
COMP4801 2020/21

Identification of Surface Material of Baggage for
Self-service bag drop system

Final Report
18th April 2020

Supervisor Dr. T.W. Chim

Report by Utsav Raj 3035497915

Team Member Muhammad Sheheryar Naveed 3035493672

https://wp.cs.hku.hk/fyp20030/



Abstract

Facing stiff competition from other premier airports in the Middle East, Hong Kong

International Airport has introduced the self-service bag drop system. Taking inspiration

from this initiative, the objective of this project is to develop a deep machine learning model

to identify baggage surfaces (as hard or soft) for this system using a mobile application. The

integration of this model into the system would reduce wear and tear on soft baggage during

handling as well as in flight by informing the passenger to use a tray. Three model types were

used - Classifiers (ResNet50 and Custom ResNet), Mask R-CNN and Yolo (Yolo-V3 and

Yolo-V5). These models were trained on a secondary dataset called MVB however, it soon

became evident a primary dataset was needed for Mask R-CNN and Yolo. Hence, Baggage

Surface Dataset was created to eliminate the limitation of MVB dataset being made up of

highly cropped images. After all the training, these models were tested on a hand labelled test

set made of challenging image with Custom ResNet model boasting 82% F1-score on the test

set while 96.6% on the cropped test set. While Yolo-V5 also got a mAP score of 88% on the

test set, only Mask R-CNN lacked behind due to technical difficulties. In order to facilitate the

testing process conducted by Hong Kong Airport Authority,, a Smartphone Application was

created. While the final decision rests on HKAA, we recommend the usage of Custom ResNet

model due to it being faster and more accurate than both of the models - however, it requires

cropped images to perform the best. With our Smartphone Application, the project aims to

make passenger’s life easier by protecting baggage.

1



Acknowledgements

Our team would like to offer a token of appreciation to our supervisor Dr T.W. Chim for his

meticulous guidance throughout the project, which immensely contributed to the completion

of this paper. We would also like to express our sincerest gratitude to Cezar Cazan from the

Center of Applied English Studies for providing us insightful recommendations which proved

extremely useful while drafting this paper. Their willingness to give their time so generously

has been very much appreciated. Last but not least, A special thanks goes to my teammate,

Muhammad Sheheryar Naveed, for finishing this year long endeavour with me.

2



Table of Contents

1.  Introduction 9
1.1   Research Background 11

2.  Related Work 11

3. Methodology 12
3.1. Dataset 13

3.1.1. Secondary Source dataset - MVB 13
3.1.2. Primary Source dataset - Baggage Surface Dataset 14
3.1.3. Test set 16
3.1.4. Data Augmentation 17

3.2 Models 17
3.2.1 Classifiers 18

3.2.1.1 Prevention of Overfitting 18
3.2.1.2 Data Augmentation 18
3.2.1.2.3 ResNet-50 23
3.2.1.2.4 Custom Model 24

3.2.2 Mask R-CNN 26
3.2.2.1 Architecture 26
3.2.2.2 COCO weights 31

3.2.3 Yolo 31
3.2.3.1 Architecture of Yolo 32
3.2.3.2 Backbone 32
3.2.3.3 Non-max Suppression 32

3.3  Smartphone Application 33
3.3.1 Frontend 34

3.3.1.1 Application User Journey 34
3.3.2 Backend 37

4. Results 38
4.1 Classifiers Results 38

4.1.1 Network Training and Hyperparameter Selection 38
4.1.2 Experimentation on Overfitting Mitigation Strategies 43

4.2 Mask R-CNN 45
4.2.1 Network Training and Hyperparameter Selection 45
4.2.2 Investigation of Performance 48
4.2.3 Results on Baggage Surface dataset 50

4.3 Yolo Results 54
4.3.1 Strategy to improve results 55

4.3.1.1 Anchor Box Fitting 55
4.3.1.2 Mixup Augmentation 56
4.3.1.3 Additional Data Augmentation 56
4.3.1.4 Results from Yolo-v5 57

3



4.4 Comparison of Best Models 58
4.5 Difficulties Encountered 59

5. Future Work 62
5.1 Project Schedule 63

6. Conclusion 65

7. References 66

4



Abbreviations

List of all abbreviations used in this paper in alphabetical order.

COCO Common Objects in Context

FPN Feature Pyramid Network

HKAA Hong Kong Airport Authority

HKIA Hong Kong International Airport

HKU The University of Hong Kong

IEEE Institute of Electrical and Electronics Engineers

R-CNN Region Convolutional Neural Network

ROI Regions of Interest

RPN Region Proposal Network

ResNet Residual Neural Network

SSD Single Shot Detector

VGG Visual Geometry Group (VGG-19 is a trained CNN by this group from

Oxford University)

5



List of Figures

Figure 1. One of the self-service bag drop systems. 9

Figure 2. Example of hard baggage and soft baggage (with and without abrasions) 10

Figure 3. Visualization of three computer vision techniques on a baggage image 11

Figure 4. Block Diagram of proposed Model Approaches 13

Figure 5. Visualization of the secondary dataset. 14

Figure 6. Sample images from Baggage Surface dataset 15

Figure 7. Sample images from the test set 16

Figure 8. Original test set images a) and b) are cropped to get the only baggage object as
new images  as seen in the section a), b), c), d) of the cropped version of test set images

16

Figure 9. Color filter comparison - Original image (Left), Altered image (Right) 19

Figure 10. Visualisation of all data manipulation methods 19

Figure 11. ResNet residual block skip connection implementation 24

Figure 12. Summary of Custom CNN Network 25

Figure 13. Block diagram of Mask R-CNN architecture. 26

Figure 14. Feature Pyramid Network allowing pyramids to see high level and low level
features

27

Figure 15. Simplified illustration showing 42 anchor boxes 28

Figure 16. 3 anchor boxes (dotted) and the shift/scale applied to them to fit the object
precisely (solid).

29

Figure 17. Illustration of stage 3 of Mask R-CNN. 29

Figure 18. Getting a fixed size feature map from ROI. 30

Figure 19. Scaling up the 28x28 soft mask to fit our baggage image 30

Figure 20. Sample images for class suitcase from COCO 2014 dataset 31

Figure 21. Visualisation of Yolo architecture 32

Figure 22. Illustrates how non-max suppression chooses the best bounding box 32

Figure 23: Flowchart of User Journey from opening the app to getting results. 33

6



Figure 24: Default first page (classifier model tab) user sees when they open the app. 34

Figure 25: Page when user presses the button in figure 23 and grants camera permissions. 34

Figure 26: From left to right: Image preview when user takes a photo, when user presses
crop button in classifier tab and user manually cropping the image

35

Figure 27 From left to right: Results from each of the three model - Classifier (purple bag
image from Figure 26), Mask R-CNN and Yolo-V5

36

Figure 28. How TorchServe handles Classifiers 37

Figure 29. Custom Model on complete sampling data 38

Figure 30. Custom Model on under sampling data 39

Figure 31. ResNet-50 results on complete sample – without data randomizer 41

Figure 32. ResNet-50 results on complete sample – with data randomizer 41

Figure 33. ResNet-50 Training Results on Oversampling Data 42

Figure 34. ResNet-50 training on under sampling data with outlier 43

Figure 35. Top Left original image is cropped in three ways and that cropped grey section is
fed.

