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Abstract

Technologies nowadays allow computer to perform lots of compli-

cated tasks accurately and efficiently. One of the fastest growing technologies

is machine learning, computers are able to act and make smart decisions like

human. Machine learning requires a lot of data during the training process

so that the computer can find out the hidden relationships and patterns, and

generates the outputs based on its experiences. The amount of data in our

world is increasing exponentially every day, which is essential for training

machine learning models with great performance. However, data privacy is

getting far more attention than ever before. Governments and organisations

are not willing to share private data to other parties for any purposes, in-

cluding machine learning. Therefore, a new way of training machine learning

models without gathering data to a central server, and without ’seeing’ the

actual data, is needed. This leads to the development of Federated Learning,

a new technique proposed by Google in 2016. The objective of this project

is to understand Federated Learning and build a platform for users to train

a machine learning model without centralizing the data. We have tried out

several Federated Learning frameworks and tried to deploy them.
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1 Introduction

1.1 Background

With the advances in computational power and the exponentially

increasing amount of data, artificial intelligence (AI) technologies are be-

coming more popular and more useful in many areas. Today AI has better

performance than humans in many tasks, for example, diagnosing diseases,

predicting stock prices, or even playing video games. One may think that it

is the improvements in machine learning algorithms that lead to the success

of these AI applications. This is true, but the data behind these AI are of

equal importance. Most machine learning models are trained with a sub-

stantial amount of data, so that they can generalize the features from the

data to make accurate predictions or decisions. Without sufficient data, the

performance of many AI would be greatly reduced, and they would not be

useful anymore.

Traditionally, machine learning models are trained using data in a

single device or a single server. If data exist in multiple local devices, all

of the data must be sent to the central server for training the global model.

The cost of transporting and processing with such a large amount of data

would be very huge, and most of the time it is not possible to gather all

the required data to train a machine learning model. Relying on a stable

network connection and the limitation for real-time applications are other

possible challenges for traditional centralized machine learning.

Moreover, there is an even bigger challenge for traditional central-

ized machine learning. Governments and the general public are paying more

attention to data privacy than ever before. Personal information is required

by many websites and mobile apps to verify users’ identity and to provide

better services for users. People are worried that their information is used by

unauthorized companies or governments for unknown purposes. Therefore,

many countries and companies have laws and regulations to protect personal

data. This isolates data in different parties, making it very difficult to gather

data for training a machine learning model.
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1.2 Introduction to Federated Learning

To overcome the challenges mentioned above, an algorithm that

allow different parties to train a machine learning model without sharing the

actual data is needed. Google proposed a concept called Federated Learning

(FL) in 2016. Federated Learning (FL) is a technique to train machine

learning models on multiple local devices without exchanging data between

them. In FL, local devices download the current global model from a central

server, and train it with local data. The updated local model is then sent

back to the central server, where it aggregates with the global model, and

produces an improved global model. This improved global model is then sent

back to all local devices when they are available. More details about FL will

be discussed later in this report.

1.2.1 Benefits of Federated Learning

First of all, federated learning provides a way for users to train

machine learning models collaboratively without exposing their data to oth-

ers. This allows organisations such as hospitals or banks to perform machine

learning without giving out sensitive data.

Federated learning also reduces the time and cost for data trans-

mission, because data never leaves the devices, only model weights that are

much smaller in size compared to data are transmitted to the server through

the internet. This also allows the model to be trained with the local data

without internet.

Federated learning only requires a minimal hardware, so that mo-

bile phones and small hardware systems are able to participate in federated

learning in real-time [3]. One example is Google’s Gboard on Android sys-

tems, which will be discussed later.
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1.2.2 Challenges of Federated Learning

Although devices can train their model locally, internet is essential

for improving the efficiency of the whole federated learning system, and get

a more accurate global model. Therefore, a secure and stable network is

required in order to reduce the total number of rounds of communications to

be more efficient.

Data in different parties might be very different. For example, one

device has a lot of dog images, whereas another device has a lot of cat images.

