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Abstract 
 

Advancement in technology has made it feasible for machines to imitate humans 

to perform complicated tasks by learning from experience and adjusting to new 

inputs which are generally referred to as Artificial Intelligence or Machine 

Learning. The traditional machine learning method required all the training data to 

be centralized in one location. 

 

With the modern era of big data, countries or organizations are paying more 

attention to data privacy and have formulated strict privacy provisions. This creates 

a situation where the integration of data is difficult, making it impossible for 

different organizations to share data to train a shared effective machine learning 

model for better accuracy. 

 

Federated Learning is a new concept that arose in 2016, that hopes to tackle the 

aforementioned issue. The project aims to incorporate this new technology and 

create a platform where machine learning could be achieved with data privacy as 

its main consideration. 

 

The core part of this project is to design a platform where different users can jointly 

train a machine learning model which can achieve the same performance as that of 

a traditional machine training method.  

 

Research and evaluation on different Federated Learning methods in Tensorflow 

federated has been done. Performance of Federated Learning are also done in 

Sherpa AI Federated Learning framework. Moreover, a basic client-server 

communication Command Line Interface platform using Python Flower 

framework has been developed. Development of the Federated Learning platform 

using Duet has been done. A platform using Sftty.js is in the preliminary stage and 

need more improvements.  
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1 Introduction 
 

1.1 Overview of Machine Learning 
 

Artificial intelligence is a well-known term in the modern age even among the 

general public with a limited technology background. However, the definition of 

AI is constantly evolving, and the term, AI, often gets mangled. Generally 

speaking, AI describes machines that can learn and act on their own will without 

being explicitly programmed.  

 

Currently, the majority of AI technologies and applications refer to a category 

known as Machine Learning. ML algorithms incorporate statistics to find patterns 

with a large number of data sets. Well known and frequently used technologies 

such as YouTube recommendation algorithms, Google search engines, and 

Facebook feeds are all powered by ML. In the aforementioned instances, each 

platform is required to collect a substantial amount of data to make accurate 

predictions on what videos would one like or what post would one most likely 

react to. These examples underscore the importance of data quantity and quality 

means in ML. However, the real-world situation is far from ideal.  

 

In many industries or countries, there is only limited data, or the data existing are 

of poor quality. In other cases, quality data exist as isolated islands on different 

edge devices such as mobile phones and personal computers across the globe. 

Would it be possible to transport all the data across different organizations and 

break the barriers between different data sources? In fact, it is very difficult. 

Firstly, the cost of transportation and integration of huge data would come at an 

enormous cost. Most importantly, the extraction of such data is prohibited and 

restricted by strict privacy-preserving laws either enforced by corporations or 

governments. Even within the same organization, data integration would face 

heavy resistance due to administrative issues and privacy security. The realization 

of ML in different fields is far more difficult than imagined. 

 

1.2 Federated Learning 
 

The challenge created by privacy concerns gave rise to a new concept proposed by 

Google in 2016 called Federated Learning [1]. FL provides a brand-new way for 
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ML models to collect the data required to train effectively. While traditional ML 

requires a central server to collect all the data from different local devices and 

perform centralized processing and training, FL performs ML model training at 

the local device itself using its local data. 

 

1.2.1 Three types of Federated Learning 
 

This subchapter introduces the three types of Federated Learning in detail. 

According to the type of data, FL can be classified into horizontal federated 

learning, vertical federated learning, and federated transfer learning. 

 

1.2.1.1 Horizontal Federated Learning 

 

 
Figure 1.1 Horizontal Federated Learning [2] 

 

Horizontal Federated Learning is also known as sample-based federated learning. 

It is designed for data sets that have the same feature space but different in the 

sample [2]. Given two separate universities which have different students in their 

database. Although the user group is different and the intersection set between the 

group is very small, universities store similar types of information because they 

are both in the education sector, hence, the feature space is the same. In this case, 

horizontal FL would be used.  
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1.2.1.2 Vertical Federated Learning 

 

 
 

Figure 1.2 Vertical Federated Learning [2] 

 

Vertical Federated Learning, or Feature-based Federated Learning, is opposite of 

Horizontal Federated Learning. Instead of having the same feature space and 

different sample space, Vertical Federated Learning is designed for data sets that 

share the same sample space but differ in feature space. Consider a bank and an e-

commerce company located in the same city, they are likely to contain the same 

users in their system, the intersection of user space is large meaning they have 

similar sample space. However, both of their businesses are different and will 

contain different sets of data. For example, the bank records the user's credit rating 

and income while the e-commerce records the user's purchasing history, it is to say 

that their feature space is vastly different. Vertical FL will be used for a situation 

where a machine learning model requires information both the companies retain, 

such as building a prediction model for product purchase based on a user’s credit 

rating and income. 
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1.2.1.3 Federated Transfer Learning 