44

Figure 36. Trained model working well on segmentation of baggage with focused image of
baggage.

47

Figure 37. Example of a background that mimics baggage material. 48

Figure 38. Example of an image with a person near the baggage. 49

Figure 39. Example of two hard baggage overlapping with each other. 50

Figure 40. Mask accurately covers and predicts the baggage as hard from the test set. 51

Figure 41. Original image along with cutout augmentation with gaussian noise of the same
image

52

Figure 42. The nine Anchor Box sizes made by K-means algorithm 55

Figure 43. A fashion model poses with baggage on a set. An unrealistic situation for the
models to encounter.

60

Figure 44. From left to right: Backpack, small office suitcase and Baggage covered with
cloth cover

65

7



List of Tables

Table 1. Annotation Statistics of Baggage Surface Dataset

Table 2. Statistics about the test set

Table 3. Precise summary of datasets used for classifiers

Table 4. Proto-Test set based on web images

15

16

20

39

Table 5. ResNet-50 results on experimentation performed on under sampling data 40

Table 6. Validation Loss for different Resnet backbone 45

Table 7. Validation Loss for different layers trained 46

Table 8. Validation Loss for different loss weights 48

Table 9. F1-score and mAP@[0.5] form the most successful Mask R-CNN model 48

Table 10. Performance of Mask R-CNN on newly created Baggage Surface 51

Table 11. Performance of Mask R-CNN on first augmentations on Baggage Surface

Table 12. Performance of Mask R-CNN on second augmentations on Baggage Surface

Table 13. Performance of Mask R-CNN on weights from model of table 11 train on Baggage
Surface

Table 14. Performance of Mask R-CNN on weights from model of table 11 on Baggage
Surface

Table 15. Performance of Yolo-V3 on 4 experiments

Table 16. Performance of Yolo-V5 with best Yolo-V3 parameters on 2 experiments of
different Baggage surface dataset

Table 17. Best Performing Models from Each Type of Model

Table 18. Mask R-CNN performance on Baggage Surface

52

53

54

54

57

57

58

60

8



1.  Introduction
With over 80 Best Airport Awards[1], Hong Kong International Airport (HKIA) is one

of the premier airports in Asia and arguably in the world. However, there is an increasing

competition from the state-of-art airports in the Middle East and South Asia. Nearly 70

million passengers[1] enjoy HKIA’s services each year but the tough competition and growing

number of passengers everyday means keeping up with technology to be able to provide

exceptional services day in, day out.

In order to maintain its premier position in the 21st Century, HKIA has introduced

projects using the latest technology to enhance the passenger experience and work processes

and be transformed into the smart airport of the future. One of the projects that focuses on

this smart future is the Self-service bag drop system.

Figure 1. One of the self-service bag drop systems.[2] With over 120 systems, this is one of the largest projects

of its kind.

Self-service bag drop system (as seen in figure 1) was initiated in 2016 to shorten the

long queues needed for manual handling of bags at the check-in counter. This system not only

helps the airport in speeding up the departure process from three minutes to seventy

seconds[2] but also reduces the bag handling cost for HKIA.[3] Passengers who have

checked-in earlier with either a self-service kiosk or web-based check-in are required to

follow these instructions below to self-drop their baggage:

1. Scan their boarding pass barcode and get a luggage tag to place it on their bags [4]

9



2. Put a soft bag in a tray and hard bag directly onto the belt as per the directive of the

airport staff on duty [4]

3. Confirm the details on the screen to send the bags to the main conveyor belt [4]

With the current COVID-19 pandemic, contactless self-service bag drop system

allows reduced human interaction at the airport, reducing the chances of contracting the virus

for passengers and staff alike. One major problem with self-service bag drop systems occurs

during step 2 mentioned in the workings of the system. When passengers put any soft

material luggage (refer to figure 2) it tends to get damaged (e.g. abrasions) during handling if

not put in a tray first. Currently, soft baggage is put into a tray manually by airport staff

during handling and any oversight can cause customer inconveniences by damage to the

baggage but damage to the HKIA’s service quality as well.

Figure 2. Example of hard baggage and soft baggage (with and without abrasions)

Our project aims to plan, design, develop and implement a state-of-the art machine

learning model which will use a mobile application to provide an image to the model to

identify the baggage surface as soft or hard. If a passenger has soft baggage, the screen would

prompt them to use a tray before putting their baggage on the conveyor belt of the

self-service bag drop counter. A soft baggage is made with either woven nylon (e.g. cordura,

ballistic, or ripstop) or leather while hard baggage is made of plastics (ABS or polycarbonate)

or aluminium for the scope of this project (refer to figure 2). The following models will be

used and their performances compared - Mask R-CNN, Yolo and Classifiers like Custom

ResNet50 and VGG.

The remaining report is organized as follows. This section continues with a subsection

on research background of key terms identifying the capabilities of the each model while the

Section 2 surveys existing research done on baggage material in the literature. Section 3

10



provides the implementation approach for the two training dataset, smartphone application

and the three model types – Classifiers, Mask R-CNN and Yolo. Then, Section 4 compares

the implemented models and tries to make an educated judgement on which model type is the

best choice by using F1-Score and mAP. Section 5 discussing the future work of on how the

project could be extended or improved and finally conclusion in Section 6 .

1.1   Research Background

The key machine learning techniques separating the three models are listed below

with figure 3 providing an easy to understand visualization of the same:

● Object recognition: Computer vision technique to recognize varying classes of

objects in an image or in a video[5]. This can be achieved with models like

Resnet50.

● Object detection: Identifies an object in an image and specifies its location

using a bounding box [5] (often a minimum bounding rectangle). This can be

achieved with models like Yolo-v3.

● Semantic segmentation Provides a more detailed approximation of an object

by classifying every pixel in an image as a class and then creating a mask

(blue mask in figure 3) on that object in an image[5]. This can be achieved with

models like Mask R-CNN.

Figure 3. Visualization of three computer vision techniques on a baggage image

2.  Related Work

While a lot of efforts are being directed towards the recognition of material properties

of an image in the stream of Computer Vision, there is scant focus on the detection of the

11



surface materials of luggage items. There are two studies that have been carried out that are

associated with the work we are undergoing.

The first study was performed by Filament, an applied AI business[6], to find

mishandled bags by creating an automated database[6]. For each mishandled bag, this database

stores a code generated based on the visual properties (i.e. bag type, colors, patterns, wheels,

etc.) of the bag using a deep learning model. When a passenger provides the characteristics of

the missing bag, the mishandled baggage database is used to find the bag matching the given

description. RetinaNet, originally trained on COCO[9] dataset, was used as a basis for training

this deep learning model achieving an accuracy as high as 90% including the labelling

prediction of both hard and soft bag surfaces[6]. Likewise, we will use the pre-trained models,

originally trained on the same COCO dataset this study uses except for Yolo to be used

instead of RetinaNet.

The second study focuses on the re-identification of the same bags to be performed as

these bags pass different checkpoints on a baggage handling system. The Siamese network

was being used to match the same bag identity images taken at different angles and the

network was slightly modified to take into effect the hard and soft bag material surface[7].