This leads to a very unbalanced dataset. Furthermore, not all devices are

active at anytime, so the participation rate might be very low. A good feder-

ated learning system should be able to handle both of the above situations.

According to research, federated learning cannot guarantee 100%

privacy because the sharing of model weights might have a chance of revealing

sensitive information [2].

1.2.3 Examples of Federated Learning

Federated Learning is still a relatively new concept in the industry.

Google’s keyboard on Android is one of the products that has already applied

federated learning.
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Figure 1.1: Word Prediction in Gboard [1]

Google would like to make real time and accurate word predictions

based on previous words inputs. In order to do so, a large amount of data

from users around the world is required. However, users do not want Google

to know what they typed, so Google chooses to use their own technique,

federated learning, to train a model without getting the context from the

Android devices. Other than Gboard, federated learning is also being applied

to Apple’s Siri [4], and it can be applied to a lot of different areas such as

FinTech, insurance, or healthcare in the future.

1.3 Objectives

In December 2019, a new kind of coronavirus (SARS-CoV-2) was

identified in China. Since then, the coronavirus disease 2019 (COVID-19)

has been ravaging the world, causing 140 million confirmed cases, and 3
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million deaths as of 17 April 2021. To slow the spread of COVID-19, the

best way is to identify the infected people and isolate them. Currently, a few

hours are required to get the test result. A biotechnology company in Hong

Kong, AI InnoBio Limited, wants to adopt an industry- leading CMOS sensor

technology with a machine learning model, to perform a fast, accurate, and

low-cost COVID-19 saliva test. This technology was tested in Israeli with

hundreds of patients, and it achieved an accuracy of 95% of identifying the

presence of the virus in just a few seconds. [5]

The machine learning algorithm and the data are not shared with

the company, due to regulations and privacy. In order to use the technology

in Hong Kong, new data need to be collected to train a new machine learning

model. However, due to the low number of confirmed cases in Hong Kong,

there is not enough data to train an accurate model. Also, data from other

countries are difficult to collect due to their privacy laws. Therefore, a tech-

nique to train machine learning models without gathering data to a single

place is required, so that different countries can train their models locally

without sharing their data, and the models are then combined together to

form the final model.

This project aims to explore FL and tries to apply it to COVID-19

detection. In the first part of the project, different types of FL techniques

will be studied. Then simple platforms for FL will be implemented using

several open-source FL frameworks. The accuracy, efficiency, and privacy of

the platforms will be evaluated.

1.4 Outline of Report

This report consists of 5 chapters. The first chapter introduces the

background of the project, such as the limitations of traditional centralized

machine learning, and the basic idea of federated learning. It also states the

objectives of this project.

In the second chapter, the methodology of the project is discussed.

Three types of federated learning techniques are introduced, including hor-

5



izontal FL, vertical FL and federated transfer learning. A few security pro-

tocols will be mentioned briefly, followed by the benefits and challenges of

FL.

The third chapter shows our experiments and results using differ-

ent FL frameworks, including Tensorflow Federated, Sherpa AI, Flower, and

PySyft.

The forth chapter discusses the challenges of federated learning and

the obstacles we encountered during the project.

The last chapter summarizes the report and this project.
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2 Methodology

2.1 Introduction

This chapter explains the techniques that will be used in this project

in more detail. Section 2.2 introduces three different types of FL. Section 2.3

introduces a few security protocols. Section 2.4 and 2.5 discusses the benefits

and challenges of FL.

2.2 Types of Federated Learning

Federated learning is classified into three types by Q. Yang in [2],

namely horizontal federated learning, vertical federated learning, and feder-

ated transfer learning. The main difference between these three types of FL

is the data distribution among different local devices. More details will be

explained below.

