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Quantum speedup in the identification of
cause–effect relations
Giulio Chiribella1,2,3 & Daniel Ebler1,4

The ability to identify cause–effect relations is an essential component of the scientific

method. The identification of causal relations is generally accomplished through statistical

trials where alternative hypotheses are tested against each other. Traditionally, such trials

have been based on classical statistics. However, classical statistics becomes inadequate at

the quantum scale, where a richer spectrum of causal relations is accessible. Here we show

that quantum strategies can greatly speed up the identification of causal relations. We

analyse the task of identifying the effect of a given variable, and we show that the optimal

quantum strategy beats all classical strategies by running multiple equivalent tests in a

quantum superposition. The same working principle leads to advantages in the detection of a

causal link between two variables, and in the identification of the cause of a given variable.
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Identifying causal relations is a fundamental primitive in a
variety of areas, including machine learning, medicine, and
genetics1–3. A canonical approach is to formulate different

hypotheses on the cause–effect relations characterizing a given
phenomenon, and test them against each other. For example, in a
drug test some patients are administered the drug, while others
are administered a placebo, with the scope of determining whe-
ther or not the drug causes recovery. Traditionally, causal dis-
covery techniques have been based on classical statistics, which
effectively describes the behavior of macroscopic variables.
However, classical techniques become inadequate when dealing
with quantum systems, whose response to interventions can
strikingly differ from that of classical random variables4,5.

Recently, there has been a growing interest in the extension
of causal reasoning to the quantum domain. Several quantum
generalizations of the notion of causal network have been pro-
posed6–15 and new algorithms for quantum causal discovery have
been designed16–20. Besides its foundational relevance, the study
of quantum causal discovery algorithms is expected to have
applications in the emerging area of quantum machine
learning21,22, in the same way as classical causal discovery algo-
rithms have previously impacted classical artificial intelligence.

An intriguing possibility is that quantum mechanics may
provide enhanced ways to identify causal links. A clue in this
direction comes from refs. 17,18, where the authors show that
certain quantum correlations are witnesses of causal relationships,
in apparent violation of the classical tenet “correlation does not
imply causation”. This observation suggests that quantum setups
for testing causal relationships could overcome some of the
limitations of existing classical setups. However, the type of
advantage highlighted in refs. 17,18 only concerns a limited class
of setups, where the experimenter is constrained to a subset of the
possible interventions. If arbitrary interventions are allowed, this
particular type of advantage disappears. A fundamental open
question is whether quantum setups can offer an advantage over
all classical setups, without any restriction on the experimenter’s
interventions.

Here, we answer the question in the affirmative, proving that
quantum features like superposition and entanglement can sig-
nificantly speed up the identification of causal relations. We start
from the task of deciding which variable, out of a list of candi-
dates, is the effect of a given variable. We first analyze the pro-
blem in the classical setting, determining the performance of the
best classical strategy. Then, we construct a quantum strategy that
reduces the error probability by an exponential amount, doubling
the decay rate of the error probability with the number of accesses
to the relevant variables. Remarkably, the decay rate of our
strategy is the highest achievable rate allowed by quantum
mechanics, even if one allows for exotic setups where the order of
operations is indefinite23,24. The key ingredient of the quantum
speedup is the ability to run multiple equivalent experiments in a
quantum superposition. The same working principle enables
quantum speedups in a broader set of tasks, including, e.g., the
task of deciding whether there exists a causal link between two
given variables, and the task of identifying the cause of a given
variable.

Results
Theory-independent framework for testing causal hypotheses.
Here, we outline a framework for testing causal hypotheses in
general physical theories25–30. In this framework, variables are
represented as physical systems, each system with its set of states.
The framework applies to theories satisfying the Causality
Axiom28, stating that the probability of an event at a given time
should not depend on choices of settings made at future times.

A causal relation between variable A and variable B is
represented by a map describing how the state of B responds to
changes in the state of A. If the map discards A and outputs a
fixed state of B, then no causal influence can be observed. In all
the other cases, some change of A will lead to an observable
change of B. Hence, we say that A is a cause for B.

In general, the set of allowed causal relationships depends on
the physical theory, which determines which maps can be
implemented by physical processes. In classical physics,
cause–effect relations can be represented by conditional prob-
ability distributions of the form p(b|a), where a and b are the
values of the random variables A and B, respectively. In quantum
theory, cause–effect relations are described by quantum channels,
i.e., completely positive trace-preserving maps transforming
density matrices of system A into density matrices of system B.

Given a set of variables, one can formulate hypotheses on the
causal relationships among them. For example, consider a three-
variable scenario, where variable A may cause either variable B or
variable C, but not both. The causal relation is described by a
process C, with input A and outputs B and C. Here, we consider
two alternative causal hypotheses: either A causes B but not C; or
A causes C but not B. The problem is to distinguish between these
two hypotheses without having further knowledge of the physical
process responsible for the causal relation. This means that the
process C is unknown, except for the fact that it must compatible
with one and only one of the two hypotheses. Mathematically, the
two hypotheses correspond to two sets of physical processes, and
the problem is to determine which set contains the process C.

In order to decide which hypothesis is correct, we assume that
the experimenter has black box access to the physical process C.
The experimenter can probe the process for N times, intervening
between one instance and the next, as illustrated in Fig. 1. In the
end, a measurement is performed and its outcome is used to guess
the correct hypothesis.

