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During the testing of context-sensitive middleware-based software, the middleware checks the current

situation to invoke the appropriate functions of the applications. Since the middleware remains active

and the situation may continue to evolve, however, the conclusion of some test cases may not easily

be identified. Moreover, failures appearing in one situation may be superseded by subsequent correct

outcomes and, therefore, be hidden.

We alleviate the above problems by making use of a special kind of situation, which we call

checkpoints, such that the middleware will not activate the functions under test. We recommend testers

to generate test cases that start at a checkpoint and end at another. Testers may identify relations that

associate different execution sequences of a test case. They then check the results of each test case

to detect any contravention of such relations. We illustrate our technique with an example that shows

how hidden failures can be detected. We also report the experimentation carried out on an RFID-based

location-sensing application on top of a context-sensitive middleware.

Keywords: Context-aware application, integration testing, metamorphic testing, RFID testing.

1. Introduction

Context-sensitivity and ad hoc communications 1,16,17,23 are two important properties of

ubiquitous computing applications. The former allows applications to detect, analyze, and
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react adaptively to changes in attributes, known as contexts 13, that characterize the environ-

mental situation. The latter facilitates the components of the applications to communicate

dynamically according to the changing contexts.

One kind of ubiquitous computing application is context-sensitive middleware-based

software. The middleware is responsible for detecting and handling contexts and situations,

with a view to invoking the appropriate local and remote operations whenever any context

or situation inscribed in the situation-aware interface is satisfied 23. Since the applications

operate in a situational and highly dynamic environment, this type of configuration in-

creases the intricacy in software quality assurance. Tse et al. 18, for instance, has illustrated

through examples the ineffectiveness of common testing techniques, such as control-flow

and data-flow testing, which concentrate only on the applications without considering their

environment.

Besides, the behaviors of the devices can be so volatile that very complicated math-

ematics may be required to model the outcomes of an application precisely. As a result,

while specifications may exist, it may require a lot of effort to determine the test oracle 19,

that is, the mechanism against which testers can check a test outcome and decide whether

it is correct. The task will become forbidding if there are a large number of test cases.

Under such circumstances, instead of deriving the expected test outcomes from the

specification, typical testers would use a weaker means to check the results. They would

judge whether a test outcome reveals any failures based on their beliefs or experiences.

There is a growing amount of research aiming at testing ubiquitous computing applica-

tions. Axelsen et al. 2 propose a specification-based approach to testing reflective software

in an open environment. They model components as algebraic specifications and their in-

teractions as message communication specifications. These specifications will be treated as

the test oracle. They suggest using a random selection strategy to produce test cases. When

the execution sequence of any test case violates the specifications, it detects a failure. Their

approach is essentially an execution monitoring approach.

Flores et al. 9 apply temporal logic to define context expressions in context-sensitive

software. They further use an ontological framework to model similar concepts of contexts.

These concepts are finally represented as logic predicates. As far as the test case selection

strategy is concerned, they apply some form of category partitioning on a custom interface

to divide a concept into different partitions. Finally, they propose to have test cases that sat-

isfy the context expressions under the respective predicates. No test case generation method

is included. Furthermore, their work does not address the test oracle problem, which is es-

sentially the difficulty in determining the expected outcome of complex software systems

such as context-sensitive applications.

Bylund and Espinoza 3 describe how to use a simulation engine to synthesize contexts

and exchange them with a context-aware system. From the testing perspective, the simu-

lator generates test cases to a program and receives test outcomes. However, techniques

to construct (adequate) test sets 25 or evaluate test outcomes are not discussed. Since then,

there have been various researches 11,14,15 proposing different emulators to mimic testing

environments of context-aware systems. Still, they do not study how to select effective test
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cases or how to evaluate them.

Tse et al. 18 propose to construct multiple context tuples as test cases to check whether

the outcomes satisfy isotropic properties of context relations. This idea of applying meta-

morphic testing 4,6 is novel. The context tuples are applied to an application function under

test atop the context-sensitive middleware. This allows the middleware to detect relevant

situations and invoke repeatedly the corresponding functions. The resulting contexts of the

test cases are then compared. When there is any discrepancy from an expected context

relation, a failure is identified.

However, as we shall discuss in Section 3, if contexts change during test case execution,

the technique used in Tse et al. 18 for comparing resulting contexts may overlook a failure.

Hence, the technique is applicable only if, during the execution of the test case, (i) the

contexts remain static or (ii) changes in contexts do not affect any situation expression a.

To address the situations where neither (i) nor (ii) apply, we study another class of test

cases in which sequences of context tuples, instead of isolated context tuples, are used.

We shall refer to the new class of test cases as context-coupled test cases, and refer to the

previous class in Tse et al. 18 as context-decoupled test cases. Since transient variations

of situations are a major characteristic of context-sensitive middleware-based applications,

context-coupled test cases represent an important class of test cases.

This paper proposes a novel approach to integration testing of context-sensitive

middleware-based software. For the ease of illustration, we shall use the random testing

strategy to generate initial context-coupled test cases. b We then use these as source test

cases to select follow-up test cases according to the metamorphic relations in question. To

facilitate the use of context-coupled test cases for testing, we propose the notion of check-

points, at which the intermediate and final contexts can be used as test outcomes. Metamor-

phic relations can then be used to compare the test outcomes of multiple test cases with a

view to detecting failures.

In order to evaluate our proposed technique, we conduct experiments on a testbed con-

sisting of a context-sensitive middleware system 21 and its RFID-based location-sensing

application that implements the location-estimation algorithm LANDMARC 12.

The main contributions of our work are as follows:

(a) We extend Tse et al. 18 to address context-coupled test cases, which allow the change

of contexts during test case execution.

(b) We develop the notion of checkpoints to conduct integration testing, facilitating the

checking of test outcomes by the metamorphic testing approach.

(c) We recommend practical guidelines for designing test cases for such applications. For

example, follow-up test cases should activate context-sensitive function(s) via the mid-

dleware at chosen checkpoints. Furthermore, the same test cases should be executed

under similar but not necessarily identical environments, so that test outcomes can be

compared to reveal failures.

a See Section 2.1 for an explanation of situation expressions.
b The random generation of initial test cases may be replaced by other test case generation strategies as testers see

fit.
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(d) We evaluate the proposed technique using an RFID-based location-sensing program on

a context-sensitive middleware platform.

The rest of the paper is organized as follows: Section 2 introduces the preliminaries

necessary for the understanding of our technique. Section 3 discusses the motivations be-

hind our work, develops the notion of checkpoints for testing, and identifies the class of

test cases to be examined in this paper. Section 4 illustrates our technique by the example

of a smart delivery system. Section 5 describes the experimentation and evaluation of our

technique. Finally, a conclusion is given in Section 6.

2. Preliminaries

2.1. Reconfigurable context-sensitive middleware (RCSM)

Reconfigurable Context-Sensitive Middleware (RCSM) is a middleware for the ubiquitous

computing environment. It supports a Situation-Aware Interface Definition Language (SA-

IDL) 22, for specifying context-sensitive application interfaces. Using an SA-IDL specifi-

cation 22, or SA-spec for short, it provides every application with a custom-made object

skeleton that embodies both the context variables and invokable actions. It periodically

detects devices in the network, collects raw contextual data from the environment, and up-

dates relevant context variables automatically. Conditions of relevant context values over a

period of time are referred to as situations 24,22. Once suitable situations in the SA-spec are

detected, the responsible object skeleton will activate appropriate actions.

