
1

TESTING OBJECT-ORIENTED
INDUSTRIAL SOFTWARE

WITHOUT PRECISE ORACLES
OR RESULTS

*
1

by T. H. Tse, Francis C. M. Lau, W. K. Chan,

Peter C. K. Liu, and Colin K. F. Luk

TACCLE tests an automated assembly system in
which the expected outcomes cannot be precisely
defined and the actual results cannot be directly
observed.

* © ACM 2007. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Communications of the ACM 50, 8 (Aug. 2007), 78–85.
http://doi.acm.org/10.1145/1278201.1278210. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY
10036, USA, fax +1 (212) 869-0481, or permissions@acm.org.

1
 The word “oracle” is used in the sense of “prophecy”.

rom 30% to 50% of the resources in an average software project are
typically allotted to testing. Still, inadequate software testing costs
industry $22 billion to $60 billion per year in the U.S. alone [8]. We
would all spend less if software engineers could use more effective
testing methods and automated testing tools. On the other hand, testing
is very difficult in real-world projects.

Software testing is commonly accomplished by defining the test objectives,
selecting and executing test cases, and checking results [2]. Although many studies
have concentrated on the selection of test cases, checking test results is not trivial.
Two problems are often encountered:

How to determine success or failure. A test oracle [11] is the mechanism for
specifying the expected outcome of software under test, allowing testers to check
whether the actual result has succeeded or failed.1 In theory, test oracles can be
determined by the software specification. In practice, however, a specification
may provide only high-level descriptions of the system and cannot possibly
include all implementation details. Hence, software testers must also rely on
domain knowledge and user judgment to evaluate results. Such manual efforts
are often error prone [9].

About ASM

ASM is the world's largest
supplier of assembly and
packaging equipment for
the semiconductor industry
(www.asm.com/about.asp).
It manufactures
semiconductor assembly
equipment and materials
(etched and stamped
leadframes) used by
multinational chip
manufacturers,
independent IC assembly
houses, and consumer
electronics manufacturers.
The company is also
known for its strong
commitment to research
and product development,
supported by more than
550 employees in its Hong
Kong and Singapore R&D
centers.

F

Administrator
 HKU CS Tech Report TR-2005-10

2

Timing Diagrams Algebraic Specifications
Stations Classes
Interactions and cycles Equations
Path selection conditions Conditions of equations
Actions Methods
State enquiry functions Observers

Variants of operations Fully expanded into classes,
methods, and equations.

Table 1. Mapping of entities between timing
diagrams and algebraic specifications.

Hidden results. In engineering projects, even when oracles are present, the results of embedded software may last
only a split second or be disturbed by noise or hidden behind a hardware-software architecture, so they are not
easily observed or recorded. Moreover, the observation or recording process may introduce further errors or
uncertainties into the execution results.

It is therefore impractical for testers of engineering projects to expect to have predetermined, precise test oracles in
every real-world application. How to capture and evaluate test results poses another problem. Automating the testing
process amid these uncertainties is especially difficult.

ere, we share our experience addressing these issues in a technology-transfer project funded in
2002–2004 by ASM Assembly Automation Ltd. and the Innovation and Technology Commission in
Hong Kong, examining the application of advanced testing methodologies to alleviate these
problems (see the sidebar “About ASM”).

Methodology and Tool
ASM's assembly equipment is supported by
embedded software developed in C11 and built
with extensive error-avoidance and recovery
features. The software specifications are
extracted from technical drawings of mechanical
and electronic hardware designed by process
engineers using an in-house technique.

We describe our testing methodology and tool
for the technology-transfer project. The system
consisted of three components:

 A specification editor to capture the
requirements defined by process engineers;

 Automated black-box testing that bypasses the
need for precise oracles; and

 Semiautomated integration of black- and
white-box testing to check the consistency of
machine and human evaluations of the test results.

These components are outlined in Figure 1 and described in the following sections:

Component (1). Specification editor. The front end of the testing tool is
an XML-based editor designed to capture the stations and actions
specified in the timing diagrams, as well as their relationships with the
classes and methods in the implemented programs. It captures the
following:

 Station types;
 Realization and organization of different types of equipment

component;
 Station interactions;
 Object classes implemented according to the specified stations;
 Software messages invoking services that

implement the actions and triggers in the timing
diagrams; and

 State enquiry functions of the implemented
classes.

The editor also captures other test parameters (such
as the maximum number of test cases, the classes to
be tested, and the classes accessible by testers).