An important question is how fast the probability of error
decays with N. The decay is typically exponential, with an error
probability vanishing as perr(N) ≈ 2−RN for some positive constant
R, which we call the discrimination rate. The operational meaning
of the discrimination rate is the following. Given an error
threshold ε, the error probability can be made smaller than ε
using approximately N > log ε−1/R calls to the unknown process.
The bigger the rate, the smaller the number of calls needed to
bring the error below the desired threshold.

Since the explicit form of the process C is unknown, we take
perr(N) to be the worst-case probability over all processes
compatible with the two given causal hypotheses. If prior
information over C is available, one may also consider a weaker
performance measure, based on the average with respect to some

 1 2Ψ Px
∧

Fig. 1 Testing causal hypotheses in the black box scenario. The unknown
process C induces a causal relation between one input variable and two
output variables. The experimenter probes the process for N times,
intervening on the relevant variables at each time step. The first
intervention is the preparation of a state Ψ, involving the input of the black
box and, possibly, an additional reference system (top wire). The
subsequent interventions U i manipulate the output variables and prepare
the inputs variables for the next steps. In the end, the output variables and
the reference system are measured, and the measurement outcome is used
to infer the causal relation
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prior. In the following, we stick to the worst case scenario, as it
provides a stronger guarantee on the performance of the test.

Identifying causal intermediaries. A variable B is a causal
intermediary for variable A if all the influences of A propagate
through B. Physically, one can think of B as a slice of the future
light cone of A, so that all causal influences of A must pass
through B, as illustrated in Fig. 2. Mathematically, the fact that B
is a causal intermediary means that there exists a process C from
A to B such that for every other variable B′ and for every process
C′ with input A and output B′ one can decompose C′ as
C′ ¼ R � C, where R is a suitable process from B to B′.

The condition that a variable is a causal intermediary of
another has a simple characterization in all physical theories
where processes are fundamentally reversible, meaning that they
can be modeled as the result of a reversible evolution of the
system and an environment28. The reversibility condition is
captured by the expression C ¼ ðIB � TrE′ÞUðIA � ηEÞ, where
variables E and E′ represent the environment (before and after the
interaction), η is the initial state of the environment, TrE′ is the
operation of discarding system E′28, and U is a reversible process
from AE to BE′.

When the reversibility condition is satisfied, the variable A can
be recovered from variables B and E′. If variable B is to be a causal
intermediary of A, then the process C must be correctable, in the
sense that its action can be undone by another process R. In
addition, if the state spaces of variables A and B are finite
dimensional and of the same dimension, then the process C must
be reversible. In classical theory, this means that C is an invertible
function. In quantum theory, this means that C is a unitary
channel, of the form CðρÞ ¼ UρUy for some unitary operator U.

In the following, we will consider the task of identifying which
variable, out of a given set of candidates, is the causal
intermediary of a given variable A. An important feature of this
task is that it admits a complete analytical treatment, allowing us
to rigorously prove a quantum advantage over all classical
strategies. Besides its fundamental interest, this advantage could

have applications to the task of monitoring the information flow
in future quantum communication networks, allowing an
experimenter to determine which node of a quantum network
receives information from a given source node.

Optimal classical strategy. Suppose that A, B, and C are random
variables with the same alphabet of size d <∞. In this case, the
fact that X∈ {B, C} is a causal intermediary for A means that the
map from A to X is a permutation. The first (second) causal
hypothesis is that B (C) is a permutation of A, while C (B) is
uniformly random. Other than this, no information about the
functional relation between the variables is known to the
experimenter. In particular, the experimenter does not know
which permutation relates the variable A to its causal inter-
mediary X.

Let us determine how well one can distinguish between the two
hypotheses with a finite number of experiments. In principle, we
should examine all sequential strategies as in Fig. 1. However, in
classical theory the problem can be greatly simplified: the optimal
discrimination rate can be achieved by a parallel strategy, wherein
the N input variables are initially set to some prescribed set of
values31.

The possibility of an error arises is when the randomly
fluctuating variable accidentally takes values that are compatible
with a permutation, so that the outcome of the test gives no
ground to discriminate between the two hypotheses. The
probability of such inconclusive scenario is equal to P(d, v)/dN,
where v is the number of distinct values of A probed in the
experiment and P(d, v)= d!/(d− v)! is the number of injective
functions from a v-element set to a d-element set. The probability
of confusion is minimal for v= 1, leading to the overall error
probability

pCerr ¼
1

2dN�1
: ð1Þ

As a consequence, the rate at which the two causal hypotheses
can be distinguished from each other is

RC ¼ log d: ð2Þ

A first quantum advantage. Classical systems can be regarded as
quantum systems that lost coherence across the states of a fixed
basis, consisting of the classical states. But what if coherence is
preserved? Could a coherent superposition of classical states be a
better probe for the causal structure?

If the causal relations are restricted to reversible gates that
permute the classical states, coherence offers an immediate
advantage. The experimenter can prepare N probes, each in the
superposition je0i ¼

Pd�1
i¼0 jii= ffiffiffi

d
p

. Since the superposition is
invariant under permutations, the unknown process will produce
either N copies of the state |e0⟩⟨e0|⊗I/d or N copies of the state
I/d⊗|e0⟩⟨e0|, depending on which causal hypothesis holds. Using
Helstrom’s minimum error measurement32, the error probability
is reduced to

pcoherr ¼ 1
2dN

: ð3Þ
Compared with the classical error probability (1), the error

probability of this simple quantum strategy is reduced by a factor
d, which does not change the rate, but could be significant when
the size of the alphabet is large.

