
Postprint of article in the Journal of Systems and Software 82 (3): 422–434 (2009)

PAT: A pattern classification approach to automatic reference oracles

for the testing of mesh simplification programsI,II

W.K. Chana,∗, S.C. Cheungb, Jeffrey C.F. Hoc, T.H. Tsed

aCity University of Hong Kong, Tat Chee Avenue, Hong Kong
bThe Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
cUniversity College London, Gower Street, London, United Kingdom
dThe University of Hong Kong, Pokfulam, Hong Kong

Abstract

Graphics applications often need to manipulate numerous graphical objects stored as polygonal models. Mesh

simplification is an approach to vary the levels of visual details as appropriate, thereby improving on the overall

performance of the applications. Different mesh simplification algorithms may cater for different needs, producing

diversified types of simplified polygonal model as a result. Testing mesh simplification implementations is essential

to assure the quality of the graphics applications. However, it is very difficult to determine the oracles (or expected

outcomes) of mesh simplification for the verification of test results.

A reference model is an implementation closely related to the program under test. Is it possible to use such reference

models as pseudo-oracles for testing mesh simplification programs? If so, how effective are they?

This paper presents a fault-based pattern classification methodology, called PAT, to address the questions. In PAT,

we train the C4.5 classifier using black-box features of samples from a reference model and its fault-based versions, in

order to test samples from the subject program. We evaluate PAT using four implementations of mesh simplification

algorithms as reference models applied to 44 open-source three-dimensional polygonal models. Empirical results

reveal that the use of a reference model as a pseudo-oracle is effective for testing the implementations of resembling

mesh simplification algorithms. However, the results also show a tradeoff: When compared with a simple reference

model, the use of a resembling but sophisticated reference model is more effective and accurate but less robust.

Key words: Test oracles, software testing, mesh simplification, graphics rendering, pattern classification reference

models.

I c© 2009 Elsevier Inc. This material is presented to ensure timely

dissemination of scholarly and technical work. Personal use of this

material is permitted. Copyright and all rights therein are retained

by authors or by other copyright holders. All persons copying

this information are expected to adhere to the terms and constraints

invoked by each author’s copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright

holder. Permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from Elsevier

Inc.
II This research is supported in part by a grant of City University

of Hong Kong (project no. CityU 7002324) and GRF grants of

the Research Grants Council of Hong Kong (project nos. 111107,

RPC07/08.EG24, and 714504). A preliminary version of this paper

was presented at the 30th Annual International Computer Software

and Applications Conference (COMPSAC 2006) (Chan et al., 2006b).

Part of the research was done when Ho was with The University of

Hong Kong, Pokfulam, Hong Kong.
∗ Corresponding author. Tel.: +852 2788 9684. E-mail address:

wkchan@cs.city.edu.hk (W.K. Chan).

1. Introduction

Computer graphics components are essential parts

of real-life multimedia applications, such as medical

imaging (Ahmed et al., 2002) interactive advertisement,

and graphics-based entertainment. Many of these com-

ponents use polygonal models (Luebke, 2001; Luebke

et al., 2003) to visualize graphics. For interactive

graphics-based software, such as the examples above, it

is important to be responsive to the environment. Slow

rendering of graphics is undesirable.

Mesh simplification (Cignoni et al., 1998; Luebke,

2001; Luebke et al., 2003) is a mainstream technique

to address this problem. It aims at transforming a

given three-dimensional (3D) polygonal model to one

that has fewer polygons but resembles the original

shape and appearance as much as possible. It therefore

varies the level of sophistication of graphical outputs

Postprint of article in Journal of Systems and Software

Administrator
 HKU CS Tech Report TR-2007-10

(a) 100% (b) 70% (c) 30%

(d) 100% (e) 70% (f) 30%

Figure 1: Mesh simplification of polygonal models of a properly

rendered apple (top row), and a badly rendered apple (bottom row)

in order to save the computation time of details that

need not to be seen clearly, such as when certain

objects are supposedly viewed from a distance. Fig. 1

shows two simple illustrations of mesh simplification,

in which two apples are modeled by different numbers

of polygons; the number of polygons to model the same

apple decreases gradually from left to right, yielding a

progressively coarser image as a result. Notice that a

faulty implementation of mesh simplification may, by

coincidence, render a better-looking graphic (such as

Fig. 1e) than one using a more aggressive simplification

percentage (such as Fig. 1c) and, hence, trick the

careless testers to accept it as desirable outcome.

In many of these applications, graphical objects are

stored in data structure such as polygonal models.

Applications make use of various graphical functions,

such as in the form of in-house libraries, to manipulate

the data structures and render target graphical objects.

Since the graphical outputs of such application are

tightly-coupled with the libraries, the correctness of

mesh simplification functions critically affects the

correctness and the non-functional qualities of the

applications.

The testing of mesh simplification implementations

is an important part of the quality assurance process

of graphics rendering software. This paper focuses

on the issue regarding the effectiveness of failure

identification, which will be explained below. We first

introduce some terminology.

A formal test oracle, or oracle for short, is a

mechanism against which testers can check the output

of a program and decide whether it is correct. When

an oracle is not available, other means of determining

whether the test result is correct are known as pseudo-

oracles. When an oracle or pseudo-oracle establishes

that the output of the program is incorrect, such an

output is known as a failure.

For visual approximation software such as mesh

simplification implementations, however, comparing

the actual graphical output of a test case with

the expected result is challenging. On one hand,

an automatic pixel-by-pixel verification is unreliable

owing to the approximate nature of the rendering

software. On the other hand, while software developers

may serve as a manual test oracle, human judgment is

often laborious, subjective, and error-prone.

When a formal oracle is hard to avail or costly to

apply, the situation is well known as the test oracle

problem. In short, there is a test oracle problem in

the testing of mesh simplification implementations. To

ease the test oracle problem, testers may like to find

a pseudo-oracle that can serve as a good statistical

approximation.

Researchers have applied classification techniques to

address the above problem. A classification approach

to program testing usually involves two steps: training

a classifier to distinguish failures from successful cases

on a selected subset of results, and then applying the

trained classifier to identify failures in the main set of

results. As we will discuss in Sections 2 and 3.1.2,

many existing techniques use the same program for

both the training and testing phases. On the other

hand, it is unreliable to assume that a program is of

sufficiently high quality for training the classifier before

that program is actually tested.

We observe that different mesh simplification pro-

grams have been developed because no mesh simpli-

fication algorithm excels at simplifying all graphical

models in all situations (Luebke and Erikson, 1997;

Luebke, 2001; Luebke et al., 2003). For instance,

the functional and non-functional requirements (such

as performance and storage requirements) of individual

programs may differ, so that different implementation

considerations are adopted for various polygon simpli-

fication techniques.

Another observation is that a software development

project usually produces a series of versions of the

same program. Such a program is often the result

of continuous improvements over various versions.

Software developers of mesh simplification components

may refer to other published or accessible mesh

simplification techniques to compare and judge whether

their own programs run anomalously. To ease our

discussions, an existing implementation closely related

2

to the program under development will be called a

reference model.

It motivates us to study whether it is feasible to use a

reference model as a means for checking automatically

the correctness of the test outputs of another program.

This paper presents a fault-based pattern classification

methodology called PAT. The methodology extracts

black-box features from the outputs of a reference

model and its fault-based versions as the training dataset

for identifying failures of the program under test.

We evaluate PAT using four implementations of

mesh simplification algorithms as reference models, and

apply them to render 44 open-source three-dimensional

polygonal models. We generate training samples from

each of the subject programs to train the C4.5 classifier,

which is applied to test samples from the other three. In

other words, one program will be used as a reference

model to train the classifier and to identify failures of

the other programs.

We then verify the performance of PAT. The result

indicates that it is generally effective, accurate, and

robust to use an implementation of a resembling

algorithm as a reference model for training the C4.5

classifier to be a pseudo-oracle for the program under

test. However, the empirical result also indicates a

tradeoff: When compared with a simple reference

model, the use of a resembling but sophisticated

reference model is more effective and accurate but

relatively less robust.

