
To appear inProceedings of the 5th International Conference on Quality Software(QSIC 2005),
IEEE Computer Society Press, Los Alamitos, California (2005)

A Metamorphic Approach to Integration Testing of
Context-Sensitive Middleware-Based Applications∗†

W. K. Chan‡

Hong Kong University of
Science and Technology

wkchan@cs.ust.hk

T. Y. Chen
Swinburne University

of Technology
tchen@ict.swin.edu.au

Heng Lu
The University of Hong Kong

hlu@cs.hku.hk

T. H. Tse§

The University of Hong Kong
thtse@cs.hku.hk

Stephen S. Yau
Arizona State University

yau@asu.edu

Abstract

During the testing of context-sensitive middleware-
based software, the middleware identifies the current
situation and invokes the appropriate functions of the
applications. Since the middleware remains active and the
situation may continue to evolve, however, the conclusion
of some test cases may not be easily identified. Moreover,
failures appearing in one situation may be superseded
by subsequent correct outcomes and may, therefore, be
hidden.

We alleviate the above problems by making use of a
special kind of situation, which we call checkpoints, such
that the middleware will not activate the functions under
test. We propose to generate test cases that start at a

∗ c©2005 IEEE. This material is presented to ensure timely
dissemination of scholarly and technical work. Personal useof this
material is permitted. Copyright and all rights therein are retained
by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by
each author’s copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder. Permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

† This research is supported in part by a grant of the Research Grants
Council of Hong Kong (Project No. HKU 7145/04E) and a grant ofThe
University of Hong Kong.

‡ Part of the research was done when Chan was with The University of
Hong Kong.

§ All correspondence should be addressed to T. H. Tse at Department
of Computer Science, The University of Hong Kong, Pokfulam, Hong
Kong. Tel: (+852) 2859 2183. Fax: (+852) 2559 8447. Email:
thtse@cs.hku.hk.

checkpoint and end at another. We identify functional
relations that associate different execution sequences ofa
test case. Based on a metamorphic approach, we check the
results of the test case to detect any contravention of such
relations. We illustrate our technique with an example that
shows how re-hidden failures may be detected.

Keywords: Context-aware application, integration
testing, metamorphic testing.

1. Introduction

Context-sensitivity and ad hoc communications [1, 8, 9,
12] are two specific properties of ubiquitous computing
applications. The former allows applications to detect, an-
alyze, and react adaptively to changes in attributes, known
as thecontexts[7], that characterize the environmental
situation. The latter facilitates the components of the
applications to communicate dynamically according to the
changing contexts.

One kind of ubiquitous computing application is
context-sensitive middleware-based software.

The middleware is responsible for detecting and
handling contexts and situations, with a view to invoking
the appropriate local and remote operations whenever
any context or situation inscribed in the situation-aware
interface is satisfied [12]. Since the applications operate
in a situational and highly dynamic environment, this type
of configuration increases the intricacy in software quality
assurance. For instance, the ineffectiveness of common
testing strategies such as data-flow testing and control-flow
testing is exploited and illustrated by examples in [10].

1

Administrator
 HKU CS Tech Report TR-2005-05

Besides, the behaviors of the devices can be so volatile
that very complicated mathematics is required to model
the outcomes of an application precisely. As a result,
while specifications may exist, it may require a lot of
effort to determine thetest oracle, that is, the mechanism
against which testers can check the test outcome and decide
whether it is correct. The task will become forbidding if
there are a large number of test cases.

We observe that there is a growing amount of research
aiming at testing ubiquitous computing applications.
Axelsen et al. [2] propose a specification-based approach
to test reflective software in an open environment. They
model components as algebraic specifications and their
interactions as message communication specifications.
These specifications will be treated as the test oracle.
They suggest using a random selection strategy to produce
test inputs. When the execution sequence of any test
input violates the specifications, it detects a failure. Their
approach is essentially an execution monitoring approach.

Flores et al. [6] apply temporal logic to define context
expressions in context-sensitive software. They further use
an ontological framework to model similar concepts of
contexts. These concepts are finally represented as logic
predicates. As far as the test case selection strategy is
concerned, they apply some form of category partitioning
on a custom interface to divide a concept into different
partitions. Finally, they propose to have test cases
that satisfy the context expressions under the respective
predicates. No test case generation method is included
in [6]. Furthermore, their work does not address the
test oracle problem, which is essentially the difficulty in
determining the expected outcome of complex software
systems such as context-sensitive applications.

Tse et al. [10] generate multiple context tuples as test
cases to check whether the outcomes satisfy isotropic
properties of context relations. This idea of applying
metamorphic testing[4, 5] is novel. The context tuples
are applied to an application function under test atop the
context-sensitive middleware. This allows the middleware
to detect relevant situations and invoke repeatedly the
corresponding functions. The resulting contexts of the test
inputs are then compared. When there is any discrepancy
from an expected context relation, an error is revealed.

