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ABSTRACT 

WS-BPEL applications are a kind of service-oriented application. 
They use XPath extensively to integrate loosely-coupled 
workflow steps. However, XPath may extract wrong data from the 
XML messages received, resulting in erroneous results in the 
integrated process. Surprisingly, although XPath plays a key role 
in workflow integration, inadequate researches have been 
conducted to address the important issues in software testing. This 
paper tackles the problem. It also demonstrates a novel 
transformation strategy to construct artifacts. We use the 
mathematical definitions of XPath constructs as rewriting rules, 
and propose a data structure called XPath Rewriting Graph (XRG), 
which not only models how an XPath is conceptually rewritten 
but also tracks individual rewritings progressively. We treat the 
mathematical variables in the applied rewriting rules as if they 
were program variables, and use them to analyze how information 
may be rewritten in an XPath conceptually. We thus develop an 
algorithm to construct XRGs and a novel family of data flow 
testing criteria to test WS-BPEL applications. Experiment results 
show that our testing approach is promising. 
Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging—Testing 
tools; D.2.8 [Software Engineering]: Metrics—Product metrics 

General Terms 
Measurement, Reliability, Verification 

Keywords 
WS-BPEL, XPath, Service-orientation, Workflow testing, 
Testing, Rewriting rules, SOA, XML, XML document model 

1. INTRODUCTION 
Software engineers often employ a collection of heterogeneous 
but closely related technologies, such as WS-BPEL [1], to 
develop a service-oriented workflow application [4]. They may 
design a company’s business workflow in BPEL [1], or source 
(external) web services [2] to provide functions of individual 
workflow steps. Furthermore, they specify the signatures and 
resource locators (such as URLs) of their web services as WSDL 
documents [1] so that BPEL can invoke these web services. To 
facilitate XML-based communications and data transfers among 
web services and individual BPEL steps, software engineers may 
define the required message types by using XML schema [11]. 
Any concrete messages, WSDL documents, or definitions of 
BPEL variables are, however, XML documents. XPath [3] is an 
indispensable means to manipulate these documents, such as 
extracting the required contents from an XML message returned 
by a web service, or keeping the extracted contents in a BPEL 
variable under the right variable definition. For instance, every 
WS-BPEL application in an IBM Repository [4] uses XPath. A 
mismatch among components (e.g., extracting the wrong contents 
or failing to extract any content from a correct XML message) 
may cause a WS-BPEL application to function incorrectly. 

Surprisingly, although WS-BPEL is strongly advocated by 
OASIS, IBM, Microsoft, BEA, SAP, and Oracle to be a platform 
for building enterprise applications, inadequate researches have 
been conducted to address their testing issues (see Section 6 for 
details). In particular, even though XPath plays such a crucial role 
in WS-BPEL applications, many existing verification and 
validation (V&V) researches (such as in modeling and verification 
[22][29], validation [25], unit testing [18], and test case generation 
[12][28]) simply do not consider XPath or merely model it as a 
function call without exploring deeply its implication from the 
V&V perspective. Some (e.g., [10][11]) simulate XPath 
expressions in another language using their styles of 
programming. The conceptual structure of XPath and how various 
parts of this structure may interact with BPEL remain unclear. 

In a typical WS-BPEL application, for instance, XPath may 
work in pair with a document model of XML messages (that is, an 
XML schema [3]) to extract the required contents. Depending on 
the structure of the XML schema, however, multiple paths may 
fulfill the same XPath, but extract different contents from the 
same XML message. Nevertheless, even different entities 
specified in an XML schema may share the same primitive data 
types such as string, they may serve distinct purposes. Using 
incompatible (in the sense of semantics) extracted messages to 
conduct follow-up workflow activities in a BPEL program may 
result in integration errors. We shall give a motivating example in 
Section 2.1 to elaborate our point. 
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XPath should be studied deeply in testing research to improve 
the quality of WS-BPEL applications [16]. To our best knowledge, 
existing testing researches do not adequately address the 
interactions among XPath, XML schema, and XML messages, 
and their relationships with BPEL. In this paper, we study this 
problem and propose a solution to tackle the testing challenges. 

As the use of XPath is fundamental in developing a WS-BPEL 
application, we firstly study how to reveal the implicit structure of 
XPath, which should be close to its declarative semantics so that it 
will not be biased to a particular BPEL engine implementation, as 
well as study the interactions between BPEL and XPath. Gottlob 
et al. [13] have shown that such paths are generally not decidable. 
They also propose a decidable fragment, and a set of definitions to 
capture the fragment. 

Our model for XPath is built atop this fragment and these 
definitions of XPath syntactic constructs. We treat the definitions 
as “left-to-right” rewriting rules (similarly to the application of 
axioms as rewriting rules in algebraic specifications [6]). Through 
a series of application of these rules, we rewrite an XPath into a 
normal form, which means that no more rewriting rules can be 
applied, or a fixed point for recursive definitions has been 
reached. 

Furthermore, instead of merely analyzing the (final) normal 
form, we record the series of (intermediate) rewriting results (see 
Section 3). As such, our model captures how each applicable 
rewriting rule uses its “left” part to unify with an XPath 
sub-expression (of an intermediate result) to construct the next 
level of intermediate results or the corresponding normal form via 
the “right” part of the rule. 

We develop a data structure (dubbed XPath Rewriting Graph or 
XRG for short) to model an XPath in WS-BPEL. In the spirit of 
data flow testing and analysis [8][20][26], we further innovatively 
consider any variable generated as a variable definition, and the 
use of a variable provided by a preceding node as a variable usage. 
We note that such variables are conceptual in nature, and they are 
not program variables because they never appear in a program 
implementation. We thus term them as conceptual variables. 
Together with the inputs to an XPath from a BPEL program and 
its output variables defined to specify the data to be transferred 
back to BPEL, this data structure forms an explicit artifact to 
model different paths, conceptually defined in an XPath, on how 
to provide query values to BPEL programs. 

By also modeling a BPEL program as a control flow graph, we 
propose an approach to identify the data flow associations 
relevant to the conceptual variables in XPath and ordinary 
variables in the BPEL program, and then formulate a set of test 
adequacy criteria to measure the quality of test sets. 

The main contributions of this paper are multifold: (i) It 
demonstrates a novel strategy that transforms schema-based 
definitions, which are recursively defined, into explicit artifacts. 
(ii) A data structure, XPath Rewriting Graph, is proposed to 
model XPath at a conceptual level. (iii) This paper is among the 
first work on WS-BPEL testing that tackles the complexity of 
XPath. (iv) We identify a new type of dataflow entity to capture 
the characteristics of XPath. (v) We propose a family of test 
adequacy criteria to measure the quality of test sets. (vi) To our 
best knowledge, we provide the first set of experiments to 
evaluate the impact of XPath for services testing research using 
open-source programs. It shows that our approach is promising. 

The rest of the paper is organized as follows: Section 2 outlines 
the technical preliminaries and testing challenges for WS-BPEL 
applications. Section 3 presents the algorithm of constructing an 
XRG, and our effort to model WS-BPEL applications. Section 4 
introduces our data flow model and testing criteria to measure the 
comprehensiveness of test sets. Section 5 reports an experimental 
evaluation of our proposal, and followed by a literature review 
and conclusions in Sections 6 and 7, respectively. 

2. WS-BPEL APPLICATIONS 
This section presents a motivating example and introduces the 
technologies in typical WS-BPEL applications [1]. 