 

 
Figure 1.3 Federated Transfer Learning [2] 

 

Federated Transfer Learning is the most complicated among the three types of 

federated learning models. It is used in complex scenarios where data sets differ 

both in sample space and feature space. For example, consider one bank located in 

Hong Kong and an e-commerce company located in London. Due to geographical 

location, the users of both companies are vastly different, the intersection of the 

user group is small meaning the sample space is different. On the other hand, both 

companies operate different business models and contain a different type of 

information about the user meaning the feature space are also different. In this 

situation, transfer learning techniques need to be applied in order to allow the 

sample space and feature space to be used under FL [2]. A common representation 

needs to be established with both the feature space using the limited intersection 

of sample space which will be later applied for prediction of samples with one-side 

features. Federated Transfer Learning is considered as an extension that is 

important to the existing FL systems since it handles scope beyond the existing FL 

system. 

 

1.2.2 Benefits of Federated Learning 
 

FL allows devices like mobile phones to collectively learn a shared ML model 

while keeping the training data within the device which was previously required 

to be sent to the centralized server in the traditional method [5]. This approach will 

solve the issue of data privacy and enforce strong security. This allows 

organizations such as hospitals or banks to perform ML under reduced liability.  
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FL enables real-time operation since the model resides with the devices itself. FL 

reduces the time cost of data transmitting between devices and centralized servers 

as the transmission involves model updates only instead of raw input data which 

are significantly smaller in size. Since the model resides within devices in FL, 

internet connectivity is no longer needed for ML operation under FL. 

 

One might ask the question of whether edge devices are able to handle complex 

computation involved in ML in a timely manner? In FL, the amount of hardware 

infrastructure required is reduced where only minimal hardware is needed, and a 

normal mobile device would be able to handle FL [3]. 

 

1.2.3 Challenges of Federated Learning 
 

Communication is a core issue in FL Architecture. An effective communication 

method is crucial to improve the efficiency of the system by reducing the total 

number of communication rounds and also send small iterative updates as part of 

the training process. 

 

FL systems should also be able to handle a low device participation rate where 

only a small fraction of the total devices is being active at any given moment. In 

most cases, participating devices are not standardized, the FL system should also 

be able to tolerate variability of the hardware, including storage, computational as 

well as communication capabilities. 

 

Although FL is designed to protect data from the device, the sharing of model 

updates can still reveal sensitive information according to research [2].   

 

1.3 Gboard on Android 
 

One of the prominent related work of Federated Learning in the industry is done 

by Google, the company that coined the term Federated Learning. They are 

actively testing Horizontal FL in Gboard on Android, the Google Keyboard [2]. 
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Figure 1.4 Gboard next word prediction in Gboard [4] 

 

When Gboard suggests a word query as demonstrated in figure 1.5, the device will 

locally store the information regarding the current context and whether the 

suggestion was used. FL processes all the history on-device to suggest 

improvements to the next iteration of Gboard’s query suggestion model to its 

global user [5]. 

 

1.4 Outline of the report 
 

This report is structured into six chapters. The first chapter introduces the concept 

of Federated Learning, the three types of FL, the benefits of using FL, the 

challenges behind FL, and a previous work of FL done by google with GBoard. 

 

Chapter two presents the objective of the project and also outlines the significance 

of this project. 

 

Chapter three goes through the details of implementing a FL platform. It will first 

go through the reason why Horizontal FL is chosen. Then, the architecture for 

horizontal FL will be explained followed by the security protocols that are known 

for horizontal FL.  

 

Chapter four presents the current progress of the project. 
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Chapter five mentions the future work, the schedule, and the challenges that might 

be encountered throughout the project. 

 

Chapter six concludes the report. It wraps up the motivation behind this project 

and the progress so far. 
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2 Objectives and Motivation 
 

2.1 Project Objectives 
 

This project aims to build a federated learning platform where clients can train a 

machine learning model together on a single platform. The platform should ideally 

be able to handle Horizontal Federated Learning.  

 

After the platform is built, it will be evaluated under three main criteria – accuracy, 

efficiency, and privacy. For accuracy, the platform’s accuracy will be compared 

with that of a model trained under a centralized location, or so called the traditional 

machine learning method. In the efficiency aspect, the platform will be evaluated 

by the speed at which it trains a model with a different number of edge devices and 

the communication cycle that it requires. Different privacy protocols will be 

researched and tried to find the best fit for the best platform that is most secure. 

 

2.2 Project Motivation 
 

AI InnoBio Limited is a Biotechnology Start-up based in Hong Kong that utilizes 

an industry-leading CMOS sensor technology to develop a novel hand-held 

spectrometer device. This device has the capability to incorporate artificial 

intelligence to conduct saliva tests to determine within a second whether a certain 

patient is infected with the novel coronavirus. A hospital in Israeli had conducted 

several clinical trials with hundreds of patients with this new artificial intelligence-

based device and is able to achieve a 95% success rate of identifying evidence of 

the virus in the body [6]. 