Let us consider the full quantum version of the problem. Three
quantum variables A, B, and C, corresponding to d-dimensional
quantum systems, are promised to satisfy one of two causal
hypotheses: either (i) the state of B is obtained from the state of A
through an arbitrary unitary evolution and the state of C is

B

B ′

A

Fig. 2 Spacetime picture of a causal intermediary. Variable A is localized at
a point in spacetime, and its causal influences propagate within its future
light cone. Variable B is distributed over a section of the light cone of A and
intercepts all the influences of A. Every other variable B′ that is affected by
A and comes after B must be obtained from variable B through some
physical process
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maximally mixed, or (ii) the state of C is obtained from the state
of A through an arbitrary unitary evolution and the state of B is
maximally mixed.

Despite the fact that now the cause–effect relation can be one
of the infinitely many unitary gates, it turns out that the error
probability (3) can still be attained. A universal quantum strategy,
working for arbitrary unitary gates, is to prepare d particles in the
singlet state

Sdj i ¼ 1ffiffiffi
d

p
!

X
k1;k2;���;kd

ϵk1k2 ¼ kd
k1j i k2j i � � � kdj i ð4Þ

where ϵk1k2 ¼ kd
is the totally antisymmetric tensor and the sum

ranges over all vectors in the computational basis. Then, each of
the d particles is used as an input to one use of the channel.
Repeating the experiment for t times, and performing Helstrom’s
minimum error measurement one can attain the error probability
pcoherr ¼ ð2dNÞ�1, with N= td, independently of the unitary gate
representing the cause–effect relationship. In summary, the
quantum error probability is at least d times smaller than the
best classical error probability, even if the cause–effect relation-
ship is described by an arbitrary unitary gate.

Optimality among simple parallel strategies. We now show that
the value (3) is optimal among all simple strategies where the
unknown process is applied N times in parallel on N identical
input systems, as in Fig. 3.

Optimality follows from a complementarity relation between
the information about the causal structure and the information
about the functional dependence between cause and effect.
Suppose that the cause–effect dependence amounts to a unitary
gate U in some finite set U. The ability of a state |Ψ〉 to probe the
cause–effect dependence can be quantified by the probability
pUguess of correctly guessing the unitary U from the state U⊗N|Ψ〉.
When the set of possibly unitaries has sufficient symmetry, we
find that the probability of error in identifying the causal
structure satisfies the lower bound

perr �
1

2dN
1þ 1

2ðdN � 1Þ
pUguess � 1

jUj
1
jUj

 !2( )
ð5Þ

(Supplementary Note 1). The higher the probability of success
in guessing the cause–effect dependence, the higher the
probability of error in identifying the causal structure. A
consequence of the bound (5) is that the minimum error
probability in identifying the causal intermediary is (2dN)−1, and
is attained when the success probability pUguess is equal to the
random guess probability 1/|U|.

Exponential reduction of the error probability. The bound (5)
shows that the discrimination rate of simple parallel strategies
cannot exceed the classical discrimination rate log d. We now
show that that the rate can be doubled by entangling the N probes
with an additional reference system.

The working principle of our strategy is to build a quantum
superposition of equivalent experimental setups. If no reference
system is used, we know that the optimal strategy is to divide the
N probes into N/d groups (assuming for simplicity that N is a
multiple of d), and to entangle the probes within each group.
Clearly, different ways of dividing the N inputs into groups of d
are equally optimal: it does not matter which particle is entangled
with which, as long as all each particle is part of a singlet state.
Still, we can imagine a machine that partitions the particles
according to a certain configuration i if a control system is in the
state |i〉. When the control system is in a superposition, the
machine will probe the unknown process in a superposition of
configurations, as pictorially illustrated in Fig. 4. Explicitly, the
optimal input state is

Ψj i ¼ 1ffiffiffiffiffiffiffiffiffi
GN;d

p XGN;d

i¼1

Sdj i�N=d
� �

i
� ij i; ð6Þ

where i labels the different ways to partition N identical objects
into groups of d elements, GN,d is the number of such ways,

Sdj i�N=d
� �

i
is the product of N/d singlet states arranged

according to the i-th configuration, and {|i〉, i= 1, …, GN,d}
are orthogonal states of the reference system.

Classically, there would be no point in randomizing optimal
configurations, because mixtures cannot reduce the error
probability. But in the quantum case, the coherent superposition
of equivalent configurations brings the error probability down to

pQerrðrÞ ¼
r

2dN
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�2

p� �
�!r�1 1

4rdN
; ð7Þ

Ψ

Fig. 3 Simple parallel strategies. The unknown process C is probed for N
times, acting in parallel on N identical systems, initially prepared in a
correlated state Ψ

|1〉 |2〉 |3〉

a

b

|13〉2

Fig. 4 Coherent superposition of configurations. a shows the three different
ways of dividing four quantum bits into groups of two. These three
configurations are all equivalent for the identification of the causal
intermediary. b pictorially illustrates a quantum superposition of
configurations, with the choice of configuration correlated with the state of
a control system
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where r is the number of linearly independent states of the form

Sdj i�N=d
� �

i
(Supplementary Note 2).

To determine how much the error probability can be reduced,
we only need to evaluate the number of linearly independent
states. It turns out that this number grows as dN, up to a
polynomial factor (Supplementary Note 2 again). Taking the
logarithm, we obtain the discrimination rate

RQ ¼ � lim
N!1

log pQerr
N

¼ 2 log d; ð8Þ

which is twice the classical discrimination rate (2). In fact, the
asymptotic regime is already reached with a small number of
interrogations, of the order of a few tens. For example, the causal
relation between two quantum bits can be determined with an
error probability smaller than 10−6 using with 12 interrogations,
whereas 20 interrogations are necessary for classical binary
variables.