Using SA-IDL, an SA-spec is defined in terms of three notions. Firstly, SA-IDL adopts

an object-oriented context representation to favor the reuse of context data structures. A

context is represented as a context class, which is naturally defined in a structure named

RCSM Context Class. Next, the periodicity to detect and disseminate the context data of

a context class is specified in a statement headed by RCSM Context Acquisition. Finally,

situation expressions are defined in a structure named RCSM SA Rule. Details of SA-IDL

can be found in Yau et al 22.

A situation expression in an SA-spec formulates how to detect situations as well as

which action to be activated when a situation is detected. In particular, based on a given

SA-spec, the middleware in a device may match a required context variable in its SA-IDL

interface with those of surrounding devices. Hence, because of different subgrouping of

surrounding devices, the same action of a situation expression may be invoked by the mid-

dleware more than once. Each situation expression consists of the keyword, the situation

name, the time range, and the situational condition. The keyword PrimitiveSituation rep-

resents an elementary situation expression, while the keyword CompositeSituation means

a logical composition of other situation expressions. The time range is of the form [t, t0]

where t0 is the current time stamp and t is the time stamp at which the situational condition

is satisfied.

The mapping relationship between a situation expression and the activated actions is

specified through the keyword ActivateAt. A “within x” clause in a situation expression

asserts that the action will be invoked within x seconds after the situation has been detected.
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Similarly, a “frequency = y” clause requires the RCSM to probe the contexts at a rate of y

times per second. A “priority z” clause indicates the priority of the action: a higher value

of z entails a higher priority. We refer to a function used in a situation expression in an

SA-spec as an adaptive function of the application.

Thus, if a conventional program is seen as a program unit, a context-sensitive

middleware-based program extends a conventional program by taking its context-sensitive

interfaces into account. Hence, we assume that all interactions of a context-sensitive

middleware-based program with its environment are conducted through the context-

sensitive application interfaces.

2.2. Smart delivery system: an example

In this section, we describe a sample application and illustrate how it can be represented

in RCSM. Consider a smart delivery system of a supermarket chain such that individual

suppliers replenish their products onto pallets, shelves, and cases in various warehouses

according to the demand sent off by such pallets c. In the rest of the paper, we shall use

the word “pallet” to refer collectively to a shelf, pallet, or case. The smart delivery sys-

tem includes four features: (i) Each smart pallet can be dynamically configured to store a

particular kind of product at, as far as possible, a desired quantity level. (ii) Each van of

a supplier delivers a type of goods. (iii) Unsold goods can be returned to the supplier. A

smart pallet may request a van to retract certain amount of goods. (iv) The system assumes

that the effective delivery distance between any pallet and any van is at most 25 meters.

When a pallet is full, no replenishment is required. When a delivery van moves along

a street, a particular pallet may detect the van and request for replenishment if the desired

quantity is not met. If there are enough goods in the van, the request is entertained.

The replenishment signal may also be sensed by any other delivery van(s) nearby. A van

may not be able to deliver the requested quantity of goods to a particular pallet, however,

if there are other pallets requiring replenishment. Because of the interference among vans,

possibly from different suppliers, and the presence of other nearby pallets with the same

goods, the actual amount of goods in a pallet may differ from its desired level.

Figure 1 shows a sample situation-aware interface specification for the device in deliv-

ery vans. We have simplified the SA-IDL specification by assuming that a van will deliver

the same amount of goods to requesting pallets in each round of delivery. We have also

assumed only one type of product.

The situation understock represents that, when the pallet is inside the effectively deliv-

ery region at time t of the received context, the current ledger amount ql at the pallet site d

has been short of the desired quantity qd for more than a tolerance of ε for the last 3 sec-

c Readers may be interested to read the press release that “Wal-Mart has set a January 2005 target for its top

100 suppliers to be placing RFID [radio frequency identification] tags on cases and pallets destined for Wal-Mart

stores ...” It is emphasized that “the first to market wins”.
d A ledger amount includes the quantity of goods in a particular pallet as well as the quantity of goods that a van

wishes to add to the pallet. In this paper, whenever there is no ambiguity, we simply use ql instead of Pallet.ql .

This kind of simplification applies to all context variables.
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#de f ine ε 5

RCSM Context Class Van extends Base {
float qv; // the quantity of goods deliverable by the van

Position pv; // the location of the van in (x, y) coordinates

float d; // square of distance between the van and a pallet

}
RCSM Context Class Pallet extends Base {

int s; // no. of vans surrounding the pallet

float qd ; // the desired quantity of goods for the pallet

float ql ; // the ledger amount of goods in the pallet

float qp; // the quantity of goods on hand in the pallet

Position pp; // the location of the pallet in (x, y) coordinates

}
RCSM Context Acquisition {Pallet {frequency = 1;}}
RCSM SA Rule SmartVan {

Derived Van.d
(Van.pv.x−Pallet.pp.x)

2 +(Van.pv.y−Pallet.pp.y)
2

PrimitiveSituation overstock

([−3, 0] (Pallet.ql −Pallet.qd > ε) ∧ (d 6 625));
PrimitiveSituation understock

([−3, 0] (Pallet.qd −Pallet.ql > ε) ∧ (d 6 265));
// Note: 625 is written as 265 by mistake

ActivateAt overstock {
[local] void withdraw() [within1] [priority1]}

ActivateAt understock {
[local] void replenish() [within1] [priority1]}

}

Fig. 1. A simplified SA-IDL specification for the smart device in delivery vans.

onds. When this is the case, the application would like to replenish the goods in the pallet.

This is accomplished by invoking the local function replenish( ). A situation overstock is

similarly defined.

There is an error in the SA-IDL specification of the device in delivery vans in Figure 1.

In the situation expression understock, the value “625” is written as “265” by mistake.

The functions replenish( ) and withdraw( ) are used to supply or retract goods. They

increment and decrement the context variable qv by 1, respectively, and both operations are

executed non-deterministically. The middleware invokes the functions a number of times

to achieve the required delivery amount. The overall ledger amount at the pallet site may

oscillate, sometimes higher than the desired quantity and sometimes lower, and will even-

tually reach the desired value.

Figure 2 shows a correct implementation of the functions replenish( ) and withdraw( ).

Once a new value for the context variable qv is computed, it should be detected by the

middleware at the pallet site. This example assumes that there is a correct test stub for

the function computeLedgerAmount( ) in the pallet device to take the values of qv from all
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the surrounding vans and to compute a corresponding new value for the context variable ql .

The theoretical formula to compute the variable ql is defined as follows, although tolerances

such as |ql −qd | < ε may need to be added in the real-life implementation:

ql =
s

∑
i=1

q
(i)
v +qp

where q
(i)
v denotes the context variable qv from the i-th surrounding van. For a configuration

with only one pallet and one van, the formula can be simplified to:

ql = qv +qp (2)

2.3. Metamorphic testing

Metamorphic testing 4,6,8 is a property-based testing approach. It is based on the intuition

that, even if a test case does not reveal any failure, follow-up test cases should be con-

structed to check whether the software satisfies some necessary conditions of the target

solution of the problem. These necessary conditions are known as metamorphic relations.