However, as to be discussed in Section 3, when the
contexts change during test case execution, the technique
used in [10] to compare resulting contexts may miss to
report a failure. Hence, the technique is more applicable
if, during the execution of the test case, (i) the contexts
remain staticor (ii) any change in contexts does not affect
any situation expression.1 In this paper, we shall refer
to such test cases ascontext-decoupled test cases. Other
test cases will be calledcontext-coupled test cases. Since

1 See Section 2.1 for an explanation of situation expressions.

situation evolution is a major characteristic of context-
sensitive middleware-based applications, context-coupled
test cases represent the majority class of test cases.

The main contributions of the paper are as follows:

(a) It significantly extends the work of Tse et al. [10] to
context-coupled test cases, which allow the updating
of contexts during the executions of test cases.

(b) It develops the notion of checkpoints to conduct
integration testing, facilitating the checking of test
results by the metamorphic testing approach.

(c) It recommends practical guidelines for designing test
cases for such applications. For example, the follow-up
test cases should activate context-sensitive function(s)
via the middleware at chosen checkpoints.

The rest of the paper is organized as follows: Section 2
introduces the work that this paper depends on. Section 3
discusses the motivations behind our work, develops the
notion of checkpoints for testing, and identifies the class of
test cases to be examined in this paper. Section 4 discusses
our technique through the example of a smart delivery
system. Finally, Section 5 concludes the paper.

2. Preliminaries

2.1. Reconfigurable context-sensitive middle-
ware
(RCSM)

Reconfigurable Context-Sensitive Middleware (RCSM)
[12] is a middleware for the ubiquitous computing
environment. It supports a Situation-Aware Interface
Definition Language (SA-IDL) [11], for specifying
context-sensitive application interfaces. Using an SA-
IDL specification [11], or SA-spec for short, it provides
every application with a custom-made object skeleton that
embodies both the context variables and invokable actions.
It periodically detects devices in the network, collects raw
contextual data from the environment, and updates relevant
context variables automatically. Once suitable situational
conditions in the SA-spec are detected, the responsible
object skeleton will activate appropriate actions.

A situation expressionin an SA-spec formulates how
to detect situations as well as which action to be activated
when a situation is detected. In particular, based on a given
SA-spec, the middleware in a device may match a required
context variable in its SA-IDL interface with those of
surrounding devices. Hence, the same action of a situation
expression, due to different subgrouping of surrounding
devices, may be invoked by the middleware more than
once. The “withinx” clause in a situation expression asserts

2

that the action will be invoked withinx seconds after the
situation is detected. Similarly, the “frequency =y” clause
requires the RCSM to probe the contexts at a rate ofy times
per second. The “priorityz” clause indicates the priority of
the action: a higher value ofz entails a higher priority. We
refer to a function used in a situation expression in an SA-
spec as anadaptive functionof the application.

2.2. Smart delivery system: an example

Consider the example of a smart delivery system
of a supermarket chain such that individual suppliers
replenish their products onto pallets, shelves, and cases
in various warehouses according to the demand sent off
by such pallets.2 We shall use the word “pallet” to refer
collectively to a shelf, pallet, or case in the rest of the
paper. The smart deliver system includes four features:
(i) Each smart pallet can be dynamically configured to store
a particular kind of product at, as far as possible, a desired
quantity level. (ii) Each van of a supplier delivers a type
of goods. (iii) Goods that cannot sell can be returned to
the supplier. A smart pallet may request a van to retract
certain amount of goods. (iv) The system assumes that the
effective delivery distance for any pallet by any van is at
most 25 meters.

When a pallet is full, no replenishment is required.
When a delivery van moves along a street, a particular
pallet may detect the van and request for replenishment if
the desired quantity is not met. If there are enough goods
in the van, the request is entertained.

The replenishment signal may also be sensed by any
other delivery van(s) nearby. The latter will not take
replenishment actions if the closest van can provide
sufficient quantities. A van may not be able to deliver the
requested quantity of goods to a particular pallet, however,
if there are other pallets requiring replenishment. Because
of the interference among vans, possibly from different
suppliers, and the presence of other nearby pallets with the
same goods, the actual amount of goods in a pallet may
differ from its desired level.

Figure 1 shows a sample situation-aware interface
specification for the device in delivery vans. We have
simplified the SA-IDL specification by assuming that a van
will deliver the same amount of goods to requesting pallets
in each round of delivery. We have also assumed only one
type of product.

The situationunderstockrepresents that, when the pallet
is inside the effectively delivery region at timet of the

2 Readers may be interested to read the press release that “Wal-Mart
has set a January 2005 target for its top 100 suppliers to be placing RFID
[radio frequency identification] tags on cases and pallets destined for Wal-
Mart stores ...” It is emphasized that “the first to market wins”.

