking to

10

verify temporal properties. Schmidt and Stahl [25] model it using
Petri nets instead. Apart from using a state model to represent a
BPEL program, Foster et al. [7] further analyze and verify the
interactions between BPEL programs and web services based on
WS-BPEL specifications. Fu et al. [10][11] translate web services
into Promela for formal verification using their tool WSAT. Their
approach differs from ours. We cover different fragments of
XPath, and it is unclear to us whether their fragment is decidable.
Secondly, we translate an XPath strictly according to the
definition of XPath expressions in [13][21], while they translate
an XPath into a Promela procedural routine that uses
self-proposed variables and codes to simulate XPath operations.
Intuitively, a test suite covering the data flow associations in a
translated routine would test the implementation rather than the
declaration as expressed in the WS-BPEL application. Our testing
approach addresses the interactions captured in various artifacts:
BPEL programs, WSDL documents, XML schemas, and XPath
expressions. The above work complements ours.

García-Fanjul et al. [12] treat a WS-BPEL application as a
finite state machine and use mutation analysis to generate faulty
versions. They then check each faulty version against a given
temporal property using SPIN, and any counterexample thus
generated will be treated as a test case. Yan et al. [28] model a
WS-BPEL application as a set of concurrent finite state machines,
use a heuristic approach to conduct reachability analysis to find
concurrent paths, and use such paths as test cases.

Many previous papers [8][9][17][26] on data flow testing are
based on information derivable from program statements.
Although it is emerging to consider the effect of pervasive
computing environment on programs [19][20], to our best
knowledge, none of them explores the integration of
heterogeneous sorts of technique such as program representation,
dataflow analysis, and declarative semantics on diverse types of
artifact as we do in this paper.

7. CONCLUSIONS
WS-BPEL applications are a type of service-oriented workflow
application. In these applications, a business process is specified
as a BPEL program, and individual loosely-coupled workflow
steps are linked up via the exchange of XML-based messages.
Failing to extract a right piece of data from an XML message, for
instance, will pose an integration error in such an application. On
the other hand, XML is fundamental to many service-oriented
workflow applications, and XPath is the means to query on XML
documents. The extensive usage of XPath poses a demand to
study how to test these applications effectively.

The paper has proposed a novel approach to studying XPath at
a conceptual level, developed a data structure known as XPath
Rewriting Graph (XRG) to capture how an XPath can be rewritten
from one form to another in a stepwise fashion, and proposed an
algorithm to construct XRGs. An XRG captures the mathematical
variables to support stepwise rewriting of XPath. We also use
these conceptual variables as if they were program variables to
determine the def-use associations in an XRG, and integrate them
with the ordinary ones in a host program. We make no particular
assumption about the host program and generically treat it as a
control flow graph. Based on the extended variables, we propose a
family of testing criteria to test WS-BPEL programs. The
experimental results confirm that our proposal is promising.

Our paper demonstrates a new strategy that transforms
schema-based definitions into external artifacts and then use these

derived artifacts for analysis, design, and testing. This strategy is
applicable to undecidable programs in general (albeit with an
upper-bound setting to avoid infinite rewriting), and XPath is only
one example. In the future, we shall proceed along this line to
study the application of our novel approach to other forms of
(un)decidable artifacts.

8. ACKNOWLEDGMENT
We thank Zhenyu Zhang of The University of Hong Kong for his
insightful comments to improve the paper.

9. REFERENCES
[1] C. Barreto et al., Eds. Web Services Business Process Execution

Language Version 2.0: Primer. OASIS, 2007. Available at
http://docs.oasis-open.org/wsBPEL/2.0/wsBPEL-v2.0.html.

[2] B. Benatallah, R.M. Dijkman, M. Dumas, and Z. Maamar. Service
composition: concepts, techniques, tools and trends. In
Service-Oriented Software Engineering: Challenges and Practices,
pages 48–66. Idea Group Publishing, 2005.

[3] A. Berglund et al., Eds. XML Path Language (XPath) 2.0: W3C
Recommendation. World Wide Web Consortium, 2007. Available at
http://www.w3c.org/TR/xpath20/.