Let f be a target function and let P be its implementation. Intuitively, a metamorphic re-

lation is a necessary condition over a series of inputs x1, x2, . . . , xn and their corresponding

results f (x1), f (x2), . . . , f (xn) for multiple evaluations of f . This relation must be satisfied

when we replace f by P; otherwise P will not be a correct implementation of f .

Metamorphic relation and metamorphic testing can be formally defined as follows:

Definition 1. (Metamorphic Relation) Let 〈x1, x2, . . . , xk〉 be a series of inputs to a

function f , where k ≥ 1, and 〈 f (x1), f (x2), . . . , f (xk)〉 be the corresponding series of re-

sults. Suppose 〈 f (xi1), f (xi2), . . . , f (xim)〉 is a subseries, possibly an empty subseries, of

〈 f (x1), f (x2), . . . , f (xk)〉. Let 〈xk+1, xk+2, . . . , xn〉 be another series of inputs to f , where

n ≥ k + 1, and 〈 f (xk+1), f (xk+2), . . . , f (xn)〉 be the corresponding series of results. Sup-

pose, further, that there exists relations r(x1, x2, . . ., xk, f (xi1), f (xi2), . . ., f (xim), xk+1, xk+2,

. . ., xn) and r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) such that r′ must be true whenever r

is satisfied. We say that

MR = { (x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) |
r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn)
→ r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) }

is a metamorphic relation. When there is no ambiguity, we simply write the metamorphic

relation as

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn)
then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).

Furthermore, x1, x2, . . ., xk are known as the source test cases and xk+1, xk+2, . . ., xn are

known as the follow-up test cases.

Definition 2. (Metamorphic Testing) Let P be an implementation of a target function

f . The metamorphic testing of metamorphic relation

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn),
then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))
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involves the following steps: (1) Given a series of source test cases 〈x1, x2, . . . , xk〉 and

their respective results 〈P(x1), P(x2), . . . , P(xk)〉, generate a series of follow-up test cases

〈xk+1, xk+2, . . . , xn〉 according to the relation

r(x1, x2, . . . , xk, P(xi1), P(xi2), . . . , P(xim), xk+1, xk+2, . . . , xn) over the implementation P.

(2) Check the relation r′(x1, x2, . . . , xn, P(x1), P(x2), . . . , P(xn)) over P. If r′ is false, then

the metamorphic testing of MR reveals a failure.

Consider a program which, for any given x-coordinate as input, computes the y-

coordinate of a straight line that passes through a given point (a, b). A sample metamorphic

relation is

MR’: If x2 −a = k(x1 −a), then f (x2)−b = k( f (x1)−b).

Suppose the given point is (3, 4), and suppose the source test case x1 = 5 produces P(x1) =

7. We can identify a follow-up input, say x2 = 8. If the program produces P(x2) = 11, then

the metamorphic relation is violated. This signals a failure.

Throughout the course of checking results in metamorphic testing, there is no need to

predetermine the expected result for any given test case, such as whether P(5) should be

the same as the test oracle f (5), and whether P(8) should be 11.5. Since there is no need to

check the results of test cases through other means such as a formal test oracle, it alleviates

the test oracle problem e. Further implementations and applications of metamorphic testing

have been reported, for example, by Gotlieb and Botella 10 and Wu 20.

3. Checkpoints in Context-Sensitive Middleware-Based Applications

3.1. Motivations

Let us firstly consider the motivations for enhancing the testing technique proposed in our

previous work 18. Given a scenario with one van and one pallet, the tester may generate the

following two test cases:

u1 = (s = 1, qd = 100, ql = 50, qp = 0, qv = 7, pp = (1, 1), pv = (0, 0))
u2 = (s = 1, qd = 100, ql = 73, qp = 73, qv = 7, pp = (10, 20), pv = (4, 4))

Consider the test case u1. Initially, the middleware detects that the condition understock

is satisfied and, hence, invokes the function replenish( ) to increment qv by 1. The detec-

tion of understock will continue until ql gradually reaches 95. At this point, the difference

between qd and ql is 100−95, which is no more than the tolerance limit ε = 5. As for the

test case u2, we have d = (10−4)2 +(20−4)2 = 292. Since d > 265, the middleware does

not detect an understock situation. The test stub computeLedgerAmount( ) will update ql to

80 according to Equation (2). Thus, the following context tuples will result:

CTu1 = (s = 1, qd = 100, ql = 95, qp = 0, qv = 95, pp = (1, 1), pv = (0, 0))
CTu2 = (s = 1, qd = 100, ql = 80, qp = 73, qv = 7, pp = (10, 20), pv = (4, 4))

e This paper serves as an illustration of how metamorphic testing can be usefully applied in the integration test-

ing of context-sensitive middleware-based applications. We shall not address the principles and procedures of

formulating metamorphic relations. We refer readers to Chen et al. 8 for relevant discussions on metamorphic

testing.
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void replenish(){
s1 int r;

s2 r = rand() % s;

// randomize the action

s3 if r == 0 {
s4 if qv < MAX {
s5 qv = qv +1;

}}
s6 sleep(r/2);

}

void withdraw(){
s7 int r;

s8 r = rand() % s;

// randomize the action

s9 if r == 0 {
s10 if qv > 0 {
s11 qv = qv −1;

}}
s12 sleep(r/2);

}

Fig. 2. Implementation of replenish( ) and withdraw( )

Our previous work suggests testing against metamorphic relations such as “when the

distances between the pallet and the van for both test cases are comparable, the ledger

quantities ql for both test cases should also be comparable.” Since the corresponding values

of ql (95 versus 80) in CTu1
and CTu2

do not agree, the metamorphic relation is violated

and, hence, a failure is revealed. While the proposal to bypass complicated test oracles by

checking isotropic properties is innovative, there are a few limitations:

Firstly, our previous work does not deal with changes in contexts during a test case

execution. It is assumed that the contexts are fixed or can be ignored once a test execution

starts. The previous assumption is not without good practical reasons. When both a pallet

device and the device in a delivery van are mobile in arbitrary speeds and directions, it is

difficult for a tester to find a complex mathematical model to represent their motions and

to generate follow-up test cases. In the present paper, we propose to relax the assumption

and address this difficult problem.

Secondly, in the smart delivery system, a van may move and a pallet may be relocated,

so that the distance between a van and a pallet may change. Since the middleware always

remain active, the original situation that triggers a test case may not apply throughout the

period of its execution. Failure that occurs at a certain instant may be hidden again at the

conclusion of a test case execution. This can be illustrated as follows:

When the distance between a van and a pallet again falls within the activation distance,

such as 16.27 meters, the adaptive function replenish( ) will be activated a second time by

the middleware. When the devices are kept within the activation distance for a sufficiently

long period of time, multiple activations of replenish( ) will result. This will change the

ledger amount ql at the pallet site to the desired quantity qd within the tolerance limit ε as

stated in the situation-aware interface. Consider, for example, u2 again. Suppose that testers

reduce the separation distance to 16.27 meters after the context tuple CTu2
above has been

computed. After 15 successful increments of qv by the function replenish( ), the context

tuple will become

CT ′
u2 = (s = 1, qd = 100, ql = 95, qp = 73, qv = 22, pp = (4, 0), pv = (4, 16.27))

As a result, the failure that should be revealed by CTu2
is actually hidden when the test case

terminates. Detecting failures based on the final contexts of a test case is, therefore, more

difficult in context-sensitive middleware-based applications than the conventional counter-

parts. This will also need to be addressed.
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Thirdly, as the middleware remains active and situation may continue to evolve, the ter-

mination of some test cases may not be easily identified. We propose to use a new concept

of “checkpoints” in lieu of the detection of termination.