2.1 Motivating Example 
Our motivating example to illustrate the challenges in the testing 
of WS-BPEL applications is adapted from the Apache WSIF 
project [27]. It involves a Digital Subscriber Line (DSL) 
application that offers DSL query services. Since the code (in 
XML format) is quite lengthy, we use an activity diagram in 
Figure 1 to depict the business process (IsServiceAbailable) of the 
example, in which each node denotes a BPEL activity, and each 
link denotes a transition between two activities. We also annotate 
the nodes with additional information, such as the input and 
output parameters of the activities, or any XPath Query used by 
the activities in the BPEL code. We number the nodes as A1, 
A2, …, A8 to ease subsequent discussions. The service 
IsServiceAbailable is described as follows: 

(1) A1 invokes the service AddressBookLookup, which retrieves 
the address information from the address book by searching the 
given user name through the BPEL variable UserName, and stores 
the returned XML message in the BPEL variable UserAddress. 

(2) A2 extracts the city name from UserAddress via the XPath 
//city/ and assigns the city name to the BPEL variable City. 

(3) A3 invokes the service City2GeoService, which looks up the 
zip information based on the given City, and keeps the result in 
the variable ZipInforamtion. 

(4) A4 checks whether the city name in UserAddress is the 
same as that in ZipInformation by extracting their city fields 
through the XPaths //city/ and //*[local-name()='city'], 
respectively, where local-name() is an XPath function that 
returns the name of an element. 

(5) If A4 detects no problem, A6 further extracts the zip code 
from UserAddress via the XPath //zip/ and assigns it to the BPEL 
variable ZipCode. Then, A7 executes the service ServiceAvailable 
to obtain the service availability status, and finally A8 returns the 
ServiceAvailability information to the caller. 

(6) If A4 detects a problem, A5 will execute a fault handler. 
The definition of the structure of any BPEL variable is kept in 

an XML schema. For example, the variables UserAddress and 
ZipInformation in Figure 1 are defined by the schemas address 
and LatLongReturn, respectively, in Figure 2. The elements state 
(lines 2 and 10), city (lines 3 and 11), and zip (lines 4 and 12), 
defined in both the schemas address and LatLongReturn, record 
the state, city, and zip information, respectively. In addition, to 
indicate whether or not a city belongs to any state, it uses the 
schemas Municipality and City to define the elements state and 
city, where the element city may also be a child node of the 
element state (type: Municipality) in line 21. 

We give a scenario that reveals a fault in the application. Ziyi 
Zhang, living in the city HuangShan, wants to find the DSL 
service status of her city. Hence, she inputs her name for enquiry. 
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By searching the database with the given input, the name 
HuangShan is retrieved. The service City2GeoSerivce then finds 
out the corresponding zip information of HuangShan. Finally, 
through the zip code, the service ServiceAvailable provides the 
DSL service status of HuangShan. 

Input: 
ZipCode
Output: 
ServiceAbailability

ZipCode = 
XPath_Query

(UserAddress, //zip/)

XPath_Query(UserAddress, //city/)
==

XPath_Query(ZipInformation, 
//*[local‐name()=’city’])

Input:    UserName
Output: UserAddress

A4:
Validate

City

A5: Fault Handling

A6: Assign ZipCode

A7: Invoke ServiceAvailable

A8: Reply ServiceAvailability

City = 
XPath_Query(UserAddress, //city/)

Input:    City
Output: ZipInformation

No Yes

A1: Invoke AddressBookLookup

A2: Assign City

A3: Invoke City2GeoService

Figure 1. Business Process IsServiceAvailable 

1 <xsd:complexType name="address"> 
2   <xsd:element name="state" type="xsd:Municipality"/> 
3   <xsd:element name="city" type="xsd:City"/> 
4   <xsd:element name="zip" type="xsd:string" /> 
5   <xsd:element name="StreetNum" type="xsd:int"/> 
6   <xsd:element name="StreetName" type="xsd:string"/> 
7   <xsd:element name="County" type="xsd:string" /> 
8 </xsd:complexType> 
9 <xsd:complexType name="LatLongReturn"> 
10   <xsd:element name="state" type="xsd:Municipality "/> 
11   <xsd:element name="city" type="xsd: City"/> 
12   <xsd:element name="zip" type="xsd:string" /> 
13   <xsd:element name="County" type="xsd:string" /> 
14   <xsd:element name="FromLongitude" type="xsd:decimal"/> 
15   <xsd:element name="FromLatitude" type="xsd:decimal"/> 
16   <xsd:element name="ToLongitude" type="xsd:decimal" /> 
17   <xsd:element name="ToLatitude" type="xsd:decimal" /> 
18 </xsd:complexType> 
19 <xsd:complexType name="Municipality" > 
20   <xsd:element name="name" type="xsd:string"/> 
21   <xsd:element name="city" type="xsd:City"/> 
22 </xsd:complexType> 
23 <xsd:simpleType name="City" typle="xsd:string"/> 

Figure 2. XML Schemas for address and LatLongReturn 

In fact, there are two cities called HuangShan in Anhui, China. 
For the ease of discussion, we refer to them as HuangShanA and 
HuangShanB. Although Ziyi lives in HuangShanA, she may obtain 
the DSL service status of HuangShanB instead, because 
City2GeoSerivce merely uses the name of a city as the input to the 
zip information query. For HuangShan, it may return either of the 
two zip codes for HuangShanA and HuangShanB, and hence the 
XPath may select the wrong one and assign it to ZipCode. 

Intuitively, good application systems may provide a list of cities 
for users to choose under such a situation. However, given the 

application in the motivating example, and without revealing a 
relevant failure, it is difficult to identify the fault in the first place. 

Following [28], the business process in Figure 1 can be 
modeled as a control flow graph (CFG), as shown in Figure 3. The 
mapping between the two figures is omitted. In Figure 3, we use a 
more concise notation XQ to represent XPath_Query in Figure 1. 

In Figure 3, the XPath //city/ searches the targeted city based 
on the variable UserAddress. According to the address schema in 
Figure 2, some cities (such as Hong Kong and Beijing) may not 
belong to any state, whereas other cities may belong to some 
states. Two conceptual paths /state/city/ and /city/ may reach a 
city field in an address. Figure 4 shows four scenarios with 
different contents in UserAddress. 

ServiceAvailability =
ServiceAvailable(ZipCode);

XQ(ZipInformation, XPath1)  ==  
XQ(UserAddress, XPath2)

Yes

Fault 
Handling

ZipCode =
XQ(UserAddress, XPath3)

XPath1: //*[local-name()=’city’] XPath2: //city/ XPath3: //zip/
XQ(Variable, Exp): XPath Query with input variable and XPath expression

UserAddress = 
AddressBookLookup(UserName);

N1

N2

N5

N6

N7

N8

ZipInformation = City2geo(City);

Return ServiceAvailability;

N3

City = XQ(UserAddress, XPath2);

N4

No

Ne

Ns

 
Figure 3. CFG for Business Process IsServiceAvailable 

<address>
<state>

<name>Beijing</name>
<city>Beijing</city>

</state>
<city>Beijing</city>
<zip>10001</zip>
……

</address >
Scenario 1 Scenario 2 Scenario 3 Scenario 4

<address>
<state />
<city>Beijing</city>
<zip>10002</zip>
……

</address >

<address>
<state>

<name>Beijing</name>
<city />

</state>
<city />
<zip>10003</zip>
……

</address>

<address>
<state />
<city />
<zip />
……

</address>

Figure 4. Scenarios for XQ(UserAddress, //city/) 
For scenario 1, either /state/city/ or /city/ returns “Beijing” as 

the city. For scenarios 3 and 4, both /state/city/ and /city/ return 
no result. For scenario 2, if /state/city/ is used, we obtain no 
result, but if /city/ is used instead, the value “Beijing” will be 
returned. They are different. 

