

THE UNIVERSITY OF HONG KONG

DEPARTMENT OF COMPUTER SCIENCE

Final Year Project Individual Final Report

Federated Learning Platform

for Covid-19 Detection

Khan Khondoker Araf Hasan 3035477446

Teammates

Kwan Pok Man 3035477173

Ghosh Bratin 3035437692

Under the humble guidance of Prof. S.M. Yiu

April 18, 2021

1

Abstract

Advancement in technology has made it feasible for machines to imitate humans

to perform complicated tasks by learning from experience and adjusting to new

inputs which are generally referred to as Artificial Intelligence or Machine

Learning. The traditional machine learning method required all the training data to

be centralized in one location.

With the modern era of big data, countries or organizations are paying more

attention to data privacy and have formulated strict privacy provisions. This creates

a situation where the integration of data is difficult, making it impossible for

different organizations to share data to train a shared effective machine learning

model for better accuracy.

Federated Learning is a new concept that arose in 2016, that hopes to tackle the

aforementioned issue. The project aims to incorporate this new technology and

create a platform where machine learning could be achieved with data privacy as

its main consideration.

The core part of this project is to design a platform where different users can jointly

train a machine learning model which can achieve the same performance as that of

a traditional machine training method.

Research and evaluation on different Federated Learning methods in Tensorflow

federated has been done. Performance of Federated Learning are also done in

Sherpa AI Federated Learning framework. Moreover, a basic client-server

communication Command Line Interface platform using Python Flower

framework has been developed. Development of the Federated Learning platform

using Duet has been done. A platform using Sftty.js is in the preliminary stage and

need more improvements.

2

Acknowledgement

Firstly, I would like to express my sincere gratitude to Dr. S.M. Yiu from the

Department of Computer Science. This project was not originally listed on the final

year project list and I am grateful that he invited our group to work on this project

which involves a brand new concept in the computer science field.

Having such experience would be hugely beneficial to my career as a software

engineer, especially in the financial field where it values data privacy

tremendously.

Lastly, I am truly thankful to be able to work with, Owen Kwan and Bratin Ghosh,
my teammates who supported each other and helped me a lot throughout the

project. I am looking forward to continuing to work with them for the remaining

progress.

3

Contents

Abstract 1

Acknowledgement 2

List of Figures 5

List of Tables 6

List of Abbreviations 6

1 Introduction 8

1.1 Overview of Machine Learning 8

1.2 Federated Learning 8
1.2.1 Three types of Federated Learning 9

1.2.1.1 Horizontal Federated Learning 9
1.2.1.2 Vertical Federated Learning 10
1.2.1.3 Federated Transfer Learning 11

1.2.2 Benefits of Federated Learning 11
1.2.3 Challenges of Federated Learning 12

1.3 Gboard on Android 12

1.4 Outline of the report 13

2 Objectives and Motivation 15

2.1 Project Objectives 15

2.2 Project Motivation 15

3 Methodology 17

3.1 Introduction 17

3.2 Rationale for using Horizontal Federated Learning 17

3.3 Horizontal Federated Learning Architecture 18

3.4 Security Protocol 19
3.4.1 Secure Multi-party Computation 19
3.4.2 Differential Privacy 19
3.4.3 Homomorphic Encryption 20

3.5 Summary 20

4 Experiments and Results 21

4.1 Overview 21

4.2 Tensorflow Federated 21
4.2.1 Fashion MNIST 21
4.2.2 CIFAR10 25
4.2.3 Cats_vs_dogs 27

4

4.2.4 Experiments 30

4.3 Sherpa AI 32
4.3.1 Fixed total number of data 33
4.3.2 Fixed data per client 35

4.4 Flower 37
4.4.1 Rationale for using Flower 38
4.4.2 Evaluation 39
4.4.3 Deployment 41

4.5 PySyft, PyGrid and Syft.js 41
4.5.1 PySyft 41
4.5.2 Duet 41
4.5.3 PyGrid 42
4.5.4 Syft.js 43

4.6 Challenges 43
4.6.1 New Technology 43
4.6.2 FL Library still in early stage of development 43
4.6.3 Generalization of different types of FL 44
4.6.4 Complexity of implementing of Security Protocol 44