The internal model used by the specification
editor is a communicating finite-state machine

Test Case
Generator

Instrumented
C++ program

 Microsoft Office

Test Case
Verification

Automated
Testing Code by
Observational
Equivalence

Component (1)

Component (3)

Component (2)

Test
Script
Test
Log

 Visual Studio
 VC++ for .Net

Instrumentation
Assistant

Specification
Editor

Test Script
Translator

Test
Script
Test

Script

Figure 1. Workflow of the testing tool.

H

Our specification editor
keeps the algebraic
specifications internal
to the testing tool and
transparent to the user.

3

(CFSM) model [3] that represents timing diagrams (see Figure 2 top left). Since our testing methodology is built on
algebraic specifications [6], the editor further translates the CFSM model into an algebraic representation. The table
here maps the entities between timing diagrams and algebraic specifications; for example, stations and actions in
timing diagrams bear the same meaning as classes and methods in algebraic specifications. Figure 2 includes two
tabular views of the testing tool, capturing the operational definitions of the classes in the software and the temporal
properties of the timing diagrams; the bottom-right screenshot shows how the tool captures the transition condition
between two states. The purpose is to bridge any gap between a specification and its implementation. We appreciate
that most software developers are not completely comfortable with formal algebraic specifications because they
involve unfamiliar mathematical concepts and manipulations. Our specification editor keeps the algebraic
specifications internal to the testing tool and transparent to the user.

Component (2). Black-box testing at the class and cluster levels. Timing diagrams are high-level specifications that
define the interactions among stations. Although the diagrams show the operations that update the attributes of a
station and trigger further actions in other stations, operational details (such as how they achieve the desired results)
are not defined in full. Furthermore, lower-level operations (such as exception handling and transitions among
internal states of a station) may not be described. Thus, timing diagrams cannot serve as a precise oracle for testers.

On the other hand, objects in the implemented system must preserve the high-level behaviors specified by the
timing diagrams irrespective of exceptional conditions and other implementation decisions. For example, a pick arm
in an automated assembly system may encounter a problem when attempting to put a die in place. As a result, it
should place the die in the discard bin and then move itself back to the home position. Another pick arm may not
encounter a problem and should therefore place the die in the standard collection bin and then move itself back to
the home position. Once the two pick arms return to their home positions, they should forget about any abnormal
incidents and behave exactly the same way from now on. We say these pick arms are now “observationally
equivalent.”

o test whether two objects are observationally equivalent, we apply an advanced testing methodology
known as object-oriented software Testing At the Class and Cluster LEvels, or TACCLE [4]. As the
name suggests, TACCLE enables software engineers to test each individual class independently, then
test the interactions among classes, as described in the following sections:

Class-level testing. A station specified in the timing diagram is implemented as a class in the embedded system.
We pick up two instances of a station specified in the timing diagram to be observationally equivalent despite
variations in operational detail (such as exceptional conditions). Based on intuition, we must execute the two objects

WT

BH

WH

Vision
(WH)

Vision
(WT)

EJ

capture

0

move
towards

WT

1

align

2

move
down

move up

next pad
5

3
pick & move to WH

capture and
alignment calculation

move down

6

align

7

bond and move to ready position

next die

4a

capture final result

8

1
0

9

 4
b

Figure 2. Representations of timing diagram (counterclockwise from top-left). Sample timing diagram provided
by engineers, definition of operations for stations, details of a transition, and state transition summary.

T

4

in the implemented system that correspond to these two specified
instances and test whether they are indeed observationally equivalent.
Based on similar intuition, given two instances of a station specified as
observationally nonequivalent, we must also test whether the
corresponding implemented objects are observationally nonequivalent.
However, we note from technical fundamentals that two objects are
observationally equivalent if and only if they can be subjected to any
sequence of operations and give identical results.2 1 In practice, the
number of possible operation sequences may be infinite, and hence
testers may have to devote an impossible amount of time checking the
observational equivalence of even a single pair of objects.

Fortunately, we have mathematically proved [4] that the following
criteria can reveal exactly the same set of failures as the testing of
observational equivalence but are much simpler to apply in practice:

Criterion A. If two instances of a station in a timing diagram are specified to have equivalent histories of operations,
then the final observable attributes of their implemented objects should have the same values; and

Criterion B. If the final observable attributes of two instances of a station in a timing diagram are specified to have
different values, then the final observable attributes of their implemented objects should also have different values.

onsider again the two pick arms that place the dies in appropriate bins. To test whether they are
observationally equivalent, we need to subject each one to every possible sequence of operations and
check their results. We resolve to use Criteria A and B instead. To test according to Criterion A, for
instance, we execute two operation sequences to generate two instances of the pick arm, one with a
problem, the other without a problem. The state enquiry function will check the final observable
attributes of the two instances (such as the locations of the pick arms and their reset values).
Whenever the respective values are different, the tool reports an error in the implementation.