  

 Such technology has not come into sight in Asia yet and AI InnoBio hopes to 

expand its business to allow different countries in Asia to use the device to perform 

a fast, accurate, and low-cost Covid-19 detection test. Some regions such as Hong 

Kong do not have enough sample data to perform effective machine training. In 

order to obtain a better machine learning model, it is crucial to obtain more test 

data across different countries. This is where the problem of data privacy comes 

into play, different countries and hospitals will not be willing or under heavy 

restriction to share the test results across different parties. Therefore it is difficult 

to use the traditional machine learning method where sufficient data sets need to 
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be centralized to train the model. Therefore, a platform is needed to perform 

federated learning with different clients to improve the accuracy of the model 

while keeping the data privacy intact. 

 

This project aims to provide groundwork for the FL platform that is required by 

the company where it will aid the testing of Covid-19 especially in countries that 

have huge numbers of to be confirmed cases. Although the platform is our ultimate 

goal, the other major goal of the project is to research federated learning and 

conduct research of different algorithms and methodology. Moreover, it is also 

hoped that this project could also provide a foundation for future projects with the 

same nature of data privacy.  
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3 Methodology 
 

3.1 Introduction 
 

The architecture of the three types of Federated Learning is vastly different since 

each of them is dealing with the different nature of data sets. This chapter first 

explains why Horizontal FL is used in this project, followed by a presentation of 

the architecture of the Horizontal Federated Learning platform that this project is 

aiming to build. It is the most common type of federated learning system in the 

market compare to the other two types, vertical and transfer learning [2]. 

 

3.2 Rationale for using Horizontal Federated Learning 
 

This platform will be built with the consideration of the Covid-19 detection 

machine learning model developed by AI InnoBio. However, the machine learning 

model is not developed yet and speculation needs to be made for the field that the 

machine learning model and the data sets to be used. Since the detection method 

is the same, which is the spectrometry test done on the CMOS sensor device, the 

feature space will be the same. However, the data are coming from different 

regions, so the sample space is not the same. Therefore, Horizontal FL is the best 

type of FL to be used in this case.  
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3.3 Horizontal Federated Learning Architecture 
 

This project will adopt the architecture for a horizontal FL system shown in Figure 

2.1. This architecture is very similar to what section 1.2.1 has mentioned and this 

subsection will delve deeper into the technical details on how each operation 

works.  

 

 
 

Figure 3.1 Architecture of Horizontal Federated Learning System [2] 

 

 

In this system, k number participants as shown as Database B1 to Bk contains the 

same data structure, same feature in the database, and will collaboratively train the 

machine learning model with the aid of the centralized cloud server, server A in 

Figure 2.1. There are four steps on how a machine learning model gets trained in 

the federated system. The first step involves participants computing the training 

gradients locally, and mask a selection of gradients secured with encryption, 

differential privacy techniques, then send the masked result to the server. Next, the 

cloud server will pick up encrypted gradients or weights from different participants 

and perform secure aggregation without learning any information about any 

participant in the process. Step three is where the server sends back the encrypted 

aggregated result to the participants. Lastly, the participants will decrypt the result 

of the gradient and update their respective ML models. 
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The above learning cycle will continue indefinitely until the loss function 

converges, which means the deviation of the ML model predictions from the actual 

results is within an acceptable range. 

 

It should be noted that this architecture is independent of any specific machine 

learning algorithms such as logistic regression or DNN, the architecture focuses 

on the sharing of model parameters for training purpose only. 

 

3.4 Security Protocol  
 

Privacy is essential to Federated Learning and is the reason why Federated 

Learning came to light. Security models and protocol is crucial to provide privacy 

guarantees. A Horizontal Federated Learning system assumes that the participants 

are honest and security measures are only done on the server which is honest but 

curious [2]. This is to say, only the cloud server can compromise the data privacy 

of participants. This subsection will briefly go through three different popular 

security protocols, which are Secure Multi-party Computation, Differential 

Privacy, and Homomorphic Encryption.  

 

3.4.1 Secure Multi-party Computation 
 

The name Secure Multi-party Computation implies this protocol involves multiple 

parties. It provides a framework where participants know nothing except the input 

and output of the FL system which ensure zero-knowledge which is desirable [2]. 

However, the zero-knowledge property requires complex computation and may 

not be achieved in this project efficiently. In certain scenarios including this 

project, partial knowledge disclosure is considered acceptable when security 

guarantees are promised because of that. 