#de f ine ε 5

RCSMContext Classvanextends Base{
float qv; // the quantity of goods deliverable by a van
Position pv; // the location of the van in(x, y) coordinates
float d; // square of distance between the van and a pallet

};

RCSMContext Classpalletextends Base{
int s; // no. of vans surrounding the pallet
float qd; // the desired quantity of goods for the pallet
float ql ; // the ledger amount of goods in the pallet
float qp; // the quantity of goods on hand in the pallet
Position pp; // the location of the pallet in(x, y) coordinates

};

RCSM Context Acquisition{ pallet{frequency = 1;}}
RCSMSARulesmartvan{

Derived van.d (van.pv.x−pallet.pp.x)2

+(van.pv.y−pallet.pp.y)2

PrimitiveSituation overstock
([−3, 0](pallet.ql −pallet.qd > ε) ∧ (d 6 625));

PrimitiveSituation understock
([−3, 0](pallet.qd −pallet.ql > ε) ∧ (d 6 265));
// Note: 625 is written as 265 by mistake

ActivateAtoverstock{
[local] void Withdraw()[within1][priority1]}

ActivateAtunderstock{
[local] void Replenish()[within1][priority1]}

}

Figure 1. A simplified SA-IDL specification
for the smart device in delivery vans.

received context, the current ledger amountql
3 at the pallet

site has been short of the desired quantityqd for more than
a tolerance ofε for the last 3 seconds. When this is the case,
the application would like to replenish the goods in the
pallet. This is accomplished by invoking the local function
Replenish(). A situationoverstockis similarly defined.

There is an error in the SA-IDL specification of the
device in delivery vans in Figure 1. In the situation
expressionunderstock, the value “625” is written as “265”
by mistake.

The functionsReplenish() andWithdraw() are used to
supply or retract goods. They increment and decrement
the context variableqv by 1 non-deterministically. The
middleware invokes the functions a number of times to
achieve the required delivery amount. The overall ledger
amount at the pallet site may oscillate, sometimes higher
than the desired quantity and sometimes lower, and will
eventually reach the desired value.

Figure 2 shows a correct implementation of the
functionsReplenish() andWithdraw(). Once a new value

3 A ledger amount includes the quantity of goods in a particularpallet
as well as the quantity of goods that a van wishes to add to the pallet. In
this paper, whenever there is no ambiguity, we simply useql instead of
pallet.ql . This kind of simplification applies to all context variables.

3

for the context variableqv is computed, it should be
detected by the middleware at the pallet site. This paper
assumes that there is a correct test stub for the function
ComputeLedgerAmount() in the pallet device to take the
values ofqv from all the surrounding vans and to compute
a corresponding new value for the context variableql . The
theoretical formula to compute the variableql is defined as
follows, although tolerances such as|ql −qd|< ε may need
to be added in the real-life implementation:

ql =
s

∑
i=1

q(i)
v +qp

where q(i)
v denotes the context variableqv from the ith

surrounding van. For a configuration with only one pallet
and one van, the formula can be simplified to:

ql = qv +qp (1)

2.3. Metamorphic testing

Metamorphic testing [3–5] is a property-based testing
strategy. It recommends that, even if a test case (known as
the original test case) does not reveal any failure, follow-
up test cases should be constructed to check whether the
software satisfies some necessary conditions of the target
solution of the problem. These necessary conditions are
known as metamorphic relations.

Given a function f and its implementationP, a
metamorphic relation is a necessary condition over a
set of distinct input datax1, x2, . . . , xn and their
corresponding output valuesf (x1), f (x2), . . . , f (xn) for
multiple executions of the target softwaref . This relation
must be satisfied when we replacef by P; otherwiseP will
not be a correct implementation off .

Consider a program which, for any givenx coordinate
as input, computes they coordinate of a straight line
that passes through a given point(x0, y0). A sample
metamorphic relation is

f (x1)−y0

x1−x0
=

f (x2)−y0

x2−x0

Suppose the given point is(3, 4), and suppose the original
test casex1 = 5 producesP(x1) = 7. We can compute the
value of a follow-up input, sayx2 = 8. If the program
producesP(x2) = 11, then the metamorphic relation is
violated. It signals a failure.

Throughout the course of checking of results in
metamorphic testing, there is no need to predetermine the
expected result for any given input, such as whetherP(5)
should be the same as the test oraclef (5), and whether
P(8) should be 11.5. Since there is no need to check the

void Replenish(){
s1 int r;
s2 r = rand() % s;

// randomize the action
s3 if r == 0 {
s4 if qv < MAX {
s5 qv = qv +1;

}}
s6 sleep(r/2);
}

void Withdraw(){
s7 int r;
s8 r = rand() % s;

// randomize the action
s9 if r == 0 {
s10 if qv > 0 {
s11 qv = qv−1;

}}
s12 sleep(r/2);
}

Figure 2. Implementation of Replenish() and
Withdraw()

results of execution again an oracle, it alleviates the test
oracle problem.

This paper serves as an illustration of how metamorphic
testing can be usefully applied in the integration testing of
context-sensitive middleware-based applications. We shall
not address the principles and procedures of formulating
metamorphic relations. We refer readers to [4, 5] for the
formal definition of metamorphic testing, and [3] for the
selection of useful metamorphic relations.