5 Future Work 45

5.1 Future Work 45

5.2 Deploy web platform 45

5.3 Testing on security 45

6 Conclusion 46

References 47

5

List of Figures

1.1 Horizontal Federated Learning

1.2 Vertical Federated Learning

1.3 Federated Transfer Learning

1.4 Gboard next word prediction in Gboard

3.1 Architecture of Horizontal Federated Learning System

4.1 Sample images from Fashion MNIST

4.2 Neural network used for Fashion MNIST

4.3 Loss and accuracy of neural network trained with traditional machine

learning technique on Fashion MNIST

4.4 Class distribution of Fashion MNIST

4.5 Validation loss and accuracy of neural network trained with Tensorflow

Federated Learning API on Fashion MNIST

4.6 Validation loss and accuracy of neural network trained with Tensorflow

Federated Core on Fashion MNIST

4.7 Sample images from CIFAR10

4.8 Neural network used for CIFAR10

4.9 Class distribution of CIFAR10

4.10 Loss and accuracy of neural network trained with traditional machine

learning technique on CIFAR10

4.11 Validation loss and accuracy of neural network trained with Tensorflow

Federated Learning API on CIFAR10

4.12 Validation loss and accuracy of neural network trained with Tensorflow

Federated Core on CIFAR10

4.13 Sample images from Cats_vs_dogs

4.14 Class distribution of Cats_vs_dogs

4.15 Loss and accuracy of neural network trained with traditional machine

learning technique on Cats_vs_dogs

4.16 Validation loss and accuracy of neural network trained with Tensorflow

Federated Learning API on Cats_vs_dogs

4.17 Validation loss and accuracy of neural network trained with Tensorflow

Federated Core on Cats_vs_dogs

4.18 Validation loss and accuracy of neural network trained with the

same/different clients for each round

4.19 Validation loss and accuracy of neural network trained with different

number of clients and number of images per clients

6

4.20 Validation loss and accuracy of neural network trained with 5000 images in

total

4.21 Accuracy vs Nodes Graph for Model with fixed total number of data

4.22 Training Time vs Nodes Graph for Model with fixed total number of data

4.23 Accuracy vs Nodes Graph for Model with fixed total number of data

4.24 Training time vs Nodes Graph for Model with fixed total number of data

4.25 Sequence Diagram of one round in the FL CLI platform

List of Tables

4.1 Evaluation Results using the Sherpa.ai framework with fixed total number of

data

4.2 Evaluation Results using the Sherpa.ai framework with fixed number of data

per client

4.3 Training time of Sherpa.ai framework with fixed total amount of data and

fixed amount of data per client

4.4 Evaluation Results using the CLI platform

4.5 Evaluation Results on MNIST with constant client number

4.6 Evaluation Results on MNIST with constant number of rounds

4.7 Evaluation Results with constant rounds and different number of minimum fit

clients

4.8 Evaluation Results with constant rounds and different number of minimum fit

clients

4.9 Evaluation Results with constant rounds and different number of minimum fit

clients

List of Abbreviations

AI Artificial intelligence

CLI Command Line Interface

CNN Convolutional neural network

FCNN Fully connected neural network

FL Federated Learning

GAN Generative Adversarial Network

ML Machine Learning

SMC Secure Multi-party Computation

7

TFF Tensorflow Federated

8

1 Introduction

1.1 Overview of Machine Learning

Artificial intelligence is a well-known term in the modern age even among the

general public with a limited technology background. However, the definition of

AI is constantly evolving, and the term, AI, often gets mangled. Generally

speaking, AI describes machines that can learn and act on their own will without

being explicitly programmed.

Currently, the majority of AI technologies and applications refer to a category

known as Machine Learning. ML algorithms incorporate statistics to find patterns

with a large number of data sets. Well known and frequently used technologies

such as YouTube recommendation algorithms, Google search engines, and

Facebook feeds are all powered by ML. In the aforementioned instances, each

platform is required to collect a substantial amount of data to make accurate

predictions on what videos would one like or what post would one most likely

react to. These examples underscore the importance of data quantity and quality

means in ML. However, the real-world situation is far from ideal.

In many industries or countries, there is only limited data, or the data existing are

of poor quality. In other cases, quality data exist as isolated islands on different

edge devices such as mobile phones and personal computers across the globe.

Would it be possible to transport all the data across different organizations and

break the barriers between different data sources? In fact, it is very difficult.

Firstly, the cost of transportation and integration of huge data would come at an

enormous cost. Most importantly, the extraction of such data is prohibited and

restricted by strict privacy-preserving laws either enforced by corporations or

governments. Even within the same organization, data integration would face

heavy resistance due to administrative issues and privacy security. The realization

of ML in different fields is far more difficult than imagined.

1.2 Federated Learning

The challenge created by privacy concerns gave rise to a new concept proposed by

Google in 2016 called Federated Learning [1]. FL provides a brand-new way for

9

ML models to collect the data required to train effectively. While traditional ML

requires a central server to collect all the data from different local devices and

perform centralized processing and training, FL performs ML model training at

the local device itself using its local data.

1.2.1 Three types of Federated Learning

This subchapter introduces the three types of Federated Learning in detail.

According to the type of data, FL can be classified into horizontal federated

learning, vertical federated learning, and federated transfer learning.

1.2.1.1 Horizontal Federated Learning

Figure 1.1 Horizontal Federated Learning [2]

Horizontal Federated Learning is also known as sample-based federated learning.

It is designed for data sets that have the same feature space but different in the

sample [2]. Given two separate universities which have different students in their

database. Although the user group is different and the intersection set between the

group is very small, universities store similar types of information because they

are both in the education sector, hence, the feature space is the same. In this case,

horizontal FL would be used.

10

1.2.1.2 Vertical Federated Learning

Figure 1.2 Vertical Federated Learning [2]

Vertical Federated Learning, or Feature-based Federated Learning, is opposite of

Horizontal Federated Learning. Instead of having the same feature space and

different sample space, Vertical Federated Learning is designed for data sets that

share the same sample space but differ in feature space. Consider a bank and an e-

commerce company located in the same city, they are likely to contain the same

users in their system, the intersection of user space is large meaning they have

similar sample space. However, both of their businesses are different and will

contain different sets of data. For example, the bank records the user's credit rating

and income while the e-commerce records the user's purchasing history, it is to say

that their feature space is vastly different. Vertical FL will be used for a situation

where a machine learning model requires information both the companies retain,

such as building a prediction model for product purchase based on a user’s credit

rating and income.

11

1.2.1.3 Federated Transfer Learning

Figure 1.3 Federated Transfer Learning [2]

Federated Transfer Learning is the most complicated among the three types of

federated learning models. It is used in complex scenarios where data sets differ

both in sample space and feature space. For example, consider one bank located in

Hong Kong and an e-commerce company located in London. Due to geographical

location, the users of both companies are vastly different, the intersection of the

user group is small meaning the sample space is different. On the other hand, both

companies operate different business models and contain a different type of

information about the user meaning the feature space are also different. In this

situation, transfer learning techniques need to be applied in order to allow the

sample space and feature space to be used under FL [2]. A common representation

needs to be established with both the feature space using the limited intersection

of sample space which will be later applied for prediction of samples with one-side

features. Federated Transfer Learning is considered as an extension that is

important to the existing FL systems since it handles scope beyond the existing FL

system.

