
To appear in Proceedings of The Seventh International Conference on Quality Software (QSIC 2007),

IEEE Computer Society Press, Los Alamitos, California (2007)

Synthesizing Component-Based WSN Applications

via Automatic Combination of Code Optimization Techniques ∗†

Zhenyu Zhang

The University of Hong Kong

Pokfulam, Hong Kong

zyzhang@cs.hku.hk

W. K. Chan

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse ‡

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract

Wireless sensor network (WSN) applications sense

events in-situ and compute results in-network. Their

software components should run on platforms with

stringent constraints on node resources. Developers

often design their programs by trial-and-error with a

view to meeting these constraints. Through numerous

iterations, they manually measure and estimate how

far the programs cannot fulfill the requirements, and

make adjustments accordingly. Such manual process is

time-consuming and error-prone. Automated support is

necessary.

Based on an existing task view that treats a

WSN application as tasks and models resources

as constraints, we propose a new component view

that associates components with code optimization

techniques and constraints. We develop algorithms

to synthesize components running on nodes, fulfilling

the constraints, and thus optimizing their quality. We

evaluate our proposal by a simulation study adapted

from a real-life WSN application.

Keywords: Wireless sensor network, adaptive

software design, resource constraint, code optimization

∗ c© 2007 IEEE. This material is presented to ensure timely

dissemination of scholarly and technical work. Personal use of this

material is permitted. Copyright and all rights therein are retained

by authors or by other copyright holders. All persons copying

this information are expected to adhere to the terms and constraints

invoked by each authors copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright

holder. Permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the

IEEE.
† This research is supported in part by a grant of the Innovation

and Technology Commission in Hong Kong (project no. ITS/076/06),

grants of the Research Grants Council of Hong Kong (project nos.

111107 and 716507), a grant of City University of Hong Kong, and a

grant of The University of Hong Kong.
‡ All correspondence should be addressed to Prof. T. H. Tse at

Department of Computer Science, The University of Hong Kong,

Pokfulam, Hong Kong. Tel: (+852) 2859 2183. Fax: (+852) 2858

4141. Email: thtse@cs.hku.hk.

technique.

1. Introduction

A wireless sensor network (WSN) is a computer

network of sensor nodes interconnected by short-range

and short-life wireless communication channels [1].

Each sensor node may capture data, such as temperature

and light intensity, from the environment. Applications

running on WSNs, such as animal surveillances,

automatic detections of geological events, and hospital

administrations, should sense physical events in-situ [8]

and analyze the sensed data in-network [12].

In WSNs, communication consumes the highest

amount of energy in the sensor nodes, followed

next by processing and then storage. Akin to

design patterns or code refactoring for general object-

oriented development, WSN developers use diverse

code optimization techniques such as loop unfolding and

lookup tables to tune the WSN software applications

to meet the resource constraints. They apply different

tactics to cater for different needs. This paper will

collectively refer to such tactics as code optimization

techniques, or COTs for short.

However, incorporating a code optimization

technique in a WSN program currently needs significant

manual effort. When an application does not work

according to a COT, a simple pragmatic approach is to

tune it iteratively and manually by means of trial-and-

error. This is tedious, low-level, and time-consuming.

Also, the underlying WSN platforms, both hardware

and software, are diverse in quality. A seemingly

innocuous change may drastically alter the constraints

that these programs need to fulfill. The WSN software

fit for a specific resource-stringent environment will

need to be adapted further to adjust to the changed

environment. The lack of a system-wide concept to deal

with code optimization techniques further complicates

how developers can apply various COTs for different

software units.

To tackle these challenges, this paper proposes

Administrator
 HKU CS Tech Report TR-2007-11

a task-oriented component-based COT model. It

represents a WSN application as a set of components. In

the task view, resource constraints, known as resource

concerns or simply concerns, are defined at both the

application and node levels. In the component view,

every component is associated with its basis resource

usages and a set of COTs.

The main contributions of the paper are threefold:

Firstly, it proposes an application-level design optimiza-

tion model for WSN applications. Next, it develops

algorithms to construct components that support the

automatic selection of a suite of COTs. Thirdly, it

provides the first empirical study on the topic.

The rest of this paper is organized as follows: After

reviewing the related work in Section 2, we describe a

motivation example in Section 3. Section 4 presents our

design model and algorithms, followed by an evaluation

in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Many researchers have conducted studies to adapt

WSN applications to resource constraints. Kuchcinski

[7] synthesizes an embedded system to meet timing

constraints. Similarly, Wang and Shin [14] construct

tasks to tackle a similar issue with a view to minimizing

the overall elapsed time. Other than timing constraints,

Teich et al. [13] study the processing capability of

partitioned processor arrays. Shin et al. [11] further

investigate how to tackle the energy and code size

constraints. Their study inspires our work.

In the above work, resource usages are optimized

via different techniques including reconfiguration, task

construction, code encoding, and compressing. These

techniques are specific to different situations and,

hence, may adversely affect the modifiability of the

applications. On the other hand, Gay et al. [3]

implements experimental design patterns in the context

of WSNs. This inspires us to use combined code

optimization techniques to optimize resource usages

to cater for unanticipated fluctuations in environmental

constraints. As in [6], code optimization techniques can

be embedded into the code similarly to design patterns.

A difference between our approach and that of [6] is

that we consider aggregated effects of combined code

optimization techniques while they do not.