3. Checkpoints in context-sensitive
middleware-based applications

3.1. Motivations

Let us first consider the motivations for enhancing the
testing technique proposed in our previous work [10].
Given a scenario with one van and one pallet, the tester
may generate the following two test cases:

u1 = (s= 1, qd = 100, ql = 50, qp = 0, qv = 7,

pp = (1, 1), pv = (0, 0))

u2 = (s= 1, qd = 100, ql = 73, qp = 73, qv = 7,

pp = (10, 20), pv = (4, 4))

Consider the test caseu1. Initially, the middleware
detects that the conditionunderstockis satisfied and, hence,
invokes the functionReplenish() to incrementqv by 1. The
detection ofunderstockwill continue until ql gradually
reaches 95. At this point, the difference betweenqd and
ql is 100− 95, which is no more than the tolerance limit
ε = 5. As for the test caseu2, we haved = (10−
4)2 + (20− 4)2 = 292. Sinced > 265, the middleware
does not detect anunderstocksituation. The test stub
ComputeLedgerAmount() will updateql to 80 according to
Equation (1). Thus, the following context tuples will result:

4

CTu1 = (s= 1, qd = 100, ql = 95, qp = 0, qv = 95,

pp = (1, 1), pv = (0, 0))

CTu2 = (s= 1, qd = 100, ql = 80, qp = 73, qv = 7,

pp = (10, 20), pv = (4, 4))

Our previous work suggests testing against metamor-
phic relations such as “when the distances between the
pallet and the van for both test cases are comparable,
the ledger quantitiesql for both test cases should also be
comparable.” Since the corresponding values ofql (95
versus 80) inCTu1 andCTu2 do not agree, the metamorphic
relation is violated and, hence, a failure is revealed.
While the proposal to bypass complicated test oracles by
checking isotropic properties is innovative, there are a few
limitations:

First, our previous work does not deal with changes
in contexts during a test case execution. It is assumed
that the contexts are fixed or can be ignored once a test
execution starts. The previous assumption is not without
good practical reasons. When both a pallet device and
the device in a delivery van are mobile in arbitrary speeds
and directions, it is difficult for a tester to find a complex
mathematical model to represent their motions and to
generate follow-up test cases. In the present paper, we
propose to relax the assumption and address this difficult
problem.

Secondly, in the smart delivery system, a van may move
and a pallet may be relocated, so that the distance between a
van and a pallet may change. Since the middleware always
remain active, the original situation that triggers a test
case may not apply throughout the period of its execution.
Failure that occurs at a certain instant may be hidden again
at the conclusion of a text case execution. This can be
illustrated as follows:

When the distance between a van and a palletagainfalls
within the activation distance, such as 16.27 meters, the
adaptive functionReplenish() will be activated a second
time by the middleware. When the devices are kept within
the activation distance for a sufficiently long period of
time, multiple activations ofReplenish() will result. This
will change the ledger amountql at the pallet site to the
desired quantityqd within the tolerance limitε as stated
in the situation-aware interface. Consider, for example,u2

again. Suppose that testers reduce the separation distance
to 16.27 meters after the context tupleCTu2 above has been
computed. After 15 successful increments ofqv by the
functionReplenish(), the context tuple will become:

CT′
u2

= (s= 1, qd = 100, ql = 95, qp = 73, qv = 22,

pp = (4, 0), pv = (4, 16.27))

As a result, the failure that should be revealed byCTu2 is
actually hidden when the test case terminates. Detecting
failures based on the final contexts of a test case is,
therefore, more difficult in context-sensitive middleware-
based applications than the conventional counterparts. This
will also need to be addressed.

Thirdly, as the middleware remains active and situation
may continue to evolve, the termination of some test
cases may not be easily identified. We propose to use a
new concept of “checkpoints” in lieu of the detection of
termination.

3.2. Checkpoints

We recall that an environmental situation is character-
ized by a set of contexts that may change over time. In
order to detect a relevant situation via situation expressions,
the middleware will need to activate adaptive functions,
as explained in the last paragraph of Section 2.1. There
are circumstances where none of the situation expressions
are relevant to the adaptive functions under test. For such
situations, the middleware will not activate any adaptive
function. We refer to these situations ascheckpoints.

Let us give an illustration of a checkpoint using the
example in Section 3.1. Suppose the inputu1 is applied to
the functionReplenish() in Section 3.1. After a few rounds
of activations ofReplenish(), the application produces the
context tupleCTu1. We can observe from Figure 1 that
no further function activation will be possible unless the
context is changed by some external factor. Hence, a stable
checkpoint has been reached.

By treating checkpoints as the starting and ending
points of a test case, they provide a natural environmental
platform for the integration testing of the functions of
a system. This setting offers an opportunity to test the
functions in different parts of the application within the
same environment. When a test case is being executed,
the situation of the functions under test may change. The
changing situation may or may not represent checkpoints
of other functionsnot under test, depending on whether
situation expressions of the latter functions are inert to
these changes. Detailed discussions on the design of a non-
interference test setup are beyond the scope of this paper.
Nonetheless, we note that when the changing situation of a
test case happens to represent checkpoints of functionsnot
under test, there is no need to apply auxiliary testware to
neutralize the ripple effects of the contexts on the rest of
the application.

