HKU CS Tech Report TR-2005-05

To appear irProceedings of the 5th International Conference on Quality Softé@@8iC 200%,
IEEE Computer Society Press, Los Alamitos, California (2005)

A Metamorphic Approach to Integration Testing of
Context-Sensitive Middleware-Based Applications '

W. K. Chant T.Y. Chen Heng Lu
Hong Kong University of Swinburne University . .
Science and Technology of Technology The University of Hong Kong

wkchan@cs.ust.hk

T.H. Tsed

tchen@ict.swin.edu.au

hlu@cs.hku.hk

Stephen S. Yau

The University of Hong Kong Arizona State University

thtse @cs.hku.hk

Abstract

During the testing of context-sensitive middleware-
based software, the middleware identifies the current
situation and invokes the appropriate functions of the
applications. Since the middleware remains active and the
situation may continue to evolve, however, the conclusion

yau@asu.edu

checkpoint and end at another. We identify functional
relations that associate different execution sequences of
test case. Based on a metamorphic approach, we check the
results of the test case to detect any contravention of such
relations. We illustrate our technique with an example that
shows how re-hidden failures may be detected.

Keywords. Context-aware application, integration

of some test cases may not be easily identified. Moreover, testing, metamorphic testing.

failures appearing in one situation may be superseded

by subsequent correct outcomes and may, therefore, be

hidden.

We alleviate the above problems by making use of a
special kind of situation, which we call checkpoints, such
that the middleware will not activate the functions under
test.

*(©2005 IEEE. This material is presented to ensure timely
dissemination of scholarly and technical work. Personal afs¢éhis
material is permitted. Copyright and all rights therein areired
by authors or by other copyright holders. All persons cogythis
information are expected to adhere to the terms and constiaimtked by
each author’s copyright. In most cases, these works may napusted
without the explicit permission of the copyright holder. Resion to
reprint/republish this material for advertising or promagabpurposes or
for creating new collective works for resale or redistribntto servers or
lists, or to reuse any copyrighted component of this work reotvorks
must be obtained from the IEEE.

T This research is supported in part by a grant of the Reseammit$
Council of Hong Kong (Project No. HKU 7145/04E) and a granfage
University of Hong Kong.

* Part of the research was done when Chan was with The Uniyefsit
Hong Kong.

§ All correspondence should be addressed to T. H. Tse at Deeatt
of Computer Science, The University of Hong Kong, Pokfulamnélo
Kong. Tel: (+852) 2859 2183. Fax: (+852) 2559 8447. Email:
thtse@cs.hku.hk.

1. Introduction

Context-sensitivity and ad hoc communications [1, 8, 9,
12] are two specific properties of ubiquitous computing

We propose to generate test cases that start at a applications. The former allows applications to detect, an

alyze, and react adaptively to changes in attributes, known
as thecontexts[7], that characterize the environmental
situation. The latter facilitates the components of the
applications to communicate dynamically according to the
changing contexts.

One kind of ubiquitous computing application is
context-sensitive middleware-based software.

The middleware is responsible for detecting and
handling contexts and situations, with a view to invoking
the appropriate local and remote operations whenever
any context or situation inscribed in the situation-aware
interface is satisfied [12]. Since the applications operate
in a situational and highly dynamic environment, this type
of configuration increases the intricacy in software gyalit
assurance. For instance, the ineffectiveness of common
testing strategies such as data-flow testing and contnel-flo
testing is exploited and illustrated by examples in [10].

Administrator
 HKU CS Tech Report TR-2005-05

Besides, the behaviors of the devices can be so volatile situation evolution is a major characteristic of context-
that very complicated mathematics is required to model sensitive middleware-based applications, context-cmlipl
the outcomes of an application precisely. As a result, testcases represent the majority class of test cases.
while specifications may exist, it may require a lot of The main contributions of the paper are as follows:
effort to determine theéest oracle that is, the mechanism S
against which testers can check the test outcome and decide(®) It significantly extends the work of Tse et al. [10] to
whether it is correct. The task will become forbidding if context-coupled test cases, which allow the updating
there are a large number of test cases. of contexts during the executions of test cases.

We observe that there is a growing amount of research
aiming at testing ubiquitous computing applications.
Axelsen et al. [2] propose a specification-based approach
to test reflective software in an open environment. They

model components as algebraic specifications and their (c) It recommends practical guidelines for designing test
Interactions -?.S message communication specifications. cases for such applications. For example, the follow-up
These specifications will be treated as the test oracle. test cases should activate context-sensitive function(s)

They suggest using a random selection strategy to produce via the middleware at chosen checkpoints.
test inputs. When the execution sequence of any test

input violates the specifications, it detects a failure. iThe The rest of the paper is organized as follows: Section 2
approach is essentially an execution monitoring approach. introduces the work that this paper depends on. Section 3