This project will complement the same approach by using an existing network and changing

the architecture to fit our use case.

3. Methodology
This section outlines the raw data collection, dataset creation and augmentation in

order to train the three baggage surface material identification models. The block diagram in

figure 4 illustrates the high-level flow of the methodology undertaken for this training of the

different models for this project. The dataset is discussed in detail in Subsection 3.1, then the

model types in Subsection 3.2, followed by mobile application explained in Subsection 3.3.

12



Figure 4. Block Diagram of the datasets and Models

3.1. Dataset

Preferably, the dataset used for training needs images of baggage at different angles to

achieve the best possible results. HKIA does not have an existing mechanism to capture

baggage images and with privacy concerns during collection, secondary source dataset and

primary source dataset were created.

3.1.1. Secondary Source dataset - MVB

The secondary source dataset named MVB dataset, contains 4,500 unique baggage

identities with around 22,000 annotated baggage images taken at different angles with multi

view cameras [8]. The labelling of the image was stored in VGG format with the file name of

each image (primary key – unique identifier for each image), material label (hard, soft, or

others) and polygon (x and y coordinates for each point in the mask).

13



Figure 5. Visualization of the secondary dataset. It has 12,000 hard baggage images and only around

5,000 soft baggage images.  Multiple views of the same baggage is present in the dataset as well.

The dataset was created for baggage re-identification and hence had three material

labels - soft, hard and others. Thus, these unwanted ‘others’ labelled images were removed

from the dataset as a part of the data-cleaning stage. As the number of these images were low,

the clean dataset had around 18,000 images with the baggage identities remaining around

4,200 as seen in figure 5.

3.1.2. Primary Source dataset - Baggage Surface Dataset

This is a custom hand-annotated dataset specifically made to counter the limitations of

the MVB dataset (see Section 4.2.2 for more details) for segmentation as well as object

detection - Referred to as Baggage Surface Dataset henceforth. Annotation was done using

VGG Image annotator (version 2.0.11) as it is easy to use, does not require any installation or

setup and is used by authors of MVB dataset, which helps keep consistency when using both

simultaneously. Any images added from MVB dataset to this new dataset were re-annotated.

Images were taken from publicly available dataset such as ImageNet, OIDv6 and

ADE20K as well as from free stock image database websites like Freepix, Pixabay, eBay,

Flickr and Pinterest. However, images from the COCO dataset are not used because COCO

weights are used when training on the Baggage Surface Dataset. Baggage Surface Dataset

contains 20% of MVB dataset in order to tackle the limitation of COCO train models in

detecting close up images of baggage while containing images with diverse backgrounds like

Airport, Beaches, Room and images with hard and soft identities together as seen in figure

below. More than 20% of MVB dataset is not added as it starts to suffer similar problems

14



when using MVB dataset of bigger bounding box and segmentation mask as seen in Section

4.2.2.

Figure 6. Sample images from Baggage Surface dataset. It contains images with multiple hard or soft

baggages or even hard and soft baggages in the same images (Mixed)

Baggage Surface Dataset was increased by 3 stages in total in order to test if increase

in images have any significant impact on model performance. The stages themselves are

increased in batches as it is best practice to see if increasing the dataset with new images is

working properly. These stages are named based on the approximate number of images in the

train set - more information can be found in table 1.

Dataset # of Images Train/Test Split # of Hard Identities # of Soft Identities

Baggage Surface-900 1,099 909/190 836 835

Baggage Surface-1700 1,934 1,744/190 1,416 1,415

Baggage Surface-2000 2,200 1.999/201 1,626 1,632

Table 1. Annotation Statistics of Baggage Surface Dataset

15



3.1.3. Test set

This set was specifically created to see the performances for Mask R-CNN and Yolo
models on never-seen-before challenging images as seen from the figure 7 below.

Figure 7. Sample images from the test set

Cropped version of this set is used for the classifiers (see figure below) along with an
uncropped version for Mask R-CNN and Yolo to compare their performances to make
choices on which model suits which situation better. These cropped images are edited by
hand to imitate how a user may crop images once they take an image from their camera.

Figure 8. Original test set images a) and b) are cropped to get the only baggage object as new images  as
seen in the section a), b), c), d) of the cropped version of test set images

More information about the uncropped test set can be found in table 2.

Dataset # of Images # of Hard Identities # of Soft Identities

Test Set 260 218 201

Table 2. Statistics about the test set. Please note that the number of images is equal to the total number of
identities for the cropped version of the test set and the number of identities stays the same.

16



3.1.4. Data Augmentation

Data augmentation is a technique to create new training images artificially from

existing training images[25] - increasing images without collecting any new images. This can

be achieved by transformation on images such as flipping, rotation, increasing contrast,

adding blur and many more. These techniques have been seen to improve the accuracies of

the model in the range +2 to 31%[16] Data Augmentation helps reduce overfitting as it helps

create images that create a variety of conditions that may not be accounted for in the original

images with a limited set of conditions.

Both, the MVB dataset used for the Classifiers as well as the Baggage Surface dataset

used for Yolo and Mask R-CNN use different augmentation techniques to improve their

performances. However, Mask R-CNN and Yolo both use on-training augmentation when

training by selecting random images and augment on-the-fly. This is beneficial as these

models need complex calculations involving the mask or bounding box especially for

geometric transformations like rotation.

Classifiers are object recognition models and do not rely on bounding boxes or masks

and thus receive pre-training augmented images for training purposes - the data is

manipulated before the training process and then kept constant for the remainder of the

experiment. More details on exact augmentation used for each model are provided in their

respective sections.

3.2 Models

There are three main models used during this project. These are:

● Classifiers: Resnets and Custom Model

● Mask R-CNN

● Yolo: Yolo Version 3 and Yolo Version 5

This section consists of two subsections where Subsection 3.3.1 thoroughly discusses

each of the individual components of the pipelined approach followed by Subsection 3.3.2

that describes the aggregated approach.

17



The accuracy of all the models will be tested by determining the F1 scores. F1 score is

an effective means of comparison of predictive abilities of different models as it counteracts

the imbalance between the target classes by giving equal weightage to majority and minority

class[14]. Precision is the ratio of true positive to all positives - how many correct predicted

classes (e.g. soft or hard) are compared to all the actual classes. The mean average precision

(mAP) for object detection is the average of the AP calculated for all the classes. IOU for

threshold 0.5 means that if the predicted mask or bounding box and actual mask or bounding

box overlap by 50% or more, it is considered a true positive. For both of these metrics, higher

values are more desired.

3.2.1 Classifiers

Two different classification networks namely ResNet50 and Custom Resnet Model

were used and compared. More detail about these networks is further discussed in the

subsections of 3.2.1 below.

3.2.1.1 Prevention of Overfitting

The classifier models have many parameters, making training these models a

challenging task. These state of the art models are designed to classify hundreds of models

and may lead to overfitting for the scope of the project which is only soft and hard classes.

Then again, these state of the art models can take advantage of transfer learning to extract

features from images quite easily. Techniques to limit the effect of over-fitting are mentioned

below.