We shall explore in detail the testing techniques related
to the application of checkpoints to context-coupled test
cases in Sections 3.3 and 4. We note a couple of
practical considerations before applying the concept. First,
a middleware may depend on the current contexts as well as

5

the historical contexts to determine an activation situation.
Testers may have to determine from the limited execution
history of a test case whether the middleware will finally
activate some adaptive function. In theory, this may not
be feasible. In practice, however, as there are “within
x” clauses defined in SA-IDL specifications, an RCSM-
like middleware provides a bounded waiting period for
testers to conclude whether a checkpoint has been reached.
Secondly, in general, an application may or may not have
checkpoints. In this paper, we shall limit our discussions to
applications that will reach some checkpoints.

3.3. Test cases at checkpoints

When a middleware reaches a checkpoint, a further
change in context may or may not trigger the middleware
to activate adaptive functions under test. There are three
possible cases.

Case (1): Test case has reached a final checkpoint.In
other words, there is no possibility of further activation
of functions. The collection of context tuples, or contexts
for short, represent afinal checkpoint of the application.
Verifying whether it is a valid combination of contexts for
the application can be performed.

In general, the contexts of a final checkpoint may
or may be observable. Suppose, for sake of argument,
that they are observable. We may compare the results
with those of another test case that has also reach a
checkpoint according to some metamorphic relation such
as the isotropic property on the contextql illustrated in
Section 3.1. Of course, if it is not possible to observe
the context results of the application, it will be an open
verification problem, which will not be addressed in this
paper.

Case (2): Test case will reach another checkpoint.In
other words, the middleware will activate some functions
and then reach another checkpoint.

Obviously, all the situation expressions are satisfied at
the checkpoint; otherwise the middleware would continue
to activate further functions. Hence, checking the contexts
against the situation expressions as post-conditions is
ineffective. Having said that, research shows that, given a
relation, a derived relation may have a better fault detection
capability than the given one [3].

Although we stated earlier that we would not address
the principles of formulating metamorphic relations in this
paper, we would like to add that some useful expected
relations can be derived from situation expressions. Testers
may then confirm whether such relations are indeed
expected relations. Take the situational conditionoverstock
as an example. Suppose there are two test cases,t1 andt2,

that result in some checkpoints. Suppose the contextsd,
qd, andql of the test caseti are denoted bydi , qdi , and
ql i , respectively. For either checkpoint,overstockdoes not
hold; otherwise the middleware would activate the function
Withdraw() further. Hence, we have4 (qd1 − ε 6 ql1 6

qd1 + ε) ∧ d1 6 625 and(qd2 − ε 6 ql2 6 qd2 + ε) ∧ d2 6

625.
In general, there are 3 possible relations betweenqd1

and qd2, namely, “=”, “ <”, and “>”. When qd1 = qd2,
if the pallet(s) for both test cases are within the delivery
distance, we must have|ql1 − ql2| 6 2ε, or ql1 ≈ ql2 for
short. Substituting it into the above equation, we have

MR1: If qd1 = qd2, d1 6 625, andd2 6 625, then
ql1 ≈ ql2.

Similarly, we can derive appropriate relations for the cases
whereqd1 < qd2 andqd1 > qd2.

Obviously, if test cases are context-decoupled, subse-
quent values ofd1, d2, qd1, and qd2 are expected to be
unchanged or can be ignored during the executions of the
two test cases. This will result in a metamorphic relation
similar toMRPowerUp in [10].

For context-coupled test cases, checking the metamor-
phic context relations may not reveal failures, as discussed
in Section 3.1. In this paper, we propose to test relations
of multiple test execution sequences, similarly in style to
metamorphic context relations but more complex in detail.

Let us consider the test caseu1 in Section 3.1. During
the execution ofu1, a number ofReplenish() function
invocations are expected to occur. Each of them will
increment the context variableqv by 1. Similarly, the
functionWithdraw() is expected to decrementqv by 1. The
test caseu1 originally invokes the functionReplenish() 88
times to reach the contextCTu1. Supposeu′1 is a follow-
up test case that has the same behaviors, but an additional
Withdraw() is called beforeu′1 is executed. Then,u′1 will
invokeReplenish() 89 times instead of 88.

Since the functionsReplenish() and Withdraw() are
symmetric in nature, we can generalize the situations and
formulate the following metamorphic relation:

MR2: Let t be an original test case andt ′

be a follow-up test case that share the same
checkpoint, known as aninitial checkpoint. If we
applyWithdraw() to the initial checkpoint before
executingt ′, the number of invocations of the
Replenish() function fort ′ is expected to be more
than that oft. If we apply Replenish() to the
initial checkpoint before executingt ′, the number
of invocations of theWithdraw() function for t ′

is expected to more be than that oft.

4 Without the loss of generality, we assume that all variables carry
positive values in the illustration.

6

Table 1. Updated contexts for test cases t1

and t2.