The contributions of the preliminary version (Chan

et al., 2006b) of this paper are as follows: It proposes

the idea of constructing a pseudo-oracle via a reference

model of the program under test. It evaluates the

proposal to compare the effectiveness of using a resem-

bling reference model and a dissimilar reference model.

The evaluation metrics are the percentage of mutants

killed and the percentage of test cases being classified

correctly. Finally, it presents an initial guideline, which

recommends using the implementations of resembling

algorithms to address the test oracle problem for mesh

simplification programs.

The extended contributions of this paper are three-

fold: First, it formalizes the methodology. Second, it

significantly extends the analysis in Chan et al. (2006b)

to evaluate the methodology in three dimensions

of performance (namely effectiveness, accuracy, and

robustness). These three dimensions have statistical

rigors and strong co-relations among them. They

form a suite of metrics that properly evaluates a

binary classification scheme. The results show that

the proposed methodology is promising in identifying

failures of mesh simplification programs effectively.

It also presents a tradeoff between effectiveness and

robustness. Last, but not the least, based on the

empirical results, it provides a further handy guideline

to testers: when they have no idea of the relationships

between reference models and the programs to be

tested, they may use simple mesh simplification

reference models to achieve robustness.

The rest of the paper is organized as follows:

Section 2 reviews related approaches to testing software

with graphical interfaces. In Section 3, we present

a pattern classification methodology to tackle the test

oracle problem above. We evaluate our methodology by

experimentation on four mesh simplification programs

in Section 4. The evaluation results are discussed in

Section 5. Finally, Section 6 concludes the paper.

2. Related work

This section reviews related work on the test oracle

problem for the testing of software with graphical

interfaces.

Berstel et al. (2005) design a formal specification

language VEG to describe Graphical User Interfaces

(GUIs). Although they propose to use a model checker

to verify a VEG specification, their approach deals only

with verification and validation before implementation

and does not handle the identification of failures in

an implementation. D’Ausbourg et al. (1998) propose

a software environment to include formal operations

in the design process of user interface systems. Like

the work of Berstel et al. (2005), the verification of a

GUI specification may then be arranged. Memon et al.

(2000) propose to identify non-conformance between a

test specification and the resulting execution sequence

of events for each test case. They assume that a test

specification of internal object interactions is available.

This type of approach is intuitive and popular in the

conformance testing of telecommunication protocols.

Sun and Jones (2004) propose a similar approach for

test harnesses. Memon et al. (2003) further evaluate

different types of oracle for GUIs. They suggest the

use of simple oracles for large test sets and complex test

oracles for small test sets.

Other researchers and practitioners also propose

similar approaches to test programs having outputs in

computer graphics. For example, gDEBugger1 checks

the conformance of the list of commands issued by

an application to the underlying graphics-rendering

Application Programming Interface (API) of OpenGL

1Available at http://www.gremedy.com/.

3

(a) Method 1 (b) Method 2

Figure 2: Different lists of graphics rendering commands to render the

same object

(Segal and Akeley, 2004). However, many different

sets of commands can be rendering the same graphics

image. For example, Fig. 2 shows two pieces of code,

each drawing the same square in its own way. Checking

the equivalence of lists of graphics rendering commands

is an open challenge. Bierbaum et al. (2003) also point

out that not all graphical applications make use of GUI

widgets for graphics output.

Bierbaum et al. (2003) present an architecture

for automated testing of virtual reality application

interfaces. It first records the states of the input devices

in a usage scenario of an application. Users may further

specify checkpoints of the scenario as the expected

intermediate states of test cases. In the playback stage

of a test case, the architecture retrieves the recorded

checkpoints and verifies the corresponding states of the

test case against the checkpoints. Takahashi (2001)

proposes to compare objects of the same program when

they are scaled proportionally. For example, they

propose to check whether the angles are identical and

the lengths of edges are proportional. This may be

considered as a type of metamorphic testing (Chen et

al., 1998, 2002). Mayer (2005) proposes to use explicit

statistical formulas such as mean and distributions

to determine whether the output exhibits the same

characteristics.

The test oracle problem has also been studied in other

contexts. Ostrand et al. (1998) propose an integrated

environment for checking the test results of test scripts,

so that testers can easily review and modify their test

scripts. Dillon and Ramakrishna (1996) discuss a

technique to reduce the search space of test oracles

constructed from a specification. Baresi et al. (2002)

propose to use program assertion (Meyer, 1992) to

check the intermediate states of programs.

More specifically, there are techniques for applying

pattern classifications to alleviate the test oracle

problems. Last et al. (2003) and Vanmali et al. (2002)

propose to apply a data mining approach to augment the

incomplete specification of legacy systems. They train

classifiers to learn the casual input-output relationships

of a legacy system. Podgurski et al. (2003) classify

failure cases into categories. However, they do not

study how to distinguish correct and failure behaviors

in programs. Their research group (Francis et al., 2004)

further proposes classification tree approaches to refine

the results obtained from classifiers. Bowring et al.

(2004) use a progressive machine learning approach

to train a classifier on different software behaviors.

They apply their technique in the regression testing of

a consecutive sequence of minor revisions of the same

program.

Chan et al. (2006a) propose to use supervised

machine learning approaches to recognize output

anomalies relevant to temporal relationships between

media objects in multimedia applications. The work

studies the effectiveness of the following technique:

(1) comparing the actual outputs against expected

outputs for some test cases of a test suite, and

(2) using a machine learning approach to identify

failures automatically through the remaining test cases.

Compared to the present work, our previous work does

not study the failures within a media object, such as

failures in graphical outputs. More distinctly, PAT

replaces step (1) above by an automatic step, which uses

the outputs of reference models to delineate desirable

behaviors and the outputs of the mutants of the reference

models to delineate undesirable behaviors.

We observe that Bowring et al. (2004) use mutants

of a program to serve as a sequence of program

versions and extract white-box features from them

to train classifiers. As we will discuss in the next

section, a passed test case may only be coincidentally

correct and, hence, it is intuitively less reliable to use

white-box features (such as method counts or some

program internal behavior) to distinguish a failure from

a correct one. PAT proposes to use existing programs

with different algorithms as reference models to train

classifiers. We use only black-box features extracted

from test cases and outputs. The work of Bowring et

al. and ours augment each other.

3. Our methodology

This section will be organized as follows: We will

firstly present preliminary discussions in Section 3.1,

which include a description of pattern classification

(Section 3.1.1), our understanding of reference models

(Section 3.1.2), and the reason for choosing black-box

4

features (Section 3.1.3). We will then present PAT

in Section 3.2.

3.1. Preliminaries

3.1.1. Pattern classification technique

A pattern classification technique (Duda et al., 2000)

normally consists of a training phase and a testing

phase. The training phase guides a classifier to

categorize given samples into different classes based

on selected classification features or simply features of

the samples with respect to a reference model. In the

testing phase, the trained classifier assigns a test case to

a trained class. For the purpose of identifying failures,

we restrict our attention to the study of two classes in

this paper, namely one categorized as passed and the

other as failed.

3.1.2. Reference model

This section explains our concept and choice of a

reference model for mesh simplification programs.

We consider mesh simplification algorithms (Luebke

et al., 2003) to be a set of requirements that software

developers implement while fulfilling various tradeoffs

including rendering speed, space, robustness issues,

and so on. A mesh implication program is an

implementation that fulfills these requirements.

In theory, a set of high level requirements, such

as mesh simplification in general, can be defined

via a specification S. The specification may be

further designed (say as two algorithms) and, hence,

implemented as two distinct programs P and P′. Each

of these programs is a refinement of the specification,

written as P ⊑ S and P′ ⊑ S. Thus, we define a

reference model (with respect to the program P) as an

existing program P′ such that both P ⊑ S and P′ ⊑
S. In practice, graphical software developers may use

their experience to determine whether a program is a

(resembling) reference model of another program.2

One way to produce a reference model is to generate

program mutants and use the original program as the

reference model. Existing classification techniques in

software testing (Bowring et al., 2004; Chan et al.,

2006a) uses program mutants (generated by mutation

operators) to serve as a sequence of program versions

and extract method counts or temporal data from test

case executions as features to train classifiers. They

do not explore black-box features for classifier training.