 

3.4.2 Differential Privacy 
 

Another protocol is that of Differential Privacy. It is a protocol where 

generalization methods are used to obscure sensitive fields until outsiders are not 

able to distinguish which participants are the data referring to, or in other words, 

noise is added to the data. This makes the data impossible to recover to protect 

user privacy. However, this protocol of adding noise to data might affect the 

accuracy of the data and the ML model [2]. 



 

 

20 

 

 

3.4.3 Homomorphic Encryption 
 

Homomorphic Encryption used an encryption mechanism to protect data as the 

name implies. It encrypts the parameter exchange during the ML progress. 

Different from Differential privacy, data, and model is not being transmitted. 

 

3.5 Summary 
 

This area is not the priority of this project. However, research will be conducted to 

see which protocol is the best fit for the platform using the 3 metric of success -- 

accuracy, efficiency, and privacy. We will then try to implement one of them to 

the platform. However, it might not be possible because it's still a new technology, 

therefore might not be implementable yet, or it may require complex computation 

or algorithms out of our capability.  

 

This chapter explains the reason why this project is using Horizontal Federated 

Learning and lays the architecture behind building a Horizontal FL system. The 

three security protocols that are applicable to the system are also described in this 

chapter. The next chapter will report the project’s current progress. 
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4 Experiments and Results 
 

4.1 Overview 
 

This chapter presents the work that have done in the project. The project consists 

of 4 parts. One part is the research and evaluation on different federated learning 

methods using Tensorflow Federated which will be outlined in subchapter 4.2. The 

second part is the performance analysis of Federated Learning using Sherpa AI in 

subchapter 4.3. The third part is the development of the Federated Learning 

Command Line interface Platform using Python Flower Framework which will be 

explained in subchapter 4.4. The last part is the develop of the Federated Learning 

framework in the PySfty, PyGrid, and Syft.js ecosystem. 

 

4.2 Tensorflow Federated 
 

Cats_vs_dogs, CIFAR 10, and Fashion MNIST were used as the datasets in 

Tensorflow Federated. CNN was used for the first two datasets and simple dense 

neural network for the last dataset. 

 

Three methodologies were tried on each of the dataset which are traditional 

centralized ML method, Tensorflow Federated Learning API, and Tensorflow 

Federated Core respectively.  Traditional centralized ML method serves as a 

baseline for comparison. For Tensorflow FL  API, a Keras model is created and 

wrapped as tff.learning.Model. The tff.learning API, where it is treated mostly as 

a black box, will then handle the FL logics. For Tensorflow Federated Core, the 

aim is to build a custom Federated Averaging algorithm. Instead of using the 

tff.learning API as a black box, we implement the functions within the API. Four 

main components are in the Federated Averaging algorithm which includes server-

to-client broadcast, client update, client-to-server upload, and server update. 

 

The training results of the 3 methods on the 3 datasets are listed below. 

 

4.2.1 Fashion MNIST 
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Fashion MNIST is a black and white dataset consisting of a training set of 60,000 

examples and a test set of 10,000 examples. Below are some examples of images 

in the dataset. 

 

 
Figure 4.1 Sample images from Fashion MNIST 

 

The images within the dataset are flattened and used it to train the fully connected 

neural network (FCNN) below. 

 

 
Figure 4.2 Neural network used for Fashion MNIST 

 

First, the network was trained with the traditional centralized ML technique using 

10000 images. The validation accuracy reaches close to 84% after 10 epochs as 

shown in Figure 4.3. 
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Figure 4.3 Loss and accuracy of neural network trained with traditional 

machine learning technique on Fashion MNIST 

 

Then, Tensorflow Federated Learning API is then used in the dataset. The dataset 

is separated into 100 clients each containing 1000 image simulate FL environment 

with decentralized data. The distribution of the classes in the first 3 clients are 

shown in Figure 4.4. 

 

 
Figure 4.4 Class distribution of Fashion MNIST 

 

Only the same 10 clients are selected for training at every round. As a result, the 

total number of image used is 10000. Figure 4.5 shows the validation accuracy 

with Tensorflow FL API. 
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Figure 4.5 Validation loss and accuracy of neural network trained with 

Tensorflow Federated Learning API on Fashion MNIST 

 

With the increase of the accuracy against rounds of training, we can see that 

Tensorflow FL API can perform ML without centralizing data from multiple 

clients. However, the accuracy after 10 rounds is only around 74 compared to that 

of Traditional ML method of 84% which indicate that FL although can work, the 

performance is slightly worst than traditional FL.  

 

Lastly we trained the neural network by implementing the Federated Averaging 

algorithm using Tensorflow Federated Core. Figure 4.6 shows the validation 

accuracy. 

  

 
Figure 4.6 Validation loss and accuracy of neural network trained with 

Tensorflow Federated Core on Fashion MNIST 

 

We can see the accuracy is close to the one that used Tensorflow FL API but still 

lower than that of Traditional ML method. 
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4.2.2 CIFAR10 
 

CIFAR10 is a coloured dataset with 50000 training images and 10000 testing 

images. Figure 4.7 shows some of the images in the dataset. 