3.2.1.2 Data Augmentation

The MVB dataset was manipulated using the python pillow library with the following

methods (refer to figure 10):

● Coloring: Conversion from BGR to RGB was used where R is Red, G is Green and B

is Blue. This means that Red is converted to Blue (as seen in Figure 9) and vice

versa. Similar design bags with different colours are possible and hence, models

should be able to work in these cases.

18



Figure 9. Color filter comparison - Original image (Left), Altered image (Right)

● Rotation: Images were rotated with maximum ration set to 50%. This allows creating

baggage images in different angles than the raw MVB dataset.

● Noise: By adding noise in the image, low quality camera were being emulated, which

have sharper edge recognition of the object but lower image quality,

● Lighting: Varied lighting conditions allows for a robust model. These conditions were

recreated by increasing or decreasing brightness by 40% and adding linear noise to

colour component of each pixel separately

● Blur: Image taken in a hurry or camera moved while taking a picture is a common

occurrence which can result in blur. Additionally, blur can simulate the network’s

performance on small or distant objects that will be captured with low resolution.

● Flipping and Zoom: Flipping the image horizontally and vertically as well as zooming

in and out was done.

Figure 10. Visualisation of all data manipulation methods

There are over 12k hard images as opposed to only 5k soft images. In order to ensure

there is no bias in the model, three new datasets using the mentioned augmentation were

created (see table 3):

19



● Random minority Over Sampling: Randomly choosing the samples from each of the

available augmented sets of soft images to increase the total size of soft images to

~11,000.

● Random majority Under Sampling: Randomly choosing 4,500 hundred images from

the hard baggage image thus making a total dataset equal to 4,500 training images for

both classes.

● Complete Sampling: Keeping the imbalance with the intention of using a

cost-sensitive learning[17] explained in the next subsection.

Over Sampling Under Sampling Complete Sampling

Train Hard 11,000 4,500 12,000

Soft 11,000 4,500 4,000

Validation Hard 1,000 300 501

Soft 1,000 300 888

Test Hard 500 134 30

Soft 500 88 34

Total Hard 12,500 4,934 12,531

Soft 12,500 4,888 4,922

Table 3. Precise summary of datasets used for classifiers

Cost Sensitive Learning:

Cost Sensitive Learning assigns different costs to misclassification of examples from

different classes[18]. Aim of this method is to adjust weights in the objective loss function for

training samples from different classes. One of the standard approaches is called backward

pass of backpropagation algorithm, which assigns weights according to inverse class

frequency by assigning higher weights for wrongly predicted samples. Classifier approach

adapts the neural network to mercurial weights in the calculation of loss for individual classes

based on the fraction of their sample size in the original training set.

20



With unequal samples in classes, the performance is measured by average cost per

example rather than with the error rate only. It is possible to see a very small error rate but

good overall performance. The average cost, where total testing sample size is N and Cost

function is the misclassification cost for a sample I of a particular class, can be represented as

follows[19]:

Cost[i, j] = cost of misclassifying an example from “class i” as “class j”

Cost[i,i] = 0 (cost of correct classification).

For uniform case (equal samples per class), the Cost function would be the following:

When the cost weights for all the classes are uniformly distributed (equal samples per

class), the error rate becomes a special case for the average cost.

Error rate = Number of incorrectly classified examples / N

Accuracy = 1.0 − Error rate

If the costs for all classes is non-uniform, the average cost would be a true reflection

of the model and, hence is a better fit for model performance criterion. Deep neural networks

assume equal weightage for all classes by default - a bad case when the sample for each class

varies as explained in figure 6. Hence, average cost is a better performance criterion over

traditional error rate for this unbalanced case.

21



Average cost vs error rate for imbalanced class sample sizes

Calculating Class Weights

For implementation of this strategy, different class weights would be set that affects

the loss of the two classes separately and thus, affect the overall loss. The class with less

samples (for our case, soft) would have a greater impact on the overall loss of a batch as the

penalty of wrong prediction of the soft bag would carry a higher penalty. Thus, the relative

weight of each class is impacted in the calculation of the objective function. The ratio by

which weight imbalance is calculated below where formula ‘A’ can be simplified as formula

‘B’ without normalisation taken into account.

Ratio = #𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑠𝑜𝑓𝑡 𝑏𝑎𝑔𝑠
#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 ℎ𝑎𝑟𝑑 𝑏𝑎𝑔𝑠

Each class sample is computed and these results are normalised to ensure that the

convergence of the back-propagation model is not affected. Here the cost vector is the

expected cost of misclassifying a sample belonging to ith class and is computed as follows,

where the function P is the estimate of the prior probability of the example belonging to ith

class:

Assuming, number of hard samples are 12,000 and number of soft samples are 4,000

Cost[soft, hard] = 0.75 (1 hard – 3 soft = ¾ = 0.75 ~ normalizing)

22



CostVector[soft] = =   0.751
1−0.25  .  (0. 75) .  0. 75

P(i) here could be visualized as the fraction of ith class out of the total number of

samples.

Calculating the Loss After Setting Class Weights

For every training batch, formula (C) shows the traditional loss. The new loss after

applying weights for the batch is shown in formula (D). The error rate calculation shown in

figure 9 is slightly different from formula (D) seen below.

Loss =
Σ 𝐿 𝑦

𝑖( )
𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

Loss =
Σ 𝑊

𝑦
𝑖

 𝐿 𝑦
𝑖( )

Σ 𝑊
𝑦

𝑖

Where using data in figure 6, Wyi = 0.75 for yi = soft

Wyi = 0.25 for yi = hard

In formula (D), Sum of the weights rather than the batch size is in the denominator -

sum of weights would be normalised and comparable to what is deduced in the numerator.

The logic behind this strategy of cost effective weighing is by giving a higher weight ‘x’ to

soft baggage images. It is done to create the visualisation for the model that if it wrongly

classifies one soft bag, it has misclassified ‘x’ number of soft bags instead. As higher

magnitude of weight of soft baggage in the loss calculation, higher gradients during the

gradient descent in the back propagation will be observed.

3.2.1.2.3 ResNet-50

ResNet-50 is a 50 layered classification network which does not suffer from

diminishing gradient - a problem where the model fails to learn when the implemented

network is deep. This is achieved by skipping the connection and passing the residual to the

next layer [16]. With the residual technique, the implementation of deep neural networks

23



became plausible while eliminating the exploding or diminishing gradient issuem. An

explanation on how the residual is added to the next layer is illustrated in the figure 11 below.

Figure 11.  ResNet residual block skip connection implementation

3.2.1.2.4 Custom Model

Apart from the above models, a custom-built model was created. Keeping in mind

that only two classes are being classified and the overfitting problem mentioned in Section

3.2.1.1, it was important to create such a model to see if there is any possibility of training

our model even better for this specific problem.

24



Figure 12. Summary and Architecture of Custom CNN Network

The custom model architecture is shown in figure 12 - total of seven convolutional

layers with ‘relu’ activation and each followed by a batch normalization layer while putting

four fully connected layers at the top.

Several CNNs include pooling layers in their architecture, this is favoured as long as

losing positional information is fine by artificially reducing the resolution of the image

further after certain processing steps. However, this would result in more computational steps

for the previous convolutional layer. These problems are mitigated by using convolutional

layer of a stride 2, which stabilises performance based on University of Freiburg study[20] on

several key image recognition benchmarks. Hence, strides of (2,2) were kept instead of

adding max pooling layers.