The above strategy is universal, in that it applies to causal
relationships described by arbitrary unitary gates. In particular, it
applies to gates that permute the classical states. Hence, the ability
to maintain coherence across the classical states and to generate
entanglement with a reference system offers an exponential
speedup with respect to the best classical strategy. In passing, we
note that the universal quantum strategy is insensitive to the
presence of perfectly correlated noise, such as the noise due to the
lack of a reference frame33, where each of the N input variables is
subjected to the same unknown unitary gate.

The ultimate quantum limit. So far, we examined strategies
where the unknown process is applied in parallel to a large
entangled state. Could a general sequence of interventions achieve
an even better rate?

Finding the optimal sequential strategy is generally a hard
problem. To address this problem, we introduce the fidelity
divergence of two quantum channels C1 and C2, defined as

∂FðC1; C2Þ ¼ inf
R

inf
ρ1;ρ2

F½ðC1 � IRÞðρ1Þ; ðC2 � IRÞðρ2Þ�
Fðρ1; ρ2Þ

; ð9Þ

where ρ1 and ρ2 are joint states of the channel’s input and of the
reference system R. It is understood that the infimum in the right-
hand side is taken over pairs of states (ρ1, ρ2) for which the
fidelity F(ρ1, ρ2) is non-zero, so that the expression on the right-
hand side of Eq. (9) is well-defined.

The fidelity divergence quantifies the ability of channels C1 andC2 to move two states apart from each other. In the Methods
section, we show that the error probability in distinguishing
between C1 and C2 with N queries is lower bounded as

pseqerr ðC1; C2;NÞ � ∂FðC1; C2ÞN
4

: ð10Þ

In particular, suppose that the two channels C1 and C2 have the
form C1 ¼ U � I=d and C2 ¼ I=d � U , where U is a fixed unitary
channel. In this case, we find that the fidelity divergence is 1/d2.
Hence, the error probability satisfies the bound

pseqerr ðC1; C2;NÞ � 1
4d2N

: ð11Þ

In the causal intermediary problem, the unitary gate U is
unknown, and therefore the error probability can only be larger
than pseqerr ðC1; C2;NÞ. Hence, the identification of the causal
intermediary cannot occur at a rate faster than 2 log d.

Equation (11) limits all sequential quantum strategies. But in
fact quantum theory is also compatible with scenarios where
physical processes take place in an indefinite order23,24. Could the

rate be increased if the experimenter had access to exotic
phenomena involving indefinite order?

The answer is negative. In the Methods section, we develop the
concepts and methods needed to answer this question, and we
show that the minimum error probability in distinguishing
between the two channels C1 ¼ I � I=d and C2 ¼ I=d � I using
arbitrary setups with indefinite order satisfies the bound

pinderr ðC1; C2;NÞ �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

d2N

q
2

:
ð12Þ

Clearly, this bound applies to the causal intermediary problem,
which is harder than the discrimination of the two specific
channels C1 ¼ I � I=d and C2 ¼ I=d � I . Hence, the rate RQ=
2 log d represents the ultimate quantum limit to the identification
of a causal intermediary.

Extension to arbitrary numbers of hypotheses. The quantum
advantage demonstrated in the previous sections can be extended
to the identification of the causal intermediary among an arbi-
trary number k of candidate variables. The best classical strategy
still consists of initializing all variables to the same value. Errors
arise when the values of two or more output variables are com-
patible with an invertible function. In the limit of many repeti-
tions, the minimum error probability is
pCerr;k ¼ ðk� 1Þ=ð2dN�1Þ þ O d�2Nð Þ. (Supplementary Note 3).
For quantum strategies, the best option among simple parallel
strategies is still to divide the input particles into N/d groups of d
particles and to initialize each group in the singlet state. In
Supplementary Note 4, we show that this strategy reduces the
error probability to pcoherr;k ¼ ðk� 1Þ=ð2dNÞ þ O d�2Nð Þ, for causal
relations represented by arbitrary unitary gates.

An exponentially smaller error probability can be achieved
using the input state (6). The evaluation of the error probability is
more complex than in the two-hypothesis case, but the end result
is the same: when the causal dependency is probed N times, the
quantum error probability decays at the exponential rate RQ= 2
log d, twice the rate of the best classical strategy (see
Supplementary Note 5 for the technical details).

Applications to other tests of causal hypotheses. The strategies
developed in the previous sections can be applied to the identi-
fication of causal relations in a variety of scenarios. For example,
they can be used to decide whether there is a causal link between
two variables A and B. More specifically, they can be used to
determine whether variable B is a causal intermediary for variable
A or whether B fluctuates at random independently of A. Also in
this case, the error probability of the best classical strategy is 1/
(2dN−1), whereas preparing N/d copies of the singlet yields error
probability 1/(2dN).

By superposing all possible partitions of the N inputs into
groups of d, one can boost the discrimination rate from log d to 2
log d. One could speculate that, in the future, such a fast
identification could be useful as a quantum version of the ping
protocol, capable of establishing whether there exists a quantum
communication link between two nodes of a quantum internet34.