Flores et al. [6] apply temporal logic to define context discusses the motivations behind our work, develops the
expressions in context-sensitive software. They furtlser u notion of checkpoints for testing, and identifies the cldss o
an ontological framework to model similar concepts of testcases to be examined in this paper. Section 4 discusses
contexts. These concepts are finally represented as logicour technique through the example of a smart delivery
predicates. As far as the test case selection strategy isSystem. Finally, Section 5 concludes the paper.
concerned, they apply some form of category partitioning
on a custom interface to divide a concept into different 2 Preliminaries
partitions. Finally, they propose to have test cases
that _satisfy the context expression_s under the_ re_spective 2.1. Reconfigurable context-sensitive middle-
predicates. No test case generation method is included ware
in [6]. Furthermore, their work does not address the

o : e . (RCSM)

test oracle problemwhich is essentially the difficulty in
determining the expected outcome of complex software
systems such as context-sensitive applications.

Tse et al. [10] generate multiple context tuples as test
cases to check whether the outcomes satisfy isotropic
properties of context relations. This idea of applying
metamorphic testing4, 5] is novel. The context tuples
are applied to an application function under test atop the
context-sensitive middleware. This allows the middleware
to detect relevant situations and invoke repeatedly the
corresponding functions. The resulting contexts of the tes
inputs are then compared. When there is any discrepancy
from an expected context relation, an error is revealed.

However, as to be discussed in Section 3, when the
contexts change during test case execution, the technique
used in [10] to compare resulting contexts may miss to
report a failure. Hence, the technique is more applicable
if, during the execution of the test case, (i) the contexts
remain statior (ii) any change in contexts does not affect
any situation expressioh. In this paper, we shall refer
to such test cases asntext-decoupled test case®ther
test cases will be calledontext-coupled test caseSince

(b) It develops the notion of checkpoints to conduct
integration testing, facilitating the checking of test
results by the metamorphic testing approach.

Reconfigurable Context-Sensitive Middleware (RCSM)
[12] is a middleware for the ubiquitous computing
environment. It supports a Situation-Aware Interface
Definition Language (SA-IDL) [11], for specifying
context-sensitive application interfaces. Using an SA-
IDL specification [11], or SA-spec for short, it provides
every application with a custom-made object skeleton that
embodies both the context variables and invokable actions.
It periodically detects devices in the network, collects ra
contextual data from the environment, and updates relevant
context variables automatically. Once suitable situaion
conditions in the SA-spec are detected, the responsible
object skeleton will activate appropriate actions.

A situation expression an SA-spec formulates how
to detect situations as well as which action to be activated
when a situation is detected. In particular, based on a given
SA-spec, the middleware in a device may match a required
context variable in its SA-IDL interface with those of
surrounding devices. Hence, the same action of a situation
expression, due to different subgrouping of surrounding
devices, may be invoked by the middleware more than
1 see Section 2.1 for an explanation of situation expressions once. The “withink’ clause in a situation expression asserts

that the action will be invoked withix seconds after the
situation is detected. Similarly, the “frequency’=clause
requires the RCSM to probe the contexts at a ratetiofies

per second. The “priority’ clause indicates the priority of
the action: a higher value afentails a higher priority. We
refer to a function used in a situation expression in an SA-
spec as aadaptive functiorof the application.

2.2. Smart delivery system: an example

Consider the example of a smart delivery system
of a supermarket chain such that individual suppliers
replenish their products onto pallets, shelves, and cases
in various warehouses according to the demand sent off
by such pallet$ We shall use the word “pallet” to refer
collectively to a shelf, pallet, or case in the rest of the
paper. The smart deliver system includes four features:
(i) Each smart pallet can be dynamically configured to store
a particular kind of product at, as far as possible, a desired
quantity level. (ii) Each van of a supplier delivers a type
of goods. (iii) Goods that cannot sell can be returned to
the supplier. A smart pallet may request a van to retract
certain amount of goods. (iv) The system assumes that the
effective delivery distance for any pallet by any van is at
most 25 meters.

When a pallet is full, no replenishment is required.
When a delivery van moves along a street, a particular
pallet may detect the van and request for replenishment if
the desired quantity is not met. If there are enough goods
in the van, the request is entertained.

The replenishment signal may also be sensed by any
other delivery van(s) nearby. The latter will not take
replenishment actions if the closest van can provide
sufficient quantities. A van may not be able to deliver the
requested quantity of goods to a particular pallet, however
if there are other pallets requiring replenishment. Beeaus
of the interference among vans, possibly from different
suppliers, and the presence of other nearby pallets with the
same goods, the actual amount of goods in a pallet may
differ from its desired level.