25



In the start, the train f1-score was stuck at 85% even after several epochs with only five

convolutional layers with dropouts. To enhance the learning, additional two convolutional

layers were added, resulting in better performance after long periods of training with dropouts

removed due to no overfitting. These results are elaborated in Section 4.

3.2.2 Mask R-CNN

Mask R-CNN creates a high quality segmented mask around the bag object and at the

same time also is able to predict the material class that the baggage belongs to. The results

(bounding box coordinates and label) of the Mask R-CNN are created on the images using

OpenCV.

3.2.2.1 Architecture

Figure 13. Block diagram of Mask R-CNN architecture. [21] It has 4 stages - Backbone, Region Proposal

Network, ROI Classifier & Bounding Box Regressor and Segmentation Masks.

The block diagram above represents the Mask R-CNN architecture. Mask R-CNN is a

two stage framework wherein image is scanned to generate proposals (areas where object is

most likely present) and the proposals are classified while generating the bounding boxes and

masks.

❖ Backbone

Mask R-CNN’s backbone contains a standard convolutional neural network (for our

model, ResNet50 or ResNet101) seen in the start of figure 18 that serves as a feature

extractor, and Feature Pyramid Network. The early layers of Resnet detect low level features

(edges and corners), and later layers successively detect higher level features (e.g. car, dog).

26



Passing through the backbone network, the image is converted from 1024x1024px x 3

(RGB) to a feature map of shape 32x32x2048. This feature map becomes the input for the

next stages.[22]

The Feature Pyramid Network (FPN) is used as it can better represent objects at

multiple scales. FPN improves the standard feature extraction pyramid by adding a second

pyramid. This pyramid takes the high level features from the first pyramid and passes them

down to lower layers, allowing features at every level to have access to both, lower and

higher level features.[22]

Figure 14. Feature Pyramid Network allowing pyramids to see high level and low level features

❖ Region Proposal Network (RPN)

The boxes in the figure below are the anchors. As shown on the left, these boxes are

distributed over the image area. This is a simplified view, though. In practice, there are about

200K anchors of different sizes and aspect ratios, and they overlap to cover as much of the

image as possible.[22]

27



Figure 15. Simplified illustration showing 42 anchor boxes

The Region Proposal Network (RPN) is a light-weight neural network that can

quickly scan the image to determine areas (called anchors) containing the objects in a

sliding-window fashion. Furthermore, the RPN does not scan over the image directly (even

though the anchors are drawn on the image in figure 15 for illustration) but it scans over the

backbone feature map. This is because scanning over the backbone feature map allows the

RPN to reuse the extracted features efficiently and avoid duplicate calculations. [22]

Figure 16. 3 anchor boxes (dotted) and the shift/scale applied to them to fit the object precisely (blue - solid).

Several anchors can map to the same object.

The RPN generates two outputs for each anchor:

● Anchor Class: foreground (positive anchor/FG) or background (negative

anchor/BG). The foreground class implies that there is probably an object in that box.

● Bounding Box Refinement: A foreground anchor (positive anchor) might not be

centered perfectly over the object. So the RPN estimates a delta to refine the anchor

box so it fits the object more closely.[22]

28



Using the RPN predictions, the top anchors that are likely to contain objects are

picked and their location and size refined (as seen in figure 16) . If many anchors overlap too

much, the one with the highest foreground score is kept and others are discarded (Non-max

Suppression).[22] These are called the final proposals (regions of interest) and are passed onto

the next stage.

❖ ROI Classifier and  Bounding Box Regressor

This stage runs on the regions of interest (ROIs) proposed by the RPN. It also

generates two outputs for each ROI:

Figure 17. Illustration of stage 3 of Mask R-CNN. The red box represents the ROI.

● Class: The class of the object in the ROI. Unlike the RPN, which has two classes

(FG/BG), the deeper network has the capacity to classify regions to specific classes

(soft, hard etc.). It can also generate a background class, and any ROI containing that

is discarded.[22]

● Bounding Box Refinement: Similar to the RPN, further refinement of the location

and size of the bounding box to encapsulate the object is done.[22]

Classifiers require a fixed input size. But, the bounding box refinement step in the

RPN, leads to ROI boxes having different sizes.

29



Figure 18. Getting a fixed size feature map from ROI. This feature is a low level layer for ease of

understanding

ROI Pooling is cropping a part of a feature map and resizing it to a fixed size (seen in

figure 18). It is similar in principle to cropping a part of an image and then resizing it (but

there are differences in implementation details).[22]

❖ Segmentation Masks

Figure 19. Scaling up the 28x28 soft mask to fit our baggage image

The mask branch is a convolutional network that takes the positive regions selected

by the ROI classifier and generates masks for them. The generated masks are low

resolution(e.g. 28x28 pixels) and are soft to keep branch mask light. These soft masks are

represented by float numbers, to hold more details than binary masks.[22] During training, the

ground-truth masks are scaled down to 28x28 to compute the loss, and during inferencing, the

predicted masks are scaled up to the size of the ROI bounding box to give the final masks,

one per object.

Mask R-CNN uses a complex loss function which is calculated as the weighted sum

of different losses at each and every state of the model. Loss for Mask R-CNN is made up of

sum of five components[21] :

30



● Rpn class loss: how well the RPN separates background with objects.

● Rpn bbox loss: how well the RPN localizes each object.

● Mrcnn class loss: how well the classification of the localized objects proposed by

Region Proposal.

● Mrcnn bbox loss: how well the localization of the each identified class of the objects

is done

● Mrcnn mask loss: how well the segmentation of classified objects using mask is done.

3.2.2.2 COCO weights

The key to training the model both faster and better, especially with limited data, is

transfer learning. The COCO 2014 dataset is a huge corpus of images, containing 2,507

images of suitcase[23] as seen in Figure 20.

Figure 20. Sample images for class suitcase from COCO 2014 dataset[23]

Therefore, initialize the weights of our Resnet101 backbone model to weights

pre-trained on COCO. This will improve the accuracy of the feature maps we obtain, and

therefore the overall model. By using later layers of Mask R-CNN, we can allow ourselves to

freeze and never fine-tune the first layers because we can reuse the weights the model learned

to extract features from natural images This is because the COCO dataset would allow the

model to already have extracted global features and training the model further on our dataset

would allow it to finetune its weight.

3.2.3 Yolo

Outperforming top methods like Faster R-CNN with ResNet and SSD[10], Two

versions of Yolo (Yolo-V3 and Yolo-V5) were used as an object detection network. Given the

research work published under IEEE[11] that the pre-trained Yolo is substantially better in

detecting most of the common types of objects including baggages, transfer learning was

prioritised. Yolo-v3 was trained on the self-collected stage-1 ‘Baggage Surface-900’ dataset

31



whereas Yolo-v5 was trained on stage-2 ‘Baggage Surface-1700’ and stage-3 ‘Baggage

Surface-2000’ in table-1 described in Section 3.1.2. The Subsection below describes the

architecture of Yolo.

3.2.3.1 Architecture of Yolo

Figure 21. Visualisation of Yolo architecture.