2.2.1 Horizontal Federated Learning

When local devices have different data samples with the same fea-

ture space, horizontal federated learning is used. Figure 2.1 shows the above

situation. The vertical axis denotes the samples and the horizontal axis de-

notes the feature space. The area inside the red dotted line is the data that

can be used in horizontal FL. For example, different countries have different

positive and negative cases for COVID-19, but the types of patient informa-

tion are the same (e.g. age, gender, saliva sample). In horizontal FL, local

devices download the global model from the central server, and then trains

the model locally with local data. Encrypted results are sent back to the

central server, where results are aggregated securely. The aggregated result

is then sent back to local devices to update the local models. [2]

7



Figure 2.1: Horizontal Federated Learning [2]

2.2.2 Vertical Federated Learning

When local devices have the same data samples, but with different

feature spaces, vertical federated learning is used. In Figure 2.2, it is clear

that vertical FL is the opposite of horizontal FL. The dotted line surrounds

overlapping samples of data from A and data from B only, instead of the over-

lapping features in Figure 2.1. For example, a hospital and a government may

have information of the same person, but their types of information are dif-

ferent. A hospital could have a person’s health record, while the government

could have the person’s travel record. In vertical FL, the two parties A and

B find out their common data sample by using encryption-based techniques.

Then a third party, the collaborator C, sends public keys to both A and B,

and both A and B trains their local model with their data. The encrypted

results are exchanged, and an additional mask is added by both A and B,

and the results are sent to C. C decrypts the results and sends the results

back to A and B, where the results are unmasked and used to update their

model accordingly. [2]

8



Figure 2.2: Vertical Federated Learning [2]

2.2.3 Federated Transfer Learning

When local devices have a small amount of overlapping data sam-

ples, and with different feature spaces, federated transfer learning is used. In

Figure 2.3, it is shown that samples extend their feature spaces for training.

This is because the overlapping area of the data is too small, to successfully

train a machine learning model, new features must be learnt from other data.

Federated transfer learning works similar to vertical FL, but the intermedi-

ate results exchanged between parties A and B are different. This is not the

main focus of the project, so details will not be explained here. [2]

Figure 2.3: Federated Transfer Learning [2]

9



2.3 Security Protocols

Privacy is the main reason for developing federated learning, so

a way to prevent data leakage to the server is very important. Security

Protocols are used to guarantee that federated learning is safe and does not

expose data to the server. In a horizontal federated learning system, it is

assumed that the participants are honest and the server is honest but curious

[2]. This means that the server handles all security measures and participants

trusts the server. In this section, three types of security protocols will be

briefly introduced, including Secure Multi-party Computation, Differential

Privacy, and Homomorphic Encryption.

2.3.1 Secure Multi-party Computation

Secure Multi-party Computation distributes a computation to mul-

tiple parties, so that all parties does not have access to any other parties’

data. A simple example is averaging the salary of 3 people. Each of them

divides their salary into three meaningless parts, and then each person re-

ceives one part. Then the three people can add up the pieces of salary to get

an average salary without the need of knowing others’ salary. This ensures

zero-knowledge in an FL system but it involves complex computations [2].

2.3.2 Differential Privacy

In differential privacy, noise is added to data so that outsiders can-

not distinguish whether a specific individual’s information is included in the

computation. This can protect the privacy of the users, but the noise might

modify the data and it might affect the accuracy of the machine learning

model.
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2.3.3 Homomorphic Encryption

Homomorphic Encryption protects the user privacy by using en-

cryption algorithms in the machine learning process. Since the data and

model are not transmitted, the possibility of data leakage is very low. How-

ever, the accuracy might also be affected when polynomial approximations

are made when evaluating non-linear functions in machine learning [2].

2.4 Implementation of Horizontal Federated Learning

In this project, we are focusing on implementing a platform for

horizontal FL only. There are two types of participants in the FL system,

the local devices and the cloud server. According to [2] there are 4 main steps

in the training process. In the first step, local devices train local models with

their own data. Local devices then send the encrypted gradients to the

central server. In the second step, the central server securely aggregates the

received gradients without learning any information about any participants.

In the third step, the central server sends back the aggregated results to local

devices. In the last step, local devices decrypt the results and use them to

update their local models. These steps will be repeated until the loss function

converges.