Figure 1 shows a sample situation-aware interface

#define € 5
RCSMContext Classanextends Bas¢

float qy; // the quantity of goods deliverable by a van

Position py; //the location of the van ifx, y) coordinates

float d; // square of distance between the van and a pallgt
b

RCSMContext Claspalletextends Bas¢

int s // no. of vans surrounding the pallet

float qq; // the desired quantity of goods for the pallet
float q; // the ledger amount of goods in the pallet
float qp; // the quantity of goods on hand in the pallet

Position pp; // the location of the pallet ifix, y) coordinates

RCSM Context Acquisitiod pallet {frequency =1}}
RCSMSARulesmartan{

Derived vand (vanpy.x— pallet pp.x)2
+(vanpy.y — pallet pp.y)?
PrimitiveSituation overstock
([-3, OJ(palletq — palletgq > €) A (d < 625));
PrimitiveSituation understock
([-3, Oj(palletgq — palletq > €) A (d < 265));
// Note: 625 is written as 265 by mistake
ActivateAt overstock
[local void Withdraw()[within1][priority1] }
ActivateAtunderstock
[local void Replenisk)[within][priority1] }

Figure 1. A simplified SA-IDL specification
for the smart device in delivery vans.

received context, the current ledger amoyritat the pallet
site has been short of the desired quardifyor more than
atolerance of for the last 3 seconds. When this is the case,
the application would like to replenish the goods in the
pallet. This is accomplished by invoking the local function
Replenish). A situationoverstockis similarly defined.

There is an error in the SA-IDL specification of the
device in delivery vans in Figure 1. In the situation
expressiorunderstockthe value “625” is written as “265”
by mistake.

The functionsReplenisll) and Withdraw() are used to
supply or retract goods. They increment and decrement
the context variablay, by 1 non-deterministically. The

specification for the device in delivery vans. We have mjddleware invokes the functions a number of times to
simplified the SA-IDL specification by assuming thatavan achieve the required delivery amount. The overall ledger
will deliver the same amount of goods to requesting pallets gmount at the pallet site may oscillate, sometimes higher
in each round of delivery. We have also assumed only one ihan the desired quantity and sometimes lower, and will

type of product.
The situatiorunderstockepresents that, when the pallet
is inside the effectively delivery region at tinteof the

2Readers may be interested to read the press release thaMatal-
has set a January 2005 target for its top 100 suppliers todwingl RFID
[radio frequency identification] tags on cases and pallessided for Wal-
Mart stores ..."” Itis emphasized that “the first to market wins”

eventually reach the desired value.
Figure 2 shows a correct implementation of the
functionsReplenisk) andWithdraw(). Once a new value

3 A ledger amount includes the quantity of goods in a particpédiet
as well as the quantity of goods that a van wishes to add todletpin
this paper, whenever there is no ambiguity, we simply gjs@stead of
palletq;. This kind of simplification applies to all context variahles

for the context variableg, is computed, it should be
detected by the middleware at the pallet site. This paper
assumes that there is a correct test stub for the function
ComputeLedgerAmouptin the pallet device to take the
values ofq, from all the surrounding vans and to compute
a corresponding new value for the context variapleThe
theoretical formula to compute the varialjeis defined as
follows, although tolerances such|gs— qq| < € may need

to be added in the real-life implementation:

0
a=Y a +q
2,0t

where qf,i) denotes the context variably, from the ith
surrounding van. For a configuration with only one pallet
and one van, the formula can be simplified to:

O =0v+0dp @)
2.3. Metamorphic testing

Metamorphic testing [3-5] is a property-based testing

strategy. It recommends that, even if a test case (known as

the original test case) does not reveal any failure, follow-

void Replenis){ void Withdraw(){
s intr; s intr;
s r=rand) %s, s r=rand)%s;
// randomize the action // randomize the action
s ifr==0{ s ifr==0{
S if gy < MAX{ S10 if gy >0{
S v=aq+1 S11 Qv=0—1
1} 1}
s sleegr/2); sz sleefir/2);
} }

Figure 2. Implementation of
Withdraw ()

Replenish() and

results of execution again an oracle, it alleviates the test
oracle problem.

This paper serves as an illustration of how metamorphic
testing can be usefully applied in the integration testihg o
context-sensitive middleware-based applications. W# sha
not address the principles and procedures of formulating
metamorphic relations. We refer readers to [4, 5] for the
formal definition of metamorphic testing, and [3] for the
selection of useful metamorphic relations.

up test cases should be constructed to check whether the3. Checkpoints in context-sensitive

software satisfies some necessary conditions of the target

solution of the problem. These necessary conditions are
known as metamorphic relations.

Given a function f and its implementationP, a
metamorphic relation is a necessary condition over a
set of distinct input datax;, X2, ..., X, and their
corresponding output valueigx;), f(x2), ..., f(xn) for
multiple executions of the target softwafe This relation
must be satisfied when we replatéy P; otherwiseP will
not be a correct implementation 6f

Consider a program which, for any givercoordinate
as input, computes thg coordinate of a straight line
that passes through a given poifd, Yo). A sample
metamorphic relation is

fox)—yo _ f(x2)—Yo
X1—Xo X2 —Xo

Suppose the given point {8, 4), and suppose the original
test case; = 5 produces(x;) = 7. We can compute the
value of afollow-up input, sayx, = 8. If the program
producesP(x2) = 11, then the metamorphic relation is
violated. It signals a failure.