3.2.3.2 Backbone

As seen in figure 21 above, the backbone of Yolo-v3 consists of 106 layers, which

boosts its speed by 30% compared to Yolo-v2. Yolo-v3 performs detection of the object at

three scales by downsampling the image by slides of 32, 16, 8 - scale corresponding to the

size of the object it can detect with bigger slides for larger objects. Stride refers to the ratio by

which the layers downsampled the image. Detection depends on the anchor boxes. From the

same figure as before, it is noticed that upsampling is performed after each scale. This

upsampling concatenated with the previous layers helps preserve the fine grained features

required to detect small objects - a feature lacking in previous versions.

3.2.3.3 Non-max Suppression

Based on the calculation for the output of the kernel at three different phases of the

network being applied at three different feature maps, there is a possibility that one object be

32



bounded by multiple bounding boxes covering several different regions partially or fully

around the object - visualized in figure 22.

Figure 22. Illustrates how non-max suppression chooses the best bounding box

In order to reduce the excessive bounding boxes, the Non-max suppression algorithm

is used. This algorithm removes the bounding boxes whose Intersection over Union score is

more than the given threshold (e.g. near other bounding boxes) relative to the bounding box

with the highest confidence score. In the beginning, to save computation time, all the

bounding boxes with confidence scores lower than a certain probability threshold are already

removed. This algorithm generates the highest confidence bounding box per object predicted

by Yolo from a wide pool of weaker predictions.

3.3 Smartphone Application

Although, the initial scope of the project was to create a fixed camera setup mounted

near self-service bag drop system. However, it was realised after the interim presentation that

creating a mobile application would be more beneficial due to the following reasons:

● As Passengers are using their own smartphones, HKAA does not need to buy a

camera for each self baggage drop service kiosk, reducing their costs.

● Users can easily adjust their smartphone camera unlike the fixed camera setup.

● Allow Airport Staff to easily test and monitor model's performance using their

smartphone in the airport in varying environments.

● The Baggage Identification App can be easily integrated into the existing HKG My

Flight application available for iOS and android devices.

33

https://apps.apple.com/hk/app/hkg-my-flight-official/id610290647?l=en
https://apps.apple.com/hk/app/hkg-my-flight-official/id610290647?l=en


Hence, after receiving approval from the HKAA, Mobile Application was created

instead of the initial camera setup.

3.3.1 Frontend

The frontend of this application was created in React Native as it is the highest

performing cross-platform (iOS and Android) frameworks, integration with Expo allows for

live reloading (easier testing) and both of us have experience in creating robust applications

using the framework. Please keep in mind that this Application is for testing purposes so that

HKAA staff members can try the model predictions - although, they are more than welcome

to use elements from this user interface for their final application. The following flowchart

outlines the user journey when using the application. More details about the user journey are

outlined in the next section.

Figure 23: Flowchart of User Journey from opening the app to getting results.

3.3.1.1 Application User Journey

When the user opens the application, by default, they are in the classifier model tab as

seen in figure 24. Users are instructed to remove any covers from baggage or otherwise, the

surface may be misclassified. Only the classifier model has additional instruction to take a

close-up photo or crop the photo as it cannot detect objects and then classify them. In the

same figure, on the bottom panel, the user can choose to switch models to Mask R-CNN and

YOLO using the bottom-middle and bottom-right buttons respectively.

34



Figure 24: Default first page (classifier model tab) user sees when they open the app.

Figure 25: Page when user presses the button in figure 23 and grants camera permissions.

Referring to figure 25, based on the buttons at the bottom, the user has the ability to

either retake the photo which reopens the camera or submit this photo to the cloud. Only in

the classifier tab, the option to crop the image is available because unlike Yolo and Mask

R-CNN, classifiers only do classification and not object detection and hence tend to take all

background objects into account when performing prediction in images seen in example in

figure 26. Pressing on the crop menu opens the resize menu as depicted in figure 26. The top

35



panel has the option from the left to right - go back without cropping, crop, rotate by 90

degrees, flip horizontally and flip vertically. By either pressing Done or Go Back button, the

user is returned to screen as seen in figure 25.

Figure 26: From left to right: Image preview when user takes a photo, when user presses crop button in

classifier tab and user manually cropping the image

Once submit button is pressed, as shown in figure 26, a loading page is displayed until

the response from the cloud is successfully received we see figure 27 based on the model

used before - all of them shows the classification label, confidence score of the label

predicted, and time taken by the model to do the prediction (not to be confused with the total

time taken for the model in the server to send a response to the application).

36



Figure 27 From left to right: Results from each of the three model - Classifier (purple bag image from

Figure 26), Mask R-CNN and Yolo-V5

3.3.2 Backend

The backend of the application is made from individual virtual machine instances

where each of the models was maintained in its own environment. CPU was used instead of

GPU due to the additional pricing required by Amazon Web Services. Hence, there were

three instances supporting the best version of each type of the model. Please note that for the

model type classifiers, since ResNet was the most optimal model in terms of testing, all of its

versions were deployed altogether on a single machine.

Each of the three types of network are deployed on separate instances to mimic the

microservice architecture. This was also kept in this way so as to support alteration of

physical power (e.g. different versions of GPU and number of CPUs) on the instance as each

instance is essentially a Ubuntu linux based virtual machine. While Yolo-V5 and Mask

R-CNN are served using a python based framework called ‘Flask’, classifiers are deployed

using a pytorch framework called ‘torchserve’ described in figure 28 below. This framework

provides inference and management APIs for deploying multiple models and number of

workers allocated for each model.

37



Figure 28. How TorchServe handles Classifiers[30]

The response is returned in JSON format and it consists of the baggage class (hard &

soft) probabilities calculated using average score of all the variants and response time for

classifiers. Only the response time for Yolo and Mask R-CNN. For Yolo and Mask R-CNN,

the server also puts the predicted image with a bounding box or segmented mask in a static

directory in the instance hosted as a separate endpoint by flask . This is then fetched by the

frontend client after receiving the response to its initial POST request.

4. Results
This section discusses the experimentations performed on the networks described in

the methodology Section 3 and the results achieved. Subsection 4.1 details the Classifiers

followed by Section 4.2 that describes the Mask R-CNN and Subsection 4.3 that talks about

Yolo. Subsection 4.4 compares the model type described before while Subsection 4.5

contains difficulties encountered while working on this project.

4.1 Classifiers Results

For implementation and testing of Classifier and Yolo, Tensorflow GPU 1.15.2 Keras

library with Python 3.7 on a Linux based computer system Ubuntu 18.04.5 with 28 GB

RAM, Xeon (R) Silver 4108 CPU @ 1.80GHz , and GeForce GTX 1080 Ti GPU was used.

4.1.1 Network Training and Hyperparameter Selection

SGD was used as it is the best optimiser by providing the most generalised model. A

callback was created to reduce learning rate if for the next three epochs, the validation loss

increases, in order to make learning rate follow validation loss’s trend.