Adopting code optimization techniques is related

to program synthesis. In this field, Huselius and

Andersson [5] introduce their model synthesis work

for real-time systems, which focuses on architectures

and observed behaviors. Kuchcinski [7] tackles

timing constraints by assigning processes to processors.

Our component-based model supports configurations

with multiple resources, and we use combined code

inline static result t

TimerM$Timer$fired (uint8 t arg 0xb76cb2c8) {
unsigned char ret ;

switch (arg 0xb76cb2c8) {
case 0U:

ret = SurgeM$Timer$fired();

break;

case 1U:

ret = PhotoTempM$PhotoTempTimer$fired();

break;

case 2U:

ret = AMPromiscuous$ActivityTimer$fired();

break;

case 3U:

ret = MultiHopLEPSM$Timer$fired();

break;

default:

TimerM$Timer$default$fired();

}
return ret ;

}

Figure 1. Timer.fired in Surge.

optimization techniques to optimize their overall

usages. A similar concept is also introduced in [15],

which only investigates the interaction relationships of

optimization techniques but not their aggregated effect.

We treat WSN applications as components. Zhang

and Cheng [16] use Petri nets as a model to cater for

the design of adaptive behavior, while Sgroi et al. [10]

propose a communicating finite state machines model

with a similar aim. Their applicability to WSNs is yet

to be studied.

3. Motivation Example

This section describes a motivation example using

the component Timer.fired from Surge, 1 a real-life

application of TinyOS. 2 The component, as shown in

Figure 1, resides in a task initiated by periodic time-

driven events. Let us call this version P0 for the ease of

reference.

In P0, a switch construct accepts a message-

type identifier (parameter arg 0xb76cb2c8) and invokes

the corresponding processing functions. To do

so, the component needs to compare the value of

arg 0xb76cb2c8 with the cases in switch. The

mean number of comparison operations, denoted by

mean(COMP), is 1+2+3+4+252×4
256

≈ 3.977. This is

1 Available at http://www.tinyos.net/tinyos-1.x/apps/Surge/.
2 TinyOS, available at http://www.tinyos.net/, is an open-sourced

operating system dedicated and widely used for wireless sensor

network applications. Surge and Timer.fired are available at

http://www.tinyos.net/tinyos-1.x/apps/Surge/.

inline static result t

TimerM$Timer$fired (uint8 t arg 0xb76cb2c8) {
unsigned char ret ;

if (arg 0x76cb2c8 >= 4U) { // old default

return TimerM$Timer$default$fired();

}
switch (arg 0xb76cb2c8) {

case 0U:

ret = SurgeM$Timer$fired();

break;

case 1U:

ret = PhotoTempM$PhotoTempTimer$fired();

break;

case 2U:

ret = AMPromiscuous$ActivityTimer$fired();

break;

case 3U:

ret = MultiHopLEPSM$Timer$fired();

break;

}
return ret ;

}

Figure 2. Optimized version 1 of Timer.fired.

because, for the uniform distribution of an unsigned

8-bit integer whose range is [0U, 255U], almost all

of possible values will fall under the default branch,

which means that they should pass through the first four

case statements before reaching the default branch. In

the worst case, all samples fall into [3U, 255U]. The

maximum number of comparison operations, denoted

by max(COMP), is 4.

We observe that this code fragment adopts at least

one COT. The variables arg 0xb76cb2c8 and ret as well

as the case values 0U, 1U, 2U, and 3U are of the type

uint8 t, that is, unsigned 8-bit integer. 3

Suppose that, owing to the concern of low-end

processors in sensor nodes, we plan to reduce the

time complexity by reducing mean(COMP). A simple

COT is to add an if-then-else construct embracing

the switch construct, which decides whether to call

the default processing (see Figure 2). We denote

this code optimization technique by cot1 and the

optimized version by P1. The functional behavior of

the example does not change after introducing cot1,

while mean(COMP) becomes 2+3+4+5+252×1
256

≈ 1.039

and max(COMP) increases to 5.

While COTs may reduce the amount of usage for

one resource, they may increase another. Figure 3,

for example, shows another version (P2) that includes

another code optimization technique (cot2) on top

3 The use of unsigned 8-bit integer variables is a general

code optimization technique for embedded applications to produce

executable files of smaller sizes.

typedef (unsigned char)(*FuncEntry)(void);

inline static result t

TimerM$Timer$fired (uint8 t arg 0xb76cb2c8) {
FuncEntry entries[4] = { // lookup table

SurgeM$Timer$fired,

PhotoTempM$PhotoTempTimer$fired,

AMPromiscuous$ActivityTimer$fired,

MultiHopLEPSM$Timer$fired,

};

if (arg 0x76cb2c8 >= 4U) { // old default

return TimerM$Timer$default$fired();

}
return *(entries[arg 0xb76cb2c8]); // dispatch

}

Figure 3. Optimized version 2 of Timer.fired.

Effect on Effect on Effect on

COTs mean(COMP) max(COMP) MEM

cot1 −2.938 +1 0

cot2 −0.039 −4 +16

Table 1. Effects of code optimization techniques on

resource usages.

of version P1. cot2 is designed to remove the

time-wasting switch construct. This is achieved by

introducing a lookup table to manage the pointers of the

corresponding functions. P2 has the same functionality

as P1 but needs only one comparison operation

for any arg 0xb76cb2c8, so that mean(COMP) =
max(COMP) = 1. Still, it consumes an extra statically-

allocated memory block whose size is 16 bytes, that is,

the size of 4 pointers in a 32-bit environment.