Throughout the course of checking of results in

middleware-based applications

3.1. Motivations

Let us first consider the motivations for enhancing the
testing technique proposed in our previous work [10].
Given a scenario with one van and one pallet, the tester
may generate the following two test cases:

ul = (S:17 qdzlooa q|:507 quoa qV:77
pp:(la 1)a pV:(Ov 0))
U = (s=1,09=100q =73 qp=73 v =7,

Pp = (10, 20), pv = (4a 4))

Consider the test casg. Initially, the middleware
detects that the conditiamderstocks satisfied and, hence,
invokes the functiomRepleniskl) to incrementy, by 1. The
detection ofunderstockwill continue until g gradually
reaches 95. At this point, the difference betwegrand
g is 100— 95, which is no more than the tolerance limit
€ = 5. As for the test casep, we haved = (10—

metamorphic testing, there is no need to predetermine the 4)2 4 (20— 4)2 = 292. Sinced > 265, the middleware

expected result for any given input, such as whef&)
should be the same as the test oraf{6), and whether
P(8) should be 11.5. Since there is no need to check the

does not detect amnderstocksituation. The test stub
ComputeLedgerAmouptwill updateq; to 80 according to
Equation (1). Thus, the following context tuples will retsul

As a result, the failure that should be revealeddy, is
actually hidden when the test case terminates. Detecting

CTy, = (s=1,d4=100 ¢ =95 g, =0, gy =95, failures based on the final contexts of a test case is,
pp=(1,1), pp=(0,0)) therefore, more difficult in context-sensitive middleware
CTy, = (5=1, =100 ¢ =80, qp =73 oy =7, based applications than the conventional counterparis. Th

will also need to be addressed.

Thirdly, as the middleware remains active and situation
may continue to evolve, the termination of some test
cases may not be easily identified. We propose to use a
new concept of “checkpoints” in lieu of the detection of
" termination.

Pp = (10’ 20)) Pv= (4’ 4))

Our previous work suggests testing against metamor-
phic relations such as “when the distances between the
pallet and the van for both test cases are comparable
the ledger quantitieg, for both test cases should also be
comparable.” Since the corresponding valuesgo{95]
versus 80) irCT,, andCT,, do not agree, the metamorphic ~ 3.2. Checkpoints
relation is violated and, hence, a failure is revealed.

While the proposal to bypass complicated test oracles by We recall that an environmental situation is character-
checking isotropic properties is innovative, there areva fe ized by a set of contexts that may change over time. In
limitations: order to detect a relevant situation via situation expogssi

First, our previous work does not deal with changes the middleware will need to activate adaptive functions,
in contexts during a test case execution. It is assumed as explained in the last paragraph of Section 2.1. There
that the contexts are fixed or can be ignored once a test are circumstances where none of the situation expressions
execution starts. The previous assumption is not without are relevant to the adaptive functions under test. For such
good practical reasons. When both a pallet device and situations, the middleware will not activate any adaptive
the device in a delivery van are mobile in arbitrary speeds function. We refer to these situationsaweckpoints
and directions, it is difficult for a tester to find a complex Let us give an illustration of a checkpoint using the
mathematical model to represent their motions and to example in Section 3.1. Suppose the inputs applied to
generate follow-up test cases. In the present paper, we the functionReplenish) in Section 3.1. After a few rounds
propose to relax the assumption and address this difficult of activations ofReplenisk), the application produces the
problem. context tupleCTy,. We can observe from Figure 1 that

Secondly, in the smart delivery system, a van may move no further function activation will be possible unless the
and a pallet may be relocated, so that the distance between acontext is changed by some external factor. Hence, a stable
van and a pallet may change. Since the middleware always checkpoint has been reached.
remain active, the original situation that triggers a test By treating checkpoints as the starting and ending
case may not apply throughout the period of its execution. points of a test case, they provide a natural environmental
Failure that occurs at a certain instant may be hidden again platform for the integration testing of the functions of
at the conclusion of a text case execution. This can be a system. This setting offers an opportunity to test the
illustrated as follows: functions in different parts of the application within the

When the distance between a van and a patieinfalls same environment. When a test case is being executed,
within the activation distance, such as 16.27 meters, the the situation of the functions under test may change. The
adaptive functiorReplenish) will be activated a second changing situation may or may not represent checkpoints
time by the middleware. When the devices are kept within of other functionsnot under test, depending on whether
the activation distance for a sufficiently long period of situation expressions of the latter functions are inert to

time, multiple activations oReplenisf) will result. This these changes. Detailed discussions on the design of a non-
will change the ledger amoum at the pallet site to the interference test setup are beyond the scope of this paper.
desired quantitygy within the tolerance limit as stated Nonetheless, we note that when the changing situation of a