38



Custom Model:

The custom model was trained on a complete sampling dataset by setting class

weights. As figure 29 still showed a declining trend, epoch was increased from initial 100 to

additional 200 epoch to see how much maximum f1-score could be achieved. The validation

f1-score reached 93% while training f1-score reached 94%. Surprisingly, the declining trend

in training loss still persisted. Before increasing epoch further, weights of the epoch with the

minimum loss were loaded and the model was tested. While the high f1-scores shows

promise, Proto-test set shown in table 4 produces f1-score of only 55%. It is important to note

that sample size of the image was small and images consisted of multiple objects which may

interfere with prediction. Hence, justifying the need of the image being cropped before being

sent to the classifier models.

Dataset # of Images # of Soft Identities # of Hard Identities

Proto-Test set 64 30 34

Table 4. Proto-Test set based on web images - test set having 64 images at that point in time

Figure 29. Custom Model on complete sampling data

Due to the long time needed for training using the complete sampling data, the under

sampling data was used to see how much training can improve the performance. A similar

behaviour was observed where the model was inclined to learn even more if additional

epochs were added. As seen in figure 30, not only the training loss was lower than the

complete sampling data, the rate of decline of loss was noticeably steeper.

39



Figure 30. Custom Model on under sampling data

The implication of the two experiments is that the custom-built model performs quite

well with high f1-score and that cropping of image is needed for the classifier to get an image

in similar vein in the train set to perform better.

ResNet-50:

The biggest challenge faced by ResNet-50 was Overfitting - various experimentation

was performed to resolve this issue.

Again, the experiments were performed on the under sampling data to save time and

resources. Five experiments were performed as shown in Table 5.

Architecture Overfitting

mitigation

mechanism

Augmented

Data Used

(Lowest)

Train Loss,

F1-Score

(Lowest)

Validation Loss,

F-1 Score

Behavior

Experiment 1 Last 12 layers

unfrozen + 3

Dense layers

Dropout No 0.0088, 99% 0.2560, 93% Overfits

Experiment 2 Last 12 layers

unfrozen + 3

Dense layers

Gaussian No 0.0080, 99% 0.3086, 94% Overfits

40



Experiment 3 Last 12 layers

unfrozen + 3

Dense layers

Gaussian –

increased

magnitude

Yes 0.0080, 96% 0.7892, 51% Overfits

Experiment 4 Last 9 layers

unfrozen + 3

Dense layers

Dropout –

increased

magnitude

Yes 0.1815, 93% 0.7069, 49% Overfits

Experiment 5 All layers frozen

+ 3 fully

connected layers

No Dropout

/ Gaussian

No 0.044, 98% 0.43, 89% Overfits

Table 5. ResNet-50 results on experimentation performed on under sampling data

The experiments above use the learnings from the previous experiments to make

relevant changes. Even with the addition of noise, overfitting is observed.

The regularisation technique to drop some subsets of nodes in the layers is called

Dropout and helps in reducing overfitting and creating a more generalised model. Gaussian

dropout uses Gaussian distribution and does not drop the nodes but rather drops or alters

their weights during the training time by adding Gaussian noise. As all the nodes are kept

intact unlike dropout, nodes in Gaussian dropout are exposed during the testing time and thus

lead to lesser computation cost. In Dropout, weights are needed to be scaled due to node

dropping in layers. Both types of Dropout achieve the same results in their own manner.

On the complete sampling data, two experiments were done with the addition of class

weights:

● Experiment 1 used dropout with the original dataset as training

● Experiment 2 had data randomizer added along with Gaussian noisy layers instead of

dropouts.  Data randomiser is an augmentation of data done randomly as mentioned in

3.1.4 Data Augmentation

The results of these two experiments are shown in figure 31 and figure 32 respectively.

41



Figure 31. ResNet-50 results on complete sample – without data randomizer

Figure 32. ResNet-50 results on complete sample – with data randomizer

In experiment 1, the loss was 0.19 and the validation f1-score was 92% on the very

first epoch and only got worse after each epoch while model accuracy increased to 93% until

the seventh epoch. This indicated an overfitting model. To combat this, randomness was

added to the data and dropouts were replaced by Gaussian Noisy layers. Again, this did not

solve the overfitting validation f1-score decreased to 77% in the first epoch, but training

reached 95% in the seventh epoch. Hence, Gaussian noisy layers did not help in the

overfitting issues.

As experiments showed overfitting in the model for under sampling data, unfreezing

the layers would increase the overfitting problem. Hence, all the layers of ResNet-50 were

kept frozen but overfitting still remained - as seen in figure 33 where validation loss only

decreased till the third epoch with validation f1-score of and training reaching as high as

97% by the end of seventh epoch.

42



Figure 33. ResNet-50 Training Results on Oversampling Data

With over 92% f1-score on the Proto-test set, transfer learning with ImageNet weights

helped the model predict much more challenging images.

Above results show that ResNet-50 is good at predicting unseen images but the

accuracy is limited to around 94% at the max. On the other hand, custom models that are

trained with no transfer learning mitigates the overfitting issue but can only predict similar

images to the train set. Hence, more shallow networks such as VGG-16 or ResNet-32 would

be better suited for our use case.

4.1.2 Experimentation on Overfitting Mitigation Strategies

In deep learning literature, adding an outlier class to be trained on the model is an

effective technique[24] used for reducing the overfitting. Adding this new class and training on

3 classes instead of the baggage (hard or soft) can help alleviate the overfitting problem.

Thus, 2,500 of the ‘other’ class category were added (images of cardboard boxes etc) to

produce a train dataset having 2,500 images for each of three classes.

ResNet50 was trained on three final fully connected layers with dropouts and with the

last 12 layers unfrozen. Overfitting issue was only slightly fixed as again validation loss

started increasing and the validation f1-score achieved 89% as seen in figure below.

43



Figure 34. ResNet-50 training on under sampling data with outlier

Since, the cropped test set would not contain objects from the ‘other’ category, the

model chose the second highest class as the label. Please note that in figure 34 that validation

accuracy is not the correct indicator of the model performance as it takes into account the

prediction of the other category class.

Finally, we use Random Image Cropping Augmentation with other augmentations to

try to eliminate overfitting. In Random Image Cropping Augmentation, we create a random

section of the image and feed it to the model as training as seen in figure 35.

Figure 35. Top Left original image is cropped in three ways and that cropped grey section is fed.

44



Due to the highly specific images in the MVB dataset, classifiers models have

difficulty generalizing resulting in overfitting. This technique enabled the models to learn

from the cropped portions which were not given high weightage earlier. This technique

allowed us to overcome the overfitting problem finally.

Different versions of resnets were tried with this augmentation and the average overall

validation f1-score was 96% without any overfitting.

4.2 Mask R-CNN

For implementation and testing of networks in the Mask R-CNN, Tensorflow GPU

1.15.2 Keras library with Python 3.7 on a Linux based computer system Ubuntu 18.04.5 with

30 GB RAM, Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, and NVIDIA GeForce GTX

2080 Ti GPU was used.

4.2.1 Network Training and Hyperparameter Selection

All the experiments for Mask R-CNN are tested on the loss calculated on the

validation set. This set is created from choosing 2,000 random images of 1,000 hard and soft

baggage each from the MVB dataset called undersampled data. Training set was the

oversampled dataset. SGD optimiser was used as it gave the most generalised model.