11



Figure 2.4: Horizontal FL Architecture [2]

2.5 Evaluation

The FL model trained with the platform will be compared to a

model trained with the traditional centralized machine learning technique.

Multiple open-source frameworks are used in this project. Experiments using

different number of clients, different number of data per clients, different

types of neural networks, and different datasets are conducted. The accuracy

and efficiency of these platforms will be evaluated. Lastly, by ensuring the

actual data does not leave local devices, the platform can protect data better

than the traditional centralized machine learning technique. However, more

investigations are required to find out whether the platform can protect the

data from attacks.

2.6 Summary

Federated learning is the main focus of this project. The three types

of federated learning algorithms are used in different situations according to

the distribution of data. We have discussed about the basics of some security

protocols and details of the implementation of horizontal federated learning.
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3 Experiments and Results

3.1 Overview

In this chapter, the experiments and results are presented. This

chapter is separated according to the framework used, including Tensorflow

Federated, Sherpa AI, Flower and PySyft.

3.2 Tensorflow Federated

Tensorflow Federated an open-source framework for decentralized

machine learning developed by Google. Three datasets were used with dif-

ferent models. For the Cats-vs-Dogs and CIFAR10 datasets, we used a con-

volutional neural network. For the Fashion MNIST dataset, we used a simple

fully connected neural network.

Three different methods are used for each dataset. The first method

is the traditional centralized machine learning method, using the basic Ten-

sorflow operations. This will be used as a baseline for comparison. The

second method is the Tensorflow Federated Learning API. Keras models are

created and are wrapped into a tff.learning.Model, then the tff.learning API

handles all the Federated Learning logics where the API is treated mostly as

a black box. The third method is to build a Federated Learning algorithm

using Tensorflow Federated Core. This is the same as using the tff.learning

API, but we implement the functions ourselves, providing more freedom for

customizations. There are four basic components in Tensorflow Federated,

they are server-to-client broadcast, client update, client-to-server upload, and

server update.

Below are the experiment results of the three methods and datasets.

13



3.2.1 Fashion MNIST

Fashion MNIST is a dataset consisting of 60000 training images and

10000 testing images. The images are in black and white. Below are some

examples of images in the dataset.

Figure 3.1: Sample images from Fashion MNIST

The images are of 28 x 28 pixels. They are flattened into a 1-

dimensional tensors, and they are the input of the fully connected neural

network (FCNN) below. This model is used in all three methods for the

Fashion MNIST dataset.

14



Figure 3.2: Neural network used for Fashion MNIST

First, the traditional centralized machine learning technique is used

to train the network. Only 10000 images in the training set is used. After

10 epochs, the validation accuracy reaches approximately 84%.

Figure 3.3: Validation accuracy of neural network trained with traditional

machine learning technique on Fashion MNIST

15



Figure 3.4: Validation loss of neural network trained with traditional

machine learning technique on Fashion MNIST

Then we trained the model with the Tensorflow Federated Learning

API. 100 clients are created by separating the training set randomly, allowing

duplicated images in different clients. Each client has 1000 images. Below is

the class distribution in the first 10 clients.

Figure 3.5: Class distribution of Fashion MNIST

10 clients are chosen in the training process, so that the total num-

ber of images used in the training is 10000 per round. Below is the validation

accuracy and loss we get.

16



Figure 3.6: Validation accuracy of neural network trained with Tensorflow

Federated Learning API on Fashion MNIST

Figure 3.7: Validation loss of neural network trained with Tensorflow

Federated Learning API on Fashion MNIST

The above results show that the federated learning algorithm is

able to train neural network without centralizing data from multiple clients.

17



However, the accuracy is only 74% after 10 rounds, which is much lower than

the 84% reached by the traditional machine learning technique.

Next, we implemented a Federated Averaging algorithm using Ten-

sorflow Federated Core, and we trained the neural network with it. Below is

the validation accuracy and loss we get, they are very similar to what we get

from using Tensorflow Federated Learning API.