 

 
Figure 4.7 Sample images from CIFAR10 

 

CNN is used to classify the images in CIFAR10. The model layout is shown in 

Figure 4.8. 
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Figure 4.8 Neural network used for CIFAR10 

 

The same methodologies in subchapter 4.2.1 are used in CIFAR10. Figure 4.9 and 

4.10 shows the class distributions and the results from Traditional ML 

respectively. 

 

 
Figure 4.9 Class distribution of CIFAR10 

 

 
Figure 4.10 Loss and accuracy of neural network trained with traditional 

machine learning technique on CIFAR10 

 

CIFAR10 is a more complex than Fashion MNIST because the images have 3 

channels. Therefore, it explains the drop in validation accuracy after 10 epochs 

being much lower than that of the Fashion MNIST dataset. 
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Figure 4.11 shows the result for using Tensorflow FL API. 

 

 
Figure 4.11 Validation loss and accuracy of neural network trained with 

Tensorflow Federated Learning API on CIFAR10 

 

Figure 4.12 shows the result for using Tensorflow Federated Core. 

 

 
Figure 4.12 Validation loss and accuracy of neural network trained with 

Tensorflow Federated Core on CIFAR10 

 

The accuracy for  federated learning algorithm is much lower compare to that of 

using traditional machine learning for CIFAR10. It might be due to CNN in 

federated learning needs more rounds to converge, the image per client needs to 

be higher, or the number of clients participating the training is insufficient. 

 

4.2.3 Cats_vs_dogs 
 

Cats_vs_dogs is a coloured dataset of 25000 images. Figure 4.13 shows some 

examples of images in the dataset. 
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Figure 4.13 Sample images from Cats_vs_dogs 

 

The same methodologies in subchapter 4.2.1 are used in cats_vs_dogs. However, 

in this case, each client only has 100 images. Figure 4.14 and 4.15 shows the class 

distributions and the results from Traditional ML respectively. 

 

 
Figure 4.14 Class distribution of Cats_vs_dogs 
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Figure 4.15 Loss and accuracy of neural network trained with traditional 

machine learning technique on Cats_vs_dogs 

 

The cats_vs_dogs dataset is also a dataset with 3 channels, but there are only 2 

classes, so the accuracy is in between CIFAR10 and Fashion MNIST. 

 

Figure 4.16 shows the result for using Tensorflow FL API. 

 

 
Figure 4.16 Validation loss and accuracy of neural network trained with 

Tensorflow Federated Learning API on Cats_vs_dogs 

Figure 4.17 shows the result for using Tensorflow Federated Core. 
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Figure 4.17 Validation loss and accuracy of neural network trained with 

Tensorflow Federated Core on Cats_vs_dogs 

 

The accuracy using federated learning is slightly lower than that using traditional 

machine learning. However, the difference between the two is much smaller than 

the difference in CIFAR10. This might be due to the different number of classes 

in the two datasets, and the complexity of the datasets. 

 

Accuracy of FL is lower than that of traditional ML as expected. However, since 

there is only two classes in cats_vs_dogs compare to 10 in CIFAR10. The 

difference between accuracy in FL and Traditional ML in cats_vs_dogs compare 

to that of CIFAR10 is smaller. 

 

4.2.4 Experiments 
 

More experiments are conducted to understand more about FL. In previous 

trainings, only the same 10 clients were used. We want to inspect what will happen 

if different clients are used in each round. From Figure 4.19, the accuracy of using 

different clients rise faster than that trained using the same clients. The final 

accuracy of training with different clients after 20 rounds is also slightly higher 

than using same clients. 

 

 
Figure 4.18 Validation loss and accuracy of neural network trained with the 

same/different clients for each round 

 

Grid search is used to examine the performance of the algorithm with different 

number of clients, and different number of images per client. Figure 4.19 shows 

the result of different combination of clients and number of data per client.  
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Figure 4.19 Validation loss and accuracy of neural network trained with 

different number of clients and number of images per clients 

 

We can see that in general, the accuracy increases with the total number of images 

used in the training. However, an interesting finding is that when the number of 

clients is less, for example 5 clients, the model will perform worst when clients 

have more data. It might be due to too many data in the client causes overfitting. 

However, when there is more clients performing, the effect of overfitting will be 

cancelled.  

 

Figure 4.20 shows the result of fixing the number of images used in the training to 

5000. 
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Figure 4.20 Validation loss and accuracy of neural network trained with 5000 

images in total 

 

Since in previous experiment we can see the accuracy for Traditional ML is better 

than FL. When there is less client, data is less decentralized, the FL model will 

perform better with a constant amount of total data.  