No.
 d
 q
d
 q
v
 q
p
 q
l

1
 256
 20
 12
 8
 20

2
 240
 30
 12
 12
 24

3
 210
 33
 13
 12
 25

4
 300
 18
 14
 18
 32

5
 320
 22
 13
 15
 28

6
 200
 22
 12
 15
 27

7
 180
 20
 12
 18
 30

8
 170
 19
 11
 16
 27

9
 120
 18
 10
 15
 25

10
 80
 18
 9
 17
 26

11
 20
 19
 8
 22
 30

12
 30
 22
 7
 21
 28

13
 30
 22
 6
 21
 27

Updated contexts for t1

No.
 d
 q
d
 q
v
 q
p
 q
l

1
 256
 20
 12
 8
 20

2
 240
 30
 12
 12
 24

3
 210
 33
 13
 12
 25

4
 300
 18
 14
 18
 32

5
 320
 22
 13
 15
 28

6
 200
 22
 12
 15
 27

7
 200
 22
 12
 15
 27

8
 180
 20
 12
 18
 30

9
 170
 19
 11
 16
 27

10
 120
 18
 10
 15
 25

11
 80
 18
 9
 17
 26

12
 20
 19
 8
 22
 30

13
 30
 22
 7
 21
 28

14
 30
 22
 6
 21
 27

Updated contexts for t2

Case (3): Test case will not reach another checkpoint.
In other words, the middleware will activate functions
repeatedly and will not terminate. Since the system does
not terminate, it may already represent a failure. On
the other hand, if non-terminating invocations do not
mean a failure, testers may propose metamorphic relations
between the context sequences of two test cases, similarly
to Case (2) above.

We note that, in general, termination is undecidable. In
theory, therefore, testers may not be able to distinguish
Case (3) from Case (2). In practice, testers may assume that
the software will not terminate if some maximum period of
time has elapsed. They can collect the statistics, such as
the mean values, of the contexts over a period of time as
the resulting contexts. In this way, Case (3) will degenerate
to Case (2). For the ease of discussions, however, we shall
restrict ourselves to only Case (2) in this paper.

4. Example of context-coupled test case with
follow-up test case

In the last section, we have identified a new class
of context-coupled test cases that remain unexplored in
our previous work, and introduced a new concept of
checkpoints with a view to revealing failures in such test
cases. In this section, we apply the concepts to detect the
failures caused by the fault in Figure 1, that is, the condition
d 6 265 instead ofd 6 625 in the situationunderstock,
using context-coupled test cases.

We shall use a notation different from previous sections
to accommodate the features of a context-coupled test case.
We define a test caset in two parts, namely, the initial
context tupleCTt and a sequence~Θt of context updates.
The first element in~Θt comes fromCTt . For the ease
of illustration, “nice-looking” numerical values without
decimal places are used in the examples.

4.1. Context-coupled test caset1

Consider a context-coupled test caset1 below for testing
the configuration of one pallet device and one device in
a delivery van, with a test stubComputeLedgerAmount()
in the pallet device. Following the nomenclature in
metamorphic testing, we shall refer to it as theoriginal test
case.

t1 = (CTt1,
~Θt1)

CTt1 = (s= 1, qd = 20, ql = 20, qp = 8, qv = 12,

pp = (17, 1), pv = (1, 1))

~Θt1 = 〈(d = 256, qd = 20, qp = 8),

(d = 240, qd = 30, qp = 12),

(d = 210, qd = 33, qp = 12),

(d = 300, qd = 18, qp = 18),

(d = 320, qd = 22, qp = 15),

(d = 200, qd = 22, qp = 15),

(d = 180, qd = 20, qp = 18),

(d = 170, qd = 19, qp = 16),

(d = 120, qd = 18, qp = 15),

(d = 80, qd = 18, qp = 17),

(d = 20, qd = 19, qp = 22),

(d = 30, qd = 22, qp = 21),

(d = 30, qd = 22, qp = 21)〉

Step (1): Apply the initial contextCTt to the one
pallet and one van configuration. Update the derived
context d to 256.5 According to Equation (1), the test
stub ComputeRadiance() will changeql to 12+ 8 = 20.
Sinceql andqd are 20, according to situation expressions
overstockandunderstockin Figure 1, the middleware will
not be triggered to activate any function. The application
is, therefore, at a checkpoint.

Step (2): Apply the second context update of~Θt1 (that
is, (d = 240, qd = 30, qp = 12)) to the configuration. One
of the possible ways to enable the required context update
is to set the desired quantityqd of the pallet device to 30,
move the pallet device from location coordinate (17, 1) to
(
√

240, 1), and add 8 unit of goods to this particular pallet.
The test stub will updateql from 20 to 12+12= 24. The
updated contexts of the configuration are shown in Table 1.

Step (3): Since the difference betweenqd and ql is
greater than the tolerance limitε = 5, and sinced is not
more than 265, the situationunderstockis detected and,

5 Since the situation expressions in Figure 1 deal directly with the
derived contextd, we shall refer tod instead of the basic contextspp

andpv for the ease of discussion.

7

hence,Replenish() is invoked by the middleware. The
context variableqv is updated from 12 to 13 byReplenish().
This is an automatic step.