The effect of optimization of resource usages by

such COTs may be estimated statically. A prerequisite

for implementing cot2 is that the case block in switch

has no default case, which means that cot2 depends

on cot1. The effects of optimization can be found by

comparing version P1 with P0, and comparing version

P2 with P1. Table 1 shows the effects of P1 and P2 in

units of number of comparison operations and memory

blocks.

Considering that cot2 depends on cot1, legitimate

combinations of code optimization techniques to

synthesize such a component include {cot1} and

{cot1, cot2}. Their resource usages are shown in

Table 2, in which γ̃MEM stands for the basis memory

usage of version P0.

While it cannot be guaranteed that estimated re-

source usages will truly reflect runtime resource usages,

developers in practice often assume an approximately

monotonic trend between them. Thus, they target at

code versions with reduced estimated resource usages.

Version mean(COMP) max(COMP) MEM

P0 3.977 4 γ̃MEM

P1 1.039 5 γ̃MEM

P2 1 1 γ̃MEM +16

Table 2. Resource usages of tasks synthesized.

Considering mean(COMP), max(COMP), and MEM

in this example, P2 is the best version.

To deal with different concerns, developers often

use different COTs or their combinations. While

these COTs may have dependencies or conflicting

relationships among one another, such as function

inlining conflicting with function pointer table, most

of the work in synthesizing the COTs is done

manually at present. Each time the environment

and the corresponding resource constraints change,

extra manual work must be done to search for and

adopt suitable code optimization techniques. While

many standard approaches to optimization are available

(as in P1 and P2), there may be many functional

components requiring different COTs and many WSN

nodes imposing different environmental constraints. It

is very difficult to manually manage the complexity

involved.

4. Model and Algorithms

This section presents our model and algorithms.

Our component-based model is built on top of a task

view described in Section 4.1. The model consists

of a skeleton component view, basis resource usages,

and code optimization techniques, as described in

Sections 4.2 to 4.4.

4.1. Task View

A task is a notion used in the real-time and system

communities. It is often realized as a process or a

thread on many platforms including TinyOS and Java.

It provides a simple and direct means of partitioning

components for the analysis of resource usages. We

adapt the task model from [14] as the formal model

to represent a WSN application, where a task has

a run-to-complete semantics, meaning that the task

will complete its execution before another copy of the

same task is being run. 4 A task [14] is a tuple τ =
〈Φ, Prd, d, o, ω, loc〉, where Φ = 〈α1, α2, · · · , αm〉 is a

list of m WSN components, Prd is the invocation period

of the task, d is its relative deadline, o is its release

time offset, ω: τ → Q+
0 maps the task to its resource

4 Note that tasks are statically allocated in embedded systems.

When there are needs for, say, 10 copies of the same task, we simply

regard them as 10 distinct tasks in our model.

usages, and loc: τ → N+ maps the task to an integer

representing the WSN node.

4.2. Skeleton Component View

By considering all lists Φ of components of all

the tasks τ in a task model, we set up our component

model of WSN applications. We define a component

as a tuple α = 〈Prd, d, pre, post, loc〉, where Prd is

the invocation period of the component, d is its relative

deadline, pre is its previous component in the original

list Φ, post is its next component in Φ, and loc: α →
N+ maps the component to an integer representing the

WSN node. In this way, the execution schedule of tasks

in the original task model is converted to that of the

components.

The component view will not be useful for resource

optimization unless we attach to it the basis resource

usages and the code optimization techniques. These

concepts will be introduced in Sections 4.3 and 4.4.

4.3. Resource Concerns and Resource Usages

Resource concerns: We model a concern imposed

by the application environment by means of its bounds.

A concern is a range κ = [min, max], where min repre-

sents the lower bound, and max the upper bound. For

instance, in the motivation example of Section 3, a con-

cern for CPU may be [0, 2000], which means that the

CPU can support no more than 2000 operations per sec-

ond. Similarly, a concern for memory may be [0k, 30k],
which means that the memory available to a node is

no more than 30k bytes. We use K = 〈κ1, κ2, · · · , κn〉
to denote a list of concerns for n resources, where κ j

denotes the constraint for the j-th resource.

Resource usages: For every component α of a WSN

application, the resource usage γα
j of the j-th resource

is a numerical value within the range specified by the

appropriate concern κ j. We use Γ α = 〈γ α
1 , γ α

2 , · · · , γ α
n 〉

to denote a list of n resource usages.

Basis resource usages: Components should have

resource usages even if software developers do not

optimize them. To acknowledge this fact in our model,

we attach a list of n basis resource usages Γ̃ α =
〈̃γ α

1 , γ̃ α
2 , · · · , γ̃ α

n 〉 to every component α of a WSN

application.

After the resource usages Γ α of every component

α have been determined, we can assemble them to

compute the resource usages of a node or the whole

application, and compare them with the given K

to evaluate the overall impacts. This assembling

computation is related to the executing schedule of the

components. It will be further discussed in Section 5.1.

The basis resource usage Γ̃ α can be improved to

Γ α according to a code optimization technique. In the

next section, we shall further formulate the COTs.