We further study how the procedure of XPath affects the 
execution of workflow steps. Suppose there are three records for 
Beijing, as in scenarios 1 to 3. Considering the following two 
cases: (i) For scenarios 2 and 3, both XQ(UserAddress, XPath2) 
and XQ(ZipInformation, XPath1) may either return “Beijing” or 
no result, and hence the predicate at N4 is not decidable. (ii) For 
scenarios 1 and 2, even when the predicate at N4 is satisfied, if 
scenario 1 is used, the zip code will be 10001, and if scenario 2 is 
used, it will be 10002. This is an anomaly. It will pose an 
integrated problem if a follow-up service, e.g., ServiceAvailable, 
only uses the zip code to determine the availability of the DSL 
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service. Suppose 10001 is the correct zip code for “Beijing” while 
10002 is wrong. Then ServiceAvailable will return correct 
information under scenario 1 but will fail under scenario 2. 

The testing challenge illustrated by the motivating example is 
that XPath may retrieve different data from XML messages 
according to XPath expressions as well as the structure of the 
XML schema. However, the interactions between these two types 
of artifact are not coded explicitly in a WS-BPEL application. In 
the next section, we review the preliminaries of WS-BPEL. Then, 
in Sections 3 and 4, we present our proposal to address the issue. 

2.2 Fundamentals 
We use WS-BPEL (previously known as BPEL4WS) [1] in this 
paper. Three critical parts in WS-BPEL are BPEL, XPath, and 
web services. In this paper, we focus on the interactions between 
XPath and BPEL, and treat web services as external services. The 
testing of web services is not within the scope of the paper. We 
introduce XPath in this section. 

We adopt the definition of XPath expressions in [21]. Thus, an 
XPath expression is defined recursively using the following 
grammar: 

][|//|/|.|*| qqqqqqnq →  

where n∈∑ is any label, “*” denotes a wildcard label, and “ .” (the 
dot symbol) denotes the current node. The constructs / and // 
mean child and descendant navigations, respectively, and [] 
denotes a predicate. The symbols in ∑ represent element labels, 
attribute labels, and text values that can occur in XML documents. 
The set of all trees are denoted by T∑, and each tree represents an 
XML document satisfying an XML schema Ω. To simplify the 
presentation, we also use Ω to represent the set of labels that can 
occur in the XML schema Ω. An XML schema is also an XML 
document. An XPath Query q(t), which performs a query on a tree 
t∈T∑ using an XPath expression, returns a set of nodes in t. For a 
tree t∈T∑, NODES(t) and EDGES(t) denote the sets of nodes and 
edges, respectively. LABEL(x) is the label at node x, and 
LABEL(x)∈∑. EDGES*(t) denotes the reflexive and transitive 
closure of EDGES(t). By induction on the structure of q, reference 
[21] gives the following definitions to represent a fragment of 
XPath, and we label them as Rules 1 to 6. According to [21], this 
provides a representative XPath fragment sufficient as a basis for 
the study of XPath. 

n(x)
*(x)
.(x)

(q1/q2)(x) 
(q1//q2)(x) 
(q1[q2])(x) 

=
=
= 
=
=
=

Rule
1
2
3
4 
5
6 

…
…
…
…
…
…

{y | (x, y)∈EDGES(t), LABEL(y) = n}
{y | (x, y) ∈EDGES(t)}

{x}
{z | y∈q1(x), z∈q2(y)}
{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)} 
{y | y∈q1(x), q2(y)≠Ø}  

Figure 5. Syntax of a Representative Fragment of XPath [21] 

Each definition in Figure 5 is of the form left = right. We treat 
these definitions as left-to-right rewriting rules [6]. We further 
group these rules into two categories according to whether a rule 
can be recursively defined using other rules: A-Rules (namely 
Rules 1, 2, and 3) and C-Rules (Rules 4, 5, and 6), representing 
atomic and complex XPaths, respectively. If an XPath expression 
q is a C-Rule expression, it may be rewritten into a composition of 
multiple sub-terms, each of which is an A-Rule, a C-Rule, or an 
atomic relation (such as {(y, u)∈EDGES*(t)} in Rule 5). For 
instance, the XPath expression //city/ can be considered as 

*//city/* or just *//city/ in practice. If q is an A-Rule, it cannot 
be further rewritten using other rules. To ease our discussion, we 
refer to q1(x) and q2(y) in Rules 4, 5 and 6 as the left and right 
sub-terms, respectively, of the rule. For Rule 5, besides the left 
and right sub-terms q1(x) and q2(u), there is also a middle sub-term 
{u | (y, u)∈EDGES*(t)}, which means all the nodes u in t reachable 
from y. We define Rule 7 as 

//(x) = {y | (x, y)∈EDGES*(t)}  … Rule 7 
Rule 7 is also an A-Rule. Since it is only used in Rule 5, we do 
not process it like other rules. 

3. OUR MODEL FOR WS-BPEL 
This section proposes our effort, using the X-WSBPEL model, to 
capture the interactions between BPEL and XPath. 

3.1 XPath Rewriting Graph (XRG) 
In the motivating example, we have illustrated that different paths 
taken by an XPath may result in integration problems to 
WS-BPEL applications. In this section, we propose an XPath 
Rewriting Graph (XRG), which forms an explicit artifact to 
represent different paths conceptually defined in an XPath 
expression over a schema Ω. 

An XPath expression over a schema Ω can be conceptually 
rewritten into another form (Section 2.2) by using Rules 1 to 6. 
Following the nature of rewriting rules, we model such a rewriting 
step as a directed edge (a, b) of a graph, which links up a node a 
that the rewriting rule will be applied to, and a node b that 
represents the result after applying the rule. 

< //city/, X={ROOT},(q1//q2)>

< city/*, V,(q3/q4)>

q3(U),q3=(city) q4(V), q4=*

q1(X), q1= * q2(U), q2=(city/*)

R1

R2R3 R4

R5 R6

XQ(UserAddress, //city/)

< *, X,Y, {y|(x, y)
∈EDGES*(t), x∈X }>

< city, U, V, {v|(u, v)∈EDGES*(t),
LABEL(v)=city, u∈U }>

< *, V ,W, {w|(v, w)
∈EDGES*(t),v∈V }>

Rewriting Node Rewritten Node

< //, Y, U, {u|(y, u)
∈EDGES*(t), y∈Y }>

 
Figure 6. Example of XPath Rewriting Graph 

Thus, there are two types of node in our model, as illustrated in 
Figure 6: (i) Rewriting node 〈q, Lc, rule〉, where q is a query 
expression; Lc (⊆NODES(Ω)) is the current set of nodes in Ω 
located by the previous query step; and rule denotes the rewriting 
rule used to generate the sub-terms in this node. Initially, Lc is 
assigned to {ROOT}, where ROOT is the root node of Ω. 
(ii) Rewritten node 〈q, Lc, Ln, S〉, where q and Lc carry the same 
meaning as in rewriting node; Ln (⊆NODES(Ω)) denotes the set of 
nodes in Ω to be located by q starting from some node in Lc; and S 
is a set-theoretic representation of the result of q (directly obtained 
according to the rules in Figure 5). 

For an XML document satisfying Ω (say, a returned message 
from a web service), Lc of a rewriting node or Ln of a rewritten 
node represents a set of tags, relevant to a query q, that may 
appear in the XML document. In Figure 4, for instance, the tag of 
the value “10001” is “zip”, which will be an element in Lc or Ln, 
depending on the given XPath query. Applying Rule 5, we obtain 
S as {z | y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}, in which u, x, y, and 
z are called conceptual variables. 
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The definition for XRG is given in Definition 1. It is followed 
by an algorithm to construct an XRG. 

Definition 1 (XPath Rewriting Graph) An XPath Rewriting 
Graph (XRG) for an XPath Query is a 5-tuple 〈q, Ω, Nx, Ex, Vx〉: 
(a) q is an XPath expression for the XPath Query, and Ω is an 

XML schema that describes the XML document to be 
queried on. 