Figure 3.8: Validation Accuracy of neural network trained with Tensorflow

Federated Core on Fashion MNIST
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Figure 3.9: Validation loss of neural network trained with Tensorflow

Federated Core on Fashion MNIST

3.2.2 CIFAR10

CIFAR10 is a dataset consisting of 50000 training images and 10000

testing images. The images have three channels. Below are some examples

of images in the dataset.
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Figure 3.10: Sample images from CIFAR10

This time a convolutional neural network is used to classify the

images.

Figure 3.11: Neural network used for CIFAR10
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The same three methods are used to train the neural network, below

are the class distributions and the results.

Figure 3.12: Class distribution of CIFAR10

Tradional Centralized Machine Learning:

Figure 3.13: Validation accuracy of neural network trained with traditional

machine learning technique on CIFAR10
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Figure 3.14: Validation loss of neural network trained with traditional

machine learning technique on CIFAR10

Because of the colored and more complex images in CIFAR10, it is

a more difficult problem compared to Fashion MNIST. Therefore, the vali-

dation accuracy after 10 epochs for classifying IFAR10 is much lower than

that for classifying Fashion MNIST.
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Tensorflow Federated Learning API:

Figure 3.15: Validation accuracy of neural network trained with Tensorflow

Federated Learning API on CIFAR10

Figure 3.16: Validation loss of neural network trained with Tensorflow

Federated Learning API on CIFAR10
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Tensorflow Federated Core:

Figure 3.17: Validation accuracy of neural network trained with Tensorflow

Federated Core on CIFAR10

Figure 3.18: Validation loss of neural network trained with Tensorflow

Federated Core on CIFAR10

From the results above, it is clear that the accuracies reached by

bothe federated learning algorithms are much lower than the accuracy reached
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by tradition centralized machine learning for CIFAR10. One possible expla-

nation for this is that CNN requires more rounds to converge in federated

learning for more complex datasets.

3.2.3 Cats-vs-Dogs

Cats-vs-Dogs is a dataset consisting of 25000 images with three

channels. Below are some examples of images in the dataset.

Figure 3.19: Sample images from Cats-vs-Dogs

This same CNN for CIFAR10 is used to classify Cats-vs-Dogs here.

The same three methods are used to train the neural network, below are the

class distributions and the results.
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Figure 3.20: Class distribution of Cats-vs-Dogs

Tradional Centralized Machine Learning:

Figure 3.21: Validation accuracy of neural network trained with traditional

machine learning technique on Cats-vs-Dogs
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Figure 3.22: Validation loss of neural network trained with traditional

machine learning technique on Cats-vs-Dogs

The accuracy reached by the neural network after 10 epoch is about

62%, which is lower than that in Fashion MNIST, but higher than that in

CIFAR10. This is probably due to the nature of the dataset, as Cats-vs-Dogs

is a dataset of colored images, but there are only 2 classes for classification.
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Tensorflow Federated Learning API:

Figure 3.23: Validation accuracy of neural network trained with Tensorflow

Federated Learning API on Cats-vs-Dogs

Figure 3.24: Validation loss of neural network trained with Tensorflow

Federated Learning API on Cats-vs-Dogs
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Tensorflow Federated Core:

Figure 3.25: Validation accuracy of neural network trained with Tensorflow

Federated Core on Cats-vs-Dogs

Figure 3.26: Validation loss of neural network trained with Tensorflow

Federated Core on Cats-vs-Dogs

The accuracy using federated learning is slightly lower than that

using traditional machine learning. However, the difference between the two
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is much smaller than the difference in CIFAR10. This might be due to the

different number of classes in the two datasets, and the complexity of the

datasets.

3.2.4 Further experiments on Fashion MNIST

Other than changing the dataset and model structure, we would

like to explore more on the effect of using different number of clients. In

previous experiments, the same 10 clients are used for each round. This time

we choose 10 random clients every round from the 100 clients created. Below

are the results.

Figure 3.27: Validation accuracy of neural network trained with the

same/different clients for each round
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Figure 3.28: Validation loss of neural network trained with the

same/different clients for each round

The accuracy of the network increases faster when it is trained with

different clients, and it reaches a slightly higher accuracy after 20 rounds.