3.2. Checkpoints

We recall that an environmental situation is characterized by a set of contexts that may

change over time. In order to detect a relevant situation via situation expressions, the mid-

dleware will need to activate adaptive functions, as explained in the last paragraph of Sec-

tion 2.1.

There are circumstances where none of the situation expressions are relevant to the

adaptive functions under test. For such situations, the middleware will not activate any

adaptive function. We refer to these situations as checkpoints.

Let us give an illustration of a checkpoint using the example in Section 3.1. Suppose

the input u1 is applied to the function replenish( ). After a few rounds of activations of

replenish( ), the application produces the context tuple CTu1
. We can observe from Figure 1

that no further function activation will be possible unless the context is changed by some

external factor. Hence, a checkpoint has been reached.

To identify checkpoints, we may, for example, negate every situational condition (ex-

cluding the temporal part) to form a constraint equation, and find the roots of the set of

equations as the checkpoints. Consider Figure 1 again. There are two situational condi-

tions, namely

s1: [−3, 0] (Pallet.ql −Pallet.qd > ε)∧ (d ≤ 625)
s2: [−3, 0] (Pallet.qd −Pallet.ql > ε)∧ (d ≤ 265)

Their respective negation forms are:

n1: [−3, 0] (Pallet.ql −Pallet.qd ≤ ε)∨ (d > 625)
n2: [−3, 0] (Pallet.qd −Pallet.ql ≤ ε)∨ (d > 265)

Any context tuple satisfying both of the conditions n1 and n2 will form a checkpoint. f

By treating checkpoints as the starting and ending points of a test case, they provide a

natural environmental platform for the integration testing of the functions of a system. This

setting offers an opportunity to test the functions in different parts of the application within

the same environment. When a test case is being executed, the situation of the functions un-

der test may change. The changing situation may or may not represent checkpoints of other

functions not under test, depending on whether situation expressions of the latter functions

are inert to these changes. Detailed discussions on the design of a non-interference test

setup are beyond the scope of this paper. Nonetheless, we note that when the changing

situation of a test case happens to represent checkpoints of functions not under test, there

is no need to apply auxiliary testware to neutralize the ripple effects of the contexts on the

rest of the application.

f We are aware of the difficulty of the constraint satisfaction problem, which deserves further exploration in future

research.
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We shall explore in detail the testing techniques related to the application of check-

points to context-coupled test cases in Sections 3.3 and 4. We note a couple of practical

considerations before applying the concept. Firstly, a middleware may depend on the cur-

rent contexts as well as the historical contexts to determine an activation situation. Testers

may have to determine from the limited execution history of a test case whether the mid-

dleware will finally activate some adaptive function. In theory, this may not be feasible.

In practice, however, as there are “within x” clauses defined in SA-IDL specifications, an

RCSM-like middleware provides a bounded waiting period for testers to conclude whether

a checkpoint has been reached. Secondly, in general, an application may or may not have

checkpoints. In this paper, we shall limit our discussions to applications that will reach

some checkpoints. On the other hand, the formulation of guidelines for the selection of

different checkpoints is both a testing criterion problem and a refined oracle problem and

deserves further investigation in future work.

3.3. Test cases at checkpoints

When a middleware reaches a checkpoint, a further change in context may or may not

trigger the middleware to activate adaptive functions under test. There are three possible

cases.

Case (1): Test case has reached a final checkpoint. In other words, there is no pos-

sibility of further activation of functions. The collection of context tuples (or contexts for

short) represents a final checkpoint of the application. Verifying whether it is a valid com-

bination of contexts for the application can be performed.

In general, the contexts of a final checkpoint may or may not be observable. Suppose,

for sake of argument, that they are observable. We may compare the results with those

of another test case that has also reached a checkpoint according to some metamorphic

relation such as the isotropic property on the context ql illustrated in Section 3.1. Of course,

if it is not possible to observe the context results of the application, it will be an open

verification problem, which will not be addressed in this paper.

Case (2): Test case will reach another checkpoint. In other words, the middleware

will activate some functions and then reach another checkpoint.

Obviously, none of the situation expressions are satisfied at the checkpoint; otherwise

the middleware would continue to activate further functions. Hence, checking the contexts

against the situation expressions as post-conditions is ineffective. Having said that, research

shows that, given a relation, a derived relation may have a better fault detection capability

than the given one 7.

Although we stated earlier that we would not address the principles of formulating

metamorphic relations in this paper, we would like to add that some useful expected re-

lations can be derived from situation expressions. Testers may then confirm whether such

relations are indeed expected relations. Take the situational condition overstock as an ex-

ample. Suppose there are two test cases, t1 and t2, that result in some checkpoints. Suppose

the contexts d, qd , and ql of the test case ti are denoted by di, qdi
, and qli , respectively.

For either checkpoint, overstock does not hold; otherwise the middleware would activate
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the function withdraw( ) further. Hence, we have (qd1
−ε 6 ql1 6 qd1

+ε) ∧ d1 6 625 and

(qd2
− ε 6 ql2 6 qd2

+ ε) ∧ d2 6 625. g

In general, there are 3 possible relations between qd1
and qd2

, namely, “=”, “<”, and

“>”. When qd1
= qd2

, if the pallet(s) for both test cases are within the delivery distance,

we must have |ql1 −ql2 | 6 2ε, or ql1 ≈ ql2 for short. Substituting it into the above equation,

we have:

MR1: If qd1
= qd2

, d1 6 625, and d2 6 625, then ql1 ≈ ql2 .

Similarly, we can derive appropriate relations for the cases where qd1
< qd2

and qd1
> qd2

.

Obviously, if test cases are context-decoupled, subsequent values of d1, d2, qd1
, and qd2

are expected to be unchanged or can be ignored during the executions of the two test cases.

This will result in a metamorphic relation similar to MRPowerUp in Tse et al. 18

For context-coupled test cases, checking the metamorphic context relations may not

reveal failures, as discussed in Section 3.1. In this paper, we propose to test relations of

multiple test execution sequences, similarly in style to metamorphic context relations but

more complex in detail.

Let us consider the test case u1 in Section 3.1. During the execution of u1, a number

of replenish( ) function invocations are expected to occur. Each of them will increment

the context variable qv by 1. Similarly, the function withdraw( ) is expected to decrement

qv by 1. The test case u1 originally invokes the function replenish( ) 88 times to reach

the context CTu1
. Suppose u′1 is a follow-up test case that has the same behaviors, but an

additional withdraw( ) is called before u′1 is executed. Then, u′1 will invoke replenish( ) 89

times instead of 88.

Since the functions replenish( ) and withdraw( ) are symmetric in nature, we can gener-

alize the situations and formulate the following metamorphic relation:

MR2: Let t be a source test case and t ′ be a follow-up test case that share the same check-

point, known as an initial checkpoint. If we apply withdraw( ) to the initial checkpoint before

executing t ′, then the number of invocations of the replenish( ) function for t ′ is expected to

be more than that of t. If we apply replenish( ) to the initial checkpoint before executing t ′,
then the number of invocations of the withdraw( ) function for t ′ is expected to more be than

that of t.