in the situation-aware interface. Consider, for exampje, test case happens to represent checkpoints of funatiains
again. Suppose that testers reduce the separation distanceinder test, there is no need to apply auxiliary testware to
to 16.27 meters after the context tufl@,, above has been neutralize the ripple effects of the contexts on the rest of
computed. After 15 successful incrementsgpfby the the application.
functionReplenisf), the context tuple will become: We shall explore in detail the testing techniques related
to the application of checkpoints to context-coupled test
cases in Sections 3.3 and 4. We note a couple of
CTy, = (s=1,09=100 ¢ =95 gp=73 ay =22 practical considerations before applying the concepstFir
Pp = (4,0), py = (4,16.27)) amiddleware may depend on the current contexts as well as

the historical contexts to determine an activation sitrati

Testers may have to determine from the limited execution
history of a test case whether the middleware will finally
activate some adaptive function. In theory, this may not
be feasible. In practice, however, as there are “within
X" clauses defined in SA-IDL specifications, an RCSM-
like middleware provides a bounded waiting period for

testers to conclude whether a checkpoint has been reached.

Secondly, in general, an application may or may not have
checkpoints. In this paper, we shall limit our discussians t
applications that will reach some checkpoints.

3.3. Test cases at checkpoints

When a middleware reaches a checkpoint, a further
change in context may or may not trigger the middleware
to activate adaptive functions under test. There are three
possible cases.

Case (1): Test case has reached a final checkpoinin
other words, there is no possibility of further activation
of functions. The collection of context tuples, or contexts
for short, represent &inal checkpoint of the application.
Verifying whether it is a valid combination of contexts for
the application can be performed.

In general, the contexts of a final checkpoint may
or may be observable. Suppose, for sake of argument,
that they are observable. We may compare the results

that result in some checkpoints. Suppose the contixts
04, andq of the test casdy are denoted by, g4, and
qi;, respectively. For either checkpoimlyerstockdoes not
hold; otherwise the middleware would activate the function
Withdraw() further. Hence, we ha\i’e(qd:L —e<q, <

Qd, +€) A dp <625 and(qy, —€ <, <qd, +€) A 2 <
625.

In general, there are 3 possible relations betwggn
andqq,, namely, =", “ <", and “>". When g4, = qg,,

if the pallet(s) for both test cases are within the delivery
distance, we must haviey, — q,| < 2¢, or g, ~ q, for
short. Substituting it into the above equation, we have

MRy If g4, = Qq,, d1 < 625, andd, < 625, then
q|1 ~ q|2-

Similarly, we can derive appropriate relations for the sase
whereqq, < Qd, andqg, > qd,-

Obviously, if test cases are context-decoupled, subse-
guent values ofly, d», qq,, andqq, are expected to be
unchanged or can be ignored during the executions of the
two test cases. This will result in a metamorphic relation
similar toMRpgwerupin [10].

For context-coupled test cases, checking the metamor-
phic context relations may not reveal failures, as disalisse
in Section 3.1. In this paper, we propose to test relations
of multiple test execution sequences, similarly in style to
metamorphic context relations but more complex in detail.

Let us consider the test casgin Section 3.1. During

with those of another test case that has also reach athe execution ofuy, a number ofReplenisf) function

checkpoint according to some metamorphic relation such
as the isotropic property on the conteaxtillustrated in
Section 3.1. Of course, if it is not possible to observe
the context results of the application, it will be an open
verification problem, which will not be addressed in this
paper.

Case (2): Test case will reach another checkpointin
other words, the middleware will activate some functions
and then reach another checkpoint.

Obviously, all the situation expressions are satisfied at
the checkpoint; otherwise the middleware would continue
to activate further functions. Hence, checking the comstext
against the situation expressions as post-conditions is
ineffective. Having said that, research shows that, given a
relation, a derived relation may have a better fault detecti
capability than the given one [3].

Although we stated earlier that we would not address
the principles of formulating metamorphic relations irsthi
paper, we would like to add that some useful expected
relations can be derived from situation expressions. Teste
may then confirm whether such relations are indeed
expected relations. Take the situational condibgarstock
as an example. Suppose there are two test chsasdt,,

invocations are expected to occur. Each of them will
increment the context variablg, by 1. Similarly, the
functionWithdraw() is expected to decremeqt by 1. The
test casa; originally invokes the functioiReplenisl) 88
times to reach the conte@T,,. SupposeJ; is a follow-
up test case that has the same behaviors, but an additional
Withdraw() is called beforal; is executed. Theny; will
invoke Replenisk) 89 times instead of 88.

Since the functionReplenisf) and Withdraw() are
symmetric in nature, we can generalize the situations and
formulate the following metamorphic relation:

MRy: Lett be an original test case and

be a follow-up test case that share the same
checkpoint, known as dnitial checkpoint If we
applyWithdraw() to the initial checkpoint before
executingt’, the number of invocations of the
Replenisk) function fort’ is expected to be more
than that oft. If we apply Replenisk) to the
initial checkpoint before executirtty the number

of invocations of thewithdraw() function fort’

is expected to more be than thattof

4Without the loss of generality, we assume that all variabsyc
positive values in the illustration.