4.4. Code Optimization Techniques

Each code optimization technique (COT) is

inscribed in a component. A COT usually has local

effects on resource usages. In other words, it only

affects the resource usages of the component where it

is inscribed. We model it as effects of optimization of

resource usages.

Thus, we define a code optimization technique xα

for a component α as a list xα = 〈δα
1 , δα

2 , · · · , δα
n 〉,

where each δα
j represents an increment or decrement

of a resource usage γ α
j from the corresponding

basis usage γ̃ α
j . In the example in Section 3, for

instance, Γ̃ Timer.fired = 〈1000, 1100, 20k〉 is the list

of basis resource usages of the component. After

adopting a code optimization technique xTimer.fired =
〈−200, +5, +2k〉, the resource usage will become

Γ Timer.fired = 〈800, 1105, 22k〉.
For every component, developers may

define a set of code optimization techniques

Xα = {xα
1 , xα

2 , · · · , xα
|Xα|}.

In this way, we complete our adaptive design

framework (α, Γ̃ α, Xα) for a WSN component.

4.5. Order of Priority

cot1 and cot2 in the example in Section 3 show

very different effects on resource usages, as shown in

Table 1. In general, one code optimization technique

may increase a specific resource usage while another

technique may reduce it. To remedy this situation, we

propose to use an order of priority P = 〈p1, p2, · · · , pn〉
to optimize the n resources. Here, 〈p1, p2, · · · , pn〉
is a permutation of 〈1, 2, · · · , n〉 and each p j means

that the p j-th resource is of the j-th highest priority in

optimization. Finding an optimal solution for such a

problem is NP-hard in general. We shall explain our

algorithms in the next two sections.

4.6. Objective of Algorithms

Given the preambles introduced in Sections 4.1

to 4.4 above, we can formulate our problem statement

as follows:

Problem statement: Consider a WSN application

in which there is a resource concern K and each

component α is associated with a basis resource usage

Γ̃ α and a set of code optimization techniques Xα. Our

goal is to find a combination of code optimization

techniques Yopt = {y1, y2, · · · , y|Yopt|} that collectively

satisfy all the given concerns K and minimize the

overall resource usages Γ = 〈Γ α1 , Γ α2 , · · · , Γ αm〉 for a

1. ∀xi ∈ Xα and y j ∈ Y α
opt, y j ⊲ xi ⇒ xi ∈ Y α

opt.

2. ∀y j, yk ∈ Y α
opt, ¬(y j ⋄ yk).

3. Y α
opt ⊆ Xα.

4. ∀Y ⊆ Xα, Ψ
(
P, F(Γ̃ α, Y α

opt), F(Γ̃ α, Y)
)
≤ 0.

Figure 4. Conditions for optimal solution.

given order of priority P for resource optimization.

If the COTs only provide maximal local effects

of optimization to their assigned components, and if

we can adapt each COT independently, it is easy to

prove that a sufficient condition for Yopt to be an

optimal solution for the entire wireless sensor network

application is that there exists an optimal solution Y
αi
opt

for every component αi such that Yopt = Y
α1
opt ∪Y

α2
opt ∪

·· · ∪Y
αm
opt . Formally, the optimal combination of code

optimization techniques Y α
opt for component α satisfies

the four conditions in Figure 4.

The first condition ensures that, given any COT in

Y α
opt, all its dependencies are also included in Y α

opt. The

second condition guarantees that any two COTs in Y α
opt

will not conflict with each other. The last two conditions

ensures that Y α
opt is a subset of Xα and produces the

optimal effects of optimization of resource usages.

Let us explain the notations in Figure 4 in more

detail. The relation y ⊲ x denotes that y depends on

x, so that x must be adopted whenever y is adopted.

The relation x ⋄ y denotes that x conflicts with y,

so that only x or y can be adopted but not both.

F(Γ̃ α, Y) = 〈 f1(̃γ
α
1 , Y), f2(̃γ

α
2 , Y), · · · , fn(̃γ

α
n , Y)〉 is a

list of functions calculating the resource usages

according to the basis usages Γ̃ α after implementing

a set Y = {yα
1 , yα

2 , · · · , yα
|Y |} of code optimization

techniques yα
k = 〈δα

1,k, δα
2,k, · · · , δα

n,k〉. Each function f j

for the j-th resource usage is given by

f j (̃γ
α
j , Y) = γ̃ α

j +∑
|Y |
k=1δα

j,k. (1)

For a given P, we define Ψ(P, Γ, Γ′)

=





−1 if P = 〈p1, p2, · · · , pn〉
and γp1

< γ′p1
;

1 if P = 〈p1, p2, · · · , pn〉
and γp1

> γ′p1
;

Ψ
(
P\{p1}, Γ, Γ′

)
if P = 〈p1, p2, · · · , pn〉
and γp1

= γ′p1
;

0 if P = /0.

It compares two resource usage sets Γ and Γ′. A

negative returned value means that Γ is preferred to Γ′,

a positive value means that Γ′ is preferred, and a zero

means no preference.

When a solution is found, we can follow the

description in Section 4.3 to set up a list of formulas

G = 〈g1, g2, · · · , gn〉 to compute the application-

level or node-level resource usages based on the

n resource usages at the component level, where

g j

(
〈̃γα1

j , γ̃
α2
j , · · · , γ̃αm

j 〉, Y
)

is a summary of the j-th

resource usage of all m components. For each g j,

the first argument is a list of basis resource usages in

respective components, and the second argument is a set

of COTs. By comparing the resulting values of G with

the given concerns K, we can evaluate the solution.