1.2.2 Benefits of Federated Learning

FL allows devices like mobile phones to collectively learn a shared ML model

while keeping the training data within the device which was previously required

to be sent to the centralized server in the traditional method [5]. This approach will

solve the issue of data privacy and enforce strong security. This allows

organizations such as hospitals or banks to perform ML under reduced liability.

12

FL enables real-time operation since the model resides with the devices itself. FL

reduces the time cost of data transmitting between devices and centralized servers

as the transmission involves model updates only instead of raw input data which

are significantly smaller in size. Since the model resides within devices in FL,

internet connectivity is no longer needed for ML operation under FL.

One might ask the question of whether edge devices are able to handle complex

computation involved in ML in a timely manner? In FL, the amount of hardware

infrastructure required is reduced where only minimal hardware is needed, and a

normal mobile device would be able to handle FL [3].

1.2.3 Challenges of Federated Learning

Communication is a core issue in FL Architecture. An effective communication

method is crucial to improve the efficiency of the system by reducing the total

number of communication rounds and also send small iterative updates as part of

the training process.

FL systems should also be able to handle a low device participation rate where

only a small fraction of the total devices is being active at any given moment. In

most cases, participating devices are not standardized, the FL system should also

be able to tolerate variability of the hardware, including storage, computational as

well as communication capabilities.

Although FL is designed to protect data from the device, the sharing of model

updates can still reveal sensitive information according to research [2].

1.3 Gboard on Android

One of the prominent related work of Federated Learning in the industry is done

by Google, the company that coined the term Federated Learning. They are

actively testing Horizontal FL in Gboard on Android, the Google Keyboard [2].

13

Figure 1.4 Gboard next word prediction in Gboard [4]

When Gboard suggests a word query as demonstrated in figure 1.5, the device will

locally store the information regarding the current context and whether the

suggestion was used. FL processes all the history on-device to suggest

improvements to the next iteration of Gboard’s query suggestion model to its

global user [5].

1.4 Outline of the report

This report is structured into six chapters. The first chapter introduces the concept

of Federated Learning, the three types of FL, the benefits of using FL, the

challenges behind FL, and a previous work of FL done by google with GBoard.

Chapter two presents the objective of the project and also outlines the significance

of this project.

Chapter three goes through the details of implementing a FL platform. It will first

go through the reason why Horizontal FL is chosen. Then, the architecture for

horizontal FL will be explained followed by the security protocols that are known

for horizontal FL.

Chapter four presents the current progress of the project.

14

Chapter five mentions the future work, the schedule, and the challenges that might

be encountered throughout the project.

Chapter six concludes the report. It wraps up the motivation behind this project

and the progress so far.

15

2 Objectives and Motivation

2.1 Project Objectives

This project aims to build a federated learning platform where clients can train a

machine learning model together on a single platform. The platform should ideally

be able to handle Horizontal Federated Learning.

After the platform is built, it will be evaluated under three main criteria – accuracy,

efficiency, and privacy. For accuracy, the platform’s accuracy will be compared

with that of a model trained under a centralized location, or so called the traditional

machine learning method. In the efficiency aspect, the platform will be evaluated

by the speed at which it trains a model with a different number of edge devices and

the communication cycle that it requires. Different privacy protocols will be

researched and tried to find the best fit for the best platform that is most secure.

2.2 Project Motivation

AI InnoBio Limited is a Biotechnology Start-up based in Hong Kong that utilizes

an industry-leading CMOS sensor technology to develop a novel hand-held

spectrometer device. This device has the capability to incorporate artificial

intelligence to conduct saliva tests to determine within a second whether a certain

patient is infected with the novel coronavirus. A hospital in Israeli had conducted

several clinical trials with hundreds of patients with this new artificial intelligence-

based device and is able to achieve a 95% success rate of identifying evidence of

the virus in the body [6].

 Such technology has not come into sight in Asia yet and AI InnoBio hopes to

expand its business to allow different countries in Asia to use the device to perform

a fast, accurate, and low-cost Covid-19 detection test. Some regions such as Hong

Kong do not have enough sample data to perform effective machine training. In

order to obtain a better machine learning model, it is crucial to obtain more test

data across different countries. This is where the problem of data privacy comes

into play, different countries and hospitals will not be willing or under heavy

restriction to share the test results across different parties. Therefore it is difficult

to use the traditional machine learning method where sufficient data sets need to

16

be centralized to train the model. Therefore, a platform is needed to perform

federated learning with different clients to improve the accuracy of the model

while keeping the data privacy intact.

This project aims to provide groundwork for the FL platform that is required by

the company where it will aid the testing of Covid-19 especially in countries that

have huge numbers of to be confirmed cases. Although the platform is our ultimate

goal, the other major goal of the project is to research federated learning and

conduct research of different algorithms and methodology. Moreover, it is also

hoped that this project could also provide a foundation for future projects with the

same nature of data privacy.

17

3 Methodology

3.1 Introduction

The architecture of the three types of Federated Learning is vastly different since

each of them is dealing with the different nature of data sets. This chapter first

explains why Horizontal FL is used in this project, followed by a presentation of

the architecture of the Horizontal Federated Learning platform that this project is

aiming to build. It is the most common type of federated learning system in the

market compare to the other two types, vertical and transfer learning [2].