Step (4): Testers then apply the third context update
of ~Θt1 (that is, (d = 210, qd = 33, qp = 12)) to the
configuration. This changesql from 24 to 25.

Step (5): The above interleaving of context updates
by testers and automatic activations of functions by the
middleware continues for 3 more rounds. Testers have
applied the 6th entry of~Θt1. The context variableql will be
27 after the functionWithdraw() has decrementedqv from
13 to 12. Comparing the context variablesql andqd, no
situation inscribed in the situation interface is fulfilled. The
configuration has reached a checkpoint. Instead of waiting
for a further activation by the middleware, therefore, testers
apply the 7th context update (d = 180, qd = 20, qp = 18).
Steps (2)–(5) are then repeated for the rest of~Θt1.

Step (6): Finally, the test case execution reaches the
13th entry6 of ~Θt1. It completes the execution of the
interactive test caset1. The test caset1 will decrementqv

gradually after the 4th entry in~Θt1. This is done either
by invoking the functionWithdraw() or, in case that a
checkpoint has been reached, by retaining the previous
value forqv.

Since we are interested in applying other adaptive
functions to a selected checkpoint of the original test case
as discussed in Section 3.3, the three context updates that
will result in checkpoints of the application configuration
are highlighted in~Θt1. For the same reason, testers may
randomly generate an original test caset1 as long as they
can find checkpoints during its execution.

4.2. Follow-up test caset2

Following the concepts presented in Case (2) of
Section 3.3, a follow-up test caset2 of t1 should share
the same initial checkpoint ast1. First, testers should
identify a checkpoint int1. As highlighted in~Θt1, there are
several possible choices. Suppose testers choose the second
checkpoint, namely, the 6th entry in~Θt1. For the ease of
description, we shall denote it byS. According toMR2,
testers would like to provide a situationS′ consistent with
S such that (i) it expects to invoke the adaptive function
Replenish(), and (ii) it increases the number of subsequent
invocations of the adaptive functionWithdraw().

There are many methods to set upS′. One approach is
to use an auxiliary pallet device. For instance, testers may
use the pallet device of test caseu2 in Section 3.1, namely,

6 After all context updates have been applied, the middleware may still
detect situations and, hence, may invoke functions until theconfiguration
reaches a checkpoint. Without the loss of generality, we assume that the
test case will reach a checkpoint immediately after the final context update
in ~Θt1 .

0

5

10

15

20

25

30

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

The i-th context update

C
o

n
te

x
tu

a
l

V
a

lu
e

 a
ft

e
r

th
e

 i
-t

h
 c

o
n

te
x

t
u

p
d

a
te

0

50

100

150

200

250

300

350

qd
 qv

ql
 d

Figure 3. Context trends for test case t2.

p2 = (s′ = 1, q′d = 100, q′n = 73, q′o = 73, p′v = (10, 20)).
According to the description in Section 2.2 and the SA-
IDL specification in Figure 1, the replenishment request
will be triggered in 4 seconds. This auxiliary pallet device
is, therefore, expected to join the network at situationS for
4 seconds, and then leave the network. Afterward, the rest
of the test caset1 (that is, the context variablesd, qd, and
qp of the 7th to 13th entries of~Θt1) is applied as scheduled.
The test caset2 is as follows:

t2 = (CTt2,
~Θt2)

CTt2 = (s= 1, qd = 20, ql = 20, qp = 8, qv = 12,

pp = (17, 1), pv = (1, 1))

~Θt2 = 〈(d = 256, qd = 20, qp = 8),

(d = 240, qd = 30, qp = 12),

(d = 210, qd = 33, qp = 12),

(d = 300, qd = 18, qp = 18),

(d = 320, qd = 22, qp = 15),

(d = 200, qd = 22, qp = 15),

(d = 200, qd = 22, qp = 15),

(d = 180, qd = 20, qp = 18),

(d = 170, qd = 19, qp = 16),

(d = 120, qd = 18, qp = 15),

(d = 80, qd = 18, qp = 17),

(d = 20, qd = 19, qp = 22),

(d = 30, qd = 22, qp = 21),

(d = 30, qd = 22, qp = 21)〉

We first verify the results at checkpoints. Since the
metamorphic relationMR1 is applicable, testers may apply

8

0

5

10

15

20

25

30

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

The i-th function activiation

C
o

n
te

x
tu

a
l
V

a
lu

e

0

50

100

150

200

250

300

350

qd
 qv

qp
 d

Figure 4. Expected context trends for test
case t2.

it for testing. However, as discussed in Section 3.1,
the failure is subtle. It occurs immediately after the
application of the situationS′ to the test configuration.
The context variableqv should be decremented, but is
actually not. Owing to the subsequent detections of the
overstocksituation followed byReplenish() actions, the
next checkpoint of the test case leaves no footprint of the
failure. In short,MR1 cannot reveal any failure.

On the other hand, both test cases have same number
of Withdraw() invocations (related to entries 7–13 for
test caset1 and entries 8–14 fort2) between the second
checkpoint and the final one. This violates relationMR2,
and hence, reveals a failure.