(b) Nx is a set of rewriting and rewritten nodes identified by the 
algorithm Compute_XRG, and Vx is a set of conceptual 
variables defined at the nodes in Nx. 

(c) Ex is a set of edges (sc, sn), each of which represents a 
transition from sc to sn, where sc is a rewriting node and sn is 
either a rewriting node or a rewritten node. All the edges are 
also computed by the algorithm Compute_XRG. □ 

The algorithm Compute_XRG is used to construct an XRG. It 
takes an XPath expression q, the schema Ω of some XML 
document, and a set of currently located nodes X of Ω as 
parameters, and outputs the corresponding XRG. X is initially 
assigned as a singleton set containing the root of the schema [21]. 
The query q starts with this value of X to search for other nodes. 

The following auxiliary functions are used: (i) Function 
Root(XRG) returns the root node of XRG. (ii) Function match(q, p) 
returns true when q can be rewritten in the form specified by the 
pattern p, and returns false otherwise. (iii) Function 
getLastNode(Z) returns the last rewritten node in Z, and function 
getLastChild(n, Z) returns the last rewritten child node of n in Z, 
both using standard inorder traversal [14]; (iv) Functions 
setLeftChild(n,nl), setMidChild(n,nm), and setRightChildNode(n,nr) 
set nl, nm, and nr as the left, middle, and right child nodes for n, 
respectively. As we shall explain in Section 4, the left, middle, 
and right child labels are important for identifying the conceptual 
paths of an XPath expression over Ω. In our algorithm, each label 
in a set is associated with the variable that locates it. (v) Functions 
LabelVarDef(X, x, n) and LabelVarUse(X, x, n) mark the variable 
x as the definition and use occurrences at node n, respectively, and 
associate such occurrences of the variable to every element in X. 
In addition, we define “xοy” as the attribute y of x. 
1 Global Variables Nx, Ex, Vx. /* Initially, Nx ← Ø, Ex ← Ø, Vx ← Ø. */ 
2 Algorithm Compute_XRG 
3 Input XPath expression q, XML schema Ω, 
  Set of located nodes X 
4 Output XRG 
5 let XRG be 〈q, Ω, Nx, Ex, Vx〉. 

/* Process A-Rule (rules that cannot be further rewritten) */ 
/* Process Rule 1 */ 

6 if match(q, “n”) { 
7   New variables x, y.  Vx ← Vx∪{x, y}. 
8   Y ← {y | (x, y)∈EDGES(Ω) ∧ LABEL(y) = q, x∈X }. 
9   n ← 〈q, X, Y, {y | (x, y)∈EDGES(Ω) ∧ LABEL(y) = q}〉. 
10   LabelVarUse(X, x, n).  LabelVarDef(Y, y, n). 
11   Nx ← Nx∪{n}.  /* New rewritten node */ 
12 } 

/* Process Rule 2 */ 
13 else if match(q, “*”) { 
14   New variables x, y.  Vx ← Vx∪{x, y}. 
15   Y ← {y | (x, y)∈EDGES(Ω), x∈X }. 
16   n ← 〈q, X, Y, {y | (x, y)∈EDGES(Ω)}〉. /* New rewritten node */ 
17   LabelVarUse(X, x, n).  LabelVarDef(Y, y, n). 
18   Nx ← Nx∪{n}. 
19 } 

/* Process Rule 3 */ 
20 else if match(q, “.”) { 
21   n ← 〈q, X, X, {x | x∈X}〉.  /* New Rewritten Node */ 
22   LabelVarUse(X, x, n).  LabelVarDef(X, x, n). 
23   Vx ← Vx∪{x}.  Nx ← Nx∪{n}. 
24 } 

/* Process C-Rule (rules that can be further rewritten) */ 
/* Process Rule 4 */ 

25 if match(q, “q1/q2”) { 
26   New variable y, z.  Vx←Vx∪{y, z}. 
27   n ← 〈q, X, Rule 4〉.  /* New rewriting node */ 
28   if (nl ← CheckRecursion(q1, X, Nx)) =Ø then { 
29     XRG1 ← Compute_XRG(q1, Ω, X). 
30     nl ← Root (XRG1).  nlast ← getLastNode(XRG1). 
31     Ex←Ex∪XRG1οE.  Nx←Nx∪XRG1οN.  Vx←Vx∪XRG1οV.  } 
32   else { nlast ← getLastChild(nl, XRG).  } 
33   let Y be nlastοLn. 
34   if (nr←CheckRecursion(q2, Y, Nx)) =Ø then { 
35     XRG2 ← Compute_XRG(q2, Ω, Y). 
36     nr ←Root (XRG2). 
37     Ex←Ex∪XRG2οE.  Nx←Nx∪XRG2οN.  Vx←Vx∪XRG2οV.  } 
38   LabelVarUse(X, x, nl).  LabelVarDef(Y, y, nl). 

  LabelVarUse(Y, y, nr).  LabelVarDef(Z, z, nr). 
39   setLeftChild(n, nl).  setRightChild(n, nr). 
40   Ex ← Ex∪{(n, nl), (n, nr)}.  Nx← Nx∪{n, nl, nr}. 
41 } 

/* Process Rule 5 */ 
42 else if match(q, “q1//q2”) { 
43   New variable y, u, z.  Vx←Vx∪{y, u, z}. 
44   n ← 〈q, X, Rule 5〉. /* New rewriting node */ 
45   if (nl ← CheckRecursion(q1, X, Nx)) = Ø then { 
46     XRG1 ← Compute_XRG(q1, Ω, X). 
47     nl ← Root(XRG1).  nlast ← getLastNode(XRG1). 
48     Ex ← Ex∪XRG1οE.  Nx ← Nx∪XRG1οN.  Vx ← Vx∪XRG1οV.  } 
49   else { nlast ← getLastChild(nl, XRG).  } 
50   let Y be nlastοLn. 
51   U ← {u | (y, u)∈EDGES*(Ω), y∈Y}. 
52   nm← 〈“//”, Y, U, {u | (y, u)∈EDGES*(Ω), y∈Y}〉. 
     /* New rewritten node */ 
53   if (nr ←CheckRecursion(q2, U, Nx)) =Ø { 
54     XRG2 ← Compute_XRG(q2, Ω, U). 
55     nr ← Root(XRG2). 
56     Ex ← Ex∪XRG2οE.  Nx ← Nx∪XRG2οN.  Vx ← Vx∪XRG2οV.  } 
57   LabelVarUse(X,x,nl). LabelVarDef(Y,y,nl). LabelVarUse(Y,y,nm). 

  LabelVarDef(U,u,nm). LabelVarUse(U,u,nr). LabelVarDef(Z,z,nr). 
58   setLeftChild(n, nl).  setMidChild(n, nm).  setRightChild(n, nr). 
59   Ex ← Ex∪{(n, nm), (n, nl), (n, nr)}. 
60   Nx← Nx∪{n, nm, nl, nr}. 
61 } 