3.2 Rationale for using Horizontal Federated Learning

This platform will be built with the consideration of the Covid-19 detection

machine learning model developed by AI InnoBio. However, the machine learning

model is not developed yet and speculation needs to be made for the field that the

machine learning model and the data sets to be used. Since the detection method

is the same, which is the spectrometry test done on the CMOS sensor device, the

feature space will be the same. However, the data are coming from different

regions, so the sample space is not the same. Therefore, Horizontal FL is the best

type of FL to be used in this case.

18

3.3 Horizontal Federated Learning Architecture

This project will adopt the architecture for a horizontal FL system shown in Figure

2.1. This architecture is very similar to what section 1.2.1 has mentioned and this

subsection will delve deeper into the technical details on how each operation

works.

Figure 3.1 Architecture of Horizontal Federated Learning System [2]

In this system, k number participants as shown as Database B1 to Bk contains the

same data structure, same feature in the database, and will collaboratively train the

machine learning model with the aid of the centralized cloud server, server A in

Figure 2.1. There are four steps on how a machine learning model gets trained in

the federated system. The first step involves participants computing the training

gradients locally, and mask a selection of gradients secured with encryption,

differential privacy techniques, then send the masked result to the server. Next, the

cloud server will pick up encrypted gradients or weights from different participants

and perform secure aggregation without learning any information about any

participant in the process. Step three is where the server sends back the encrypted

aggregated result to the participants. Lastly, the participants will decrypt the result

of the gradient and update their respective ML models.

19

The above learning cycle will continue indefinitely until the loss function

converges, which means the deviation of the ML model predictions from the actual

results is within an acceptable range.

It should be noted that this architecture is independent of any specific machine

learning algorithms such as logistic regression or DNN, the architecture focuses

on the sharing of model parameters for training purpose only.

3.4 Security Protocol

Privacy is essential to Federated Learning and is the reason why Federated

Learning came to light. Security models and protocol is crucial to provide privacy

guarantees. A Horizontal Federated Learning system assumes that the participants

are honest and security measures are only done on the server which is honest but

curious [2]. This is to say, only the cloud server can compromise the data privacy

of participants. This subsection will briefly go through three different popular

security protocols, which are Secure Multi-party Computation, Differential

Privacy, and Homomorphic Encryption.

3.4.1 Secure Multi-party Computation

The name Secure Multi-party Computation implies this protocol involves multiple

parties. It provides a framework where participants know nothing except the input

and output of the FL system which ensure zero-knowledge which is desirable [2].

However, the zero-knowledge property requires complex computation and may

not be achieved in this project efficiently. In certain scenarios including this

project, partial knowledge disclosure is considered acceptable when security

guarantees are promised because of that.

3.4.2 Differential Privacy

Another protocol is that of Differential Privacy. It is a protocol where

generalization methods are used to obscure sensitive fields until outsiders are not

able to distinguish which participants are the data referring to, or in other words,

noise is added to the data. This makes the data impossible to recover to protect

user privacy. However, this protocol of adding noise to data might affect the

accuracy of the data and the ML model [2].

20

3.4.3 Homomorphic Encryption

Homomorphic Encryption used an encryption mechanism to protect data as the

name implies. It encrypts the parameter exchange during the ML progress.

Different from Differential privacy, data, and model is not being transmitted.

3.5 Summary

This area is not the priority of this project. However, research will be conducted to

see which protocol is the best fit for the platform using the 3 metric of success --

accuracy, efficiency, and privacy. We will then try to implement one of them to

the platform. However, it might not be possible because it's still a new technology,

therefore might not be implementable yet, or it may require complex computation

or algorithms out of our capability.

This chapter explains the reason why this project is using Horizontal Federated

Learning and lays the architecture behind building a Horizontal FL system. The

three security protocols that are applicable to the system are also described in this

chapter. The next chapter will report the project’s current progress.

21

4 Experiments and Results

4.1 Overview

This chapter presents the work that have done in the project. The project consists

of 4 parts. One part is the research and evaluation on different federated learning

methods using Tensorflow Federated which will be outlined in subchapter 4.2. The

second part is the performance analysis of Federated Learning using Sherpa AI in

subchapter 4.3. The third part is the development of the Federated Learning

Command Line interface Platform using Python Flower Framework which will be

explained in subchapter 4.4. The last part is the develop of the Federated Learning

framework in the PySfty, PyGrid, and Syft.js ecosystem.

4.2 Tensorflow Federated

Cats_vs_dogs, CIFAR 10, and Fashion MNIST were used as the datasets in

Tensorflow Federated. CNN was used for the first two datasets and simple dense

neural network for the last dataset.

Three methodologies were tried on each of the dataset which are traditional

centralized ML method, Tensorflow Federated Learning API, and Tensorflow

Federated Core respectively. Traditional centralized ML method serves as a

baseline for comparison. For Tensorflow FL API, a Keras model is created and

wrapped as tff.learning.Model. The tff.learning API, where it is treated mostly as

a black box, will then handle the FL logics. For Tensorflow Federated Core, the

aim is to build a custom Federated Averaging algorithm. Instead of using the

tff.learning API as a black box, we implement the functions within the API. Four

main components are in the Federated Averaging algorithm which includes server-

to-client broadcast, client update, client-to-server upload, and server update.

The training results of the 3 methods on the 3 datasets are listed below.

4.2.1 Fashion MNIST

22

Fashion MNIST is a black and white dataset consisting of a training set of 60,000

examples and a test set of 10,000 examples. Below are some examples of images

in the dataset.

Figure 4.1 Sample images from Fashion MNIST

The images within the dataset are flattened and used it to train the fully connected

neural network (FCNN) below.

Figure 4.2 Neural network used for Fashion MNIST

First, the network was trained with the traditional centralized ML technique using

10000 images. The validation accuracy reaches close to 84% after 10 epochs as

shown in Figure 4.3.