Another application of our techniques is in the problem of
identifying the cause of a given variable. Suppose that one of k
variables A1, A2, …, Ak is the cause for a given variable B. An
example of this situation arises in genetics, when trying to identify
the gene responsible for a certain characteristic. Here, the
interesting scenario is when the number of candidate causes is
large.

Classically, the problem is to find the variable Ax such that B is
a function of Ax. For simplicity, we first assume that all variables
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have the same d-dimensional alphabet, and that the function
from Ax to B is the identity, namely b= ax. In this case, the cause
can be identified without any error by probing the unknown
process for logdk

� �
times. The identification is done by a simple

search algorithm, where one divides the candidate variables in d
groups and initializes the input variables in the i-th group to the
value i. In this way, d− 1 groups can be ruled out, and one can
iterate the search in the remaining group. Using a decision tree
argument35, it is not hard to see that logdk

� �
is the minimum

number of queries needed to identify the unknown process in the
worst case scenario.

In the quantum version of the problem, we find that the
number of queries can be cut down by approximately a half when
the number of hypotheses is large. The trick is to prepare k
maximally entangled states, and to apply the unknown process to
the first system of each pair. Repeating this procedure for N times
and using results on port-based teleportation36 we find that the
error probability is perr= (k− 1)/(d2N+ k− 1). Hence, N ¼
ð1þ ϵÞðlogdkÞ=2
� �

queries are sufficient to identify the cause
with vanishing error probability in the large k limit.

In Supplementary Note 6, we consider the more complex
scenario where the functional dependence between the cause and
effect is unknown, and the only assumption is that the effect is a
causal intermediary of the cause. Despite the lack of information
about the functional dependence, we show that the correct cause
can be still identified with high probability using N ¼
ð1þ ϵÞðlogdkÞ=2
� �

calls to the unknown process. The fast
identification of the cause is achieved by dividing the N copies
of each input variable Ai into groups of d copies, preparing each
group in the singlet state, and entangling the configuration of the
groupings with an external reference system. Once again, the
superposition of multiple equivalent setups leads to a quantum
speedup over the best classical strategy.

Discussion
We showed that quantum mechanics enhances our ability to
detect direct cause–effect links. This finding motivates the
exploration of more complex networks of causal relations,
including intermediate nodes and global causal dependences
between groups of variables1–3. The development of new tech-
niques for testing causal relations could find applications to future
quantum communication networks, providing a fast way to test
the presence of communication links. It could also assist the
design of intelligent quantum machines, in a similar way as
classical causal discovery algorithms have been useful in classical
artificial intelligence. In view of such applications, it is important
to go beyond the noiseless scenario considered in this paper, and
to address scenarios where the cause–effect relationships are
obfuscated by noise. The techniques developed in our work
already provide some insights in this direction. Quite interest-
ingly, one can show that the quantum advantage persists in the
presence of depolarizing noise, provided that the noise level is not
too high (see Supplementary Note 7). A complete study of the
noisy scenario, however, remains an open direction of future
research.

Another direction of future investigation is foundational. Given
the advantage of quantum theory over classical theory, it is
tempting to ask whether alternative physical theories could offer
even larger advantages. Interesting candidates are theories that
admit more powerful dense coding protocols than quantum
theory37, as one might expect super-quantum advantages to arise
from the presence of stronger correlations with the reference
system. In a similar vein, one could explore physical theories with
higher dimensional state spaces, such as Zyczkowski’s quartic

theory38, or quantum theory on quaternionic Hilbert spaces39.
Indeed, it is intriguing to observe that the classical rate RC= log d
and the quantum rate RQ= 2 log d are equal to the logarithms of
the dimensions of the classical and quantum state spaces,
respectively. In general, one may expect a relationship between
the dimension of the state space and the rate. Should super-
quantum advantages emerge, it would be natural to ask which
physical principle determines the causal identification power of
quantum mechanics. An intriguing possibility is that one of the
hidden physical principles of quantum theory could be a principle
on the ability to distinguish alternative causal hypotheses.

Methods
Properties of the fidelity divergence. Here, we derive two properties of the
fidelity divergence defined in Eq. (9). First, the fidelity divergence provides a lower
bound on the probability of misidentifying a channel with another:
Proposition 1 The probability of error in distinguishing between two quantum
channels C1 and C2 with N queries is lower bounded as
pseqerr ðC1; C2;NÞ � ∂FðC1; C2ÞN=4.

The bound can be obtained in the following way. Let ρðNÞ
x be the output state of

a circuit as in Fig. 1. Then, we have the bound

pseqerr ðC1; C2;NÞ ¼ 1
2 1� 1

2 ρðNÞ
1 � ρðNÞ

2

��� ���
1

� �
� 1

2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FðρðNÞ

1 ; ρðNÞ
2 Þ

q� 	
� 1

2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ∂FN ðC1; C2Þ

p
 �
� 1

2 1� 1� ∂FN ðC1 ;C2Þ
2

� �h i
¼ ∂FðC1 ;C2ÞN

4 :

ð13Þ

The first line follows from Helstrom’s theorem32, and the second line follows
from the Fuchs–Van De Graaf Inequality40. The third line follows from the
definition of the fidelity divergence (9), which implies that the fidelity between the
states right after the (t+ 1)-th use of the unknown channel Cx , denoted by ρx,t+1,
satisfies the bound

Fðρ1;tþ1; ρ2;tþ1Þ � ∂FðC1; C2ÞFðU tþ1ρ1;t ;U tþ1ρ2;tÞ
� ∂FðC1; C2ÞFðρ1;t ; ρ2;tÞ;