 

4.3 Sherpa AI 
 

Sherpa.ai Federated Learning and Differential Privacy Framework is developed by 

Sherpa.ai to facilitate open research on the field of FL. It serves to build models 

that can learn from decentralized data. This framework allows training the model 

locally on each node (client) to build a global model.  

 

We choose this framework to research on the performance of Federated Learning 

with different number of clients and different amounts of data as well as the 

difference in performance between Tensorflow Federated since both currently are 

frameworks mainly for research purposes. 
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4.3.1 Fixed total number of data 
 

We choose MNIST as the dataset to be tested in the framework as it is the most 

popular machine learning framework. In the first setup, we fixed the number of 

total data in the training dataset to be 3000. This is to inspect the accuracy and  

training time performance differences with different numbers of clients. The result 

are shown below: 

 

Total number of data: 3000 

Number of rounds trained: 3 

No. of nodes 

(clients) 

No. of data 

per client 

Global model test accuracy Training 

Time(s) 

1 3000  0.8541 74.85 

5 ~600  0.8371 206.66 

10 ~300 0.7858 386.08 

15 ~200 0.7495 461.30 

20 ~150 0.5730 721.09 

25 ~120 0.6344 903.46 

30 ~100 0.5525 960.65 

Table 4.1 Evaluation Results using the Sherpa.ai framework with fixed total 

number of data 
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Figure 4.21 Accuracy vs Nodes Graph for Model with fixed total number of data 

 

 
Figure 4.22 Training Time vs Nodes Graph for Model with fixed total number of 

data 
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We can see that although we have the same total number of data to be trained, if 

there is more client, i.e. the data are more scattered, the accuracy will drop 

significantly.  

 

On the other hand, even with the same amount of data to be trained, since there is 

more client to perform training. There is a linear increase with the training time 

and number of clients. 

 

 

 

4.3.2 Fixed data per client 
 

In the second setup, we fixed the number of data per client in the training to be 

300. This is to inspect the. The result are shown below: 

 

Number of data per client: 300 

Number of rounds trained: 3 

No. of 

nodes 

(clients) 

Total no. of data Global model test accuracy Training 

Time(s) 

1 ~300 0.6351 63.41 

5 ~1500 0.6812 195.66 

10 ~3000   0.7501 359.30 

15 ~4500 0.7785 604.89 

20 ~6000 0.7837 727.94 

25 ~7500 0.7777 865.50 

30 ~9000 0.7930 934.86 

Table 4.2 Evaluation Results using the Sherpa.ai framework with fixed number of 

data per client 
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Figure 4.23 Accuracy vs Nodes Graph for Model with fixed total number of data 

 

 
Figure 4.24 Training time vs Nodes Graph for Model with fixed total number of 

data 
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As expected, when there is more total number of data to be trained, the accuracy 

gradually increase. 

 

There is an interesting finding which is the training time with fixed data per client 

and fixed total data is quiet similar, although when there is more clients, the 

difference is total data is much larger, as shown in Table 4.3. This indicate that the 

amount of data is not the main factor for training time, the amount of clients is the 

key factor since the more client it has, the more training rounds needs to be 

performed. However, this result are obtained using local simulation where all 

clients are doing training on one single device. In reality, when client perform 

training on their own device, such issue will not happen and we expect to see a 

uniform training time and the key factor for training time will then become the 

amount of data present within the client. 

 

No. of 
nodes 

(clients) 

Fixed total number of data Fixed data per client % Difference 

Data per 
client 

Training 
Time(s) 

Data per 
client 

Training 
Time(s) 

1 3000 74.85 300 63.41 16.5485% 

5 ~600 206.66 300 195.66 5.46828% 

10 ~300 386.08 300 359.30 7.1856% 

15 ~200 461.30 300 604.89 26.9352% 

20 ~150 721.09 300 727.94 0.94546% 

25 ~120 903.46 300 865.50 4.29179% 

30 ~100 960.65 300 934.86 2.72117% 

Table 4.3 Training time of Sherpa.ai framework with fixed total amount of data 

and fixed amount of data per client 

 

4.4 Flower 
 

A Federated Learning command line interface platform was developed using the 

flower framework in Python. The platform contain a host server and different 

number of clients where the clients will interact with the server during the training 

process. The server oversees the whole training process and select specific clients 
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for each round of training. Clients will connect to the server and will be selected 

by the server. When the client is selected, the server will send the updated model 

at the start of each round of training. When the global model is received by the 

client, it will train the global model locally using its own data. The communication 

between server and clients is handled by the flower framework in the background. 

 

 
Figure 4.25 Sequence Diagram of one round in the FL CLI platform 

 

 

 

4.4.1 Rationale for using Flower  
 

Scalability, compatibility with edge devices, proven infrastructure, and usability 

are the four main reason the flower framework is chosen [7]. 