Table 1. Updated contexts for test cases
and t,.

ta

z
o

d |qa|a |9]| @

4.1. Context-coupled test casg

Consider a context-coupled test césbelow for testing

the configuration of one pallet device and one device in

No] d Taifa [] T a delivery van, with a test stuBomputeLedgerAmou(jt
e AR E L R S in the pallet device. Following the nomenclature in
4] 300 18 | 14 | 18 32
) NETIT XN IEN W N b BRI metamorphic testing, we shall refer to it as trgginal test
S 320 [22 [13 [15 [28 6l 200 |2]12]15 | 27 case.
6l 200 |22 |12 | 15 27 7] 200 | 22 |12 15 27
7] 180 [20 [12 | 18 | 30 8 180 120112] 18 | 30
sl 170 19 | 11 16 27 9] 170 19 | 11 16 27 -
o 120 [18[10 |15 25 10 120 [18]10]15] 25 1 = (CTt , O)
0] 80 |18]9 [17] 26] 80 [18[09 [17] 2 1 1
| 20 [19]38 | 22| 30 2] 20 |19 8 |22 | 30 C'I't1 = (S: 1, 0o = 20’ q = 20’ Op = 8, Qv = :|_27
12] 30 217 21 28 131 30 2217 21 28
3] 30 [22]6 21| 27 4] 30 |22 6 [21 [27 Pp = (17, :I.)7 pv= (1, l))
Updated contexts for t; Updated contexts for t, étl = ((d=256 g4 = 20, a = 8),

Case (3): Test case will not reach another checkpoint.

In other words, the middleware will activate functions
repeatedly and will not terminate. Since the system does
not terminate, it may already represent a failure. On
the other hand, if non-terminating invocations do not
mean a failure, testers may propose metamorphic relations
between the context sequences of two test cases, similarly
to Case (2) above.

We note that, in general, termination is undecidable. In
theory, therefore, testers may not be able to distinguish
Case (3) from Case (2). In practice, testers may assume that
the software will not terminate if some maximum period of
time has elapsed. They can collect the statistics, such as
the mean values, of the contexts over a period of time as
the resulting contexts. In this way, Case (3) will degereerat
to Case (2). For the ease of discussions, however, we shall
restrict ourselves to only Case (2) in this paper.

4. Example of context-coupled test case with
follow-up test case

In the last section, we have identified a new class
of context-coupled test cases that remain unexplored in
our previous work, and introduced a new concept of
checkpoints with a view to revealing failures in such test
cases. In this section, we apply the concepts to detect the
failures caused by the fault in Figure 1, that is, the cooditi
d < 265 instead ofd < 625 in the situatiorunderstock
using context-coupled test cases.

We shall use a notation different from previous sections
to accommodate the features of a context-coupled test case.
We define a test cadein two parts, namely, the initial
context tupleCT; and a sequencét of context updates.
The first element irét comes fromCT;. For the ease
of illustration, “nice-looking” numerical values without
decimal places are used in the examples.

d =240, gg = 30, gp = 12),

d=210 g4 =33 qp=12),
d= SOQ Qd = 187 qp = 18)7
d =320 g4 =22, qp=15),

d =200, gy =22, g, = 15),
d =180 g4 =20, g, = 18),
d=170 g4 =19, qp = 16),
d =120, qq =18, g = 15),
d=280, qu =18, qp=17),

d=20, qq =19, qp=22),

d=30 gy =22 gp=21)

(
(
(
(
(
(
(
(
(
(
(
(;
(d=30, gy =22 g, =21))

Step (1): Apply the initial contextCT; to the one
pallet and one van configuration. Update the derived
contextd to 2565 According to Equation (1), the test
stub ComputeRadiang¢@ will changeq, to 12+ 8 = 20.
Sinceq andgq are 20, according to situation expressions
overstockandunderstockn Figure 1, the middleware will
not be triggered to activate any function. The application
is, therefore, at a checkpoint.

Step (2): Apply the second context update ®f, (that
is, (d =240, g4 = 30, gp = 12)) to the configuration. One
of the possible ways to enable the required context update
is to set the desired quantity of the pallet device to 30,
move the pallet device from location coordinate (17, 1) to
(v/240, 1), and add 8 unit of goods to this particular pallet.
The test stub will updatg, from 20 to 12+ 12 = 24. The
updated contexts of the configuration are shown in Table 1.

Step (3): Since the difference betweary and q is
greater than the tolerance lindt= 5, and sincel is not
more than 265, the situatiomnderstockis detected and,

5Since the situation expressions in Figure 1 deal directlih whe
derived contexd, we shall refer tod instead of the basic contexis,
and py for the ease of discussion.

hence,Replenisk) is invoked by the middleware. The
context variabley, is updated from 12 to 13 bigeplenish).
This is an automatic step.

Step (4): Testers then apply the third context update
of @, (that is, @ = 210, qq = 33, qp = 12)) to the
configuration. This changep from 24 to 25.