ð14Þ

where U tþ1 is the (t+ 1)-th operation in Fig. 1. The fourth line follows from the
elementary inequality

ffiffiffiffiffiffiffiffiffiffi
1� t

p 	 1� t=2.
Another important property is that the fidelity divergence can be evaluated on

pure states. The proof is simple: let ρ1 and ρ2 be two arbitrary states of the
composite system AR, where R is an arbitrary reference system. By Uhlmann’s
theorem41, there exists a third system E and two purifications
jΨ1i; jΨ2i 2 HA �HR �HE , such that F(Ψ1, Ψ2) = F(ρ1, ρ2). On the other hand,
the monotonicity of the fidelity under partial trace42, ensures that the fidelity
between the output states ðC1 � IREÞðΨ1Þ and ðC2 � IREÞðΨ2Þ cannot be larger
than the fidelity between the states ðC1 � IRÞðρ1Þ and ðC2 � IRÞðρ2Þ. Hence, the
minimization on the right-hand side of Eq. (9) can be restricted without loss of
generality to pure states.

Fidelity divergence for the identification of the causal intermediary. Let us see
how the fidelity divergence can be applied to our causal identification problem. The
two channels are of the form C1;U ðρÞ ¼ UρUy � I=d and C2;V ¼ I=d � VρVy ,
where U and V are two unknown unitary gates. Since we are interested in the worst
case scenario, every choice of U and V will give an upper bound to the dis-
crimination rate. In particular, we pick U= V.
Proposition 2 The fidelity divergence for the two channels C1;U and C2;U is
∂FðC1;U ; C2;U Þ ¼ 1=d2.

By the unitary invariance of the fidelity, ∂FðC1;U ; C2;U Þ is independent of U.
Without loss of generality, let us pick U= I. For a generic reference system R and
two generic pure states jΨ1; ijΨ2i 2 HA �HR , the two output states are

ρ′1 ¼ ðC1;I � IRÞðΨ1Þ ¼ ðΨ1ÞBR � IC
d

ρ′2 ¼ ðC2;I � IRÞðΨ2Þ ¼ IB
d � ðΨ1ÞCR ;

ð15Þ

up to reordering of the Hilbert spaces. The fidelity can be computed with the
relation

Fðρ′1; ρ′2Þ ¼
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΨ1ÞBRðΨ2ÞCRðΨ1ÞBR
p
 ��� ��2

d2
; ð16Þ

where we omitted the identity operators for the sake of brevity. Let us expand the
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input states as

Ψxj i ¼P
n

ϕxn
�� � nj i; x 2 f0; 1g ð17Þ

where {|n⟩} is an orthonormal basis for the reference system, and {|ϕxn⟩} is a set of
unnormalized vectors. Inserting Eq. (17) into Eq. (16), we obtain the expression

Fðρ′1; ρ′2Þ ¼
Tr

ffiffiffiffiffiffiffiffiffi
CyC

ph i��� ���2
d2

¼ jTrjCj j2
d2

;
ð18Þ

with C ¼Pn jϕ1nihϕ2nj. On the other hand, the fidelity between the input states is

Fðρ1; ρ2Þ ¼ jhΨ1jΨ2ij2 ¼ jTr½C�j2: ð19Þ
Hence, the fidelity divergence satisfies the bound

∂FðC1; C2Þ ¼ inf
R

inf
ρ1 ;ρ2

Fðρ′1 ;ρ′2Þ
Fðρ1 ;ρ2Þ

¼ 1
d2 infC

TrjCj
Tr½C�
��� ���2

� 1
d2 ;

ð20Þ

having used the inequality |Tr[C]| ≤ Tr|C|, valid for every operator C. The
inequality holds with the equality sign whenever C is positive. This condition is
satisfied, e.g., when the input states |Ψ1〉 and |Ψ2〉 are identical.

Quantum strategies with indefinite causal order. In principle, quantum
mechanics is compatible with situations where multiple processes are combined in
indefinite order23,24. This suggests that an experimenter could devise new ways to
probe quantum channels, allowing the relative order among different uses of the
same channel to be indefinite. We call such strategies indefinite testers.

Consider the problem of identifying a channel Cx from N uses. The input
resource is the channel C�N

x , representing N identical black boxes that can be
arranged in any desired order. Besides the product of N independent channels, the
most general class of channels with this property is the class of no-signaling
channels with N pairs of input/output systems.

Mathematically, an indefinite tester is a linear map from the set of no-signaling
channels to the set of probability distributions over a given set of outcomes.
Equivalently, the tester can be described by a set of operators {Tx}, where each
operator Tx acts on the Hilbert space �iðHin

i �Hout
i Þ, where Hin

i and Hout
i are the

Hilbert spaces of the input and output system in the i-th pair, respectively. When
the test is performed on a no-signaling channel C, the probability of the outcome x
is given by the generalized Born rule px= Tr[TxC], where C is the Choi operator of
the channel C43. The normalization of the probabilitiesX

x

Tr½Tx C� ¼ 1 ð21Þ

is required to hold for every no-signaling channel C.
Consider the problem of distinguishing between a set of no-signaling channels

fCxg using an indefinite tester. For every probability distribution {πx}, the worst-
case probability of error satisfies the bound

pinderr � 1�
X
x

πx Tr½TxCx � : ð22Þ
Now, suppose that there exists a constant λ and a no-signaling channel C such

that

λC � πxCx ð23Þ
for every x. Substituting Eq. (23) into Eq. (22) one obtains the bound

pinderr � 1� λ
X
x

Tr½TxC� ¼ 1� λ ; ð24Þ

having used the normalization condition (21). The bound (24) can be seen as a
generalization of the classical Yuen–Kennedy–Lax bound for quantum state
discrimination44.