23

Figure 4.3 Loss and accuracy of neural network trained with traditional

machine learning technique on Fashion MNIST

Then, Tensorflow Federated Learning API is then used in the dataset. The dataset

is separated into 100 clients each containing 1000 image simulate FL environment

with decentralized data. The distribution of the classes in the first 3 clients are

shown in Figure 4.4.

Figure 4.4 Class distribution of Fashion MNIST

Only the same 10 clients are selected for training at every round. As a result, the

total number of image used is 10000. Figure 4.5 shows the validation accuracy

with Tensorflow FL API.

24

Figure 4.5 Validation loss and accuracy of neural network trained with

Tensorflow Federated Learning API on Fashion MNIST

With the increase of the accuracy against rounds of training, we can see that

Tensorflow FL API can perform ML without centralizing data from multiple

clients. However, the accuracy after 10 rounds is only around 74 compared to that

of Traditional ML method of 84% which indicate that FL although can work, the

performance is slightly worst than traditional FL.

Lastly we trained the neural network by implementing the Federated Averaging

algorithm using Tensorflow Federated Core. Figure 4.6 shows the validation

accuracy.

Figure 4.6 Validation loss and accuracy of neural network trained with

Tensorflow Federated Core on Fashion MNIST

We can see the accuracy is close to the one that used Tensorflow FL API but still

lower than that of Traditional ML method.

25

4.2.2 CIFAR10

CIFAR10 is a coloured dataset with 50000 training images and 10000 testing

images. Figure 4.7 shows some of the images in the dataset.

Figure 4.7 Sample images from CIFAR10

CNN is used to classify the images in CIFAR10. The model layout is shown in

Figure 4.8.

26

Figure 4.8 Neural network used for CIFAR10

The same methodologies in subchapter 4.2.1 are used in CIFAR10. Figure 4.9 and

4.10 shows the class distributions and the results from Traditional ML

respectively.

Figure 4.9 Class distribution of CIFAR10

Figure 4.10 Loss and accuracy of neural network trained with traditional

machine learning technique on CIFAR10

CIFAR10 is a more complex than Fashion MNIST because the images have 3

channels. Therefore, it explains the drop in validation accuracy after 10 epochs

being much lower than that of the Fashion MNIST dataset.

27

Figure 4.11 shows the result for using Tensorflow FL API.

Figure 4.11 Validation loss and accuracy of neural network trained with

Tensorflow Federated Learning API on CIFAR10

Figure 4.12 shows the result for using Tensorflow Federated Core.

Figure 4.12 Validation loss and accuracy of neural network trained with

Tensorflow Federated Core on CIFAR10

The accuracy for federated learning algorithm is much lower compare to that of

using traditional machine learning for CIFAR10. It might be due to CNN in

federated learning needs more rounds to converge, the image per client needs to

be higher, or the number of clients participating the training is insufficient.

4.2.3 Cats_vs_dogs

Cats_vs_dogs is a coloured dataset of 25000 images. Figure 4.13 shows some

examples of images in the dataset.

28

Figure 4.13 Sample images from Cats_vs_dogs

The same methodologies in subchapter 4.2.1 are used in cats_vs_dogs. However,

in this case, each client only has 100 images. Figure 4.14 and 4.15 shows the class

distributions and the results from Traditional ML respectively.

Figure 4.14 Class distribution of Cats_vs_dogs

29

Figure 4.15 Loss and accuracy of neural network trained with traditional

machine learning technique on Cats_vs_dogs

The cats_vs_dogs dataset is also a dataset with 3 channels, but there are only 2

classes, so the accuracy is in between CIFAR10 and Fashion MNIST.

Figure 4.16 shows the result for using Tensorflow FL API.

Figure 4.16 Validation loss and accuracy of neural network trained with

Tensorflow Federated Learning API on Cats_vs_dogs

Figure 4.17 shows the result for using Tensorflow Federated Core.

30

Figure 4.17 Validation loss and accuracy of neural network trained with

Tensorflow Federated Core on Cats_vs_dogs

The accuracy using federated learning is slightly lower than that using traditional

machine learning. However, the difference between the two is much smaller than

the difference in CIFAR10. This might be due to the different number of classes

in the two datasets, and the complexity of the datasets.

Accuracy of FL is lower than that of traditional ML as expected. However, since

there is only two classes in cats_vs_dogs compare to 10 in CIFAR10. The

difference between accuracy in FL and Traditional ML in cats_vs_dogs compare

to that of CIFAR10 is smaller.

4.2.4 Experiments

More experiments are conducted to understand more about FL. In previous

trainings, only the same 10 clients were used. We want to inspect what will happen

if different clients are used in each round. From Figure 4.19, the accuracy of using

different clients rise faster than that trained using the same clients. The final

accuracy of training with different clients after 20 rounds is also slightly higher

than using same clients.

Figure 4.18 Validation loss and accuracy of neural network trained with the

same/different clients for each round

Grid search is used to examine the performance of the algorithm with different

number of clients, and different number of images per client. Figure 4.19 shows

the result of different combination of clients and number of data per client.

31

Figure 4.19 Validation loss and accuracy of neural network trained with

different number of clients and number of images per clients

We can see that in general, the accuracy increases with the total number of images

used in the training. However, an interesting finding is that when the number of

clients is less, for example 5 clients, the model will perform worst when clients

have more data. It might be due to too many data in the client causes overfitting.

However, when there is more clients performing, the effect of overfitting will be

cancelled.

Figure 4.20 shows the result of fixing the number of images used in the training to

5000.

32

Figure 4.20 Validation loss and accuracy of neural network trained with 5000

images in total

Since in previous experiment we can see the accuracy for Traditional ML is better

than FL. When there is less client, data is less decentralized, the FL model will

perform better with a constant amount of total data.