 

For scalability, Flower can handle real-world setups with a large number of clients. 

Researchers have tested with over 10,000 clients with this framework, and it makes 

the platform scalable for large scale project [7]. 

 

High compatibility with edge devices allow FL to be performed on different 

servers and devices, including mobile and PCs. Android, iOS, Raspberry Pi, 

Nvidia Jetson are some examples that are compatible with Flower. Different 
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operating systems and hardware platforms are able to access and work with 

heterogeneous edge devices. 

 

For proven infrastructure, Flower provides FL infrastructure to ensure low 

engineering effort which allows the developers to ignore the FL infrastructure and 

concentrate on the ML aspect instead. 

 

In the aspect of usability, flower easy to understand and write custom algorithms 

that fulfils the purpose of the federated learning platform especially it is written in 

python. 

 

4.4.2 Evaluation  
 

The server have an evaluation function that will get called after each round of 

training and will perform testing on the updated model. A federated averaging 

strategy will selected 10% of the total clients connected to the server with a 

minimum of 3 clients per round, and ensure there are more than 4 clients 

connecting the server at all times. The client will have 500 train samples and 10 

test samples before the training process. CIFAR10 and MNIST dataset are chosen 

to test the platform locally in the Command Line Interface (CLI). 

 

Dataset Model # rounds Accuracy Time 

(Efficiency) 

MNIST Fully Connected 

Neural Network 

(FCNN) 

10 85% 24 sec 

CIFAR10 Convolutional 

Neural Network 

(CNN)  

10 29% 1 min 46 sec 

 Table 4.4 Evaluation Results using the CLI platform 

 

The MNIST dataset and CIFAR10 both consist of 10 classes but the MNIST have 

only one channel while CIFAR 10 have 3 channels. With all other factors are kept 

constant to compare the datasets, the training done on CNN  is slower to that of 

FCNN because CNN needs more computations in each pass. The significant 

difference in accuracy is because FCNN model have fewer trainable weights 

compared to CNN and therefore converges to the ideal weights at a faster rate. 
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No. of  

Clients 

No. of Rounds No. of min. Fit 

Clients 

Accuracy 

5 5 2 82.11% 

5 10 2 85.50% 

5 15 2 86.04% 

5 20 2 86.47% 

 Table 4.5 Evaluation Results on MNIST with constant client number 

Table 4.6 Evaluation Results on MNIST with constant number of rounds 

 

 

No. of  Clients No. of Rounds No. of min. Fit 

Clients 

Accuracy 

10 2 2 81.67% 

10 3 3 81.83% 

10 4 4 84.25% 

10 5 5 83.81% 

Table 4.7 Evaluation Results with constant rounds and different number of 

minimum fit clients 

 

 

 

No. of  

Clients 

No. of Rounds No. of min. Fit 

Clients 

Accuracy 

2 10 2 81.67% 

3 10 2 84.15% 

4 10 2 84.94% 

5 10 2 85.50% 



 

 

41 

 

4.4.3 Deployment  
 

The platform can only runs on the CLI locally right now. The flower framework is 

currently in its early stage and is only capable of on-device simulations. The 

framework cannot be deployed yet without the evolution of the framework. 

Extensive testing needs to be done to prove the platform is secure enough from 

data leakage. 

 

 

4.5 PySyft, PyGrid and Syft.js 
 

4.5.1 PySyft 
 

PySyft is a python library developed for secure and private Machine Learning. It 

separates the private data from the training of the ML model using the technology 

of Federated Learning, Differential Privacy, and Encrypted Computation with 

PyTorch and TensorFlow.  

 

PySyft server two main purposes: 

 1. Dynamic Computation: It directly compute data that is private 

2. Static Computation: It creates static computational graphs that can be 

deployed later on different computes. 

 

 

4.5.2 Duet 
 

Duet is a peer-to-peer tool in the PySyft library that provides an API to allow a 

Data Owner (client) to privately expose their sensitive data while a Data Scientist 

(server) can access or manipulate its data with zero-knowledge access control 

mechanism. It is a novel approach that stray away from the conventional central 

server management method in FL where data owners control their own data and 

ensures effective communication between data owner data scientists. Data owners 

have the right to decide when to participate in the training process and also what 

operations can be performed on their own data by the data scientists. 

 

Duet is used to demonstrate training a model using PySyft without deploying in 

PyGrid. However, Duet only supports a single client. Therefore, it is not possible 
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to create multiple clients and train on their data simultaneously. To simulate 

multiple clients in a FL environment, training needs to be done one by one. MNIST 

dataset is used which contains 60000 training images and 10000 testing images. 

We fixed the total number of data to be 60000 training images. We first train the 

model with one client. Then, we simulate multiple clients by training the model in 

multiple sections one by one.  