This is the same as the expected result because the neural network has access

to more data with different clients in each round, so it can learn faster and

be better in generalization.

Next, we performed a grid search to explore the performance of the

algorithm with different number of clients and different number of images

per client. Results are shown below.
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Figure 3.29: Validation loss of neural network trained with the different

number of clients and number of images per clients

Figure 3.30: Validation accuracy of neural network trained with the

different number of clients and number of images per clients
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Figure 3.31: Zoom in to Figure 3.30

From Figure 3.31 we can see that in general, the accuracy increases

with the total number of images used in the training. As a result, we would

like to fix the total number of images used in the training and explore the

effect of number of clients on the accuracy of the model. From Figure 3.32,

it can be seen that the accuracy increases with the number of images per

client, and when there are less clients.

Figure 3.32: Validation accuracy of neural network trained with 5000

images in total
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Figure 3.33: Validation loss of neural network trained with 5000 images in

total

3.3 Sherpa AI

Sherpa.ai’s Federated Learning and Differential Privacy Framework

is a framework developed for research and experimentation in FL and Differ-

ential Privacy. It allows users to simulate the FL environment. Again, the

effect of changing the number of clients and the number of data per clients

are explored.

3.3.1 Fixed total number of data

MNIST is the dataset used in the experiments for this framework.

In the first experiment, the total number of data is set to 3000, and the model

is trained in 3 rounds.
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Table 3.1: Fixed total number of data in Sherpa.ai

No.

nodes

No. data

per client
Accuracy Time (s)

1 3000 0.8541 74.85

5 600 0.8371 206.66

10 300 0.7858 286.08

15 200 0.7495 461.30

20 150 0.5730 721.09

25 120 0.6433 903.46

30 100 0.5525 960.65

Figure 3.34: Accuracy of neural network trained with different numbers of

nodes in Sherpa.ai
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Figure 3.35: Time spent on training neural network with different numbers

of nodes in Sherpa.ai

From Table 3.1 and Figure 3.34, it is clear that the accuracy of the

neural network decreases when the number of clients increases, and when the

number of data per client decreases. This is the same as the result we get

from using Tensorflow Federated. Also, from Figure 3.35 it can be seen that

the time spent on the training increases when there are more clients, because

more communications and computations are required to train the network

with data from multiple clients.

3.3.2 Fixed data per client

In this section, the number of data per client is fixed to be 300.

Again the model is trained in 3 rounds.
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Table 3.2: Fixed number of data per client in Sherpa.ai

No.

nodes

No. total

data
Accuracy Time (s)

1 300 0.6351 63.41

5 1500 0.6812 195.66

10 3000 0.7501 359.30

15 4500 0.7785 604.89

20 6000 0.7837 727.94

25 7500 0.7777 865.50

30 9000 0.7930 934.86

Figure 3.36: Accuracy of neural network trained with different numbers of

data per client in Sherpa.ai
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Figure 3.37: Time(s) spent on training neural network with different

numbers of data per client in Sherpa.ai

From Table 3.2 and Figure 3.36, we can see that the accuracy of

the neural network increases with the number of clients. However, this is

because the total number of data also increases with the number of clients,

so that the neural network is trained on more data when there are more

clients. The time spent on training the neural network increases with the

number of clients as expected.

3.4 Flower

Flower is another python framework for federated learning. We

implemented a simple server-client platform using Flower. In each round,

the server selects specific clients, and sned the updated model to the selected

clients. The clients only need to connect to the server and wait for the server

to select them. When the client receives the model, it trains the model locally

with its local data, then the updated gradients are sent back to the server

for aggregation.
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Figure 3.38: Sequence Diagram of one round in the FL CLI platform

3.4.1 Rationale for using Flower

The Flower framework has 4 major advantages, scalability, compat-

ibility with edge devices, proven infrastructure, and usability [6].