Cluster-level testing. At the cluster level, we test the interactions among a group of stations rather than within

only one station. We apply a sequence of operations to generate a cluster of stations with a specific state. We also
find an alternate operation sequence that generates another cluster with the same state. We then check the observable
attributes of the implemented clusters to verify whether they have indeed reached the same state.

Consider a simple industrial example involving the following three stations: a wafer table, a bonding unit, and a
vision system. The wafer table triggers the vision system to take a picture of the next die in the queue. When the
picture is ready, the vision system notifies the wafer table to move the die to the bonding position. To minimize
latency, the bonding unit also moves to this position so it can pick up the die when the die reaches the appropriate
place.

There may be a small chance, however, that the die in the queue is missing, the movement may differ from the
operational standard, or the bonding unit may accidentally block the photography process. In such circumstances,
the wafer table will advance the next die in the queue, the bonding unit will move back to a safe position, and the
vision system will take another picture. In short, the system should completely ignore a defective cycle and continue
to process the next die as if the problematic cycle did not exist.

To test whether the system really implements this behavior, we generate two groups of objects for these stations,
one with and one without the problematic cycle. We compare their respective results (such as arm positions) through
state enquiry functions. Since the two clusters are supposed to have equivalent histories of operation, the difference
in values observed at their final states should be within acceptable limits of natural variation. The upper part of
Figure 3 outlines sample test code generated by the tool.

Test case generation and test script translation. Component (2) of the test tool consists of a test-case generator
and a test-script translator. The test-case generator produces equivalent pairs of stations or clusters by following the
TACCLE methodology described earlier. These test suites are represented in XML format. The test-script translator
accepts the XML file and, after packaging it with initialization preambles and error-reporting episodes [5], translates
the conceptual test cases into test scripts for various standards (such as Microsoft C11 .NET, Java, and company-
specific XML). The test scripts are also designed to meet industrial and company-specific programming standards.

2 “Observational equivalence” is a standard term used in finite state machines and related areas [8, 10]. Two states are
observationally equivalent if and only if they produce the same results when subjected to the same sequence of transitions.

C

We used observational
equivalence to substitute
for the need for precise
oracles and results, then
used two simple criteria
to substitute
observational
equivalence.

5

The C11 or Java test scripts can then
be compiled with the original source
code. Following a reboot of the
equipment, the CFSM-related
behaviors of the object-oriented
classes can be tested automatically.

Any compromise in quality. When
designing Component (2), we used
observational equivalence to substitute
for the need for precise oracles and
results, then used Criteria A and B to
substitute observational equivalence.
Process engineers might want to know
whether there is any compromise in
quality. We provide the following two
observations:

 We have mathematically proved
that the use of Criteria A and B
reveals exactly the same set of
failures as the testing of obser-
vational equivalence, even though
this property may appear counter-
intuitive to some engineers. Hence,
there is no concession as far as
effectiveness is concerned; and

 On the other hand, there is a
limitation in the testing of obser-
vational equivalence because it does
not check whether a specific
attribute of the system has a certain
value at a certain moment.

ith respect to the
s e c o n d o b s e r -
vation, we note
that the need to
test observational
e q u i v a l e n c e

arises from practical constraints. In
object-oriented systems, not all
attributes are visible. The timing
diagrams in the ASM project do not,
for instance, provide sufficient
information for testers to define a
precise oracle. Furthermore, the
software is embedded, and the outputs
from a station are hidden, only to be
consumed by other stations with the
same embedded software. Hence, the
testing of observational equivalence
provides a useful (but incomplete)
technique in the absence of precise
oracles or results.

Fortunately, real-world systems
must communicate with the external

Comparing Related Testing Methodologies

State values of objects were used in [12] as test oracles in their
experiments on class testing. However, [15] pointed out that "oracles
built by violating object encapsulation [so as to access hidden states]
may result in differences in behavior between what to test and what to
use," and hence "an effective alternative to violating encapsulation is to
provide a way of determining whether two objects are equivalent." The
ASTOOT approach, or A Set of Tools for Object-Oriented Testing,
introduced a technique for testing pairs of objects that are expected to
be equivalent or nonequivalent in their behavior. Unfortunately, the
theory discussed in [14] is not without flaws. The "black and white"
approach [13] improved on the idea of ASTOOT to reliably generate
object pairs that are equivalent. It was further enhanced into the
TACCLE approach [4], proving mathematically that the difficult tasks of
testing observational equivalence and nonequivalence can be simplified
into easier and more viable tasks. We made full use of the TACCLE
approach in the ASM project.