/* Process Rule 6 */ 
62 else if match(q, “q1[q2]”) then { 
63   New variable y, z.  Vx ← Vx∪{y, z}. 
64   n ← 〈q, X, Rule 6〉.  /* New rewriting node */ 
65   if (nr ← CheckRecursion(q1, X, Nx)) = Ø then { 
66     XRG1 ← Compute_XRG(q1, Ω, X). 
67     nr ← Root(XRG1).  nlast1 ← getLastNode(XRG1). 
68     Ex ←Ex∪XRG1οE.  Nx ← Nx∪XRG1οN.  Vx ←Vx∪XRG1οV.  } 
69   else { nlast1 ← getLastChild(nr, XRG).  } 
70   let Y be nlast1οLn. 
71   if (nl ← CheckRecursion(q2, Y, Nx)) = then { 
72     XRG2 ← Compute_XRG(q2, Ω, X). 
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73     nl ← Root(XRG2).  nlast2 ← getLastNode(XRG2). 
74     Ex ← Ex∪XRG2οE.  Nx ← Nx∪XRG2οN.  Vx ← Vx∪XRG2οV.  } 
75   else { nlast2 ← getLastChild(nl, XRG).  } 
76   let Z be nlast2οLn. 
77   Y ← Y – {y | ∄z∈Z, (y, z)∈EDGES*(Ω), y∈Y }. 
78   LabelVarUse(X, x, nr).  LabelVarDef(Y, y, nr). 
   LabelVarDef(Z, z, nl).  LabelVarUse(Z, z, nl). 
79   setLeftChild(n, nl).  setRightChild(n, nr). 
80   Ex ← Ex∪{(n, nl), (n, nr)}. 
81   Nx ← Nx∪{n, nl, nr}. 
82 } 
83 return XRG.  /* XRG is finally returned */ 

84 Function CheckRecursion(q, L, Nx) 
85   if ∃n∈Nx, q = nοq ∧ L⊆nοLc then { return n.  } 
86   else { return Ø.  } 

The algorithm Compute_XRG processes Rules 1 to 6 in lines 
6–12, 13–19, 20–24, 25–41, 42–61, and 62–83, respectively. 
Since Rules 1, 2, and 3 are A-Rules, only one rewritten node n is 
created in each case (lines 9, 16 and 21). Rules 4, 5 and 6 are 
more complex. We use Rule 4 as an example to illustrate the 
processing. Rules 5 and 6 are processed similarly. 

Rule 4 is processed as follows: Firstly, a rewriting node n is 
created (line 27). Then, the algorithm recursively processes q1 and 
q2. Since there may be recursions when rewriting a node, we 
check the occurrence of recursions using the function 
CheckRecursion (lines 84–86) for both q1 (lines 28–32) and q2 
(lines 34–37). If there is a node nl or nr for q1 or q2 (lines 28 and 
34) involving recursions, then nl or nr is set as the left or right 
child node for n (line 39). If there is no recursion for q1 or q2, then 
the algorithm generates XRG1 and XRG2 (lines 29 and 35), and the 
root nodes of XRG1 and XRG2 (lines 30 and 36) will be denoted as 
nl and nr and are set as the left and right child nodes of n (line 39). 
Note that the input parameter X to compute XRG2 comes from the 
output of the computation of XRG1. The algorithm uses the 
function getLastNode to find the last rewritten node nlast in XRG1 
(line 30) when there is no recursion for q1; and uses the function 
getLastChild to find the last rewritten child node nlast in XRG (line 
32) when there is a recursion. nlast is assigned as 〈qlast, Lc

last, Y, 
Sn

last〉, and Y denotes the set of nodes used as an input parameter 
for constructing XRG2. We associate each label of X with the 
variable definition of x at node nl (line 38). Other variable 
definitions and usages are processed similarly. Hence, the XRG 
for an XPath Query satisfying Rule 4 is generated. 

We also use XQ(UserAddress, //city/) at N2 in Figure 3 to 
illustrate the algorithm. The output of the algorithm is depicted in 
Figure 6. To ease readers’ understanding, we annotate the edges 
with rewriting sub-terms in Figure 6. XQ(UserAddress, //city/) is 
firstly identified by Rule 5 (q1=* and q2=city/*) (line 42), and 
hence rewriting node R1 is generated (as n in line 44). Next, the 
algorithm recursively processes three sub-terms: //, *, and city/*. 
The middle sub-term // matches Rule 7, but the conceptual 
variables have been discovered by processing q1 and q2, and so R2 
is generated (as nm in line 52). The left sub-term * matches Rule 2, 
and hence rewritten node R3 is generated (as n in line 16). The 
right sub-term city/* matches Rule 4, and therefore rewriting 
node R4 is generated (as n in line 27). R4 is further rewritten into 
R5 (as nl in line 28 or 30) and R6 (as nr in line 34 or 36). R5 and R6 
are the left and right children nodes of R4, respectively. R5 and R6, 
which match Rule 1 and 2, respectively, are both rewritten nodes. 
Since there is no recursion for //, *, and city/*, R2, R3 (the root 

node of XRG1, line 47), and R4 (the root node of XRG2, line 55) 
are set to be the middle, left, and right child nodes of R1 (line 58), 
respectively. We thus finish constructing the required XRG. 

We can also use Figure 6 to illustrate Definition 1. The XRG 
〈q, Ω, Nx, Ex, Vx〉 for XQ(UserAddress, //city/) is as follows: q is 
//city/, and Ω is the schema address (Figure 2) for the variable 
UserAddress. Vx is constructed by the algorithm directly, and Vx = 
{x, y, u, v, w}. Nx is {R1, R2, R3, R4, R5, R6}. Ex is {(R1, R2), (R1, 
R3), (R1, R4), (R4, R5), (R4, R6)}. The rewriting nodes are R1 and R4 
while the rewritten nodes are R2, R3, R5, and R6. 

Let us further use Figure 6 to illustrate how we handle the two 
paths (/state/city/ and /city/) of //city/ in the XRG. We first 
obtain {state, city}⊆Y (Y∈R3) from schema address. Then, if the 
value of y in R2 is state, u will be city; whereas if the value of y is 
city, u will be undefined. Since u is the child node of y in the 
schema, we thus obtain the two paths /state/city/ and /city/. 

We note that such rewriting can be stopped at some upper 
bound (say, for a huge XPath or for fragments that are not 
decidable). This tracks XPath at a conceptual level in a stepwise 
and hierarchical fashion. 

3.2 X-WSBPEL Model 
The structure of an XPath is denoted by an XPath Rewriting 
Graph in our model. We associate each control flow graph [8] of 
a BPEL program (e.g., the CFG for IsServiceAvailable in Figure 3) 
with a set of XRGs to represent a WS-BPEL application. 

Definition 2 (X-WSBPEL Model) An X-WSBPEL Model is a 
couple 〈CFGB, XPATH〉 such that 
(a) CFGB is a control flow graph representing a BPEL program P; 

CFGB = 〈Nb, Eb, Vb, sb, eb〉, where: Nb is a set of nodes that 
represent the program nodes of P; Eb is a set of edges that 
represent the transitions between two nodes, Vb is a set of 
variables defined or used in BPEL; sb is the entry node of P, 
and eb is the exit node of P, sb, eb∈N. 

(b) XPATH is a set of XPath Rewriting Graphs denoting the 
occurrences of XPath in CFGB. □ 

We use Figure 3 to illustrate CFGB in the X-WSBPEL model of 
IsServiceAvailable: sb is Ns; eb is Ne; Vb = {UserAddress, UserName, 
City, ZipInformation, ZipCode, ServiceAvailablity}; Nx = {Ns, Ne, N1, 
N1, N2, N3, N4, N5, N6, N7, N8}; and Eb = {(Ns, N1), (N1, N2), (N2, 
N3), (N3, N4), (N4, N5), (N4, N6), (N6, N7), (N7, N8), (N5, Ne), (N8, 
Ne)}. We also have XPATH = {XRGXPath1, XRGXPath2, XRGXPath3}, 
where XRGXPath2 means the XRG for XPath2 //city/ (such as 
Figure 6), and XRGXPath1 and XRGXPath3 are interpreted similarly. 
In X-WSBPEL, we assume that either CFGB or XRG starts with a 
unique entry node and ends at a unique exit node. 