[4] BPWS4J: a Platform for Creating and Executing BPEL4WS
Processes, Version 2.1. IBM, 2004. Available at
http://www.alphaworks.ibm.com/tech/bpws4j.

[5] M. Broy, I.H. Krüger, and M. Meisinger. A formal model of services.
ACM TOSEM, 16 (1): Article No. 5, 2007.

[6] H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen. In black and white:
an integrated approach to class-level testing of object-oriented
programs. ACM TOSEM, 7 (3): 250–295, 1998.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In Proceedings of ASE
2003, pages 152–161. 2003.

[8] P.G. Frankl and E. Weyuker. An applicable family of data flow
testing criteria. IEEE TSE, 14 (10): 1483–1498, 1988.

[9] P.G. Frankl and O. Iakounenko. Further empirical studies of test
effectiveness. In Proceedings of SIGSOFT ’98/FSE-6, pages
153–162. 1998.

[10] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web
services. In Proceedings of WWW 2004, pages 621–630. 2004.

[11] X. Fu, T. Bultan, and J. Su. Model checking XML manipulating
software. In Proceedings of ISSTA 2004, pages 252–262. 2004.

[12] J. García-Fanjul, J. Tuya, and C. de la Riva. Generating test cases
specifications for BPEL compositions of web services using SPIN.
In Proceedings of WS-MaTe 2006, pages 83–94. 2006.

[13] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of
XPath query evaluation and XML typing. JACM, 52 (2): 284–335,
2005.

[14] D. Gries and J.L. van de Snepscheut. Inorder traversal of a binary
tree and its inversion. In Formal Development Programs and Proofs,
pages 37–42. Addison Wesley, 1989.

[15] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of ICSE ’94, pages 191–200. 1994.

[16] C. Innocenti. SOA and the importance of XQuery. SOA Magazine
Issue X, September 2007.

[17] G.M. Kapfhammer, and M.L. Soffa. A family of test adequacy
criteria for database-driven applications. In Proceedings of ESEC
2003/FSE-11, pages 98–107. 2003.

[18] Z. Li, W. Sun, Z. Jiang, and X. Zhang. BPEL4WS unit testing:
framework and implementation. In Proceedings of ICWS 2005,
pages 103–110. 2005.

[19] H. Lu, W.K. Chan, and T.H. Tse. Testing pervasive software in the
presence of context inconsistency resolution services. In Proceedings
of ICSE 2008. 2008.

[20] H. Lu, W.K. Chan, and T.H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an
RFID-based experimentation. In Proceedings of SIGSOFT

11

2006/FSE-14, pages 242–252. 2006.
[21] G. Miklau and D. Suciu. Containment and equivalence for a

fragment of XPath. JACM, 51 (1): 2–45, 2004.
[22] M. Mongiello and D. Castelluccia. Modelling and verification of

BPEL business processes. In Proceedings of MBD-MOMPES 2006,
pages 144–148. 2006.

[23] D. Olteanu, T. Furche, and F.Bry. Evaluating complex queries
against XML streams with polynomial combined complexity. In Key
Technologies for Data Management, volume 3112 of LNCS, pages
31–44. 2004.

[24] Oracle BPEL Process Manager. Oracle Technology Network.
Available at http://www.oracle.com/technology/products/ias/bpel/.

[25] K. Schmidt and C. Stahl. A Petri net semantic for BPEL4WS:
validation and application. In Proceedings of the 11th Workshop on

Algorithms and Tools for Petri Nets, pages 1–6. 2004.
[26] A.L. Souter and L.L. Pollock. The construction of contextual def-use

associations for object-oriented systems. IEEE TSE, 29 (11):
1005–1018, 2003.

[27] Web Services Invocation Framework: DSL Provider Sample
Application. Apache Software Foundation. Available at
http://svn.apache.org/viewvc/webservices/wsif/trunk/java/samples/
dslprovider/README.html?view=co.

[28] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang. BPEL4WS unit
testing: test case generation using a concurrent path analysis
approach. In Proceedings of ISSRE 2006, pages 75–84. 2006.

[29] C. Ye, S.C. Cheung and W.K. Chan. Publishing and composition of
atomicity-equivalent services for B2B collaboration. In Proceedings
of ICSE 2006, pages 351–360. 2006.