2We note that such a practical way to identify a reference model

has been advocated in the evaluation of software architectures (Bass

et al., 2003).

While program mutants have been verified to be useful

in test evaluation experiments under a laboratory setting

(Andrews et al., 2005) (for example, they are compared

with “the ‘realistic’ faults hand-seeded by experienced

engineers”), their practical use in software testing is still

limited. We will come back this point at the end of the

subsection.

Another way is to select a particular version of a

program among a series of slightly modified versions

in a software development project and treat this version

as the reference model. Nevertheless, a version of

a program under development is often faulty, making

it unreliable as a reference model for correctness

verification.

A third way is use a workable program that

implements the same functionality to be the reference

model of the program under test. We will choose the

third approach in our method to test mesh simplification

software. Developers of mesh simplification programs

may modify existing programs to suit their specific

needs. This may require extensive modifications such

as replacing the original algorithms by entirely different

approaches.

We propose to use the existing programs as reference

models. We use such a program as a kind of source

and employ a fault-based approach (such as mutation

analysis) to construct faulty versions of the source to

train a classifier. We make use of their behaviors

as automatic oracles for verifying the test results of

new mesh simplification programs. We note that

a trained classifier is reusable for testing multiple

programs by researchers and practitioners. It may

potentially leverage the cost of using a dynamic fault-

based approach and make such an approach more

acceptable by the industry. Our procedure will be

described in Section 3.2.

3.1.3. Black-box features

We propose to extract black-box features from a

reference model and use these features to train a

classifier as a pseudo-oracle for the testing of mesh

simplification programs. However, there is a problem

of coincidental correctness when executing faulty

programs over test cases (Richardson and Thompson,

1993; Hierons, 2006). For example, an activated fault

may affect the program state during execution, but the

failure of the state may not be propagated to the output

to show a visible failure. In the presence of coincidental

correctness during the execution of a passed test case, a

white-box feature such as the method counts of program

execution will unavoidably include the failed behavior,

which will in turn affect the quality of the white-box

5

feature. We note also that coincidental correctness is

an internal property of faulty programs. By its problem

nature, such a property is never observable externally.

Hence, black-box features do not suffer from such a

limitation. On the other hand, as the implementation of

a mesh simplification program may differ a lot from that

of a reference model, their outputs may also be different.

We will evaluate the impact of such differences on our

approach.

3.2. Formal model of PAT

We present a formal model of PAT in this section.

Let C be a classifier to be trained to test a program P

using a reference model R. Let M = {m1, m2, . . . , mk}
be a set of input files representing 3D polygon models.

Executing R over M will produce a set of outputs

{R(m1), R(m2), . . . , R(mk)}. A fault-based technique,

such as the mutation analysis technique in Andrews

et al. (2005), can be used to generate a set of faulty

versions of the program R. Suppose the mutants of R

are denoted by {R1, R2, . . . , Ru}. Executing each R j of

these mutants over M will produce a corresponding set

of outputs {R j(m1), R j(m2), . . . , R j(mk)}.

Let (f1, f2, . . . , fv) be a list of classification feature

extraction functions that extracts features from input

polygonal models and program outputs. Given an input

model mi, the program R, and the output R(mi), the

above list of functions will extract a list of features

(f1(mi, R, R(mi)), f2(mi, R, R(mi)), . . . , fv(mi, R, R(mi))),
known as a vector of extracted features.

Similarly, for each mutant R j, the list of functions

will produce a corresponding vector of extracted

features (f1(mi, R j, R j(mi)), f2(mi, R j, R j(mi)), . . . ,
fv(mi, R j, R j(mi))). If the vector of extracted features

produced from mutant R j is identical to that produced

from the original R, PAT will not use it to verify the

subject program P. We refer to the remaining vectors as

non-equivalent mutation vectors. PAT labels the vector

from the original R as passed and each non-equivalent

mutation vector as failed. PAT uses all these labeled

vectors to train the classifier C.

To test a program P, PAT constructs a set of vectors

of extracted features for P using the above scheme but

replacing R by P. PAT then passes each of these vectors

of P to the trained classifier C and let the classifier

label the vector. A vector labeled as passed will be

considered as a test case that reveals no failure, while

a vector labeled as failed will be considered as a test

case that reveals a failure.

PAT advocates that R should be a resembling

reference model, which is determined by the mesh

simplification experts. In our experiments in Section 4.4

that test the feasibility and effectiveness of PAT, we also

construct abnormal versions of P to be used as mutants.

We again use C to classify the non-equivalent mutation

vectors produced by these mutants of P. Also, we use

other reference models that do not resemble the program

under test as benchmarks for the evaluation of PAT.

4. Experimentation on PAT

This section presents an experimentation on PAT.

Section 4.1 firstly describes our experimental method

to extract black-box pattern classification features.

Section 4.2 then describes the subject programs to be

used for evaluation. Next, we will describe how sample

data are selected for the experiments. Finally, we will

describe the experimental procedure to evaluate PAT.

4.1. Classification feature selection

Mesh simplification aims at retaining the skeleton

form of an original polygonal model and removing

unnecessary details, as illustrated in Fig. 1, to save

processing time. Since the actual shape of a simplified

polygonal model differs from that of the original,

lighting effects such as shadowing cannot be adopted

without re-rendering. These necessary changes inspire

us to propose to extract classification features based

on the strengths of image frequencies and the lighting

effects in the experimentation on PAT. To avoid

any undue bias for particular images, we use the

generic spatial frequency spectrum to extract the image

frequencies.

Classification feature 1: Change of ratios of major

and minor image frequencies. We extract the amount

of major and minor image frequencies that remain in

a simplified polygonal model for a given percentage

of simplification using standard fast Fourier transform

(Gonzalez and Woods, 2002; Nixon and Aguado, 2002).

The level of simplification is normally defined by a

simplification percentage, as illustrated in the labels in

Fig. 1.

Since rendering an image is relatively computation-

ally expensive, we adopt the advice of Memon et al.

(2003) that “complex oracles are better at detecting

faults than the simplest ones.” We propose to extract a

number of frequency attributes from the images, which

we will refer to as image frequencies. We use them

to synthesize classification features, which serve as

the basis for training the classifier for recognition as

a test oracle. We extract classification features based

on different orientations. To ease our presentation,

we will use the notation “Imager%” to represent an

6

image simplified to r% from the original (which will

be denoted as Image100%).

We observe that a mesh simplification program may

simplify a given polygonal model to different levels

(such as Image90%, Image80%, . . ., and Image10%). We

firstly sort the frequencies obtained from the fast Fourier

transform above, and determine a sequence of ratios of

major to minor image frequencies for the simplification

of the same polygonal model to various levels (see

below). We then fit the sequence of normalized

ratios of major to minor image frequencies (against the

level of simplification) using the regression curve-fitting

technique. The coefficients of the fitted curves represent

the values of the corresponding classification feature.

For a given polygonal model, ratios are calculated

for the original image as well as simplified images at

10% intervals starting from 100%. (That is, Image100%,

Image90%, . . ., and Image10%.) The curve fitting

program applied in our experiments is ImageJ3, which

uses a simplex method based on Press et al. (1992). The

details for determining a ratio of major to minor image

frequencies is as follows.

Ratio of major to minor image frequencies. We

first extract the amount of signals of the original

polygonal model Image100% that remains in a simplified

model Imager%. We deconvolve Image100% with

Imager% (Gonzalez and Woods, 2002; Nixon and

Aguado, 2002). The result forms a filter, Filter100%−r%,

representing the transformation from Image100% to

Imager%. Informally, a more simplified polygonal

model will have a higher overall value in the resultant

filter. This is because when fewer polygons suffice to

model an image, smaller amounts of image frequencies

of the original model remain in the simplified version.