Step (5): The above interleaving of context updates
by testers and automatic activations of functions by the
middleware continues for 3 more rounds. Testers have
applied the 6th entry cﬁ)tl. The context variablg will be
27 after the functiotWithdraw() has decrementeg|, from
13 to 12. Comparing the context variablgsand gy, no
situation inscribed in the situation interface is fulfilléthe
configuration has reached a checkpoint. Instead of waiting
for a further activation by the middleware, therefore,¢est
apply the 7th context updatd & 180, gq = 20, qp = 18).
Steps (2)—(5) are then repeated for the re@@f

Step (6): Finally, the test case execution reaches the
13th entnf of étl. It completes the execution of the
interactive test casg. The test casg will decrementqy
gradually after the 4th entry iétl. This is done either
by invoking the functionWithdraw() or, in case that a

—=—qd

ql —e—d

_A\ X T 350
[Y i
M=
:: H/A/M I
ey

30

25

- 100

5 \/’_v” 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14
The i-th context update

Contextual Value after the i-th context update|

Figure 3. Context trends for test case ts.

p2= (s =1, q;=100 q,=73 g, =73, p,= (10, 20)).

According to the description in Section 2.2 and the SA-
IDL specification in Figure 1, the replenishment request
will be triggered in 4 seconds. This auxiliary pallet device

checkpoint has been reached, by retaining the previous is, therefore, expected to join the network at situatdar

value forgy.
Since we are interested in applying other adaptive
functions to a selected checkpoint of the original test case

4 seconds, and then leave the network. Afterward, the rest
of the test casé (that is, the context variables qq, and
gp of the 7th to 13th entries @,) is applied as scheduled.

as discussed in Section 3.3, the three context updates thatThe test cas® is as follows:

will result in checkpoints of the application configuration
are highlighted inétl. For the same reason, testers may
randomly generate an original test casas long as they
can find checkpoints during its execution.

4.2. Follow-up test case,

Following the concepts presented in Case (2) of
Section 3.3, a follow-up test cadg of t; should share
the same initial checkpoint as. First, testers should
identify a checkpoint iri;. As highlighted inétl, there are

several possible choices. Suppose testers choose th&lsecon

checkpoint, namely, the 6th entry é[l. For the ease of
description, we shall denote it iyt According toMRy,
testers would like to provide a situati® consistent with
S such that (i) it expects to invoke the adaptive function
Replenish), and (ii) it increases the number of subsequent
invocations of the adaptive functidiithdraw().

There are many methods to set 8p One approach is

to use an auxiliary pallet device. For instance, testers may

use the pallet device of test cagein Section 3.1, namely,

6 After all context updates have been applied, the middlewasestila
detect situations and, hence, may invoke functions untittrdiguration
reaches a checkpoint. Without the loss of generality, warasshat the
test case will reach a checkpointimmediately after the finatexd update

in G,

th = (C-ﬁza étz)

CTtg = (5217 qd:207 a :207 Qp:8a qV:127
pp:(]-?a 1)7 pV:(la 1))
O, = ((d=256 0a =20, gp=8),

(

(d =240 gg =30, gp = 12),
(d =210 gy =33 gp=12),
(d=300, qq =18, gp=18),
(d =320 qq = 22, qp = 15),
(d =200 gq =22, gp=15),
(d =200, gq = 22, g, = 15),
(d =180 gq = 20, gp = 18),
(d =170 gg = 19, gp = 16),
(d=120 qq =18, gp=15),
(d=80, q4 =18, qp=17),

(d=20, gq = 19, gy = 22),

(d=30, q¢ =22 gp=21),

(d=30, q4 =22 gqp=21))

We first verify the results at checkpoints. Since the
metamorphic relatioMR; is applicable, testers may apply

—=—qd —A—aqv

g —e—d

A\
[AN
A

350
30

300

25

r 250

20

r 200

+ 150

Contextual Value

e
M
; ——

— T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- 100

50

The i-th function activiation

Figure 4. Expected context trends for test
case t».

it for testing. However, as discussed in Section 3.1,
the failure is subtle. It occurs immediately after the
application of the situatior8 to the test configuration.
The context variableg, should be decremented, but is
actually not. Owing to the subsequent detections of the
overstocksituation followed byReplenisk) actions, the
next checkpoint of the test case leaves no footprint of the
failure. In shortMR; cannot reveal any failure.

On the other hand, both test cases have same numberexperimentations are in order.

of Withdraw() invocations (related to entries 7-13 for
test casd; and entries 8-14 foty) between the second
checkpoint and the final one. This violates relat/dR,,
and hence, reveals a failure.

Interested readers may wish to know whether it is easy
to recognize the failures via other means, such as by
comparing the resulting context values with the expected
values. Figure 3 shows graphically the trends of the context
variables for test cade. Contextd is plotted against the y-
axes on the right of these graphs. All the other contexts are
plotted against the y-axes on the left. Figure 4 shows the
expected results of test caseén a correct implementation.
The two charts look remarkably similar. Since the fault
only causes the value of; to be updated once, the failure
is quite subtle. In short, our technique helps testers ifyent
failures that may easily be overlooked.