Case (3): Test case will not reach another checkpoint. In other words, the middle-

ware will activate functions repeatedly and will not terminate. Since the system does not

terminate, it may already represent a failure. On the other hand, if non-terminating invoca-

tions do not mean a failure, testers may propose metamorphic relations between the context

sequences of two test cases, similarly to Case (2) above.

We note that, in general, termination is undecidable. Testers may not be able to distin-

guish Case (3) from Case (2). In practice, testers may regard the software to have terminated

after some maximum period of time has elapsed. They can collect the statistics, such as the

mean values, of the contexts over a period of time as the resulting contexts. In this way,

Case (3) will degenerate to Case (2). For the ease of discussions, we shall restrict ourselves

to only Case (2) in this paper.

g Without loss of generality, we assume that all variables carry positive values in the illustration.
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3.4. The same test case in distinct but similar environments

Apart from using different test cases under isotropic environments to test a program, testers

may also consider using the same test case under distinct but similar environments for

metamorphic testing. In location estimation, for example, the testing environment of a

context-aware location-sensing program is difficult to emulate because the actual envi-

ronment, captured as contexts, may vary slightly from time to time. Testers can compare

the relative changes between corresponding checkpoints of the same test case to detect any

anomaly in test outcomes. We shall give an illustrative example in Section 4. This will also

be analyzed in detail in Section 5.

4. Example of Context-Coupled Test Case with Follow-Up Test Case

In the last section, we have identified a new class of context-coupled test cases that remain

unexplored in our previous work, and introduced a new concept of checkpoints with a view

to revealing failures using such test cases. In this section, we apply the concepts to detect

the failures caused by the fault in Figure 1, that is, the condition d 6 265 instead of d 6 625

in the situation understock.

We shall use a notation different from previous sections to accommodate the features of

a context-coupled test case. We define a test case t in two parts, namely, the initial context

tuple CTt and a sequence ~Θt of context updates. The first element in ~Θt comes from CTt .

Definition 3. (Context-Coupled Test Case) A context-coupled test case t is a tuple

(CTt , ~Θt), such that CTt is a n-tuple representing the initial context and ~Θt is a series of con-

text updates 〈θt [0], θt [1], . . . , θt [k]〉, where each θt [0], θt [1], . . ., θt [k] is an m-tuple (m ≤ n)

representing the values of a set of context variables at time t[i], t = 0, 1, . . . , k. Elements of

every θt [i] are of the format 〈context variable〉= 〈value〉 such that no two context variables

in the elements of θt [i] are identical. Each element in θt [0] comes from CTt .

For the ease of illustration, “nice-looking” numerical values without decimal places are

used in the examples.

4.1. Context-coupled test case t1

Consider a context-coupled test case t1 below for testing the configuration of one pallet

device and one device in a delivery van, with a test stub computeLedgerAmount( ) in the

pallet device. Following the nomenclature in metamorphic testing, we shall refer to it as

the source test case.

t1 = ( CTt1 ,
~Θt1 )

CTt1 = ( s = 1, qd = 20, ql = 20, qp = 8, qv = 12, pp = (17, 1), pv = (1, 1) )
~Θt1 = 〈 (d = 256, qd = 20, qp = 8), (d = 240, qd = 30, qp = 12),

(d = 210, qd = 33, qp = 12), (d = 300, qd = 18, qp = 18),
(d = 320, qd = 22, qp = 15), (d = 200, qd = 22, qp = 15),

(d = 180, qd = 20, qp = 18), (d = 170, qd = 19, qp = 16),
(d = 120, qd = 18, qp = 15), (d = 80, qd = 18, qp = 17),
(d = 20, qd = 19, qp = 22), (d = 30, qd = 22, qp = 21),
(d = 30, qd = 22, qp = 21) 〉
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Table 1. Updated contexts for test cases t1 and t2.

No. d qd qv qp ql

1 256 20 12 8 20

2 240 30 12 12 24

3 210 33 13 12 25

4 300 18 14 18 32

5 320 22 13 15 28

6 200 22 12 15 27

7 180 20 12 18 30

8 170 19 11 16 27

9 120 18 10 15 25

10 80 18 9 17 26

11 20 19 8 22 30

12 30 22 7 21 28

13 30 22 6 21 27

(a) Updated contexts for t1

No. d qd qv qp ql

1 256 20 12 8 20

2 240 30 12 12 24

3 210 33 13 12 25

4 300 18 14 18 32

5 320 22 13 15 28

6 200 22 12 15 27

7 200 22 12 15 27

8 180 20 12 18 30

9 170 19 11 16 27

10 120 18 10 15 25

11 80 18 9 17 26

12 20 19 8 22 30

13 30 22 7 21 28

14 30 22 6 21 27

(b) Updated contexts for t2

Source test cases may be generated randomly, or through conventional black- or white-box

approaches.

Step (1): Apply the initial context CTt to the one pallet and one van configuration.

Update the derived context d to 256. h According to Equation (2), the test stub comput-

eRadiance( ) will change ql to 12 + 8 = 20. Since ql and qd are 20, according to situation

expressions overstock and understock in Figure 1, the middleware will not be triggered to

activate any function. The application is, therefore, at a checkpoint.

Step (2): Apply the second context update of ~Θt1 (that is, (d = 240, qd = 30, qp =

12)) to the configuration. One possible way to enable the required context update is to set

the desired quantity qd of the pallet device to 30, move the pallet device from location

coordinate (17, 1) to (
√

240, 1), and add 8 unit of goods to this particular pallet. The test

stub will update ql from 20 to 12+12 = 24. The updated contexts of the configuration are

shown in Table 1.

Step (3): Since the difference between qd and ql is greater than the tolerance limit

ε = 5, and since d is not more than 265, the situation understock is detected and, hence,

replenish( ) is invoked by the middleware. The context variable qv is updated from 12 to 13

by replenish( ). This is an automatic step.

Step (4): Testers then apply the third context update of ~Θt1 (that is, (d = 210, qd =

33, qp = 12)) to the configuration. This changes ql from 24 to 25. i

Step (5): The above interleaving of context updates by testers and automatic activa-

tions of functions by the middleware continues for 3 more rounds. Testers have applied the

6th entry of ~Θt1 . The context variable ql will be 27 after the function withdraw( ) has decre-

h Since the situation expressions in Figure 1 deal directly with the derived context d, we shall refer to d instead of

the basic contexts pp and pv for the ease of discussion.
i A convenient way to enable such timely updates is to emulate the device using a device simulator, so that the

temporal constraints can be controlled by testers.
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mented qv from 13 to 12. Comparing the context variables ql and qd , no situation inscribed

in the situation interface is fulfilled. The configuration has reached a checkpoint. Instead of

waiting for a further activation by the middleware, therefore, testers apply the 7th context

update (d = 180, qd = 20, qp = 18). Steps (2)–(5) are then repeated for the rest of ~Θt1 .

Step (6): Finally, the test case execution reaches the 13th entry of ~Θt1 . j It completes

the execution of the interactive test case t1. The test case t1 will decrement qv gradually

after the 4th entry in ~Θt1 . This is done either by invoking the function withdraw( ) or, in

case that a checkpoint has been reached, by retaining the previous value for qv.

Since we are interested in applying other adaptive functions to a selected checkpoint of

the source test case as discussed in Section 3.3, the three context updates that will result

in checkpoints of the application configuration are highlighted in ~Θt1 . For the same reason,

testers may randomly generate a source test case t1 as long as they can find checkpoints

during its execution.