The stronger the strength, the more it will contribute

to the image. Signals with major contributions are low

frequency signals contributing major image frequencies

of Image100%. Signals with minor contributions

are high frequency signals contributing minor image

frequencies of Image100%. Thus, we sort the image

frequencies according to signal strengths to facilitate

the determination of a threshold T for us to extract

major and minor contributions passing through a filter

Filter100%−r%. We may set T as the mean value of

all contributions of all signals of the original image

Image100%. Other choices of T may include the mean

± various multiples of the standard deviation. After

deciding on the threshold T , all signals of Image100%

are checked against it. By marking signals with

3Available at http://rsb.info.nih.gov/ij/.

contributions above and below the threshold T , a mask

in the frequency domain is produced.

This mask is used to split Filter100%−r% into two

parts. One part is responsible for keeping signals with

major contribution in the output (that is, how large

the portion of major image frequencies remains). It

contains the signals whose strengths are at least the

same as T . The other part is responsible for keeping

the minor counterpart (that is, how large the portion of

minor image frequencies remains). It includes all the

remaining signals. We recall that, as a polygonal model

is being simplified, a smaller amount of minor image

frequencies from the original model will be retained.

Major image frequencies are also reduced but usually

to a lesser extent. We compute the sum of values of

the parts responsible for the major image frequencies,

as well as that for the minor image frequencies: The

ratio of the two sums is summinor ÷ summajor.

The sets of coefficients as the classification feature

set. Seven different thresholds are used. They

include various combinations of the mean and standard

deviations of the signal contribution for the image at

100%, namely M − 3σ, M − 2σ, M − σ, M, M + σ,

M + 2σ, and M + 3σ, where M is the mean and σ is

the standard deviation.4 For each threshold value, we

construct one set of the above coefficients.

From a statistical point of view, when the number

of frequencies is large (> 20, which is the case in

our experiments), the distribution of frequencies in an

image can be regarded as a normal distribution. By

covering up to 3 standard deviations, the effect of over

99% of the frequencies in an image are considered in

our experiments.

Classification feature 2: Lighting effect. The second

set of classification features is concerned with the

general lighting of the rendered polygonal models. This

is to remedy the use of ratio in the first classification

feature, which eliminates the effect of any changes

(in the numerator and denominator) that happen to be

proportional.

For every image, the average value of the maximum

and minimum pixel brightness is computed and used

a classification feature. This feature set would alert

the classifier of any polygonal model rendered with

abnormal brightness or darkness.

4A polygonal model that renders useful graphics contains many

signals. Since the number of signals is large, the use of 3 standard

deviations will cover most of the available data.

7

4.2. Subject programs: reference models

Our subject programs consist of four different

programs, each with a unique mesh simplification

algorithm implemented. They are all written in Java.

These algorithms are:

(i) Shortest. One of the basic mesh simplification

algorithms. It always picks the shortest edge of

a mesh to collapse.

(ii) Melax (1998). Another algorithm using the edge

collapsing approach. The heuristic cost estimate

for collapsing an edge is the product of the length

and curvature of the edge. A vertex connected

to edges with the lowest cost estimates is first

removed.

(iii) Quadric (Garland and Heckbert, 1997). An

algorithm that contracts pairs of vertices rather

than edges, so that unconnected regions can also

be joined. It approximates contraction errors by

quadric matrices.

(iv) QuadricTri (Garland and Heckbert, 1997). A

variant of the Quadric algorithm. It also takes

into account the sizes of triangles around vertices

during contraction. If the area of a triangle is large,

the error of eliminating the vertex will be large.

Fig. 4 shows the rendering results at 10% simplification

level by the four programs using an original spider

model with 9,286 triangles.

Quadric and QuadricTri are two subject programs

with resembling algorithms, while other combinations

are dissimilar.5 These two properties will be used as

benchmarks for each other. They help us compare the

circumstances in which software developers adapt an

existing algorithm to implement their own versions.

Every program accepts two inputs: a file storing the

input of a 3D polygonal model in standard .PLY format

and an integer (from 0 to 100) indicating the percentage

of polygons in the model that should result from the

simplification process. If the value of the integer input

is zero, only the background will be shown. We use

the black color as the background in our experiments.

Each program scales the polygonal model to within a

bounding cube (−1, −1, −1) to (1, 1, 1), centered at

(0, 0, 0). The operations to scale and relocate models

in 3D space are common in many graphics applications.

The programs output images with a resolution of

5This categorization is confirmed by members of the graphics

research group at The University of Hong Kong.

Figure 3: Sample rendered graphics without any simplification

800×600 showing simplified versions of the polygonal

model. Examples of rendered graphics according to the

input files without simplification are shown in Fig. 3.

4.3. Test case selection

PAT defines two classes for pattern classification,

namely passed and failed.

In the evaluation experiments, to collect training sam-

ples of the passed class, we execute the set of 44 open-

source 3D polygonal models6 over every reference

model. In order to better utilize the polygonal models,

each is further rotated in 22 different orientations. They

correspond to rotating a model along the x-axis every

22.5◦and along the y-axis every 45◦. Thus, each original

polygonal model generates 22 inputs representing

rotated models with various orientations, and each

input produces 11 images at various simplification

levels (Image100%, Image90%, . . . , Image10%, Image0%).

In other words, 22×11 = 242 images are produced from

every original polygonal model.

To collect training samples for the failed class,

program mutants are generated from the reference

model using a mutation tool known as muJava7 (Ma

et al., 2005). We use all the mutants generated from

the conventional mutation operators of the mutation

tool. We have taken a few measures to vet the mutants

thus generated in our experiments. Normally, our

subject programs take no more than 30 s to generate an

image from the input of our 44 selected 3D polygonal

models. Mutants that take more than 3 min to execute

an input are considered to have failed to terminate.

They have not been used in our experiments. Mutants

that produce non-background contents for rendering

graphical models at 0% are also removed because they

are very obvious failures. If any program assertions

inside the implementation are violated during the

6Available at http://www.melax.com/polychop/lod demo.zip. Ac-

cording to the above source, they are a “big demo” to convince

skeptical visitors that the implemented simplification techniques are

working. To give readers a sense of complexity, the numbers of

polygons in these models range from 1,700 to 17,000.
7Available at http://www.isse.gmu.edu/∼ofut/mujava/. Version 1 is

used.

8

(a) Original

(b) via Shortest (c) via Melax (d) via Quadric (e) via QuadricTri

Figure 4: Graphics of spider model: original and simplifications to 10% level via respective techniques

Shortest Melax Quadric QuadricTri

350 401 1,122 1,187

Table 1: Numbers of mutants of subject programs

execution of any inputs, the corresponding mutants are

excluded. If a mutant is found equivalent to the original

implementation, it is removed. We further consolidate

mutations that produce the same output images for

the same corresponding inputs into one representative

mutant (which is randomly selected amongst others).

There are a total of 3,060 remaining mutants, as shown

in Table 1. They are all used in the experiments.

Based on these mutants, we have tried our best effort

to collect the classification features from more than

440,000 program executions. Since the programs are

deterministic, we used more than 10 desktop computers

to run samples for more than 2 months to collect all the

data and extract the features described above. Because

of the strenuous effort involved, we did not conduct

similar case studies on other classifiers and features.

We use the same number of training samples for

each class bearing in mind that imbalanced data in the

training of a classifier may result in biases or failures of

classification algorithms (Weiss, 2004).

4.4. Experimental procedure

This section describes the experimental procedure for

evaluating PAT. We divide the set of publicly available

3D polygonal models (see Section 4.3) into two sets.

Set1 contains 13 models and Set2 contains the rest. As

we will explain below, the value of 13 is immaterial to

PAT. We simply divide the models into two groups to

ensure that the classifier would never come cross some

of them in the training stage.

Each of the four subject programs is treated in turn

as the reference model, which we will call RA. In

each case, the three remaining subject programs are

treated as implementations under test, which we will

refer to as PB. Ten iterations are carried out for the

preparation of different sets of training and testing

examples. We have chosen 10 as the number of

iterations in the experiments because it is sufficiently

large to collect statistically valid data and yet not

excessive in resource requirements — we have to run

the experiments continuously on multiple machines for

two months.

9

Classifier. A small pilot study with several major cat-

egories of classification algorithms has been carried out

using sample data. The results indicate that the classifier

C4.5 (Quinlan, 1993) together with the Adaboost M1

boosting method (Freund and Schapire, 1996) gives the

most favorable performance in terms of effectiveness.