4.3 Sherpa AI

Sherpa.ai Federated Learning and Differential Privacy Framework is developed by

Sherpa.ai to facilitate open research on the field of FL. It serves to build models

that can learn from decentralized data. This framework allows training the model

locally on each node (client) to build a global model.

We choose this framework to research on the performance of Federated Learning

with different number of clients and different amounts of data as well as the

difference in performance between Tensorflow Federated since both currently are

frameworks mainly for research purposes.

33

4.3.1 Fixed total number of data

We choose MNIST as the dataset to be tested in the framework as it is the most

popular machine learning framework. In the first setup, we fixed the number of

total data in the training dataset to be 3000. This is to inspect the accuracy and

training time performance differences with different numbers of clients. The result

are shown below:

Total number of data: 3000

Number of rounds trained: 3

No. of nodes

(clients)

No. of data

per client

Global model test accuracy Training

Time(s)

1 3000 0.8541 74.85

5 ~600 0.8371 206.66

10 ~300 0.7858 386.08

15 ~200 0.7495 461.30

20 ~150 0.5730 721.09

25 ~120 0.6344 903.46

30 ~100 0.5525 960.65

Table 4.1 Evaluation Results using the Sherpa.ai framework with fixed total

number of data

34

Figure 4.21 Accuracy vs Nodes Graph for Model with fixed total number of data

Figure 4.22 Training Time vs Nodes Graph for Model with fixed total number of

data

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Accuracy vs Nodes Graph

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Training Time vs Nodes Graph

35

We can see that although we have the same total number of data to be trained, if

there is more client, i.e. the data are more scattered, the accuracy will drop

significantly.

On the other hand, even with the same amount of data to be trained, since there is

more client to perform training. There is a linear increase with the training time

and number of clients.

4.3.2 Fixed data per client

In the second setup, we fixed the number of data per client in the training to be

300. This is to inspect the. The result are shown below:

Number of data per client: 300

Number of rounds trained: 3

No. of

nodes

(clients)

Total no. of data Global model test accuracy Training

Time(s)

1 ~300 0.6351 63.41

5 ~1500 0.6812 195.66

10 ~3000 0.7501 359.30

15 ~4500 0.7785 604.89

20 ~6000 0.7837 727.94

25 ~7500 0.7777 865.50

30 ~9000 0.7930 934.86

Table 4.2 Evaluation Results using the Sherpa.ai framework with fixed number of

data per client

36

Figure 4.23 Accuracy vs Nodes Graph for Model with fixed total number of data

Figure 4.24 Training time vs Nodes Graph for Model with fixed total number of

data

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Accuracy vs Nodes Graph

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Training Time vs Nodes Graph

37

As expected, when there is more total number of data to be trained, the accuracy

gradually increase.

There is an interesting finding which is the training time with fixed data per client

and fixed total data is quiet similar, although when there is more clients, the

difference is total data is much larger, as shown in Table 4.3. This indicate that the

amount of data is not the main factor for training time, the amount of clients is the

key factor since the more client it has, the more training rounds needs to be

performed. However, this result are obtained using local simulation where all

clients are doing training on one single device. In reality, when client perform

training on their own device, such issue will not happen and we expect to see a

uniform training time and the key factor for training time will then become the

amount of data present within the client.

No. of
nodes

(clients)

Fixed total number of data Fixed data per client % Difference

Data per
client

Training
Time(s)

Data per
client

Training
Time(s)

1 3000 74.85 300 63.41 16.5485%

5 ~600 206.66 300 195.66 5.46828%

10 ~300 386.08 300 359.30 7.1856%

15 ~200 461.30 300 604.89 26.9352%

20 ~150 721.09 300 727.94 0.94546%

25 ~120 903.46 300 865.50 4.29179%

30 ~100 960.65 300 934.86 2.72117%

Table 4.3 Training time of Sherpa.ai framework with fixed total amount of data

and fixed amount of data per client

4.4 Flower

A Federated Learning command line interface platform was developed using the

flower framework in Python. The platform contain a host server and different

number of clients where the clients will interact with the server during the training

process. The server oversees the whole training process and select specific clients

38

for each round of training. Clients will connect to the server and will be selected

by the server. When the client is selected, the server will send the updated model

at the start of each round of training. When the global model is received by the

client, it will train the global model locally using its own data. The communication

between server and clients is handled by the flower framework in the background.

Figure 4.25 Sequence Diagram of one round in the FL CLI platform

4.4.1 Rationale for using Flower

Scalability, compatibility with edge devices, proven infrastructure, and usability

are the four main reason the flower framework is chosen [7].

For scalability, Flower can handle real-world setups with a large number of clients.

Researchers have tested with over 10,000 clients with this framework, and it makes

the platform scalable for large scale project [7].

High compatibility with edge devices allow FL to be performed on different

servers and devices, including mobile and PCs. Android, iOS, Raspberry Pi,

Nvidia Jetson are some examples that are compatible with Flower. Different

39

operating systems and hardware platforms are able to access and work with

heterogeneous edge devices.

For proven infrastructure, Flower provides FL infrastructure to ensure low

engineering effort which allows the developers to ignore the FL infrastructure and

concentrate on the ML aspect instead.

In the aspect of usability, flower easy to understand and write custom algorithms

that fulfils the purpose of the federated learning platform especially it is written in

python.

4.4.2 Evaluation

The server have an evaluation function that will get called after each round of

training and will perform testing on the updated model. A federated averaging

strategy will selected 10% of the total clients connected to the server with a

minimum of 3 clients per round, and ensure there are more than 4 clients

connecting the server at all times. The client will have 500 train samples and 10

test samples before the training process. CIFAR10 and MNIST dataset are chosen

to test the platform locally in the Command Line Interface (CLI).