4.2. Follow-up test case t2

Following the concepts presented in Case (2) of Section 3.3, a follow-up test case t2 of t1

should share the same initial checkpoint as t1. Firstly, testers should identify a checkpoint

in t1. As highlighted in ~Θt1 , there are several possible choices. Suppose testers choose the

second checkpoint, namely, the 6th entry in ~Θt1 . For the ease of description, we shall denote

it by S. According to MR2, testers would like to provide a situation S′ consistent with S

such that (i) it expects to invoke the adaptive function replenish( ), and (ii) it increases the

number of subsequent invocations of the adaptive function withdraw( ).

There are many methods to set up S′. One approach is to use an auxiliary pallet de-

vice. For instance, testers may use the pallet device of test case u2 in Section 3.1, namely,

p2 = (s′ = 1, q′d = 100, q′n = 73, q′o = 73, p′v = (10, 20)). According to the description in

Section 2.2 and the SA-IDL specification in Figure 1, the replenishment request will be

triggered in 4 seconds. This auxiliary pallet device is, therefore, expected to join the net-

work at situation S for 4 seconds, and then leave the network. Afterward, the rest of the

test case t1 (that is, the context variables d, qd , and qp of the 7th to 13th entries of ~Θt1) is

applied as scheduled. The test case t2 is as follows:

t2 = ( CTt2 ,
~Θt2 )

CTt2 = ( s = 1, qd = 20, ql = 20, qp = 8, qv = 12, pp = (17, 1), pv = (1, 1) )
~Θt2 = 〈 (d = 256, qd = 20, qp = 8), (d = 240, qd = 30, qp = 12),

(d = 210, qd = 33, qp = 12), (d = 300, qd = 18, qp = 18),
(d = 320, qd = 22, qp = 15), (d = 200, qd = 22, qp = 15),
(d = 200, qd = 22, qp = 15), (d = 180, qd = 20, qp = 18),

(d = 170, qd = 19, qp = 16), (d = 120, qd = 18, qp = 15),
(d = 80, qd = 18, qp = 17), (d = 20, qd = 19, qp = 22),
(d = 30, qd = 22, qp = 21), (d = 30, qd = 22, qp = 21) 〉

j After all context updates have been applied, the middleware may still detect situations and, hence, may invoke

functions until the configuration reaches a checkpoint. Without the loss of generality, we assume that the test case

will reach a checkpoint immediately after the final context update in ~Θt1 .



May 29, 2009 18:1 WSPC/Guidelines srcsm2TR

16

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

The i-th context update

C
o

n
te

x
tu

a
l 

V
a

lu
e

 a
ft

e
r 

th
e

 i
-t

h
 c

o
n

te
x

t 
u

p
d

a
te



0

50

100

150

200

250

300

350

qd qv

ql d

(a) Actual

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

The i-th context update

C
o

n
te

x
tu

a
l 

V
a

lu
e

 a
ft

e
r 

th
e

 i
-t

h
 c

o
n

te
x

t 
u

p
d

a
te



0

50

100

150

200

250

300

350

qd qv

ql d

(b) Expected

Fig. 3. Context trends for test case t2.

We firstly verify the results at checkpoints. Since the metamorphic relation MR1 is ap-

plicable, testers may apply it for testing. However, as discussed in Section 3.1, the failure

is subtle. It occurs immediately after the application of the situation S′ to the test config-

uration. The context variable qv should be decremented, but is actually not. Owing to the

subsequent detections of the overstock situation followed by replenish( ) actions, the next

checkpoint of the test case leaves no footprint of the failure. In short, MR1 cannot reveal

any failure.

On the other hand, both test cases have same number of withdraw( ) invocations (related

to entries 7–13 for test case t1 and entries 8–14 for t2) between the second checkpoint and

the final one. This violates relation MR2, and hence, reveals a failure.

Interested readers may wish to know whether it is easy to recognize the failures via

other means, such as by comparing the resulting context values with the expected values.

Context d is plotted against the y-axes on the right of these graphs. All the other contexts

are plotted against the y-axes on the left. Figure 3(b) shows the expected results of test case

t2 in a correct implementation. The two charts look remarkably similar. Since the fault only

causes the value of qv to be updated once, the failure is quite subtle. In short, our technique

helps testers identify failures that may easily be overlooked.

4.3. The same test case in distinct but similar environments

Suppose the smart delivery system is extended with a location-estimation feature to allow

delivery vans to check their positions. Ideally, a van should detect and report going through

the same path if they travel along the same route at different times of the day. In real

life, however, there may be small variations in the environment at different time slots. In

the other hand, the variations in the detected paths are expected to be small even in such

situations. Testers can then use this expectation as a metamorphic relation to test the system

with the same test case going through two distinct but similar environmental conditions. In

the next section, we will describe our experimentation on the identification of failures using
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this technique.

5. Experimentation

The effectiveness of failure detection using different test cases under isotropic environ-

ments is easy to illustrate, as we have done in Section 4. On the other hand, the effective-

ness using the same test case under distinct but similar environments is more difficult to

demonstrate. In this section, we report on the experimentation of an RFID-based location-

estimation program running on a context-aware middleware prototype 21. The sample ap-

plication is based on the example discussed in Section 4.3. We apply our technique of

comparing the test outcomes of the same test case in similar environments. We execute

the same set of test cases on the prototype application and its faulty versions during two

different time slots in the pervasive laboratory of the Hong Kong University of Science and

Technology. We shall refer to the environmental settings of the two time slots as Environ-

ments E1 and E2, respectively.

In summary, our approach identifies 71.4% of faulty versions. A control experiment

using an intuitive benchmark on the same set of test cases in Environment E1 reveals only

33.3% of the faulty versions, while another experiment in Environment E2 reveals only

38.1%. Thus, the experimentation indicates that our approach is promising, even though we

need to increase the testing effort by running the same test case under distinct environments.

The details are as follows.

5.1. Setup

The testbed. Our experimentation is carried out on Cabot system 2.0 21 and its evalua-

tion application, which implements the LANDMARC RFID-based location-sensing algo-

rithm 12. The contexts and situations are represented in XML. All other parts are imple-

mented in Java. Our experiment focuses on the testing of the application, and assumes that

the middleware is correct.

The basic feature of the application is as follows: The middleware continually acquires

radio frequency strength signals (context values) from four reference RFID tags and one

RFID tracking tag. The reference tags do not move and their locations are known in ad-

vance. Based on these radio frequency strength signals and other environmental context

information, the middleware triggers different actions of the applications to compute the

estimated location of the tracking tag. One signal from the tracking tag is sufficient for

the application to estimate the location of the tracking track within, on average, an uncer-

tainty neighborhood of 1 square meter 12. It is still an inherent limitation of the existing

technology of location-sensing applications to incur a large estimation error.

Table 2 shows 8 estimated locations in the two distinct sensing environments. It gives

readers an impression on the accuracy of location estimations. The leftmost column of

Table 2 lists the actual locations of the tracking tag, while the other columns list the cor-

responding estimated locations and the average estimation errors in the environments. All

units in this experimentation are in meters. From Table 2, it appears hard to identify failures

by simply comparing estimated locations with actual locations. To facilitate experimenta-

tion, we use the original version of the location-estimation application as the golden version
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Table 2. Different estimated locations of LANDMARC application.