(See the next section for a discussion of the metric.)

C4.5 by itself is also a classical, representative, and

prominent machine learning algorithm. Hence, we

conduct our main experimental case study using this

classifier. To select the classification result fairly

among sample data, we use multiple (five) independent

decision trees to form the basis, each with different

random seeds. The classifier is a combination of these

five decision trees. Predication is decided by casting

equally weighted votes based on the five decision trees.

We have searched the literature and find no consensus

on a particular number of decision trees in a method.

We have set this parameter to the value five simply for

practical reasons.

Training stage. One-tenth of the 3D polygonal

models are picked randomly from Set2.8 They are input

to the original implementation of PB for every 10%

from 100% to 0% to check the accuracy of the trained

classifier on passed examples from PB.

We use the following procedure to train a classifier:

N 3D polygonal models from Set1, where 1 ≤ N ≤
5, are randomly selected and executed with mutants

of RA for every 10% from 100% to 0% to produce

training examples of failed outputs. These N polygonal

models, together with the polygonal models from the

remaining nine-tenth of Set2, are then input to the

original implementation of RA to produce training

examples of passed outputs. Classification features are

extracted from the outputs of the passed and failed

classes. Classifiers are trained with the values of these

extracted classification features.

Testing (or evaluation) stage. The 3D polygonal

models unused in the training stage are input to the

original implementation as well as the mutants of PB

for every 10% from 100% to 0%. We note that all the

polygonal models used in the testing stage are unseen

(not even in different orientations) in the training stage.

A mutant is marked as killed if more than 50% of its

outputs are classified as failed. The criterion of 50% is

chosen because there are two classes in the classification

scheme, namely passed and failed, and we do not want

the classifier to be biased in one direction or the other.

8We note that in data mining benchmarking research, researchers

may use 10%–90% of all data as the training set.

5. Experimental evaluation results

In this section, we analyze our experimental evalua-

tion results on PAT.

5.1. Goodness metrics

To facilitate discussions of our findings, we apply a

few goodness measures. They are defined according

to how the classifier labels test cases in comparison

with the expected classification. There are four possible

combinations as depicted in Table 2. A failed test

case is known as true positive if it is labeled by

the classifier as failed, and known as false negative

otherwise. Similarly, a passed test case is known as true

negative if labeled by the classifier as passed, and false

positive otherwise.

Based on the above terminology, we define three

goodness metrics for evaluating our experimental

results on PAT.

(i) Accuracy (Kohavi and Provost, 1998) is the

percentage of test cases that are properly classified.

It is also known as error rate in machine learning.

It is a statistical measure to check the rate of

correct predictions made by a model over a dataset

(Kohavi and Provost, 1998).

Accuracy

=
no. of true positives + no. of true negatives

total no. of test cases
×100%

It is plotted in the graphs (a) of Figs. 5–8.

(ii) Effectiveness is the percentage of failed test

cases that are properly classified. It is called

sensitivity (Hosmer and Lemeshow, 2000; Kohavi

and Provost, 1998) in statistics. It measures how

well a model correctly identifies a condition. We

use the term effectiveness in this paper to align

with the usual terminology in software testing

research.

Effectiveness

=
no. of true positives

no. of true positives + no. of false negatives
×100%

It is plotted in the graphs (b) of Figs. 5, 6, 7, and 8.

(iii) Robustness is the percentage of passed test cases

that are properly classified. It is also known as

specificity (Hosmer and Lemeshow, 2000; Kohavi

and Provost, 1998) in statistics. It measures how

10

Failed Test Case Passed Test Case

Labeled as failed true positive false positive

Labeled as passed false negative true negative

Table 2: True and false positives and negatives

The Accuracy of Using Quadric as the Reference
Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

A
c
c
u

ra
c
y

QuadricTri Melax Shortest

(a) Accuracy

The Effectiveness of Using Quadric as the
Reference Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

E
ff

e
c
ti

v
e
n

e
s
s

QuadricTri Melax Shortest

(b) Effectiveness

Figure 5: Accuracy and effectiveness of verification via Quadric

well a model correctly identifies the negative cases.

In statistical terms, a high specificity has a low

Type 1 (false positive) error rate. We use the

term robustness in this paper to reflect the testers’

aspiration to minimize the errors due to these false

positive test cases.

Robustness

=
no. of true negatives

no. of true negatives + no. of false positives
×100%

In our experimental case study of PAT, we study two

classes (namely, passed and failed) in the classification

scheme. Accuracy and precision are a pair of

dimensions to study a binary classification. In machine

learning, sensitivity and specificity are standard ways

to represent the precision dimension. We thus use

accuracy, effectiveness, and robustness as the three

suggested measures in our experiments.

5.2. Goodness of automatic test oracles via reference

models

In this section, we present the results of our case

study. Both accuracy and effectiveness are immediately

related to the quality of a testing technique in revealing

failures. They will, therefore, be paired up for

discussion first. Robustness will then be discussed.

Fig. 5 shows the accuracy and effectiveness of

verification using Quadric as the reference model for

identifying failures of other subject programs. The

horizontal axes show the number of 3D graphics inputs

The Accuracy of Using Shortest as the Reference
Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

A
c
c
u

ra
c
y

Quadric Quadric Melax

(a) Accuracy

The Effectiveness of Using Shortest as the

Reference Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

E
ff

e
c
ti

v
e
n

e
s
s

Quadric Quadric Melax

(b) Effectiveness

Figure 6: Accuracy and effectiveness of verification via Shortest

(N) used to train the classifier. Each histogram in

the figure consists of three bars, representing the

verification results for QuadricTri, Melax, and Shortest,

respectively. Fig. 6 shows the case of using Shortest,

a basic but dissimilar reference model, for identifying

failures of other subject programs. Figs. 7 and 8 show

the cases of using QuadricTri and Melax, respectively,

as the reference models. Compared to Shortest,

QuadricTri and Melaxare relatively sophisticated. The

main observation is: In the absence of any knowledge

on how the given mesh simplification may behave, the

use of a simple reference model will achieve accuracy

but at the expense of effectiveness.

The plots in Figs. 5b, 6b, 7b, and 8b show that,

in general, the effectiveness of verification gradually

11

The Accuracy of Using Quadric Tri as the

Reference Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

A
c

c
u

ra
c

y

Quadric Melax Shortest

(a) Accuracy

The Effectiveness of Using Quadric Tri as the

Reference Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

E
ff

e
c

ti
v

e
n

e
s

s

Quadric Melax Shortest

(b) Effectiveness

Figure 7: Accuracy and effectiveness of verification via Quadric Tri

The Accuracy of Using Melax as the

Reference Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

A
c

c
u

ra
c

y

Quadric Quadric Tri Shortest

(a) Accuracy

The Effectiveness of Using Melax as the

Reference Model

0

20

40

60

80

100

1 2 3 4 5

No. of 3D Models to Train Classifier

E
ff

e
c

ti
v

e
n

e
s

s

Quadric Quadric Tri Shortest

(b) Effectiveness

Figure 8: Accuracy and effectiveness of verification via Melax

increases with the number of 3D polygonal models

used to train the C4.5 classifier. It agrees with the

usual expectation that the more data used for training,

the better will be the classifier in learning a desirable

behavior.

There are a total of 44 3D polygonal models used in

the experiments. The use of 4 or 5 models for training

means that around 10% of the data are used to train

the C4.5 classifier. Using a large volume of data to

train a classifier will reduce the chance that the latter

will be biased (Beiden et al., 2003). On the other

hand, researchers in software testing tend to use a much

smaller training set. Bowring et al. (2004), for instance,

use only 3% of the inputs to train a classifier to give

encouraging preliminary results in their software testing

experiments. This is understandable since it would

be unproductive to evaluate the outcomes of software

testing using a large percentage of the available data

as the training set. In the sequel, to strike a balance

between the two different views in the two communities,

we will focus on the results that involve 4 or 5 3D

polygonal models in the training phase. They are shown

in the rightmost two sets of bars in each plot in Figs. 5–

8.