The authors of [1] checked the consistency of test logbooks against
test specifications. Nevertheless, for embedded software that controls
the movement of delicate hardware, a logbook entry recorded by a
program may be misaligned with hardware behavior. We enhanced the
checking of test logs by also taking user observations into account.

User Experience

The training of ASM software engineers to operate the testing tool
involved two iterations. It took two days for the average engineer to be
trained on the working principles of the testing tool and another two
days to define the timing diagrams and observable attributes of a typical
machine. After reviewing the input models thus produced, we retrained
the engineers in areas in which their concepts did not align properly with
those of the testing tool. It took half a day to complete the retraining and
another half day to rectify the input models.

Based on the input models, it took less than 30 seconds to generate
hundreds of test cases and overnight to generate a million test cases on
a standalone Intel Celeron machine with 400Mz CPU running Windows
2000. On identifying any failure, the system generates a test report in
Microsoft Excel within 10 seconds.

Users reported being "satisfied" with the tool and find the
"knowledge and experience gained ... helpful." On the other hand, at the
beginning of the technology-transfer project, there was resistance from
several users regarding the introduction of new testing concepts,
deployment of a new testing tool, and appointment of an independent
consultancy team to "help" verify the correctness of their software.
Although psychological resistance occurs in many work-related
contexts, this point should nevertheless be noted.

12. Briand, L., di Penta, M., and Labiche, Y. Assessing and improving state-
based class testing: A series of experiments. IEEE Transactions on Software
Engineering 30, 11 (Nov. 2004), 770–793.
13. Chen, H.Y., Tse, T.H., Chan, F.T., and Chen, T. Y. In black and white: An
integrated approach to class-level testing of object-oriented programs. ACM
Transactions on Software Engineering and Methodology 7, 3 (July 1998), 250–
295.
14. Doong, R.-K. and Frankl, P.G. The ASTOOT approach to testing object-
oriented programs. ACM Transactions on Software Engineering and
Methodology 3, 2 (Apr. 1994), 101–130.
15. Pezze, M. and Young, M. Testing object-oriented software. In Proceedings of
the 26th International Conference on Software Engineering (ICSE 2004)
(Edinburgh, U.K.). IEEE Computer Society Press, Los Alamitos, CA, 2004, 739–
740.

W

6

world, so oracles and results are not totally absent. We may integrate Component (2) with conventional testing or
other techniques to achieve a total test plan. In Component (3), we illustrate how we can take user observations and
evaluations into account to make the testing more comprehensive.

Component (3). Program instrumentation and consistency checks. We cannot rely fully on observational
equivalence for software testing. Suppose, for instance, the software of a controller has a fault such that it sends out
a "danger" signal when the situation is safe and a "safe" signal when the situation is dangerous. Suppose the
software of the bonding machine in the assembly system has a similar fault when interpreting the "danger" and
"safe" signals it receives. In this case, Component (2) of our testing tool cannot identify behavioral inconsistencies.
Although human users can observe and identify the error, they may still make mistakes, especially when testing
under tight time and budgetary constraints. It would be useful to have an additional mechanism to check the
consistency between machine and human interpretations. Component (3) supports this by means of program
instrumentation and consistency checks among timing diagrams, test results, and human observations.

eal-world situations in the assembly system are much more complex than this. Consider, for instance, a
scenario involving the production of a high-quality die. Process engineers perceive that the bonding
unit should pick up the current die at the central spot, place it on a bin, and then bond it. The actual
implementation involves elaborate exception-handling routines. The bonding unit can pick up the die
only after the wafer table has made minor adjustments that match the die but before the wafer table
starts repositioning itself to fit the next die. The bonding unit is also required to place the die at an

appropriate location while not blocking the vision system from capturing an image for analysis. To ensure a
comprehensive consistency check, Component (3) conducts test log analysis (similar to [1]) to verify whether:

 The actual behavior detected by the instrumented program is different from the specified behavior;
 The actual behavior observed and recorded by the user is different from the specified behavior; and
 The user evaluation of consistency is different from the evaluation by the consistency-checking mechanism.

To select scenarios for testing, process engineers can use the specification editor to highlight appropriate clusters
of stations in timing diagrams. Relevant test code for recording behavior is generated automatically and added to the
original source code of the application. After simple manual operations to define appropriate locations for state
enquiries, the resulting program probes the observable attributes of the objects via state enquiry functions. Engineers
then observe the running of the implemented objects and record the actual operation sequences into an electronic
logbook built into the system. They also add their own evaluation of whether the resulting execution is consistent
with the specified scenario.