4.7. The Algorithms

Our algorithms cover two phases: the sorting of

code optimization techniques and the generation of a

combination.

Sorting of code optimization techniques: The algo-

rithm will firstly estimate the optimization capability of

each code optimization technique, which means how

much the COT may optimize within given concerns.

It will then sort all the COTs with respect to their

estimated optimization capabilities. The algorithm,

depicted in Figure 5, accepts a set of code optimization

techniques and an order of priority P as arguments and

returns an ordered list of COTs Z = 〈z1, z2, · · · , z|X |〉.
5

For the purpose of flexibility when comparing

effects of optimization in the algorithm, we use a utility

function utility to estimate the optimization capability

of components. Thus, the optimization capability for

the j-th resource is represented as a function of the

effect of optimization δ j,k of the k-th COT as well as the

minimum resource usage u j and the maximum resource

usage v j of all COTs. We define our utility function

in Section 5; software developers may define their own

utility function instead. The result of this function

should be monotonic to the value of the input δ j.

5 Standard bubble sort is used in the prototype algorithm. Faster

sorting techniques may alternatively be applied to improve the

efficiency.

Algorithm: Sorting of Code Optimization Techniques

Inputs: unordered list of COTs X = 〈x1, x2, · · · , x|X |〉;

order of priority P

Output: ordered list of COTs Z = 〈z1, z2, · · · , z|X |〉

01. let U = 〈u1, u2, · · · , un〉 = 〈0, 0, · · · , 0〉
02. let V = 〈v1, v2, · · · , vn〉 = 〈0, 0, · · · , 0〉
03. let A = 〈a1, a2, · · · , a|X |〉 = 〈0, 0, · · · , 0〉

04. let Z = 〈z1, z2, · · · , z|X |〉 = 〈1, 2, · · · , |X |〉

05. for j = 1, 2 · · · , n do

06. let u j = min
(

S|X |
k=1{δ j,k}

)
, v j = max

(
S|X |

k=1{δ j,k}
)

07. for k = 1, 2, · · · , |X | do

08. let ak = ∑n
j=1 utility(δ j,k, u j, v j)

09. for i, j = 1, 2, · · · , |X | such that i < j do

10. if azi
> az j

∨
(
azi

= az j
∧Ψ(P, xzi

, xz j
) > 0

)
then

11. swap zi, z j

12. exit

Figure 5. Algorithm to sort code optimization

techniques.

Generation of combination: Given a sorted list

of COTs produced in the first phase, the present

phase generates a suboptimal combination. We use

a hill-climbing strategy in the algorithm. Every

possible combination of COTs fulfilling the order of

priority P will be considered in turn. We rank the

combinations before the algorithm begins. For every

combination of r selections from |Z| choices, denoted

by
{

zs1
, zs2

, · · · , zsr

}
, its lexicographical index [2] is the

concatenated string “s1s2 · · ·sr”. We simply sort all the

combinations in ascending order of the lexicographical

indexes, and use C j to denote the j-th combination in

the ordered list. (Since this is a fundamental concept

in combinatorics, we do not include it in the skeleton

algorithm in Figure 6.) The iteration will continue

until the concerns have been satisfied and a locally

optimal result has been found, which means that the first

minimum point has been reached. Then, the algorithm

returns a combination of COTs Y = {y1, y2, · · · , y|Y |}.

If all legitimate combinations have been exhausted but

the concerns cannot be fulfilled, the algorithm returns

an empty set.

The procedure dependences in the algorithm

accepts a code optimization technique z j as input and

returns a combination of code optimization techniques

Y = {y1, y2, · · · , y|Y |}, which includes the COTs z j

depends on. The procedure valid accepts Y and returns

a Boolean value indicating whether it is a legitimate

combination of COTs that satisfies the concerns.

The main entry of this algorithm iteratively

processes all legitimate selections of COTs. After some

iterations, when sufficient number of COTs have been

considered, the result may be able to meet the resource

Algorithm: Generation of Combination

Inputs: ordered list of COTs Z = 〈z1, z2, · · · , z|Z|〉;

basis resource usages 〈Γ̃α1 , Γ̃α2 , · · · , Γ̃ αm〉;
order of priority P

Output: combination of COTs Y = {y1, y2, · · · , y|Y |}

01. let Y = /0

02. for j = 1, 2, · · · , 2|Z|−1 do

03. let Y ′ = /0

04. foreach zsk
in C j do

05. let Y ′ = Y ′ ∪ dependences(zsk
)

06. if valid(Y ′) then

07. let last = G(〈Γ̃α1 , Γ̃α2 , · · · , Γ̃αm〉, Y)

08. let curr = G(〈Γ̃α1 , Γ̃α2 , · · · , Γ̃αm〉, Y ′)
09. if Ψ(P, last, curr) < 0 then

10. exit

11. let Y = Y ′

12. exit

Procedure: dependences

Input: COT zi

Output: set of COTs Y

01. let Y = {zi}
02. foreach z j ∈ Z such that zi ⊲ z j do

03. let Y = Y ∪ dependences(z j)

04. exit

Procedure: valid

Input: set of COTs Y

Output: Boolean value

01. foreach yi, y j ∈ Y do

02. if yi ⋄ y j then

03. return false and exit

04. foreach g j of G do

05. if g j(〈Γ̃ j
α1 , Γ̃ j

α2 , · · · , Γ̃ j
αm〉, Y) /∈ κ j then

06. return false and exit

07. return true and exit

Figure 6. Algorithm to generate combination.

constraints of the WSN application. When the iteration

process continues, the estimation result is expected to

further improve, but only up to a certain limit. When the

algorithm finds that the resultant resource usage begins

to recede, a heuristic solution has been found and the

algorithm terminates. The experimental results in the

next section show that such a heuristic strategy can be

very helpful in the search for good solutions.