The plots of testing results of QuadricTri in Fig. 5b

show that, on average, an effectiveness of 70% is

achieved using a resembling and relatively sophisticated

reference model (Quadric). The plots for Quadric

The Effectiveness of Reference Models to Identify Failures

78.76
75.17

32.86

66.96

76.24

33.18

69.1

35.12

70.69

91.6
86.83 90.46

0

20

40

60

80

100

QuadricTri Quadric Malex Shortest

Reference Model To Train Classifier

E
ff

ec
ti

v
en

es
s

QuadricTri Quadric Malex Shortest

(a) Trained with 4 polygonal

models out of 44

The Effectiveness of Reference Models to Identify Failures

60.61
65.12

33.13

67.69

32.69

79.5863.0167.53

33.62

87.6685.25 90.04

0

20

40

60

80

100

QuadricTri Quadric Malex Shortest

Reference Model To Train Classifier

E
ff

ec
ti

v
en

es
s

QuadricTri Quadric Malex Shortest

(b) Trained with 5 polygonal

models out of 44

Figure 9: Effectiveness of verification via various reference models.

in Figs. 7b and 8b are also show a similar result.

On the other hand, Fig. 6b shows that the use of a

simple reference model (Shortest) is significantly less

effective. We also find that the test results of the other

combinations follow this observation. It may indicate

that using relatively sophisticated reference model can

be effective to identify failures. However, Figs. 5a, 7a,

and 8a also indicate that it is inaccurate to use a

relatively sophisticated reference model to check the

implementation of a simpler system.

One may wonder whether the high scores in the good-

ness measures are due primarily to (a) the similarity

with the reference model or (b) the sophistication of the

reference model. To look into this interesting question,

we need to examine the results of all reference models

to train the C4.5 classifier.

Fig. 9 depicts comparisons of the effectiveness of

verification using various reference models. The

horizontal axes show the reference models used to train

the classifier. The three bars in the histogram of each

reference model show the respective effectiveness of

identifying failures of the other three subject programs.

We observe that the set of bars for the Shortest reference

model is significantly lower than the rest, while the

other three sets of bars look quite similar. It indicates

that the level of sophistication appears to be a factor

which dominates over similarity. It further shows that

Melax is also effective, in comparison with Quadric

or QuadricTri, as a reference model for identifying

failures. This being the case, one may wonder why one

should not use a dissimilar but sophisticated program as

a reference model to train a classifier. We need to further

examine the issue through goodness metrics other than

effectiveness.

A closer look of the accuracy and robustness

measures may give some hints. Let us consider one

scenario. Comparing the results in Table 3 with

their counterparts in Fig. 5a, the accuracy for the

classification of Shortest using Melax as the reference

12

QuadricTri Quadric Malex Shortest

QuadricTri 90 43 0

Quadric 100 70 0

Malex 40 43 0

Shortest 100 100 100

(a) Trained with 4 polygonal

models out of 44

QuadricTri Quadric Malex Shortest

QuadricTri 87 30 0

Quadric 100 30 0

Malex 70 40 0

Shortest 100 100 100

(b) Trained with 5 polygonal

models out of 44

Figure 10: Robustness of verification via various reference models

model is the lowest. For the classification of Quadric

and QuadricTri using Melax as the reference model, the

accuracy measures (60.73% and 61.12%, respectively)

are similar to each other. The mean is 60.9%. In the

case of utilizing 4 and 5 3D polygonal models as shown

in the rightmost two sets of bars in Fig. 5a, the mean

accuracy measure for the use of Quadric as a reference

model for the testing of QuadricTri is 69.4%. However,

the mean accuracy measure for the use of QuadricTri

for testing Quadric is 66.4%. This result indicates that a

resembling combination gives a slightly higher accuracy

than a dissimilar combination. Since the difference is

only marginal, let us examine the full picture of the

issue from the robustness perspective. The analysis is

as follows:

While we use the classification technique to alleviate

the test oracle problem, we also need to maintain the

reliability of the mechanism to avoid false positive

results. Readers may recall that a false positive case

refers to the misclassification of a passed test case as

a failure. As a result of such misclassifications, testers

would spend unnecessary effort in reviewing test cases

that should not warrant any manual involvement in the

first place. In a typical situation, most test cases do

not reveal failures. Hence, even if a small number

passed test cases are misclassified, the percentage of

false positives (and, hence, the percentage of wasted

manual effort) will be large. It is crucial, therefore, for

a technique to achieve a low false positive rate. This is

the purpose and usefulness of the robustness measure.

Fig. 10 depicts the results of the robustness measure.

The four rows represent the reference models used

to train the classifier. The four cells in each row

represent the percentage of correct verification results

for the subject programs indicated in the caption of the

column. In Fig. 10a, for example, when the classifier is

trained by QuadricTri to test the program Quadric, the

robustness measure is 90%.

We use the Pareto principle (Shulmeyer and McCabe,

1998), also known as the 80-20 rule, as the criterion to

determine whether a particular combination in Fig. 10

QuadricTri Quadric Malex Shortest

QuadricTri 69.10

Quadric 78.76

Malex

Shortest 32.86 33.18 35.12

(a) Trained with 4 polygonal models out of 44

QuadricTri Quadric Malex Shortest

QuadricTri 67.69

Quadric 60.61

Malex

Shortest 33.13 32.69 33.62

(b) Trained with 5 polygonal models out of 44

Figure 11: Effectiveness of verification for robust combinations.

can be described as “robust”. 9 For instance, the

use of QuadricTri as a reference model for testing the

program Quadric can be described as “robust” because

the robustness measure is 90%. The “non-robust”

combinations are blacked out in Fig. 11.

Since effectiveness is a key metric, we further

superimpose the effectiveness of verification via var-

ious reference models from Fig. 9 onto the robust

combinations in Fig. 11. The resulting effectiveness

measures of the robust combinations are depicted in

the (non-blacked out) cells in Fig. 11. We observe

the following: The values in the cells for resembling

reference models, namely in the four cells for Quadric

and QuadricTri, are significantly higher than the rest in

all cases Furthermore, there is no (highlighted) entry for

the rows for Melax, meaning that it is not robust to use

Melax as a reference model. The use of a dissimilar

reference model will possibly produce many false

positives and may, therefore, waste the testers’ valuable

time trying to resolve whether a test case indeed reveals

a failure. Combined with our earlier observation that

the use of a resembling reference model gives a higher

accuracy than a dissimilar reference model, our result

shows that the use of a resembling reference model to

train the C4.5 classifier is an accurate, effective, and

robust means of obtaining a test oracle.

5.3. Further discussions

In summary, our empirical results show that, if testers

know a resembling reference model to the current

program under test, they should use it as to training

9See, for example, the empirical study (Gittens et al., 2005) of the

effect of the Pareto principle on the distribution of software faults.

13

QuadricTri Quadric Shortest

Trained with 4 Polygonal Models 62.71% 62.87% 27.93%

Trained with 5 Polygonal Models 59.53% 58.58% 26.40%

Table 3: Accuracy of verification using Melax as reference model

a classifier to serve as an automatic oracle. This

reinforces a common practice by mesh simplification

developers to use resembling reference models to

manually check the outputs of their implementations.

On the other hand, if the testers are unaware of a

resembling reference model, they should consider the

use of a less sophisticated reference model. This will

give a test report with a low number of false positive

cases. The tradeoff in such case is to achieve accuracy

at the expense of effectiveness.

To train or test a classifier, our previous work

(Chan et al., 2006a) uses the test cases of a program

under test and the dynamic behaviors shown by the

executions of these test cases to train a classifier. The

present work considers the problem from an orthogonal

perspective. It extracts features from the outputs of

a resembling reference model of the program under

test. Potential future work is to integrate the two

approaches and determine whether the errors in one

approach complement those of the other effectively.

The results of the present case study also reconfirm in

part the techniques in Chan et al. (2006a) and Bowring

et al. (2004). The use of a subject program to train a

classifier can be considered as a special case of using

a resembling reference model to train a classifier. Our

result reconfirms that their approaches are effective and

robust. Our result may also reveal a common weakness

in their work, namely, that they are less accurate than the

use of a simple dissimilar reference model to identify

failures. It is interesting to study other innovative

applications of machine learning to directly improve on

these techniques.