For scalability, Flower is designed for handling real-world problems

with a large number of clients. Previously, researchers have tried to run tests

with more than 10000 clients using Flower, so it should be easy to scale the

platform.

Flower supports all kinds of servers and devices including Android,

iOS, Raspberry Pi, and Nvidia Jetson. This allows it to be used in a lot

more situations in the real-world, rather than being another research or ex-

perimental framework.

Flower handles all the communications and computations of feder-

ated learning, so users only need to focus on the model and the data when

we use this framework. Users only need to type a few lines of codes to train

their models using federated learning.
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Finally, the codes of Flower is very easy to understand, and it pro-

vides a lot of freedom for customizing the federated learning algorithm to fit

users’ specific requirements.

3.4.2 Evaluation

Two datasets, MNIST and CIFAR10 are chosen for the experiments.

The server selects 10% of the total clients connected to the server every

round, given that there are at least 3 clients per round and at least 5 clients

are connected to the server at any moment. Every client has 500 training

samples and 10 test samples, and the aggregation strategy in the server is

federated averaging. The tests are conducted locally on a single computer

using the command line interface (CLI).

Table 3.3: Training result with the CLI platform using Flower

Dataset Model
No. of

rounds
Accuracy

Time

(s)

MNIST

Fully Connected

Neural Network

(FCNN)

10 85% 24

CIFAR10

Convolutional

Neural Network

(CNN)

10 29% 106

In Table 3.3, the result is very similar to the result obtained using

Tensorflow Federated. The neural network training on MNIST has a much

higher accuracy than the one training on CIFAR10. This once again shows

that CIFAR10 is a more complex dataset, because it contains coloured im-

ages while MNIST only contains black and white images, and it is a much

more difficult task for computers to classify the CIFAR10 images. Another

possible reason is that FCNN is a simpler network, whereas CNN is relatively

more complex. Therefore FCNN converges more quickly than CNN. The dif-

ferences in dataset and neural network also lead to the huge difference in the

training time.
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More experiments are conducted below to investigate the relation-

ship between the number of clients, number of rounds, and the accuracy. The

dataset used is MNIST. The accuracy increases with the number of rounds,

and it also increases with the number of clients, because it is trained on more

data.

Table 3.4: Training results with different No. of rounds with the CLI platform

using Flower

No. of clients No. of rounds Accuracy

5 5 82.11%

5 10 85.50%

5 15 86.04%

5 20 86.47%

Table 3.5: Training results with different No. of clients with the CLI platform

using Flower

No. of clients No. of rounds Accuracy

2 10 81.67%

3 10 84.15%

4 10 84.94%

5 10 85.50%

3.5 PySyft, PyGrid, and Syft.js

PySyft is a library developed for secure and private machine learn-

ing. It uses federated learning, and security measures such as differential

privacy and encrypted computations. In previous sections, all of the exper-

iments are conducted in a single machine locally, multi-machine training is

yet to be implemented in the frameworks. In the next subsection a tool in

PySyft called Duet will be introduced. It allows users to do multi-machine

trainings easily.

41



3.5.1 Duet

Duet is a peer-to-peer tool in the PySyft library that allows two

users to train a machine learning model collaboratively. In Duet, the server

side is called the Data Scientist, whereas the client side is called the Data

Owner. The data owner is the one with the training data, which is kept

locally on his side, and not exposed to the data scientist side. The data

scientist sends requests to the data owner to access and compute the train-

ing data, while the data owner have to decide whether he allows a certain

operations to be performed on their data by the data scientist.

In fact, Duet is a perfect platform for small scale federated learning

projects, for example, the COVID-19 detection project. It is not easy for all

hospitals and government departments to be online and active at the same

moment. It would be easier for AI InnoBio to train the model with these

parties one by one, so Duet is a possible solution for them.

Below shows the result of training a FCNN model on MNIST dataset.