Complexity of algorithms: The prototype algorithm

for sorting code optimization techniques can be

completed in O(|X |2 · n) time, where |X | is the number

of COTs and n is the number of resource types.

The prototype algorithm for generating combina-

tion iteratively evaluates possible selections until a

solution is found. A disadvantage of this prototype

is its high time complexity in the worst case, which

gcec
CPU

(
〈̃γα1

CPU, γ̃α2
CPU〉, Y

)

= fCPU(̃γα1
CPU, Y)+ fCPU(̃γα2

CPU, Y)

gsec
CPU

(
〈̃γα1

CPU, γ̃α2
CPU〉, Y

)

= max
{

fCPU(̃γα1
CPU, Y), fCPU(̃γα2

CPU, Y)
}

gMEM

(
〈̃γα1

MEM, γ̃α2
MEM〉, Y

)

= max
{

fMEM(̃γα1
MEM, Y), fMEM(̃γα2

MEM, Y)
}

gCOMM

(
〈̃γα1

COMM, γ̃α2
COMM〉, Y

)

= fCOMM(̃γα1
COMM, Y)+ fCOMM(̃γα2

COMM, Y)

Figure 7. Calculation formulas.

is O(2|X | · |X |2 · n). On the other hand, we note from

the experiment in Section 5 that the algorithm can find

solutions much earlier than exhaustive search. We note

also that, in practice, we may set an affordable upper

bound of the number of combinations to be checked to

find a solution.

5. Experimental Study

In this section, we firstly select a few representative

types of resource for experiment and set up their

calculation formulas G. Then, we construct a model

of a real-life application and evaluate the performance

of the algorithms.

5.1. The Resources

We select three most common and widely-used

resources for our experimentation on optimization. For

every individual node, we study the average CPU

operations per second (CPU), the maximum memory

usage (MEM), and the volume of application-level

communication 6 (COMM). Hence, in the following

experiment, the resource usage can be represented by

Γ = 〈γCPU, γMEM, γCOMM〉 and the resource constraint by

K = 〈κCPU, κMEM, κCOMM〉.
Figure 7 shows the calculation formulas G =

〈gCPU, gMEM, gCOMM〉 for computing application- or node-

level resource usages based on the usages in two

components α1 and α2. In particular, gcec
CPU

is formula for

concurrent execution of two components and gsec
CPU

is for

sequential execution of the same. For the case of more

than two components, their formulas can be reasoned

hierarchically according to the execution schedule.

5.2. Subject of Experiment

The subject program is CntToLedsAndRfm 7 writ-

ten in nesC for the project TOSSIM. TOSSIM is a

representative emulator of TinyOS [9].

6 That is, the estimated total number of bytes sent or received.
7 Available at

http://www.tinyos.net/tinyos-1.x/apps/CntToLedsAndRfm/.

1 2 3 4

N1

5 6 7

N2

N3

8 9

N3

N1 Node 1 Component Execution Order Data Sync

Figure 8. Infrastructure of testbed.

A TinyOS application on any node of a wireless

sensor network is designed to support only sequentially

and periodically executed tasks [4]. Although tasks on

different nodes may be executed concurrently, those on

the same node are executed sequentially. Each task

is processed in a run-to-complete manner. Thus, we

can work out the execution schedule of the components

from the tasks and, hence, set up the functions F to

compute the resource usages.

5.3. Setup of Experiment

CntToLedsAndRfm consists of two nodes of the

same function. Each node periodically increases a local

counter, shows the lower bit values of the counter on

LEDs, and sends the counter value to another node.

For the purpose of experimentation, we remove the

debugging task and expand the application by cloning

nodes and components. The resultant program consists

of three nodes, each having three to four components

with fixed orders of execution without idle time. Each

component is equipped with COTs, some of which

have dependences or conflicting relationships among

one another. Figure 8 shows a schematic component-

and-connector diagram of the program.

Suppose we have resource concerns regarding

CPU and MEM at the node level and COMM at the

application level. They can be calculated using the

formulas in Figure 7. This is illustrated by Figure 9,

where gCPU represents the average number of CPU

operations per second of an individual node, gMEM

represents the maximum memory usage of an individual

node, gCOMM represents the volume of communication of

the application, and fCPU, fMEM, and fCOMM are calculated

by equation (1).