Dataset Model # rounds Accuracy Time

(Efficiency)

MNIST Fully Connected

Neural Network

(FCNN)

10 85% 24 sec

CIFAR10 Convolutional

Neural Network

(CNN)

10 29% 1 min 46 sec

 Table 4.4 Evaluation Results using the CLI platform

The MNIST dataset and CIFAR10 both consist of 10 classes but the MNIST have

only one channel while CIFAR 10 have 3 channels. With all other factors are kept

constant to compare the datasets, the training done on CNN is slower to that of

FCNN because CNN needs more computations in each pass. The significant

difference in accuracy is because FCNN model have fewer trainable weights

compared to CNN and therefore converges to the ideal weights at a faster rate.

40

No. of

Clients

No. of Rounds No. of min. Fit

Clients

Accuracy

5 5 2 82.11%

5 10 2 85.50%

5 15 2 86.04%

5 20 2 86.47%

 Table 4.5 Evaluation Results on MNIST with constant client number

Table 4.6 Evaluation Results on MNIST with constant number of rounds

No. of Clients No. of Rounds No. of min. Fit

Clients

Accuracy

10 2 2 81.67%

10 3 3 81.83%

10 4 4 84.25%

10 5 5 83.81%

Table 4.7 Evaluation Results with constant rounds and different number of

minimum fit clients

No. of

Clients

No. of Rounds No. of min. Fit

Clients

Accuracy

2 10 2 81.67%

3 10 2 84.15%

4 10 2 84.94%

5 10 2 85.50%

41

4.4.3 Deployment

The platform can only runs on the CLI locally right now. The flower framework is

currently in its early stage and is only capable of on-device simulations. The

framework cannot be deployed yet without the evolution of the framework.

Extensive testing needs to be done to prove the platform is secure enough from

data leakage.

4.5 PySyft, PyGrid and Syft.js

4.5.1 PySyft

PySyft is a python library developed for secure and private Machine Learning. It

separates the private data from the training of the ML model using the technology

of Federated Learning, Differential Privacy, and Encrypted Computation with

PyTorch and TensorFlow.

PySyft server two main purposes:

 1. Dynamic Computation: It directly compute data that is private

2. Static Computation: It creates static computational graphs that can be

deployed later on different computes.

4.5.2 Duet

Duet is a peer-to-peer tool in the PySyft library that provides an API to allow a

Data Owner (client) to privately expose their sensitive data while a Data Scientist

(server) can access or manipulate its data with zero-knowledge access control

mechanism. It is a novel approach that stray away from the conventional central

server management method in FL where data owners control their own data and

ensures effective communication between data owner data scientists. Data owners

have the right to decide when to participate in the training process and also what

operations can be performed on their own data by the data scientists.

Duet is used to demonstrate training a model using PySyft without deploying in

PyGrid. However, Duet only supports a single client. Therefore, it is not possible

42

to create multiple clients and train on their data simultaneously. To simulate

multiple clients in a FL environment, training needs to be done one by one. MNIST

dataset is used which contains 60000 training images and 10000 testing images.

We fixed the total number of data to be 60000 training images. We first train the

model with one client. Then, we simulate multiple clients by training the model in

multiple sections one by one.

Clients # Data per client # epochs Accuracy Time (s)

1 60000 5 97.86% 1077

5 12000 5 96.71% 1268

10 6000 5 95.29% 1564

Table 4.8 Evaluation Results with constant rounds and different number of

minimum fit clients

Clients # Data per client # epochs Accuracy Time (s)

1 60000 10 98.00% 2156

5 12000 10 96.46% 2588

10 6000 10 94.48% 3139

Table 4.9 Evaluation Results with constant rounds and different number of

minimum fit clients

Result in Table 4.7 and 4.8 are similar to what we seen in subchapter 4.3.2 in the

Sherpa.ai framework with fixed total number of data. The accuracy drops when

there are more clients, or the data is more decentralized. However, we can see the

drop in accuracy is less significant in duet compared to that of Sherpa.ai.

4.5.3 PyGrid

PyGrid is another python library that provides an API for the management and

deployment of PySyft at scale. It enables the extension of PySyft to perform FL on

43

jupyter notebook, web, mobile, and similar edge devices with different Syft worker

libraries.

4.5.4 Syft.js

Syft.js is a frontend PySyft worker library in TensorFlow.js for FL which supports

federated learning on the web. It provides APIs to communicate with FL PyGrid

endpoints and run PySyft’s Plans in a browser. It integrates with PyGrid FL API.

It also supports training and inference of PySft ML models which are written in

PyTorch or TensorFlow. It allows data to stay on the user’s device as the core

feature of FL. However, the security protocol of Federated Learning such as Secure

Multi-Party Computation and secure aggregation using peer-to-peer WebRTC

connections is still in progress.

4.6 Challenges

4.6.1 New Technology

One of the challenges that this project faces is that the technology concept behind

which is Federated Learning is relatively new in the industry. Therefore, there will

be fewer references, materials that the project can reference. There will be a very

high chance that throughout the project, it will encounter many problems that have

never been asked before. Moreover, some obstacles that the project might face

could very likely not be solved or require complex solutions that are beyond the

group members’ capabilities.

4.6.2 FL Library still in early stage of development

For Tensorflow Federated, the framework is still in early-stage development. It

only supports local simulations, Multi-machine simulations are yet to be

developed. The purpose of the framework right now is mainly focusing on research

and evaluation of FL instead of deploying FL systems at scale. Therefore, in our

project, Tensorflow Federated are only used to demonstrate the performance

difference between traditional ML and FL as well as how FL differs from

conventional ML.