4. DATA FLOW ENTITIES & CRITERIA 

4.1 Data Flow Associations for WS-BPEL 
4.1.1 Conventional Data flow Associations 
This section recalls the data flow definitions from [8][20]. A CFG 
is a couple (V, E), where V is a set of nodes representing 
statements in a program unit and E is a set of directed edges 
representing the transitions among statements. A complete path in 
a CFG is a path starting from the entry node and ending with an 
exit node. A variable x is defined or has a definition occurrence at 
node n if the value of x is stored or updated at n. A variable x is 
used or has a use occurrence at n if the value of x is fetched or 
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referenced at n. A sub-path 〈ni, …, nj〉 is said to be definition-clear 
with respect to the variable x when none of ni, …, nj defines or 
undefines x. A def-use association is a triple 〈x, nd, nu〉 such that 
the variable x is defined at node nd and used at node nu, and there 
is a definition-clear sub-path (possibly empty) with respect to x 
from nd to nu, exclusively. 

In an X-WSBPEL model, a WS-BPEL application consists of a 
CFGB associated with a set of XRGs. Def-use associations on 
CFGB in the X-WSBPEL model can be identified in the same style 
as [8]. In Figure 3, for instance, the variable City has a definition 
occurrence at node N2 and a usage occurrence at N3. Since there is 
no definition between N2 and N3, the path from N2 to N3 is 
definition-clear, and hence there is a def-use association for the 
variable City, denoted by 〈City, N2, N3〉. 

4.1.2 Conceptual Paths in XRG 
In the Compute_XRG algorithm, we have explicitly marked some 
child nodes as left child, right child, and middle child. This 
marking is important. For example, let us consider the children 
nodes (R2, R3, and R4) of R1 in Figure 6. The output set Y, which is 
defined by the variable y at R3, will be used at R2 as a part of a 
condition to define U. The set U is used by the child graph 
(actually R5) with R4 as the root. The traversal of the graph is 
important; otherwise, a proper conceptual relationship among 
variables cannot be obtained. 

To apply data flow analysis and testing to an XRG, we should, 
therefore, respect such ordering of nodes; otherwise one may 
construct illegitimate data flow associations or miss legitimate 
ones [8]. We have designed the Compute_XRG algorithm to 
support the inorder traversal algorithm of [14] for constructing 
the path sets of a given XRG so that path sets can be treated as if 
they were paths in the CFG of a program unit [8]. We note, 
however, that a path in an XPath Rewriting Graph is only a model 
of an XPath and will never be executed by any actual program. 
Hence, we call them conceptual paths. Despite such philosophical 
difference, data flow associations [8] can be computed from a 
CFG transformed from an XRG based on the inorder traversal 
algorithm, where nodes of the CFG are nodes of the XRG, and 
there is an edge (a, b) in the CFG if (a, b) is a subsequence of a 
conceptual path of the XRG. 

4.1.3 Special Handling for XRG 
This section discusses def-use associations in XRGs. In an XRG, 
a rewriting node is used to identify a rewriting rule, where any left, 
right, or middle sub-term of an XPath expression will be rewritten 
to one or more rewritten nodes. Hence, a rewritten node contains 
the rule matching information. Also, since every rewriting node 
contains no variable definition or usage, we choose to hide them 
in the CFG constructed from an XRG. For instance, Figure 7 
shows an example path of Figure 6 obtained by inorder traversal 
starting from R1 without showing any rewriting nodes. One may 
observe that, in such a conceptual path, the variables on each node 
are captured in set-theoretic notation. Also, every label on a 
rewritten node is marked as a definition, usage, or both. At 
run-time, when the set Ln of a preceding node (e.g., Y in R3) is 
empty, the variables in the succeeding node (e.g., R2) as well as 
the variable y at R3 will be undefined. When the XPath query is 
completed, it will assign values (probably empty in this case) to 
N2 for the BPEL program. Hence, a path in Figure 7 actually 
represents 4 paths that may be taken by an XPath Query at 
runtime: 〈R3, N2〉, 〈R3, R2, N2〉, 〈R3, R2, R5, N2〉, 〈R3, R2, R5, R6, N2〉. 

In other words, there are implicit predicates in the conceptual 
path to decide the legitimate path to be taken. In Figure 7, if no 
element in the XML document can be selected as “y” in R3, the set 
Y will be empty. This will result in the selection of path 〈R3, N2〉. 

City = w

City = XQ(UserAddress, //city/)

R3

R2

R6

R5

< //, Y, U, {u|(y, u)∈EDGES*(t), y∈Y }>

< *, V ,W, {w|(v, w)∈EDGES*(t), v∈V} >

< city, U, V, {v|(u, v)∈EDGES*(t),
LABEL(v)=city, u∈U }>

< *, X,Y, {y|(x, y)∈EDGES*(t), x∈X }>

N2

1
√

√

2
√

√

√

3
√

√

√

√

4
√

√

√

√

√

 
Figure 7. Example Conceptual Path of XRG 

 

In a rewritten node, we treat each unique occurrence of a 
variable associated with the label sets Lc as a variable usage, and 
each unique occurrence of a variable associated with the label set 
Ln as a variable definition. The latter is defined through the last 
element S of each node in standard set-theoretic notation 
{A | predicate(A)}. In addition, any occurrence of a variable in A 
is a variable definition, and any occurrence of a variable in 
predicate(A) but not in A is a variable usage. For example, the 
occurrence of y in R3 is a use and the occurrence of x in R3 is a 
definition. Based on the above, we present variable definitions 
and usages for conceptual variables in XRGs. Since they are 
related to an XPath Query at runtime, we call them q-def and 
q-use, respectively. 

Definition 3 (Q-DEF OF VARIABLES) Given an X-WSBPEL 
〈CFGB, XPATH〉, a q-def (or defq for short) of a variable v is either 
(i) an occurrence of v at node n in CFGB such that v is assigned by 
the return value of the XPath Query, or (ii) a definition occurrence 
of v at node n of an XRG∈XPATH. □ 

For simplicity, a variable definition in an X-WSBPEL such that 
it does not satisfy Definition 3 is named as defb. We denote the set 
of all defq in a WS-BPEL application by Defq, and the set of all 
defb by Defb. In Figure 3, for instance, the definition occurrence of 
the variable ZipInformation at N3 is a defb. The variable City is 
assigned by XQ(UserAddress, //city/) at N2 and, according to 
Figure 7, XQ(UserAddress, //city/) returns the conceptual 
variable w. Hence, we further determine that the variable City is 
defined by w (so that it is a defq). We also find in Figure 7 that the 
conceptual variable y at R3 is defined by “y | (x, y)∈EDGES*(t)”. 
This definition occurrence is also a defq. 

Definition 4 (Q-USE OF VARIABLES) Given an X-WSBPEL 
〈CFGB, XPATH〉, a q-use (or useq for short) of a variable v is 
either (i) an occurrence of v at node n of CFGB such that v is the 
input parameter of an XPath Query in n, or (ii) a use occurrence of 
v at node n of an XRG∈XPATH. □ 

Similar to variable definitions, a variable usage that does not 
satisfy Definition 4 is named as useb. We denote the set of all useq 
in an X-WSBPEL by Useq, and the set of all useb by Useb. For 
example, the use occurrence of the variable UserName at N3 is a 
useb. In Figure 7, the conceptual variable x at R3, as used by “y | 
(x, y)∈EDGES*(t)”, is also a useq. Based on the definitions of q-def 
and q-use, we proceed to define def-use associations in our model. 
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Definition 5 (QUERY-DU) A query-def-use (or query-du) 
association α for a variable v is a triple 〈v, nd, nu〉 such that v is a 
q-def at nd and a q-use at nu, and there is a definition-clear 
sub-path (using inorder traversal) with respect to v from nd to nu.□ 

We note that, by a simple and mechanical translation, the 
definitions and usages for an ordinary BPEL variable can be 
expressed using XPath. Consider the following example, in which 
UserAddress.ZipCode is assigned by ZipOnly.ZipCode. 