5.4. Threats to validity

In this section, we discuss potential threats to the

validity of our experimental case study.

The outputs of mesh simplification software are

graphics files. We have used a popular feature

extraction technique to obtain generic classification

patterns to train the C4.5 classifier as an automatic

pseudo-oracle. One may, of course, use other feature

extraction techniques or the entire images for training

and testing. We are also aware from the machine

learning community that the selection of useful features

plays a central role in the effectiveness of a classifier.

Our experiments will serve as an initial benchmark for

subsequent research studies.

All the subject programs use openGL to render

graphics. They do not represent other types of rendering

API. The latter may produce distinct behaviors and,

hence, distinct sets of mutants. This might affect the

accuracy, effectiveness, and robustness measures. It

would be interesting to find out the extent that other

rendering algorithms may impact the results.

Our experiments were conducted on a set of 44 open-

source 3D polygonal models. They include models

that graphically show a chair, a spider, a teapot, a

tennis shoe, a weathervane, a street lamp, a sandal,

a cow, a Porsche sports car, and an airplane. They

have been studied intensively and details are available

from the Web to help us render the graphics using the

four mesh simplification algorithms described earlier.

There are also other ways to represent the inputs for

graphical rendering. The relationship between the use

of polygonal input and other types of input in the

context of software testing remains to be explored.

On the other hand, the size of the present study is

fairly extensive. We have already done our best to

conduct the experiments, which uses 10 machines to

execute the programs continuously for two months. We

believe that it realistically represents the testing of mesh

simplification programs in real-life situations.

We have only conducted experiments on four

implementations of mesh simplification algorithms. We

have assumed that these implementations are of high

quality. The generalization of the proposal warrants

more research. Also, our work is built on top of the

C4.5 classifier. Although it is an extremely important

and classical tool, there are other classifiers that may

be used. From the pattern recognition community, we

are aware that the use of a large training dataset may

override the effects due to different classifiers. The use

of a reference model allows testers to generate training

datasets of different sizes. However, the effect of the

sizes of datasets on the performance of the proposal

remains to be further studied.

MuJava is used to generate program mutants of the

reference models in our experiments. The tool may only

14

produce particular types of program mutant that may

affect the analysis of the experimental results. Andrews

et al. (2005) find that the use of mutation operators can

yield trustworthy results. Kapoor (2006) proves that

the coupling hypothesis of mutation testing holds in

many logical fault classes, and further establishes a fault

class hierarchy for logical faults with Bowen (Kapoor

and Bowen, 2007). On the other hand, developers

may produce complex faults in a program that simple

program mutants may not strongly couple with. One

potential way to complement our methodology is

to extract the faults from the repository of mesh

simplification and simulate them as faulty versions of

a reference model. We leave the evaluation of such a

strategy to evaluate PAT as future work.

In the experiments, we regard Quadric and Quadric-

Tri to be more similar to each other and less similar

to the other two implementations. This is based on a

general observation that QuadricTri is directly modified

from Quadricand preserves the basic algorithmic

skeleton of the latter, while more distinct philosophies

are used in the development of the algorithms for Melax

and Shortest. To alleviate any risk from our observation,

we run these four subject programs on the 3D polygonal

models to produce simplified graphics at 70%, 40%,

and 10% simplification ratios. We then manually and

visually reviewed the outputs to spot the differences

to confirm our intuitive division of resembling and

dissimilar subject programs.

6. Conclusion

Systems with rendering engines to produce computer

graphics are an important class of software applications.

They usually use polygonal models to represent the

graphics. Mesh simplification is a vital technique to

vary the levels of details of rendered graphics and,

hence, improve the overall performance of the rendering

process. As such, the quality of its implementation

affects that of the graphics rendering application.

Although reference models may be available, software

developers implement their own solutions because of

other functional and non-functional constraints. The

testing of these implementations is essential.

To identify failures, testers need to compare the

actual outputs from test executions with the expect

results. For graphics software, however, a pixel-by-

pixel comparison is ineffective and slow. Furthermore,

determining the expected graphics at the pixel level is

by itself a complex process that warrants testing.

In this paper, we have proposed PAT, a novel fault-

based approach to alleviating the test oracle problem.

It uses a resembling reference model to train a pattern

classifier to identify failures of other implementations.

The experimental results show that PAT is promising. It

suggests that the reference model should preferably be

a system resembling the program under test; otherwise,

the reference model should be a generic system for

achieving robustness.

We also envisage the study of a “similarity measure”

to refine the results. Moreover, we plan to further

improve on the effectiveness, accuracy, and robustness

of the use of resembling or generic types of reference

model. We will further explore the use of metamorphic

approaches (Chen et al., 1998, 2002) for testing mesh

simplification software.

References

Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty,

T., 2002. A modified fuzzy c-means algorithm for bias field

estimation and segmentation of MRI data. IEEE Transactions on

Medical Imaging 21 (3), 193–199.

Andrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an

appropriate tool for testing experiments? In: Proceedings of the

27th International Conference on Software Engineering (ICSE

2005). ACM, New York, NY, pp. 402–411.

Baresi, L., Denaro, G., Mainetti, L., Paolini, P., 2002. Assertions

to better specify the Amazon bug. In: Proceedings of the 14th

International Conference on Software Engineering and Knowledge

Engineering (SEKE 2002). ACM, New York, NY, pp. 585–592.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in

Practice. Addison-Wesley, Reading, MA.

Beiden, S.V., Maloof, M.A., Wagner, R.F., 2003. A general model

for finite-sample effects in training and testing of competing

classifiers. IEEE Transactions on Pattern Analysis and Machine

Intelligence 25 (12), 1561–1569.

Berstel, J., Reghizzi, S.C., Roussel, G., San Pietro, P., 2005. A

scalable formal method for design and automatic checking of

user interfaces. ACM Transactions on Software Engineering and

Methodology 14 (2), 124–167.

Bierbaum, A., Hartling, P., Cruz-Neira, C., 2003. Automated testing

of virtual reality application interfaces. In: Proceedings of the

Eurographics Workshop on Virtual Environments. ACM, New

York, NY, pp. 107–114.

Bowring, J.F., Rehg, J.M., Harrold, M.J., 2004. Active learning for

automatic classification of software behavior. In: Proceedings of

the 2004 ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2004). ACM, New York, NY, pp.

195–205.

Chan, W.K., Cheng, M.Y., Cheung, S.C., Tse, T.H., 2006. Automatic

goal-oriented classification of failure behaviors for testing XML-

based multimedia software applications: an experimental case

study. Journal of Systems and Software 79 (5), 602–612.

Chan, W.K., Cheung, S.C., Ho, J.C.F., Tse, T.H., 2006. Reference

models and automatic oracles for the testing of mesh simplifi-

cation software for graphics rendering. In: Proceedings of the

30th Annual International Computer Software and Applications

Conference (COMPSAC 2006), vol. 1. IEEE Computer Society,

Los Alamitos, CA, pp. 429–438.

Chen, T.Y., Cheung, S.C., Yiu, S.M., 1998. Metamorphic testing:

a new approach for generating next test cases. Technical Report

15

HKUST-CS98-01, Department of Computer Science, Hong Kong

University of Science and Technology, Hong Kong.

Chen, T.Y., Tse, T.H., Zhou, Z.Q., 2002. Semi-proving: an integrated

method based on global symbolic evaluation and metamorphic

testing. In: Proceedings of the 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2002).

ACM, New York, NY, pp. 191–195.

Cignoni, P., Rocchini, C., Impoco, G., 1998. A comparison of mesh

simplification algorithms. Computers and Graphics 22 (1), 37–54.

d’Ausbourg, B., Seguin, C., Durrieu, G., Roch, P., 1998. Helping

the automated validation process of user interfaces systems. In:

Proceedings of the 20th International Conference on Software

Engineering (ICSE 1998). IEEE Computer Society, Los Alamitos,

CA, pp. 219–228.