To apply the algorithms introduced in Section 4.7,

we use utility(δ j,k, u j, v j) = ⌊
10δ j,k−5u j−5v j

2v j−2u j
⌋ in the ex-

periment to evaluate the overall optimization capability

of a COT. The lower the resulting value, the stronger

will be the optimization capability. In general, a proper

utility function can be chosen after a code review of the

original subject program.

gCPU

(
〈̃γα1

CPU, γ̃ α2
CPU, · · · , γ̃α10

CPU〉, Y
)

= max
{

∑4
i=1 fCPU(̃γαi

CPU, Y), ∑7
i=5 fCPU(̃γαi

CPU, Y),

∑10
i=8 fCPU(̃γαi

CPU, Y)
}

gMEM

(
〈̃γα1

MEM, γ̃α2
MEM, · · · , γ̃α10

MEM〉, Y
)

= max{ fMEM(̃γα1
MEM, Y), fMEM(̃γα2

MEM, Y), · · · , fMEM(̃γα10
MEM, Y)}

gCOMM

(
〈̃γα1

COMM, γ̃α2
COMM, · · · , γ̃α10

CPU〉, Y
)

= ∑10
i=1 fCOMM(̃γαi

COMM, Y)

Figure 9. Calculation formulas for testbed.

Our experiment is conducted on a Dell Inspiron

6400 laptop, which is equipped with an Inter

Core(TM)2 T5600 @ 1.83GHz stepping 06 CPU

and 1G memory. The operating system is Ubuntu

6.06 LTS Linux with kernel version 2.6.15-28-386

(buildd@terranova).

The subject application is from the TinyOS

tool set TOSSIM version 1.1.15 (December

2005), which can be downloaded from

http://www.TinyOS.net/download.html. Our driver

programs are coded in C++. All the programs are

compiled with ncc version 1.1.EF15 or gcc version

4.0.3 (Ubuntu 4.0.3-1ubuntu 5).

5.4. Experimental Evaluation Results

This section presents the experimental evaluation

results with respect to the overall optimization capa-

bility, the order of priority for resource optimization,

and sensitivity. For the space reasons, we shall not

discuss efficiency results but concentrate only on the

effectiveness of our approach.

Comparison with other solutions: Our experi-

ment can be repeated deterministically. We report the

results with the order of priority for resource optimiza-

tion to be set as P = 〈CPU, COMM, MEM〉 and the

concerns K to be 1.5 times the basis resource usages.

We compare our approach with three other

solutions for code optimization, as shown in Figure 10.

The three other solutions include: (a) Fully optimal

solution: We iterate all legitimate selections and find

the fully optimal solution. (b) Randomly selected

solution: We randomly pick 300 COTs and then

choose from them the COTs with the minimum resource

usages. The magic number 300 is chosen from expe-

rience according to the scale of the problem. (c) Un-

optimized solution: The original subject program is

taken as an “unoptimized” solution. We should point

out that the original subject program is manually crafted

by professional developers. Since it targets for wireless

sensor network applications, code optimization has

been conducted, albeit not to an optimized level. The

Figure 10. Comparison of solutions.

resource usages of the subject program are normalized

as 1.0 as a benchmark for various solutions.

Resource usages are classified into three groups,

namely (from top to bottom in Figure 10) CPU ,

COMM, and MEM; the usages in the four solutions are

shown under each group. We notice that CPU usage is

best optimized, followed by COMM usage, according

to the order of priority specified by P. This is consistent

with our hypothesis that CPU and COMM usages are

reduced at the expense of increased MEM usage. We

also notice that, for the CPU resource, which is the

main objective of optimization in the empirical study,

our model obviously produces a better usage pattern

than a randomly selected combination of COTs. Our

results are only overtaken by the optimal solution for

the MEM resource, which is at the lowest priority of

optimization.

Changes in resource usages for different orders of

priority: To analyze the adaptive capability of our

algorithm to different orders of priority, we submit all

six possible priority orders for resource optimization

as inputs and present the results in Figure 11. The

results are plotted in six groups, showing the results for

six different orders of priority. Each group consists of

three columns representing the resource usages of CPU ,

MEM, and COMM. We notice that, whenever we set

a top priority to a resource, the usage of that resource

will automatically be best optimized. This indicates that

our model have a high adaptation capability for different

orders of priority.

We also observe from the experiment that resources

may have different properties when being optimized. In

the example, many COTs that target at reducing CPU

or COMM do so at the expense of increased MEM.

1 . < C P U , M E M , C O M M > 2 . < C P U , C O M M , M E M >3 . < M E M , C P U , C O M M > 4 . < M E M , C O M M , C P U >5 . < C O M M , C P U , M E M > 6 . < C O M M , M E M , C P U >
Figure 11. Effects of P on resource usage.

This is because many code optimization techniques are

achieved through additional memory usages, such as

caches and lookup tables, which are very common in

real-life. On the other hand, COMM is very difficult to

be reduced. Even inconspicuous reductions in COMM,

such as orders 5 and 6 in the figure, may result in

disproportionate increases in CPU and MEM usages.

Variations in resource usages for different COT

counts: Intuitively, the number of code optimization

techniques used in an experiment (referred to as the

COT count) should enhance the results. In our

experiment, we vary the COT count from 2 to 10.

Figure 12 shows the variations in resource usages with

respect to different COT counts. The x-axis is the

COT count while the y-axis is the normalized resource

usages. We notice that when the COT count increases

from two to three, all the three resource usages are

reduced. When the COT count continues to increase,

the resource usages showed fluctuations; however, they

still show descending trends. We postulate that this is

due to the hill-climbing strategy used in our algorithm.