5. Conclusion

Context-sensitive middleware-based software is an
emerging kind of ubiquitous computing application. A
middleware detects a situation and invokes the appropriate
functions of the application under test. As the middleware
remains active and the situation may continue to evolve,

however, the completion of a test case may not be identified
easily. In this paper, we have proposed to use checkpoints
as the starting and ending points of a test case. Since
the middleware will not activate any function during a
checkpoint but may invoke actions in between two such
situations, the concept offers a convenient environment fo
conducting the integration testing of the functions of a
system.

In our previous work, we demonstrated the ineffec-
tiveness of common white-box testing strategies such
as data-flow testing and control-flow testing to detect
subtle failures related to situation interfaces. Metarharp
testing with context-decoupled test cases was proposed
to reveal failures of context-sensitive middleware-based
applications.

In this work, we have further demonstrated the
difficulties in revealing the violation of metamorphic
context relations involving the execution of multiple
context-coupled test cases. To supplement the checking
of context relations, we have also proposed to check the
relations of execution sequences between checkpoints for
multiple test cases. We have illustrated how a subtle failur
due to the fault in the example in Section 2.2 can be
revealed.

We have significantly extended our previous work. This
paper is afirst step toward the integration testing of cdntex
sensitive middleware-based applications. Although the
initial results are encouraging, further investigatiomsl a
In particular, we shall
investigate the effectiveness of our approach in fault
detection, examine the issues of scalability and online
testing, develop formal procedures and practical guidslin
for our approach, and address the question of automatic
checking of metamorphic relations in a context-sensitive
middleware-based environment.

References

[1] G.D. Abowd and E.D. Mynatt. Charting past,
present, and future research in ubiquitous computing.
ACM Transactions on Computer-Human Interaction
7 (1): 29-58, 2000.

E.W. Axelsen, E.B. Johnsen, and O. Owe. Toward
reflective application testing in open environments.
In Proceedings of the Norwegian Informatics Confer-
ence(NIK 2009, pages 192-203. Tapir, Trondheim,
Norway, 2004.

[3] T.Y. Chen, D.H. Huang, T.H. Tse, and Z. Q. Zhou.
Case studies on the selection of useful relations
in metamorphic testing. IfProceedings of the 4th
Ibero-American Symposium on Software Engineering
and Knowledge Engineerin@llISIC 2004, pages

(2]

(4]

569-583. Polytechnic University of Madrid, Madrid,
Spain, 2004.

T.Y. Chen, T.H. Tse, and Z. Q. Zhou. Semi-proving:
an integrated method based on global symbolic
evaluation and metamorphic testing. Pnoceedings

of the ACM SIGSOFT International Symposium on
Software Testing and Analys{§SSTA 2008 pages
191-195. ACM Press, New York, 2002.

[5] T.Y. Chen, T.H. Tse, and Z.Q. Zhou. Fault-based

testing without the need of oracldeformation and
Software Technology5b (1): 1-9, 2003.

[6] A. Flores, J.C. Augusto, M. Polo, and M. Varea.

(7]

(8]

Towards context-aware testing for semantic interop-
erability on PvC environments. IRroceedings of
the 2004 IEEE International Conference on Systems,
Man, and Cybernetics(SMC 2004, volume 2,
pages 1136-1141. IEEE Computer Society Press, Los
Alamitos, California, 2004.

H.J. Nock, G. lyengar, and C. Neti. Multimodal
interfaces that flex, adapt, and persist: multimodal
processing by finding common causeommunica-
tions of the ACM47 (1): 51-56, 2004.

P. Tandler. The beach application model and
software framework for synchronous collaboration
in ubiquitous computing environmentdournal of
Systems and Softwa@9 (3): 267-296, 2004.

10

9]

(10]

[11]

[12]

P. Tarasewich. Designing mobile commerce applica-
tions. Communications of the ACM16 (12): 57-60,
2003.

T.H. Tse, S.S. Yau, W.K. Chan, H. Lu, and
T.Y. Chen. Testing context-sensitive middleware-
based software applications. Proceedings of the
28th Annual International Computer Software and
Applications ConferencfCOMPSAC 200Y% volume

1, pages 458-465. IEEE Computer Society Press, Los
Alamitos, California, 2004.

S.S. Yau, D. Huang, H. Gong, and S. Seth.
Development and runtime support for situation-
aware application software in ubiquitous computing
environments. InProceedings of the 28th Annual

International Computer Software and Applications
Conferenc COMPSAC 2004 pages 452—-457. IEEE

Computer Society Press, Los Alamitos, California,
2004.

S.S. Yau, F. Karim, Y. Wang, B. Wang, and
S. K. S. Gupta. Reconfigurable context-sensitive mid-
dleware for pervasive computindEEE Pervasive
Computing 1 (3): 33—40, 2002.