44

Flower has also the above issue where it doesn’t support multi-machine

simulations and therefore is not able to be deployed as mentioned in subchapter

4.4.3.

4.6.3 Generalization of different types of FL

The platform cannot be generalized to handle all types of ML algorithms. Different

types of federated learning as mentioned in subchapter 1.2.1 required different

architectures [2]. Therefore, the platform developed will only handle horizontal

FL.

4.6.4 Complexity of implementing of Security Protocol

Recent researches have shown that there might be potential security breaches when

training the platform using Generative Adversarial Network [2]. Hence, it will be

impossible to ensure data privacy for GANs and hence cannot be implemented.

45

5 Future Work

5.1 Future Work

There are two main categories of work to be done in the future - development of a

separate web application, and testing of security features.

5.2 Deploy web platform

As mentioned in subchapter 4.6.2, most of the library and framework are not

matured and ready for deployment at scale yet. It is mostly for local simulation and

currently in the project, most of them are done in local environment, with the

exception of syft.js.

5.3 Testing on security

When the platform is deployed on the web, there should be testing to see whether
the security of the platform is up to standard. Moreover, different security protocol

should be tried on the platform and compared to see which have the highest

security as well as performance.

46

6 Conclusion

Traditional Machine Learning model training requires all data to be centralized.

Due to the strict data privacy of different industries and countries, it is hard to

collect from different parties and achieve effective training of the ML model.

Federated Learning is a new concept that arose in 2016 that allows decentralized

ML training, enforcing data privacy. Our project aims to build a Horizontal

Federated Learning platform where participants can collaboratively train a

machine learning model. This project, if carried out successfully, will hope to be

used by AI InnoBio, a company that aims to use FL to conduct rapid Covid-19

tests using a CMOS sensor. We have done research and evaluation on different

federated learning methods in Tensorflow federated, Sherpa.ai and developed a

basic client-server communication using Python Flower framework, duet and

syft.js and talked about what can be done to improve in the future.

47

References

[1] B. Han, "An Overview of Federated Learning", Medium, 2020. [Online].

Available: https://medium.com/datadriveninvestor/an-overview-of-federated-

learning-8a1a62b0600d. [Accessed: 27- Oct- 2020].

[2] Q. Yang, Y. Liu, T. Chen and Y. Tong, "Federated Machine Learning: Concept

and Applications", ACM Transactions on Intelligent Systems and Technology, vol.

10, no. 2, pp. 1-19, 2019. Available: 10.1145/3298981.

[3] J. Konecny, B. McMahan and D. Ramage, "Federated Optimization:

Distributed Optimization Beyond the Datacenter", 2015. Available:

https://arxiv.org/abs/1511.03575. [Accessed 27 October 2020].

[4] A. Hard et al., "Federated Learning for Mobile Keyboard Prediction", 2018.

Available: https://arxiv.org/abs/1811.03604. [Accessed 27 October 2020].

[5] B. McMahan and D. Ramage, "Federated Learning: Collaborative Machine

Learning without Centralized Training Data", Google AI Blog, 2017. [Online].

Available: https://ai.googleblog.com/2017/04/federated-learning-

collaborative.html. [Accessed: 27- Oct- 2020].

[6] Reuters, 2020. Israeli Hospital Trials Super-Quick Saliva Test For COVID-19.

[online] U.S. News & World Report. Available at:

<https://www.usnews.com/news/top-news/articles/2020-08-13/israeli-hospital-

trials-super-quick-saliva-test-for-covid-19> [Accessed 7 October 2020].

[7] D. Beutel, T. Topal, A. Mathur, X. Qiu, N. Lane and T. Parcollet, "Flower: A

Friendly Federated Learning Research Framework", 2020. Available:

https://arxiv.org/pdf/2007.14390.pdf. [Accessed 11 January 2021].

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Overview of Machine Learning
	1.2 Federated Learning
	1.2.1 Three types of Federated Learning
	1.2.1.1 Horizontal Federated Learning
	1.2.1.2 Vertical Federated Learning
	1.2.1.3 Federated Transfer Learning

	1.2.2 Benefits of Federated Learning
	1.2.3 Challenges of Federated Learning

	1.3 Gboard on Android
	1.4 Outline of the report

	2 Objectives and Motivation
	2.1 Project Objectives
	2.2 Project Motivation

	3 Methodology
	3.1 Introduction
	3.2 Rationale for using Horizontal Federated Learning
	3.3 Horizontal Federated Learning Architecture
	3.4 Security Protocol
	3.4.1 Secure Multi-party Computation
	3.4.2 Differential Privacy
	3.4.3 Homomorphic Encryption

	3.5 Summary

	4 Experiments and Results
	4.1 Overview
	4.2 Tensorflow Federated
	4.2.1 Fashion MNIST
	4.2.2 CIFAR10
	4.2.3 Cats_vs_dogs
	4.2.4 Experiments

	4.3 Sherpa AI
	4.3.1 Fixed total number of data
	4.3.2 Fixed data per client

	4.4 Flower
	4.4.1 Rationale for using Flower
	4.4.2 Evaluation
	4.4.3 Deployment

	4.5 PySyft, PyGrid and Syft.js
	4.5.1 PySyft
	4.5.2 Duet
	4.5.3 PyGrid
	4.5.4 Syft.js

	4.6 Challenges
	4.6.1 New Technology
	4.6.2 FL Library still in early stage of development
	4.6.3 Generalization of different types of FL
	4.6.4 Complexity of implementing of Security Protocol

	5 Future Work
	5.1 Future Work
	5.2 Deploy web platform
	5.3 Testing on security

	6 Conclusion
	References