<assign><copy> 
<from variable="UserAddress" part="ZipCode" query="."/> 
<to variable="ZipOnly" part="ZipCode"/> 

</copy></assign> 

We can use the XPath Query “.” to denote the fetching of the 
value(s) of the variable UserAddress.ZipCode, that is, 
“.(UserAddress.ZipCode) = {UserAddress.ZipCode}”. In this way, in 
addition to XPath expressions, our approach can be applied to 
other BPEL variables. We further distinguish variable occurrences 
in a predicate (such as Rule 6 in Section 2.2) (in the sense of p-use 
in standard terminology [8]) from the rest in the set of query-du 
associations. We call them query-pu associations. 

4.2 Test Adequacy Criteria for WS-BPEL 
This section proposes a set of testing criteria to measure the 
quality of test sets to test WS-BPEL applications. 
  Our first test criterion is to exercise each XRG at least once. 
Such an adequate test set should cover all XRGs in the WS-BPEL 
application under test. 

Criterion 1 (ALL QUERIES) A test set T satisfies the 
all-queries criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and 
only if, for each XRG∈XPATH, the complete path of at least one 
test case t∈T executes XRG at least once. □ 

Nevertheless, executing an XPath Query at least once may not 
evaluate all conceptual variables. In Figure 6, for instance, 
exercising XQ(UserAddress, //city/) once may not execute the 
definition for the variable w at R6 because, when V at R5 is empty, 
R6 will not be evaluated. In other words, a test set that satisfies the 
all-queries criterion may not cover all the def-use associations of 
variables in X-WSBPEL. Our next criterion explores the structure 
of XPath. It requires a test set to cover all query-du associations. 

Criterion 2 (ALL QUERY-DU) A test set T satisfies the 
all-query-du criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and 
only if, for each query-du association α, there is at least one test 
case t∈T such that def_clear(α) is evaluated to be true. □ 

As predicates are important for identifying conceptual paths in 
an XRG, we require a test set to cover all predicates and call the 
criterion all-query-pu. We note that all-query-du subsumes [8][15] 
all-query-pu because all p-uses and c-uses are evaluated in 
all-query-du. Also, any query should have at least one query-pu 
occurrence because each query may encounter a scenario in which 
the required value cannot be extracted by the query from an XML 
document. Hence, all-query-pu subsumes all-queries. 

Criterion 3 (ALL QUERY-PU) A test set T satisfies the 
all-query-pu criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and 
only if, for each predicate query-def-use association α, if the 
variable usage occurs in a predicate, then for each branching of 
the predicate, there is at least one test case t∈T that exercises the 
definition-clear path. □ 

We generically treat host programs as CFGs. Flow-based 
testing criteria on these programs (see [8][9][15][28]) can readily 
be integrated with the control flow structures or data flow entities 
captured by an XRG to construct other testing criteria. 

5. EVALUATION 
This section reports the experimentation of our proposal. 

5.1 Design of Experiment 
We use eight open-source WS-BPEL applications [4][24][27] to 
evaluate our work, as shown in the second column of Table 1. 
These programs are frequently used in WS-BPEL studies such as 
[10][18][28]. Furthermore, LoanApproval and BuyBook are the 
sample projects that IBM and Oracle, respectively, shipped with 
their BPEL modeling tools. The columns “Element” and “LOC” 
show the number of XML elements and lines of code of each 
application. We implement a tool to automate the evaluation. It 
reports that, in total, there are 23 XPath expressions, 87 
query-p-use, and 209 query-du associations. Their breakdowns are 
shown in the rightmost three columns of Table 1. Although the 
numbers of XPath in the subject programs are small, as we shall 
show later, the differences in effectiveness exhibited in the 
experiment are already significant. 

Table 1. Subject programs and their descriptive statistics 

Ref. Applications Element LOC Query Query-pu Query-du
A ATM [4] 94 180 3 12 35 
B BuyBook [24] 153 532 3 15 26 
C DSLService [27] 50 123 3 11 47 
D GYMLocker [4] 23 52 2 9 23 
E LoanApproval [4] 41 102 2 11 19 
F MarketPlace [4] 31 68 2 9 17 
G Purchase [4] 41 125 2 6 9 
H TripHandling [4] 94 170 6 14 33 

Next, we generate different faulty versions by seeding one fault 
into each copy of the original subject program. To our best 
knowledge, these faulty versions do not exist in repositories. We 
(members of our research group who have experience in SOA 
development and are non-authors) follow [15][20] to seed faults. 
In total, we create 60 faulty versions. 

Our tool then generates test suites for our testing criteria and for 
random testing [8][18]. When generating each test suite for our 
testing criteria, the tool randomly selects a test case from a test 
pool and executes a target version over the test case. The test case 
is added to the test suite for a testing criterion only if it improves 
the coverage specified by the criterion. After a number of trials, 
we set the process to terminate if either 100% coverage of a 
criterion has been attained, or an upper bound of 50 trials has been 
reached. (We note from the experiment that the tool has 
consistently achieved 100% coverage for all criteria (except the 
all-query-du criterion) at the termination of the process.) For each 
version, we repeat this process 100 times. A similar approach is 
adapted by [15][20]. For random testing, we randomly select a test 
suite whose size should be the same as the maximum number of 
test cases in all test suites for our testing criteria on the same 
program version. We choose the fault detection rate [15] as the 
effectiveness measure in the experimentation, which is defined as 
the proportion of the number of test suite that can expose the 
fault(s) in a version to the size of the test suite. 
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5.2 Data Analysis 
We present the results of the experiment in this section. We first 
calculate the coverage percentages of the test suite on the faulty 
versions for the respective testing criteria. The minimal, mean and 
maximal coverages that have been achieved by the test suites are: 
all-queries (100%, 100%, 100%), all-quer-pu (100%, 100%, 
100%), and all-query-du (94.8%, 97.7%, 100%). When a test suite 
cannot yield 100% coverage, we deem the outstanding coverage 
requirements infeasible. 

We partition the 60 faults into three categories (in-BPEL, 
in-XPATH, and in-WSDL) according to the type of artifact that 
each fault resides, as shown in Table 2. Columns A–H correspond 
to the respective references of these applications in Table 1. There 
are 21 faults in BPEL programs, 21 faults in XPath expressions or 
XML schemas, and 18 faults WSDL documents. 

Table 2. Distributions of faults 

Category A B C D E F G H
in-BPEL 3 2 3 3 3 2 2 3 
in-XPath 3 2 3 3 3 2 2 3 
in-WSDL 2 3 2 1 2 2 3 3 

Total 8 7 8 7 8 6 7 9 

Table 3 summarizes the fault-detection rates of the three 
categories of faults and the aggregated results of the experiment. 
As shown in the overall section of the table, random testing 
exhibits the worst mean effectiveness among all four criteria. It is 
around 20%–24% less effective than our criteria. As expected, our 
all-query-du criterion shows the best mean fault detection ability, 
with a fault detection rate of 97.6% in the experiment. The 
all-query-du criterion also performs well in each category. 
Table 3. Fault-detection rates of testing criteria by categories 

Fault-detecting rates Box-whisker usage Category 
Criterion Min. Mean Max. Median 25% 75% 