We now apply the bound (24) to the task of distinguishing between the two
channels C1;I ¼ ðU � I=dÞ�N and C2;I ¼ ðI=d � UÞ�N . To this purpose, we
consider the universal cloning channel45

C ± :¼ 2
dN þ 1

Pþðρ� I�NÞPþ; ð25Þ

and the universal NOT channel46

C ± :¼ 2
dN � 1

P�ðρ� I�NÞP�; ð26Þ

with P±= (I ± SWAP)/2, and SWAP being the unitary operator that swaps between
the even and odd output spaces. It is easy to verify that both channels are no-
signaling. Moreover, we find that the convex combination C ¼ pþCþ þ p�C� with

p± ¼
ffiffiffiffiffiffiffiffiffi
dN ± 1
2dN

q
=

ffiffiffiffiffiffiffiffiffi
dNþ1
2dN

q
þ

ffiffiffiffiffiffiffiffiffi
dN�1
2dN

q� �
satisfies the condition (23) with λ ¼

1
2

ffiffiffiffiffiffiffiffiffi
dNþ1
2dN

q
þ

ffiffiffiffiffiffiffiffiffi
dN�1
2dN

q� �2
(see Supplementary Note 8 for technical details). Hence, the

bound (24) becomes

pinderr � 1� λ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

d2N

q
2

� 1
4d2N

:
ð27Þ

The above bound implies that the discrimination rate of quantum strategies
with indefinite order cannot exceed 2 log d.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and in the Supplementary Information files.

Received: 19 July 2018 Accepted: 8 March 2019

References
1. Spirtes, P., Glymour, C. N. & Scheines, R. Causation, Prediction, and Search

(MIT Press, Cambridge, Massachusetts, United States 2000).
2. Pearl, J. Causality (Cambridge University Press, Cambridge, United Kingdom

2009).
3. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference (Morgan Kaufmann, Burlington, Massachusetts, United States
2014).

4. Chaves, R. et al. Quantum violation of an instrumental test. Nat. Phys. 14,
291–296 (2018).

5. Van Himbeeck, T. et al. Quantum violations in the instrumental scenario and
their relations to the Bell scenario. Preprint at: https://arxiv.org/abs/
1804.04119 (2018).

6. Leifer, M. S. Quantum dynamics as an analog of conditional probability. Phys.
Rev. A 74, 042310 (2006).

7. Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for
quantum networks. Phys. Rev. A 80, 022339 (2009).

8. Coecke, B. & Spekkens, R. W. Picturing classical and quantum Bayesian
inference. Synthese 186, 651–696 (2012).

9. Leifer, M. S. & Spekkens, R. W. Towards a formulation of quantum theory as a
causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013).

10. Henson, J., Lal, R. & Pusey, M. F. Theory-independent limits on correlations
from generalized Bayesian networks. New J. Phys. 16, 113043 (2014).

11. Pienaar, J. & Brukner, Č. A graph-separation theorem for quantum causal
models. New J. Phys. 17, 073020 (2015).

12. Costa, F. & Shrapnel, S. Quantum causal modelling. New J. Phys. 18, 063032
(2016).

13. Portmann, C., Matt, C., Maurer, U., Renner, R. & Tackmann, B. Causal boxes:
quantum information-processing systems closed under composition. IEEE
Trans. Inf. Theory 63, 3277–3305 (2017).

14. Allen, J.-M. A., Barrett, J., Horsman, D. C., Lee, C. M. & Spekkens, R. W.
Quantum common causes and quantum causal models. Phys. Rev. X 7, 031021
(2017).

15. MacLean, J.-P. W., Ried, K., Spekkens, R. W. & Resch, K. J. Quantum-
coherent mixtures of causal relations. Nat. Commun. 8, 15149 (2017).

16. Wood, C. J. & Spekkens, R. W. The lesson of causal discovery algorithms for
quantum correlations: causal explanations of Bell-inequality violations require
fine-tuning. New J. Phys. 17, 033002 (2015).

17. Fitzsimons, J. F., Jones, J. A. & Vedral, V. Quantum correlations which imply
causation. Sci. Rep. 5, 18281 (2015).

18. Ried, K. et al. A quantum advantage for inferring causal structure. Nat. Phys.
11, 414–420 (2015).

19. Chaves, R., Majenz, C. & Gross, D. Information–theoretic implications of
quantum causal structures. Nat. Commun. 6, 5766 (2015).

20. Giarmatzi, C. & Costa, F. A quantum causal discovery algorithm. npj
Quantum Inf. 4, 17 (2018).

21. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum
machine learning. Contemp. Phys. 56, 172–185 (2015).

22. Biamonte, J. et al. Quantum machine learning. Nature 549, 195 (2017).
23. Chiribella, G., D’Ariano, G. M., Perinotti, P. & Valiron, B. Quantum

computations without definite causal structure. Phys. Rev. A 88, 022318
(2013).

24. Oreshkov, O., Costa, F. & Brukner, Č. Quantum correlations with no causal
order. Nat. Commun. 3, 1092 (2012).

25. Hardy, L. Quantum theory from five reasonable axioms. Preprint at: https://
arxiv.org/abs/quant-ph/0101012 (2001).

26. Barnum, H., Barrett, J., Leifer, M. & Wilce, A. Generalized no-broadcasting
theorem. Phys. Rev. Lett. 99, 240501 (2007).