First we only create one client who has all 60000 images. We connect the

data owner to the data scientist and let the data scientist sends requests to

the data owner to train the model. Even though Duet is designed for one

data owner and one data scientist for each connection, we simulated multi-

ple clients and multiple connections by dividing the training set into equal

portions and train the model with the portions of data one by one. The

results are similar to results from other frameworks, the more clients, the

less accurate the model, because the total number of data is fixed, but they

are separated into different clients.
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Table 3.6: Training results with different No. of clients with Duet

No. of

clients

No. of data

per client

No. of

epochs
Accuracy Time (s)

1 60000 5 97.86% 1077

5 12000 5 96.71% 1268

10 6000 5 95.29% 1564

1 60000 10 98.00% 2156

5 12000 10 96.46% 2588

10 6000 10 94.48% 3139

3.5.2 PyGrid

To scale PySyft, PyGrid is required for deploying PySyft training

plans. It allows PySyft training plans to be accessed from websites and other

devices such as mobile devices and edge devices.

3.5.3 Syft.js

Syft.js is a frontend Javascript library for interacting with PySyft

plans hosted in PyGrid. It is built on top of Tensorflow.js and it will allow

users to add security protocols such as secure aggregation, differential privacy,

and multi-party computation in the future.

3.6 Summary

Four open-source frameworks for Federated Learning have been

tried out. A lot of experiments are conducted by changing the parame-

ters such as the number of clients and the number of data per client. From

the results, it can be concluded that when compared to models trained with

traditional centralizing machine learning algorithm, models trained with fed-

erated learning has a lower accuracy given that they are trained on the same
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amount of data, and the same number of epochs. Also, more time is re-

quired in the training process because of the additional communications and

computations.

Most frameworks are still being actively developed, and most of

them does not support multi-machine federated learning. This leaves us with

a limited choice of frameworks if we would like to build a federated learning

platform to tackle real-world problems. The platform needs to be updated

frequently as well, because the source codes of the frameworks change rapidly.
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4 Challenges

4.1 New Technology

Federated learning is a relatively new technique, it has not been

applied to many real-world applications, and most previous works are only

for research purposes. There are relatively few references that this project can

refer to, so we can only try our best to solve the obstacles using the limited

resources, and in many cases, it is beyond our group members’ capabilities.

4.2 Implementing Federated Learning Platform from

scratch

Federated Learning for multiple clients and multiple machines is the

project’s ultimate goal. However, to implement such a system from scratch

is far beyond our capabilities. A lot of networking issues, security issues,

and issues related to the algorithms need to be tackled. Therefore, instead

of implementing the whole platform from scratch, we explored several open-

source frameworks and try to build on top of them.

4.3 Open-source Federated Learning Frameworks

The open-source federated learning frameworks we explored are the

most popular ones. However, they are still being developed, and they are

mostly for research and experimental purposes for now. For example, all of

the frameworks we tried except PySyft do not support multi-machine feder-

ated learning, which is essential for building a working product that can be

applied to real-world situations. Moreover, all of these frameworks are under

active development. There are rapid changes in the source codes and how to

use their APIs. This leads to a lot of outdated sources and outdated docu-

mentation. The official tutorials and documentation from these frameworks

might not work on the latest versions. During this project, a lot of time is
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spent on looking at and understanding the source codes, as well as finding

the matching versions for the frameworks.
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5 Conclusion

Federated learning or decentralized machine learning will definitely

have a huge impact in the future. Many industries can take advantages of

this technology in the future even though it is still in an early development

stage, and a lot more researches and testings are needed. Being able to train

a machine learning model without gathering data to a single server or a single

machine, and without exposing sensitive data to others is a great advantage.

Companies and governments can make use of this to create powerful machine

learning products to benefit the society.

In this project, we have done researches on different types of fed-

erated learning, and the architecture of horizontal federated learning. We

have also tried out four open-source federated learning frameworks and suc-

cessfully trained several neural networks on different datasets. We found out

that the accuracy of the model trained using federated learning will be lower

than that trained with the traditional centralizing machine learning method.

In the future, we hope that a more stable and scalable multi-machine feder-

ated learning platform can be developed, so that more people can use it and

create products that can help our society.
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