Interested readers may wish to know whether it is easy
to recognize the failures via other means, such as by
comparing the resulting context values with the expected
values. Figure 3 shows graphically the trends of the context
variables for test caset2. Contextd is plotted against the y-
axes on the right of these graphs. All the other contexts are
plotted against the y-axes on the left. Figure 4 shows the
expected results of test caset2 in a correct implementation.
The two charts look remarkably similar. Since the fault
only causes the value ofqv to be updated once, the failure
is quite subtle. In short, our technique helps testers identify
failures that may easily be overlooked.

5. Conclusion

Context-sensitive middleware-based software is an
emerging kind of ubiquitous computing application. A
middleware detects a situation and invokes the appropriate
functions of the application under test. As the middleware
remains active and the situation may continue to evolve,

however, the completion of a test case may not be identified
easily. In this paper, we have proposed to use checkpoints
as the starting and ending points of a test case. Since
the middleware will not activate any function during a
checkpoint but may invoke actions in between two such
situations, the concept offers a convenient environment for
conducting the integration testing of the functions of a
system.

In our previous work, we demonstrated the ineffec-
tiveness of common white-box testing strategies such
as data-flow testing and control-flow testing to detect
subtle failures related to situation interfaces. Metamorphic
testing with context-decoupled test cases was proposed
to reveal failures of context-sensitive middleware-based
applications.

In this work, we have further demonstrated the
difficulties in revealing the violation of metamorphic
context relations involving the execution of multiple
context-coupled test cases. To supplement the checking
of context relations, we have also proposed to check the
relations of execution sequences between checkpoints for
multiple test cases. We have illustrated how a subtle failure
due to the fault in the example in Section 2.2 can be
revealed.

We have significantly extended our previous work. This
paper is a first step toward the integration testing of context-
sensitive middleware-based applications. Although the
initial results are encouraging, further investigations and
experimentations are in order. In particular, we shall
investigate the effectiveness of our approach in fault
detection, examine the issues of scalability and online
testing, develop formal procedures and practical guidelines
for our approach, and address the question of automatic
checking of metamorphic relations in a context-sensitive
middleware-based environment.

References

[1] G. D. Abowd and E. D. Mynatt. Charting past,
present, and future research in ubiquitous computing.
ACM Transactions on Computer-Human Interaction,
7 (1): 29–58, 2000.

[2] E. W. Axelsen, E. B. Johnsen, and O. Owe. Toward
reflective application testing in open environments.
In Proceedings of the Norwegian Informatics Confer-
ence(NIK 2004), pages 192–203. Tapir, Trondheim,
Norway, 2004.

[3] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou.
Case studies on the selection of useful relations
in metamorphic testing. InProceedings of the 4th
Ibero-American Symposium on Software Engineering
and Knowledge Engineering(JIISIC 2004), pages

9

569–583. Polytechnic University of Madrid, Madrid,
Spain, 2004.

[4] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Semi-proving:
an integrated method based on global symbolic
evaluation and metamorphic testing. InProceedings
of the ACM SIGSOFT International Symposium on
Software Testing and Analysis(ISSTA 2002), pages
191–195. ACM Press, New York, 2002.

[5] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based
testing without the need of oracles.Information and
Software Technology, 45 (1): 1–9, 2003.

[6] A. Flores, J. C. Augusto, M. Polo, and M. Varea.
Towards context-aware testing for semantic interop-
erability on PvC environments. InProceedings of
the 2004 IEEE International Conference on Systems,
Man, and Cybernetics(SMC 2004), volume 2,
pages 1136–1141. IEEE Computer Society Press, Los
Alamitos, California, 2004.

[7] H. J. Nock, G. Iyengar, and C. Neti. Multimodal
interfaces that flex, adapt, and persist: multimodal
processing by finding common cause.Communica-
tions of the ACM, 47 (1): 51–56, 2004.

[8] P. Tandler. The beach application model and
software framework for synchronous collaboration
in ubiquitous computing environments.Journal of
Systems and Software, 69 (3): 267–296, 2004.

[9] P. Tarasewich. Designing mobile commerce applica-
tions. Communications of the ACM, 46 (12): 57–60,
2003.

[10] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and
T. Y. Chen. Testing context-sensitive middleware-
based software applications. InProceedings of the
28th Annual International Computer Software and
Applications Conference(COMPSAC 2004), volume
1, pages 458–465. IEEE Computer Society Press, Los
Alamitos, California, 2004.

[11] S. S. Yau, D. Huang, H. Gong, and S. Seth.
Development and runtime support for situation-
aware application software in ubiquitous computing
environments. InProceedings of the 28th Annual
International Computer Software and Applications
Conference(COMPSAC 2004), pages 452–457. IEEE
Computer Society Press, Los Alamitos, California,
2004.

[12] S. S. Yau, F. Karim, Y. Wang, B. Wang, and
S. K. S. Gupta. Reconfigurable context-sensitive mid-
dleware for pervasive computing.IEEE Pervasive
Computing, 1 (3): 33–40, 2002.

10