Dillon, L.K., Ramakrishna, Y.S., 1996. Generating oracles from

your favorite temporal logic specifications. In: Proceedings of

the 4th ACM SIGSOFT Symposium on Foundations of Software

Engineering (SIGSOFT 1996/FSE-4). ACM, New York, NY, pp.

106–117.

Duda, R.O., Hart, P.E., Stork, D.G., 2000. Pattern Classification.

Wiley, New York, NY.

Francis, P., Leon, D., Minch, M., Podgurski, A., 2004. Tree-based

methods for classifying software failures. In: Proceedings of the

15th International Symposium on Software Reliability Engineer-

ing (ISSRE 2004). IEEE Computer Society, Los Alamitos, CA,

pp. 451–462.

Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting

algorithm. In: Proceedings of the 13th International Conference

on Machine Learning. Morgan Kaufmann, San Francisco, CA, pp.

148–156.

Garland, M., Heckbert, P., 1997. Surface simplification using quadric

error metrics. In: Proceedings of the 24th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH

1997). ACM, New York, NY, pp. 209–216.

Gittens, M., Kim, Y., Godwin, D., 2005. The vital few versus the

trivial many: examining the Pareto principle for software. In:

Proceedings of the 29th Annual International Computer Software

and Applications Conference (COMPSAC 2005), vol. 1. IEEE

Computer Society, Los Alamitos, CA, pp. 179–185.

Gonzalez, R.C., Woods, R.E., 2002. Digital Image Processing.

Prentice Hall, Englewood Cliffs, NJ.

Hierons, R.M., 2006. Avoiding coincidental correctness in boundary

value analysis. ACM Transactions on Software Engineering and

Methodology 15 (3), 227–241.

Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression,

second edition, chapter 5. Wiley, New York, NY.

Kapoor, K., 2006. Formal analysis of coupling hypothesis for logical

faults. Innovations in Systems and Software Engineering 2 (2), 80–

87.

Kapoor, K., Bowen, J.P., 2007. Test conditions for fault classes

in Boolean specifications. ACM Transactions on Software

Engineering and Methodology 16 (3), article no. 10.

Kohavi, R., Provost, F., 1998. Glossary of terms. Machine Learning

30 (2/3), 271–274.

Last, M., Friedman, M., Kandel, A., 2003. The data mining approach

to automated software testing. In: Proceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD 2003). ACM, New York, NY, pp. 388–396.

Luebke, D.P., 2001. A developer’s survey of polygonal simplification

algorithms. IEEE Computer Graphics and Applications 21 (3), 24–

35.

Luebke, D.P., Erikson, C., 1997. View-dependent simplification

of arbitrary polygonal environments. In: Proceedings of the

24th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH 1997). ACM, New York, NY, pp. 199–

208.

Luebke, D.P., Reddy, M., Cohen, J.D., Varshney, A., Watson, B.,

Huebner, R., 2003. Level of Detail for 3D Graphics. Morgan

Kaufmann, San Francisco, CA.

Ma, Y.-S., Offutt, J., Kwon, Y.-R., 2005. MuJava: an automated class

mutation system. Software Testing, Verification and Reliability 15

(2), 97–133.

Mayer, J., 2005. On testing image processing applications with

statistical methods. In: Software Engineering 2005 (SE 2005),

Lecture Notes in Informatics. Gesellschaft fu”r Informatik, Bonn,

pp. 69–78.

Melax, S., November 1998. A simple, fast, and effective polygon

reduction algorithm. Game Developer Magazine, 44–49.

Memon, A.M., Banerjee, I., Nagarajan, A., 2003. What test oracle

should I use for effective GUI testing? In: Proceedings of

the 18th IEEE International Conference on Automated Software

Engineering (ASE 2003). IEEE Computer Society, Los Alamitos,

CA, pp. 164–173.

Memon, A.M., Pollack, M.E., Soffa, M.L., 2000. Automated test

oracles for GUIs. In: Proceedings of the 8th ACM SIGSOFT

International Symposium on Foundations of Software Engineering

(SIGSOFT 2000/FSE-8). ACM, New York, NY, pp. 30–39.

Meyer, B., 1992. Eiffel: the Language. Prentice Hall, New York, NY.

Nixon, M.S., Aguado, A.S., 2002. Feature Extraction and Image

Processing. Elsevier, Amsterdam, The Netherlands.

Ostrand, T., Anodide, A., Foster, H., Goradia, T., 1998. A visual test

development environment for GUI systems. In: Proceedings of

the 1998 ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 1998). ACM, New York, NY, pp. 82–

92.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J.,

Wang, B., 2003. Automated support for classifying software failure

reports. In: Proceedings of the 25th International Conference on

Software Engineering (ICSE 2003). IEEE Computer Society, Los

Alamitos, CA, pp. 465–475.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.,

1992. Numerical Recipes in C: The Art of Scientific Computing.

Cambridge University Press, Cambridge, UK.

Quinlan, R., 1993. C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Francisco, CA.

Richardson, D.J., Thompson, M.C., 1993. An analysis of test data

selection criteria using the RELAY model of fault detection. IEEE

Transactions on Software Engineering 19 (6), 533–553.

Segal, M., Akeley, K., 2004. The OpenGL Graphics System: a

Specification. Version 2.0. Silicon Graphics, Mountain View, CA.

Shulmeyer, G.G., McCabe, T.J., 1998. The Pareto principle applied

to software quality assurance. In: Handbook of Software Quality

Assurance, third edition. Prentice Hall, Upper Saddle River, NJ,

pp. 291–328.

Sun, Y., Jones, E.L., 2004. Specification-driven automated testing of

GUI-based Java programs. In: Proceedings of the 42nd Annual

Southeast Regional Conference (ACM-SE 42). ACM, New York,

NY, pp. 140–145.

Takahashi, J., 2001. An automated oracle for verifying GUI objects.

ACM SIGSOFT Software Engineering Notes 26 (4), 83–88.

Vanmali, M., Last, M., Kandel, A., 2002. Using a neural network

in the software testing process. International Journal of Intelligent

Systems 17 (1), 45–62.

Weiss, G.M., 2004. Mining with rarity: a unifying framework. ACM

SIGKDD Explorations 6 (1), 7–19.

16

W.K. Chan received his B.Eng. in Computer

Engineering, an M.Phil., and a Ph.D. degrees from The

University of Hong Kong. He is a Lecturer in Computer

Science Department at City University of Hong Kong.

His current research interest is in software testing and

analysis, service computing, context-aware computing,

and wireless sensor network. He is an editorial board

member of Journal of Systems and Software, and in the

technical program committees of various international

conferences.

S.C. Cheung received his M.Sc. and Ph.D. degrees

in Computing from the Imperial College London. He

is an Associate Professor in Computer Science and

Engineering at The Hong Kong University of Science

and Technology. He participates actively in the research

communities of software engineering and services

computing. He is currently serving on the executive

committee of the ACM SIGSOFT, the editorial board

of the IEEE Transactions on Software Engineering, and

the editorial board of the Journal of Computer Science

and Technology. His research interests include software

engineering, services computing, RFID, and wireless

sensor network systems.

Jeffrey C.F. Ho received a B.Eng. in Software

Engineering and an M.Phil. from the Department of

Computer Science, The University of Hong Kong,

and an M.Sc. in Human-Computer Interaction with

Ergonomics from University College London. He is

currently an Information Architect at wwwins Consult-

ing Hong Kong Limited. His research interests include

software testing, metamorphic testing, information

searching behavior, user-centric design and usability

evaluation.

T.H. Tse is a Professor in Computer Science at The

University of Hong Kong. His research interest is in

software testing and debugging. He is an editorial

board member of the Journal of Systems and Software

and Software Testing, Verification and Reliability, the

steering committee chair of QSIC, and a steering

committee member of COMPSAC. He is a fellow of

the British Computer Society, a fellow of the Institute

for the Management of Information Systems, a fellow

of the Institute of Mathematics and its Applications and

a fellow of the Hong Kong Institution of Engineers. He

was decorated with an MBE by The Queen of the United

Kingdom.

17