Random 0.286 0.843 1.000 0.910 0.730 0.980 
All-queries 0.524 0.928 1.000 0.930 0.860 1.000 
All-query-pu 0.524 0.938 1.000 0.950 0.880 1.000 in-BPEL 
All-query-du 0.667 0.976 1.000 1.000 0.990 1.000 
Random 0.095 0.722 1.000 0.740 0.660 0.770 
All-queries 0.524 0.932 1.000 1.000 0.870 1.000 
All-query-pu 0.524 0.937 1.000 1.000 0.880 1.000 in-XPath 
All-query-du 0.571 0.977 1.000 1.000 0.960 1.000 
Random 0.167 0.621 1.000 0.650 0.470 0.763 
All-queries 0.556 0.904 1.000 0.970 0.803 1.000 
All-query-pu 0.556 0.915 1.000 0.975 0.823 1.000 in-WSDL 
All-query-du 0.778 0.974 1.000 1.000 1.000 1.000 
Random 0.183 0.734 1.000 0.745 0.615 0.910 
All-queries 0.533 0.922 1.000 0.970 0.860 1.000 
All-query-pu 0.533 0.931 1.000 0.975 0.870 1.000 

Overall 

All-query-du 0.667 0.976 1.000 1.000 0.980 1.000 

The all-query-du criterion, taking q-def and q-use (including 
both computation-use and predicate-use) into account, detects 
more faults than the all-query-pu criterion in the in-XPATH 
category (0.977 vs. 0.937) and in the in-WSDL category (0.974 vs. 
0.915). We also compare random testing with our testing criteria, 
as shown in the three rightmost columns in Table 3. It shows that, 
in terms of box-whisker standards (the median and the 25% and 
75% ranges), our criteria are more effective in detecting faults 
specified with XPath and WSDL. The average times to construct 
test sets for our criteria are in the range 0.45s–1.2s, running on an 
Intel 2.4 GHz CPU with 512 MB memory. 

To compare the effectiveness of different criteria based on 
comparable cost [9][20], we increase the size of every test suite 

for random testing so that the expanded test suite will give the 
same mean effectiveness as the base test suite of a compared 
testing criterion (or when an upper bound of 200 trials has been 
reached). We repeat this experiment 10 times to obtain the 
average result in each case. The results are listed in Table 4. 
Columns 2 to 4 list the average size of the expanded test suite for 
random testing (X) against that of the base test suite for our 
criterion (Y), that is X / Y. Table 4 shows that our criteria use only 
about 20% of the mean number of test cases for random testing to 
attain the same effectiveness. 

Table 4. Comparable test suite sizes of various criteria 

Subject Random 
/ all-queries 

Random 
/ all-query-pu 

Random 
/ all-query-du 

Atm 2.16 2.13 1.81 
BuyBook 9.84 9.66 8.91 

DSLService 3.61 3.59 2.78 
GYMLocker 2.38 2.37 2.18 

LoanApproval 8.13 8.01 7.97 
MarketPlace 13.40 13.13 12.06 

Purchase 3.31 3.18 2.85 
TripHanding 3.47 3.40 2.48 

Average 5.13 5.05 4.29 

In summary, the experimental results show that our approach 
detects over 90% of all faults and uses much fewer test cases than 
random testing to achieve the same effectiveness. In the future, we 
shall study how to detect subtle faults more effectively. 

5.3 Threats to Validity and other Discussions 
We have carefully developed a tool to perform instrumentation 
and collect statistical information for evaluation. We only use a 
limited number of programs and certain types of fault in our 
experiments. Like most other empirical studies, the result of our 
empirical study may not be generalized to cover all cases. 
WS-BPEL applications support program concurrency. We apply 
the notion of forced deterministic testing for concurrent programs 
to conduct the experiment. 

XPath has been included in Java 6 (see javax.xml.xpath). By 
modeling Java as a CFG and XPath as an XRG, our approach can 
readily be applied to a host language with such XPath support. 

One may wonder how program instrumentation can be done in 
BPEL programs. The following is a sample solution: the web 
service instrument is used to output the value of the variable 
ZipOnly.ZipCode and the XPath expression “.” at runtime. With 
such instrumentation, necessary information for computing the 
coverage of test suite can be obtained. 

<from variable="UserAddress" part="ZipCode" query="."/> 
<to variable="ZipOnly" part="ZipCode"/> 
<invoke name="instrument".variable="UserAddress.ZipCode" query="."/> 

6. RELATED WORK 
Broy and Krüger [5] study an interacting component and a service 
in the system as total behavior and partial behavior, respectively. 
They model a service having dual properties based on the notion 
of processes and partial functions. They do not study testing, 
however. Ye et al. [29] models a service as a process, and studies 
the encapsulation effects of actions on atomicity to support 
service transactions. Neither work considers XPath in services. 

Modeling BPEL and web service components using a state 
model is popular. Mongiello and Castelluccia [22] translate a 
BPEL program into such a model and apply model checking to 
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verify temporal properties. Schmidt and Stahl [25] model it using 
Petri nets instead. Apart from using a state model to represent a 
BPEL program, Foster et al. [7] further analyze and verify the 
interactions between BPEL programs and web services based on 
WS-BPEL specifications. Fu et al. [10][11] translate web services 
into Promela for formal verification using their tool WSAT. Their 
approach differs from ours. We cover different fragments of 
XPath, and it is unclear to us whether their fragment is decidable. 
Secondly, we translate an XPath strictly according to the 
definition of XPath expressions in [13][21], while they translate 
an XPath into a Promela procedural routine that uses 
self-proposed variables and codes to simulate XPath operations. 
Intuitively, a test suite covering the data flow associations in a 
translated routine would test the implementation rather than the 
declaration as expressed in the WS-BPEL application. Our testing 
approach addresses the interactions captured in various artifacts: 
BPEL programs, WSDL documents, XML schemas, and XPath 
expressions. The above work complements ours. 

García-Fanjul et al. [12] treat a WS-BPEL application as a 
finite state machine and use mutation analysis to generate faulty 
versions. They then check each faulty version against a given 
temporal property using SPIN, and any counterexample thus 
generated will be treated as a test case. Yan et al. [28] model a 
WS-BPEL application as a set of concurrent finite state machines, 
use a heuristic approach to conduct reachability analysis to find 
concurrent paths, and use such paths as test cases. 

Many previous papers [8][9][17][26] on data flow testing are 
based on information derivable from program statements. 
Although it is emerging to consider the effect of pervasive 
computing environment on programs [19][20], to our best 
knowledge, none of them explores the integration of 
heterogeneous sorts of technique such as program representation, 
dataflow analysis, and declarative semantics on diverse types of 
artifact as we do in this paper. 

7. CONCLUSIONS 
WS-BPEL applications are a type of service-oriented workflow 
application. In these applications, a business process is specified 
as a BPEL program, and individual loosely-coupled workflow 
steps are linked up via the exchange of XML-based messages. 
Failing to extract a right piece of data from an XML message, for 
instance, will pose an integration error in such an application. On 
the other hand, XML is fundamental to many service-oriented 
workflow applications, and XPath is the means to query on XML 
documents. The extensive usage of XPath poses a demand to 
study how to test these applications effectively. 

The paper has proposed a novel approach to studying XPath at 
a conceptual level, developed a data structure known as XPath 
Rewriting Graph (XRG) to capture how an XPath can be rewritten 
from one form to another in a stepwise fashion, and proposed an 
algorithm to construct XRGs. An XRG captures the mathematical 
variables to support stepwise rewriting of XPath. We also use 
these conceptual variables as if they were program variables to 
determine the def-use associations in an XRG, and integrate them 
with the ordinary ones in a host program. We make no particular 
assumption about the host program and generically treat it as a 
control flow graph. Based on the extended variables, we propose a 
family of testing criteria to test WS-BPEL programs. The 
experimental results confirm that our proposal is promising. 

Our paper demonstrates a new strategy that transforms 
schema-based definitions into external artifacts and then use these 

derived artifacts for analysis, design, and testing. This strategy is 
applicable to undecidable programs in general (albeit with an 
upper-bound setting to avoid infinite rewriting), and XPath is only 
one example. In the future, we shall proceed along this line to 
study the application of our novel approach to other forms of 
(un)decidable artifacts. 
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