Actual Environment 1 Environment 2

location Estimated location Mean error Estimated location Mean error

(0.5, 0.5) (0.825, 1.731) 1.309 (0.407, 0.774) 0.388

(1.5, 0.5) (1.236, 0.870) 0.473 (1.154, 0.281) 0.481

(0.5, 1.5) (1.395, 2.598) 1.451 (0.609, 2.786) 1.300

(1.5, 1.5) (1.009, 1.509) 0.566 (1.400, 2.983) 1.493

(0.5, 2.5) (1.039, 2.192) 0.663 (0.625, 2.457) 0.267

(1.5, 2.5) (1.572, 1.364) 1.225 (1.212, 3.525) 1.088

(0.5, 3.5) (1.220, 3.032) 0.951 (1.587, 3.821) 1.135

(1.5, 3.5) (0.923, 2.284) 1.355 (0.686, 2.458) 1.336

for reference. We define a test case as a sequence of locations of a tracking tag. Since a tag

may move to a location which has been visited before, a test case is thus allowed to contain

many copies of the same location.

Ambiance or white noise. As discussed above, the location-estimation application is

inherently imprecise when computing its outputs. We treat the imprecision as the ambiance

or white noise, which is the background noise of the environment. We would like to mini-

mize the effect of the ambiance on the checking of our test results. Firstly, we estimate the

level of white noise from data sets collected from the two environments. Using a tracking

tag at a specific position, we compute the difference between its estimated locations under

the respective environments. This measure of the ambiance or white noise provides us with

a feel of the estimation error when comparing results from the two environments.

Suppose an actual location is denoted by~l0 and the estimated locations in Environments

E1 and E2 are~l1 and~l2, respectively. The difference of the location estimates will be~l1−~l2.

We use the golden version to compute the (golden) ambiance α from the equation

α =
1

n|L| ∑
~l∈L

n

∑
i=0

|PG(s(~l)i, E1)−PG(s(~l)i, E2)| (15)

where (i) L is the set of actual locations of the tracking tag and |L| is the size of L, (ii) n is

the number of radio frequency strength signals at each actual location, (iii) s(~l)i is the i-th

signal at actual location~l, (iv) PG(s,E) is the golden version, which computes an estimated

location from the input signal s in Environment E, and (v) E1 and E2 are the respective

environments. The standard deviation σ corresponding to the mean α is also computed.

Faulty version. In order to investigate the applicability of our technique, we have

prepared 21 faulty versions from the golden program that implements the LANDMARC

location-estimation algorithm. Each faulty version is seeded with a distinct fault. Each

seeded fault is of one of the following types: mutation of statement, mutation of operator,

missing statement, and missing branch.

Average distance. To compare the same test case under Environments E1 and E2, we

use the following equation to compute the average distance avg between two estimated

locations of the same test case:

avg =
1

m|T | ∑
~l∈T

m

∑
i=0

|P(s(~l)i, E1)−P(s(~l)i, E2)| (16)
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where (i) T is a test case and |T | is the path length of T , (ii) m is the number of times

for a sequence of locations to re-collect signal data in order to compute the average, and

(iii) P(s,E) is a faulty version that computes an estimated location from an input signal s

in Environment E. Other variables are used in the same way as in Equation (15).

Test cases. We randomly generate a set of 60 test cases to be applied to the golden

version and every faulty version. As discussed above, every test case is a path, which we

call a test path. In each test path, we set a sufficiently long time interval between any two

consecutive input signals, so that the time requirement of relevant situation expressions can

be satisfied. Different test paths may have different lengths. We classify the set of test paths

into three categories according to their lengths, namely 3 to 9 actual locations, 10 to 19

actual locations, and 20 to 29 actual locations. There are 20 test paths in each category.

A test path in each category is generated by randomly selecting s actual locations, where

the size s is also determined randomly within the relevant range. To compute the difference

between the estimated locations in two environments, for each actual location in a test path,

we randomly select 100 radio frequency strength signals out of a total of 3000, which is the

entire set of RFID data collected for the particular location. For each test path, we compute

the average distance avg between the estimated locations in the two environments using

Equation (16).

Failure-identification criterion. Test results evaluated according to the value of

|avg−α|, which is the difference between (i) the average distance of the estimated lo-

cations in the two environments and (ii) the white noise level. For a faulty version P, we

say that P exposes a failure if and only if |avg−α| > kσ, where k is a predefined constant.

5.2. Experimental results and evaluation

We present the experimental results and discuss our findings in this section. We use the

original implementation of Cabot and its LANDMARC application as the golden version.

The experimental configuration consists of the 8 actual locations of the tracking tag under

Environments E1 and E2 (see Table 2). For each actual location, there are 3000 radio fre-

quency strength signals for location estimation. Based on Equation (15), we compute the

white noise to be α = 1.0397 k and the corresponding standard deviation to be σ = 0.6627.

The classification of test results of all the 21 faulty versions is shown in Table 3. We

classify |avg−α| according to different ranges of values of kσ.

When applying a similarly derived set of 60 test paths to the golden version, as Table 3

shows, we find 53 test paths with |avg−α| in the interval I1 = [0, 0.25σ] and another 7 test

paths with |avg−α| in the interval I2 = (0.25σ, 0.5σ]. For an conservative evaluation, we

shall regard a test path to be exposing a failure if and only if the corresponding difference

|avg−α| exceeds 0.5σ. Continuing in this way, we compute for each faulty version the

percentage of test paths with results falling in one of four other intervals: I3 (such that

0.5σ < |avg−α| ≤ 0.75σ), I4 (such that 0.75σ < |avg−α| ≤ σ), I5 (such that σ < |avg−
α| ≤ 1.25σ), and I6 (such that |avg−α| > 1.25σ). The percentages of identified failures

k The level of white noise is in line with the average error of one square meter reported in Ni et al. 12
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Table 3. Classification of test results of all 21 faulty versions.

Program Number of test paths Avg. Avg.

under with |avg−α| in the range: % identified error error

test I1 I2 I3 I4 I5 I6 in E1 in E2

Golden version 53 7 0 0 0 0 − 0.99 0.92

1 55 5 0 0 0 0 0 0.99 0.92

2 26 24 8 1 1 0 0.167 1.32 1.42

3 0 0 0 0 0 60 1.0 1.89 1.89

4 38 21 1 0 0 0 0.017 1.43 1.69

5 54 6 0 0 0 0 0 2.04 2.18

6 0 0 6 37 17 0 1.0 1.81 1.44

7 0 0 0 0 0 60 1.0 over 3 over 3

Faulty 8 0 0 0 0 0 60 1.0 over 3 over 3

version 9 56 4 0 0 0 0 0 0.99 0.92

(each 10 54 6 0 0 0 0 0 0.99 0.92

with 60 11 51 9 0 0 0 0 0 0.99 0.92

different 12 6 33 20 1 0 0 0.35 1.44 1.31

test 13 55 5 0 0 0 0 0 1.79 2.20

paths) 14 42 16 1 0 1 0 0.033 1.01 0.91

15 53 6 1 0 0 0 0.017 0.99 0.92

16 0 22 38 0 0 0 0.633 1.14 0.83

17 42 17 1 0 0 0 0.017 1.00 0.93

18 50 7 3 0 0 0 0.05 1.02 0.99

19 34 22 4 0 0 0 0.067 0.92 0.87

20 0 8 43 9 0 0 0.867 1.31 1.31

21 0 9 28 14 8 1 0.85 1.32 1.16

where

I1 : |avg−α| ≤ 0.25σ I4 : 0.75σ < |avg−α| ≤ σ

I2 : 0.25σ < |avg−α| ≤ 0.5σ I5 : σ < |avg−α| ≤ 1.25σ

I3 : 0.5σ < |avg−α| ≤ 0.75σ I6 : |avg−α| > 1.25σ

“% identified” = % of failed test cases identified

(in terms of the fraction of the respective interval I3, I4, I5, or I6)

are listed in the column “% identified” of Table 3.