 

# Clients # Data per client # epochs Accuracy Time (s) 

1 60000 5 97.86% 1077 

5 12000 5 96.71% 1268 

10 6000 5 95.29% 1564 

Table 4.8 Evaluation Results with constant rounds and different number of 

minimum fit clients 

 

 

# Clients # Data per client # epochs Accuracy Time (s) 

1 60000 10 98.00% 2156 

5 12000 10 96.46% 2588 

10 6000 10 94.48% 3139 

Table 4.9 Evaluation Results with constant rounds and different number of 

minimum fit clients     

 

Result in Table 4.7 and 4.8 are similar to what we seen in subchapter 4.3.2 in the 

Sherpa.ai framework with fixed total number of data. The accuracy drops when 

there are more clients, or the data is more decentralized. However, we can see the 

drop in accuracy is less significant in duet compared to that of Sherpa.ai.   

 

 

 

4.5.3 PyGrid 
 

PyGrid is another python library that provides an API for the management and 

deployment of PySyft at scale. It enables the extension of PySyft to perform FL on 
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jupyter notebook, web, mobile, and similar edge devices with different Syft worker 

libraries.   

 

4.5.4 Syft.js 
 

Syft.js is a frontend PySyft worker library in TensorFlow.js for FL which supports 

federated learning on the web. It provides APIs to communicate with FL PyGrid 

endpoints and run PySyft’s Plans in a browser. It integrates with PyGrid FL API. 

It also supports training and inference of PySft ML models which are written in 

PyTorch or TensorFlow. It allows data to stay on the user’s device as the core 

feature of FL. However, the security protocol of Federated Learning such as Secure 

Multi-Party Computation and secure aggregation using peer-to-peer WebRTC 

connections is still in progress.  

 

 

 

4.6 Challenges 
 

4.6.1 New Technology 
 

One of the challenges that this project faces is that the technology concept behind 

which is Federated Learning is relatively new in the industry. Therefore, there will 

be fewer references, materials that the project can reference. There will be a very 

high chance that throughout the project, it will encounter many problems that have 

never been asked before. Moreover, some obstacles that the project might face 

could very likely not be solved or require complex solutions that are beyond the 

group members’ capabilities. 

 

4.6.2 FL Library still in early stage of development 
 

For Tensorflow Federated, the framework is still in early-stage development. It 

only supports local simulations, Multi-machine simulations are yet to be 

developed. The purpose of the framework right now is mainly focusing on research 

and evaluation of FL instead of deploying FL systems at scale. Therefore, in our 

project, Tensorflow Federated are only used to demonstrate the performance 

difference between traditional ML and FL as well as how FL differs from 

conventional ML. 



 

 

44 

 

 

Flower has also the above issue where it doesn’t support multi-machine 

simulations and therefore is not able to be deployed as mentioned in subchapter 

4.4.3. 

 

 

4.6.3 Generalization of different types of FL 
 

The platform cannot be generalized to handle all types of ML algorithms. Different 

types of federated learning as mentioned in subchapter 1.2.1 required different 

architectures [2]. Therefore, the platform developed will only handle horizontal 

FL. 

 

4.6.4 Complexity of implementing of Security Protocol 
 

Recent researches have shown that there might be potential security breaches when 

training the platform using Generative Adversarial Network [2]. Hence, it will be 

impossible to ensure data privacy for GANs and hence cannot be implemented. 
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5 Future Work 
 

5.1 Future Work 
 

There are two main categories of work to be done in the future - development of a 

separate web application, and testing of security features.   

 

5.2 Deploy web platform 
 

As mentioned in subchapter 4.6.2, most of the library and framework are not 

matured and ready for deployment at scale yet. It is mostly for local simulation and 

currently in the project, most of them are done in local environment, with the 

exception of syft.js.  

 

5.3 Testing on security 
 

When the platform is deployed on the web, there should be testing to see whether 
the security of the platform is up to standard. Moreover, different security protocol 

should be tried on the platform and compared to see which have the highest 

security as well as performance. 
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6 Conclusion 
 

Traditional Machine Learning model training requires all data to be centralized. 

Due to the strict data privacy of different industries and countries, it is hard to 

collect from different parties and achieve effective training of the ML model. 

Federated Learning is a new concept that arose in 2016 that allows decentralized 

ML training, enforcing data privacy. Our project aims to build a Horizontal 

Federated Learning platform where participants can collaboratively train a 

machine learning model. This project, if carried out successfully, will hope to be 

used by AI InnoBio, a company that aims to use FL to conduct rapid Covid-19 

tests using a CMOS sensor. We have done research and evaluation on different 

federated learning methods in Tensorflow federated, Sherpa.ai and developed a 

basic client-server communication using Python Flower framework, duet and 

syft.js and talked about what can be done to improve in the future.  
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