27. Barrett, J. Information processing in generalized probabilistic theories. Phys.
Rev. A 75, 032304 (2007).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09383-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1472 | https://doi.org/10.1038/s41467-019-09383-8 | www.nature.com/naturecommunications 7

https://arxiv.org/abs/1804.04119
https://arxiv.org/abs/1804.04119
https://arxiv.org/abs/quant-ph/0101012
https://arxiv.org/abs/quant-ph/0101012
www.nature.com/naturecommunications
www.nature.com/naturecommunications


28. Chiribella, G., D’Ariano, G. & Perinotti, P. Probabilistic theories with
purification. Phys. Rev. A 81, 062348 (2010).

29. Hardy, L. Foliable operational structures for general probabilistic theories. In
Deep Beauty: Understanding the Quantum World through Mathematical
Innovation (ed. Halvorson, H.) 409–442 (Cambridge University Press,
Cambridge, United Kingdom 2011).

30. Chiribella, G. & Spekkens, R. W. Quantum Theory: Informational Foundations
and Foils (Springer, Dordrecht, The Netherlands 2016).

31. Hayashi, M. Discrimination of two channels by adaptive methods and its
application to quantum system. IEEE Trans. Inf. Theory 55, 3807–3820 (2009).

32. Helstrom, C. W. Quantum detection and estimation theory. J. Stat. Phys. 1,
231–252 (1969).

33. Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Reference frames,
superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609
(2007).

34. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
35. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to

Algorithms (MIT Press, Cambridge, Massachusetts, United States 2009).
36. Mozrzymas, M., Studziński, M., Strelchuk, S. & Horodecki, M. Optimal port-

based teleportation. New J. Phys. 20, 053006 (2018).
37. Massar, S., Pironio, S. & Pitalúa-Garca, D. Hyperdense coding and

superadditivity of classical capacities in hypersphere theories. New J. Phys. 17,
113002 (2015).

38. Życzkowski, K. Quartic quantum theory: an extension of the standard
quantum mechanics. J. Phys. A 41, 355302 (2008).

39. Barnum, H., Graydon, M. A. & Wilce, A. Some nearly quantum theories.
Preprint at: https://arxiv.org/abs/1507.06278 (2015).

40. Fuchs, C. A. & Van De Graaf, J. Cryptographic distinguishability measures
for quantum-mechanical states. IEEE Trans. Inf. Theory 45, 1216–1227
(1999).

41. Uhlmann, A. The transition probability in the state space of a*-algebra. Rep.
Math. Phys. 9, 273–279 (1976).

42. Wilde, M. M. Quantum Information Theory (Cambridge University Press,
2013).

43. Choi, M.-D. Completely positive linear maps on complex matrices. Linear
Algebra Appl. 10, 285–290 (1975).

44. Yuen, H., Kennedy, R. & Lax, M. Optimum testing of multiple hypotheses in
quantum detection theory. IEEE Trans. Inf. Theory 21, 125–134 (1975).

45. Werner, R. F. Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832
(1998).

46. Bužek, V., Hillery, M. & Werner, R. Optimal manipulations with qubits:
universal-not gate. Phys. Rev. A 60, R2626–R2629 (1999).

Acknowledgements
The authors acknowledge Robert Spekkens, David Schmidt, Lucien Hardy, Sergii
Strelchuk, Akihito Soeda, and Thomas Gonda for stimulating discussions. This work
is supported by the National Natural Science Foundation of China through Grant
11675136, the Croucher Foundation, John Templeton Foundation, Project 60609,

Quantum Causal Structures, the Canadian Institute for Advanced Research (CIFAR),
the Hong Research Grant Council through Grants 17300317 and 17300918, and
the Foundational Questions Institute through Grant FQXi-RFP3-1325. This pub-
lication was made possible through the support of a grant from the John
Templeton Foundation. The opinions expressed in this publication are those of
the authors and do not necessarily reflect the views of the John Templeton Foun-
dation. This research was supported in part by Perimeter Institute for Theoretical
Physics. Research at Perimeter Institute is supported by the Government of Canada
through the Department of Innovation, Science and Economic Development Canada
and by the Province of Ontario through the Ministry of Research, Innovation and
Science.

Author contributions
Both the authors contributed substantially to the research presented in this paper and to
the preparation of the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09383-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks Cyril Branciard,
Jonatan Bohr Brask and the other anonymous reviewer for their contribution to the peer
review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09383-8

8 NATURE COMMUNICATIONS |         (2019) 10:1472 | https://doi.org/10.1038/s41467-019-09383-8 | www.nature.com/naturecommunications

https://arxiv.org/abs/1507.06278
https://doi.org/10.1038/s41467-019-09383-8
https://doi.org/10.1038/s41467-019-09383-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Quantum speedup in the identification of cause–nobreakeffect relations
	Results
	Theory-independent framework for testing causal hypotheses
	Identifying causal intermediaries
	Optimal classical strategy
	A first quantum advantage
	Optimality among simple parallel strategies
	Exponential reduction of the error probability
	The ultimate quantum limit
	Extension to arbitrary numbers of hypotheses
	Applications to other tests of causal hypotheses

	Discussion
	Methods
	Properties of the fidelity divergence
	Fidelity divergence for the identification of the causal intermediary
	Quantum strategies with indefinite causal order

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