We would like to compare our test results with an intuitive approach that checks average

estimation error against the golden version. The last two columns of Table 3 show the

average estimation error with respect to all the 8 actual positions for the golden version

as well as for each faulty version in Environments E1 and E2. For the golden version, the

average estimation error in E1 is 0.99 with a standard deviation of 0.45, while the average

estimation error in E2 is 0.92 with a standard deviation of 0.48. Intuitively, an equivalent

mutant of the golden version should have an average estimation error within the acceptable

level of the benchmark, namely, not exceeding 0.99+0.45 = 1.44 in E1, and not exceeding

0.92 + 0.48 = 1.40 in E2; otherwise it can be regarded as a failure. The entries of the two

columns in bold italics represent those faulty versions having their average estimation error

exceeding the acceptable level in at least one environment.

Our approach identifies 15 out of 21 faulty versions, representing a success rate of

71.4%. A control experiment shows that only 7 faulty versions (representing 33.3%) can

be revealed in Environment E1 using an intuitive approach that reports a failure when the
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Table 4. Categorization of faulty versions.

Category % of failure- Number of Actual % of failure-revealing test cases

revealing test cases faulty versions Minimum Average Maximum

Type 1 0 6 0.0 0.0 0.0

Type 2 > 0 and ≤ 20 7 1.7 5.3 16.7

Type 3 > 20 and < 100 4 35.0 67.5 86.7

Type 4 100 4 100.0 100.0 100.0

estimation error exceeds the acceptance level. Another experiment shows that only 8 faulty

versions (representing 38.1%) can be revealed in Environment E2. Thus, our approach is

promising, even though we need to increase the testing effort by running the same test case

under distinct environments. On the other hand, the failures of six faulty versions cannot

be identified by our technique. A deeper investigation of the seeded faults reveals that the

test results of the same test cases under Environment E1 resemble those of E2. There is still

room for improvement in our approach.

We further categorize faulty versions into 4 types according to the percentages of

failure-revealing test cases in the test set. A summary is shown in Table 4. Type 1 rep-

resents the faulty versions whose failures cannot be identified. Between zero and 20% of

the test cases for faulty version under Type 2 reveal failures. There are 7 faulty versions

in this category. A common characteristic is that most of the test paths help identify the

failure within |avg−α| ≤ 0.5σ. This may be due to the fact that their faults are minor or

else located in program paths that are seldom executed. The remaining two types of faulty

versions have relatively high chances for testers to observe their failures. More than 20%

but less than 100% of the test cases for faulty versions under Type 3 reveal failures, while

all the test cases for faulty versions under Type 4 reveal failures. The faults in these two

types are due to significant changes in computation statements or predicates of conditional

statements. In particular, the error differences |avg−α|> 0.5σ for the faulty versions under

Type 4. It is indeed not difficult to observe the failures using whatever testing technique.

In short, further investigations will be required to improve our technique with a view to

identifying the more subtle failures.

In practice, our testing technique requires a predefined value of the constant k in order

to determine whether |avg−α| > kσ holds. The selection of an appropriate value of k is

non-trivial and may require domain knowledge or recommendations from standardization

organizations. Figure 5.2 describes the trends of the distribution of test paths whose results

satisfy |avg−α| > kiσ at different levels of ki. We have selected different values of ki from

the set {0, 0.25, 0.5, 0.75, 1.0, 1.25} so that the classification of test results in Table 3 can

be utilized.

Figure 5.2 shows six trends of the distributions of test paths. In the overall trend, the

vertical axis value of each point is the average number of test paths of all faulty versions

that satisfy the predicate |avg−α| > kσ. For instance, the average number of test paths

whose results satisfy |avg−α| > 0.5σ is about 20. We observe that if a tester selects a

failure-identification criterion such that k = 0.5, then about one-third of the test cases will

expose the failures. The second trend portrays the distribution of test paths of the golden
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Fig. 4. Distribution of test paths with respect to different levels of |avg−α|.

version as a reference. The remaining four trends portray the distribution of test paths of

the four categories of faulty versions in Table 4.

We observe from Figure 5.2 that the trend of Type 1 is very close to that of the golden

version. Thus, it is difficult to find an appropriate value of k to distinguish them. Compared

with the trend of the golden version, the trend of Type 2 faulty versions is not obvious when

k > 0.5. The trend for Type 3 differs from the trend of the golden version significantly when

k is in the interval (0.5, 0.75). It is easy to observe the failures of Type 4.

There are a few potential limitations of the experiments: (i) The testbed is only one of

many possible context-aware systems. The characteristics of a location-estimation program

may not be relevant to other kinds of application. (ii) We have only studied 21 faulty ver-

sions, each having only one fault. They may not represent all types of fault. (iii) We have

used only two environments in the experiments. Other environments may produce different

results. (vi) We have used only one metamorphic relation in the experiments. Other meta-

morphic relations may give different results. (v) The prototype middleware may contain

faults, so that the outcomes of the golden version may not be correct.

6. Conclusion

Context-sensitive middleware-based software is an emerging kind of ubiquitous computing

application. A middleware detects a situation and invokes the appropriate functions of the

application under test. As the middleware remains active and the situation may continue

to evolve, however, the completion of a test case may not be identified easily. In this pa-

per, we have proposed to use checkpoints as the starting and ending points of a test case.

Since the middleware will not activate any function during a checkpoint but may invoke
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actions in between two such situations, the concept offers a convenient environment for the

integration testing of a system.

In our previous work, we demonstrated the ineffectiveness of common white-box test-

ing strategies such as data-flow testing and control-flow testing to detect subtle failures

related to situation interfaces. Metamorphic testing with context-decoupled test cases was

proposed to reveal failures of context-sensitive middleware-based applications.

In this work, we have further demonstrated the difficulties in revealing the violation

of metamorphic context relations involving the execution of multiple context-coupled test

cases. To supplement the checking of context relations, we have also proposed to check

the relations of execution sequences between checkpoints for multiple test cases. We have

illustrated how a subtle failure due to the fault in the example in Section 2.2 can be revealed.

In addition, we have reported the results of applying and evaluating our technique to an

RFID-based location-sensing system with a context-sensitive middleware.

This paper is a first step toward the integration testing of context-sensitive middleware-

based applications. Although the initial results are encouraging, more studies are in order.

In particular, we shall develop formal models and systematic procedures for our approach,

including the effective identification and selection of checkpoints, the control of the tem-

poral order of adaptive actions during test execution, and the selection of contexts for test

oracle evaluation. Based on these models and procedures, we shall investigate the effective-

ness of our approach in fault detection, examine the issues of scalability and online testing,

develop practical guidelines for our approach, and address the question of automatic check-

ing of metamorphic relations in a context-sensitive middleware-based environment.
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