Apart from test-log analysis, Component (3) has been integrated with Microsoft products, one of the software
development platforms used by ASM. It extracts from the specification editor an annotated table that maps the
stations of the timing diagrams to actual classes in the source code. The information is incorporated into a .NET add-
in, so software engineers can drag and drop instrumentation code to the source code of the project (the lower part of
Figure 3). The instrumented code consists of C11 macros. Simple configuration directives are built into Component
(3) to turn the instrumentation on or off, so production software is delivered without additional effort to remove the
instrumented statements. The inputs of user observations, test analysis, consistency checks, and error reports are
implemented in Microsoft Office. Other nontesting features (such as printing, version control, and collaborations)
are also handled by various Microsoft products.

Conclusion
We have highlighted the problems software testers can face in industrial projects where precise test oracles or test
results may not be available. We have applied advanced testing techniques in our TACCLE methodology to a real-
world engineering project for ASM. The results are encouraging. Despite the oracle problems, all the stations
specified by timing diagrams can be tested via observational equivalence and the results verified automatically or
semiautomatically. At the same time, the testing tool renders the abstract mathematical concepts and formal
algebraic specifications behind observational equivalence transparent to software developers and testers.

The study produced two key insights: First, the notion of testing observational equivalence and bypassing the
need for oracles is important in test automation for industrial projects where it is impractical to define a precise
relationship between the specification and the software under test. And, second, even imprecise additional
information from the application domain may be beneficial for the purpose of enhancing software quality through
instrumentation and consistency checks.

R

7

References
1. Andrews, J.H. and Zhang, Y. General test result checking with log file analysis. IEEE Transactions on Software

Engineering 29, 7 (July 2003), 634–648.
2. Beizer, B. Software Testing Techniques. Van Nostrand Reinhold, New York, 1990.
3. Brand, D. and Zafiropulo, P. On communicating finite-state machines. Journal of the ACM 30, 2 (Apr. 1983),

323–342.
4. Chen, H.Y., Tse, T.H., and Chen, T.Y. TACCLE: A methodology for object-oriented software testing at the class

and cluster levels. ACM Transactions on Software Engineering and Methodology 10, 1 (Jan. 2001), 56–109.
5. Fetzer, C., Felber, P., and Hogstedt, K. Automatic detection and masking of nonatomic exception handling. IEEE

Transactions on Software Engineering 30, 8 (Aug. 2004), 547–560.
6. Goguen, J.A. and Malcolm, G., Eds. Software Engineering with OBJ: Algebraic Specification in Action. Kluwer

Academic Publishers, Boston, 2000.
7. Milner, R. Communication and Concurrency. Prentice Hall International Series in Computer Science. Prentice

Hall, Hemel Hempstead, Hertfordshire, U.K., 1989.
8. National Institute of Standards and Technology. The Economic Impacts of Inadequate Infrastructure for

Software Testing. Final Report. Gaithersburg, MD, 2002; www.nist.gov/director/progofc/report02-3.pdf.
9. Peters, D.K. and Parnas, D.L. Using test oracles generated from program documentation. IEEE Transactions on

Software Engineering 24, 3 (Mar. 1998), 161–173.
10. van Gabbeek, R.J. and Weijland, W.P. Branching time and abstraction in bisimulation semantics. Journal of the

ACM 43, 3 (May 1996), 555–600.
11. Weyuker, E.J. On testing non-testable programs. The Computer Journal 25, 4 (Nov. 1982), 465–470.

T. H. TSE (thtse@cs.hku.hk) is a professor in the Department of Computer Science of The University of Hong Kong.

FRANCIS C. M. LAU (fcmlau@cs.hku.hk) is a professor in the Department of Computer Science of The University of Hong Kong.

W. K. CHAN (wkchan@cs.cityu.edu.hk) is a lecturer in the Department of Computer Science of City University of Hong Kong.
Part of the project was conducted when he was with The University of Hong Kong.

PETER C. K. LIU (peter.liu@asmpt.com) is the Chief Technology Officer of ASM Assembly Automation Ltd., Hong Kong.

COLIN K. F. LUK (colin.luk@asmpt.com) is the Director of Technology (Software) of ASM Technology Singapore (Pte) Ltd.,
Singapore.

This project was supported in part by a matching grant from ASM Assembly Automation Ltd. and the Innovation
and Technology Commission in Hong Kong (project no. UIM/77), a grant from the Research Grants Council of
Hong Kong (project no. 714504), and a grant from City University of Hong Kong (project no. 7200079).