The results are expected to improve by implementing

more advanced algorithms.

The results also show that having more choices

of code optimization techniques may help improve

CPU and MEM. When the COT count increases,

however, the complexity in choosing a promising

one from different combinations increases. It makes

our automated approach to synthesize COTs in WSN

applications more attractive.

5.5. Threats to Validity

A threat to internal validity is the assumption

that code optimization techniques are applied in WSN

Figure 12. Effects of COT on resource usage

applications. There is no guarantee that COTs are

considered in any given real-world application.

A threat to external validity may be due to the

resources chosen for experimentation. We have taken

three representative kinds of resource for the study

and set up the corresponding calculation formulas. A

TinyOS application may include other kinds of concern.

Other threats to external validity include the use

of a monotonic utility function and the use of the

specific WSN platform TinyOS. As we have described

in Section 4.7, the utility function should be monotonic.

The quality of our results depends on this characteristic.

Although developers may define their own utility

functions, such functions must also be monotonic.

Also, while TinyOS is the most widely used platform for

WSN applications, we have not investigated any other

platforms.

A construct validity is that we clone components

and COTs in the experiment, which may affect the

optimized result.

6. Conclusion

Optimization is indispensable in the design and

implementation of wireless sensor network applications

because of the stringent resource constraints referred to

as concerns. Developers often need to iteratively select

possible code optimization techniques (COTs) to meet

the resource concerns. Such manual work is inefficient

and error-prone.

In this paper, we present a model to manage COTs

and evaluate its usefulness in optimizing the effective-

ness under given concerns and a user-defined order of

priority. The evaluation is conduced through estimated

usages of resources based on the infrastructure of an

application under study. An experimental study shows

that our approach provides a promising solution to code

optimization. As future work, it will be interesting

to explore context-awareness, runtime adaptation, and

more elaborate experimentation. We will also study

how to specify COTs and how interactions among COTs

may affect our approach.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. A survey on sensor networks. IEEE

Communications Magazine, 40 (8): 102–114, 2002.

[2] B. P. Buckles and M. Lybanon. Algorithm 515:

generation of a vector from the lexicographical index

[G6]. ACM Transactions on Mathematical Software,

3 (2): 180-182, 1977.

[3] D. Gay, P. Levis, and D. Culler. Software design

patterns for TinyOS. In Proceedings of the 2005

ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems (LCTES

2005), ACM SIGPLAN Notices, 40 (7): 40–49, 2005.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,

and D. Culler. The nesC language: a holistic approach

to networked embedded systems. In Proceedings of

the 2003 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2003),

ACM SIGPLAN Notices, 38 (5): 1–11, 2003.

[5] J. Huselius and J. Andersson. Model synthesis for

real-time systems. In Proceedings of the 9th Euro-

pean Conference on Software Maintenance and Re-

engineering (CSMR 2005), pages 52–60. IEEE Com-

puter Society Press, Los Alamitos, CA, 2005.

[6] K. Kaspersky. Code Optimization: Effective Memory

Usage. A-List Publishing, Wayne, Pennsylvania, 2003.

[7] K. Kuchcinski. Embedded system synthesis by timing

constraints solving. In Proceedings of the 10th

International Symposium on System Synthesis, (ISSS

1997), pages 50–57. IEEE Computer Society Press, Los

Alamitos, CA, 1997.

[8] M. Kuorilehto, M. Hännikäinen, and T.D Hämäläinen. A

survey of application distribution in wireless sensor net-

works. EURASIP Journal on Wireless Communications

and Networking, 5 (5): 774–788, 2005.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:

accurate and scalable simulation of entire TinyOS

applications. In Proceedings of the 1st ACM Conference

on Embedded Networked Sensor Systems (SenSys 2003).

ACM Press, New York, NY, 2003.

[10] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli.

Formal models for embedded system design. IEEE

Design and Test of Computers, 17 (2): 14–27, 2000.

[11] I. Shin, I. Lee, and S. L. Min. A design approach

for real-time embedded systems with energy and code

size constraints. In Proceedings of the 10th Real-time

and Embedded Computing Systems and Applications

Conference (RTCSA 2004). Gothenburg, Sweden, 2004.

[12] M. Srivastava. Wireless sensor and actuator networks:

challenges in long-lived and high-integrity operation.

In Lecture Notes of Croucher Foundation ASI Lecture

on Wireless Sensor Networks. City University of Hong

Kong, Hong Kong, 2006.

[13] J. Teich, L. Thiele, and L. Z. Zhang. Partitioning

processor arrays under resource constraints. Journal of

VLSI Signal Processing Systems, 17 (1): 5–20, 1997.

[14] S. Wang and K. G. Shin. Task construction for model-

based design of embedded control software. IEEE

Transactions on Software Engineering, 32 (4): 254–264,

2006.

[15] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and

P. Devanbu. GlueQoS: middleware to sweeten quality-

of-service policy interactions. In Proceedings of the

26th International Conference on Software Engineering

(ICSE 2004), pages 189–199. IEEE Computer Society

Press, Los Alamitos, CA, 2004.

[16] J. Zhang and B. H. C. Cheng. Model-based development

of dynamically adaptive software. In Proceedings of the

28th International Conference on Software Engineering

(ICSE 2006), pages 371–380. ACM Press, New York,

NY, 2006.