Mask R-CNN has the following hyperparameter to be tuned:

Backbone:

As mentioned before, Backbone of Mask R-CNN consists of Resnet-50/Resnet-101

and FPN. Hence, the convolutional neural network can change to see how it impacts the

performance on undersampled data, keeping the other hyper-parameter and weights constant.

Backbone Epochs Layers Loss Weights Validation Loss

Experiment 1 Resnet-50

100 Heads 1.0

0.8708

Experiment 2 Resnet-101 0.3776

Table 6. Validation Loss for different Resnet backbone

45



As seen in the table, Resnet-101 has half the loss (0.3776 vs 0.8708) compared to

Resnet-50. This better performance can be attributed to the fact that Resnet extracts class and

bounding box from regions of interest, which are similar to focusing on the cropped image of

the object. The deeper layers of Resnet-101 allows extract deeper features of hard and soft

baggages, allowing for more less loss.

Training Layer:

Training of Mask R-CNN can be done on different layers of Mask R-CNN. All layers

and stages refer to Resnet Backbone inside Mask R-CNN. Heads refers to the layers after

ROI Pooling and will learn only the low level features from the dataset. This will allow Mask

R-CNN to use global features from the COCO dataset while learning the low level features

from our dataset. Similarly, Resnet-50’s Stage 4 and Stage 3 are more deeper layers

respectively of ResNet but still allow us to keep the global features from COCO. Experiment

4 hence focuses on first increasing these global weights first before training deeper using

Stage 3, 4 of Resnet and All of the layers. The model is not trained from all layers from the

start as our images are highly cropped and just focuses on baggage and hence, acts more like

ROI then a proper dataset.

Backbone Epochs Layers Loss Weights Validation Loss

Experiment 1

Resnet-101

100

Heads

1.0

0.3766

Experiment 2 Resnet Stage 4+ 0.1744

Experiment 3 Resnet Stage 3+ 0.1708

Experiment 4 40, 80, 40 Heads, Stage 4+, Al

Layers unfrozen

0.1162

Table 7. Validation Loss for different layers trained. Important to note that from experiment 1 to 3, the loss

had plateaued and further epoch training would result in no lower validation loss.

As seen from table above, Experiment 4 of using Heads, Stage 4+ and All layers

perform much better with validation loss of only 0.1162. This is due to the fact that the model

46



first learns the important features of baggage using the COCO pretrained weights using heads

and moves understand much more higher level features by moving deeper into the network.

Loss:

Mask R-CNN uses a complex loss function which is calculated as the weighted sum

of different losses at each and every state of the model. The loss weight hyper parameters

correspond to the weight that the model should assign to each of its stages.[21]

● RPN class loss: This corresponds to the loss that is assigned to improper classification

of anchor boxes (presence or absence of any object) by RPN. This should be

increased when multiple objects are not being detected by the model in the final

output.

● RPN bbox loss: This corresponds to the localization accuracy of the RPN. This is the

weight to tune if the object is being detected but the bounding box needs to be

corrected

● MRCNN class loss: This corresponds to the loss that is assigned to improper

classification of objects that is present in the region proposal. This is to be increased if

the object is being detected from the image, but misclassified

● MRCNN bbox loss: This is the loss, assigned on the localization of the bounding box

of the identified class, It is to be increased if correct classification of the object is

done, but localization is not precise

● MRCNN mask loss: This corresponds to masks created on the identified objects, If

identification at pixel level is of importance, this weight is to be increased

Based on the information provided above, we are going to modify the following loss

weights (referred to as custom weights as now on):

● RPN class loss: Increased to 1.2 as fewer objects are detected based on our dataset.

● MRCNN class loss: Increased to 1.5 as objects are detected but misclassified.

● MRCNN mask loss : Increased to 1.5 so masks are clearer.

● Others: Reduced to 0.7.

Backbone Epochs Layers Loss Weights Validation Loss

Experiment 1 Resnet-101 40, 80, 40 Heads, Stage 4+, All 1.0 0.1342

47



Custom weightsExperiment 2 0.1162

Table 8. Validation Loss for different loss weights.

As mentioned above, using the proposed custom weights helps reduce validation loss

by around 13%. Hence, these custom weights allow for our model to fit better to the

undersampled data.

4.2.2 Investigation of Performance
Based on the results of our previous experiment, we calculate the F1-Score as well as

mean average precision of IOU threshold 0.5.

Backbone Epochs Layers Loss Weights Validation Loss F1-Score mAP@[0.5]

Resnet-101 40, 80, 40
Heads, Stage

4+, All

Custom

weights

0.1162 0.314 0.017

Table 9. F1-score and mAP@[0.5] form the most successful Mask R-CNN model.

Based on table 9, F1-Score for undersampled data is only 0.314 and 0.017 for

mAP@[0.5]. These very low scores and investigation needs to be done using the test set to

understand the difficulties the model is facing. Higher F1-score compared to mAP means the

model is better at detecting baggage than classifying the baggage the model has detected

although both values are extremely low.

By going through the test set, we can observe the following about our trained model:

● Good at segmenting baggage in a cropped/focused image as seen in figure below.

Figure 36. Trained model working well on segmentation of baggage with focused image of baggage. This is
similar to the dataset as seen in figure 5.

48



This is because these images closely match our dataset and hence, our model performs

well.

● Struggles with a background that mimics baggage material (see figure 37), when

people are present (see figure 38) and when two or more baggage are present near

together (see figure 39).

Figure 37. Example of a background that mimics baggage material. From left to right, result from COCO
weights, training the Heads and training from Resnet Stage 3 onwards.

As seen in the figure 37, COCO weights are easily able to segment the person as well

as the suitcase however, our model (with trained heads or trained from Resnet Stage 3

onwards) not only misses the baggage altogether but focuses on the bigger background

instead. This background is similar to the design pattern of the vertical stripes on the hard

baggage and hence, confuses our model. As most of the ROI is covered by the metal

background, the classification is incorrectly made as hard.

Figure 38. Example of an image with a person near the baggage. From left to right, result from COCO
weights, training the Heads and training from Resnet Stage 3 onwards.

Similarly for figure 38, COCO weights are easily able to segment the person as well

as the suitcase however, our model (with trained heads or trained from Resnet Stage 3

49



onwards) focuses on the baggage as well as the person in the image. As the person is wearing

clothes which are similar to the design of a soft baggage and most of the ROI is covered by it,

the classification is incorrectly made as soft.

Figure 39. Example of two hard baggage overlapping with each other. From left to right, result from
training from Resnet Stage 3 onwards and COCO weights

Again, for figure 39, COCO weights are able to segment the two different hard

baggages (although, not perfectly). However, our trained model segments both baggage as

one hard baggage. It is important to note that reducing RPN class loss weight still gave the

result seen above.

All of the problems can be attributed to the design of the MVB dataset. As seen in

figure 5, MVB dataset is highly zoomed in images of a single baggage. This means even

when training heads of the model using the COCO weights, our model is focused on the large

baggage in the middle and material in the large baggage. It is also important to note that

MVB dataset is not very similar to the COCO dataset of suitcase and therefore, the full

advantage of transfer learning is not being taken. Hence, for situations as seen in figure 37

and figure 38, our model is focused on the whole image more than the actual baggage itself.

A new dataset with clear baggage and different environments can help alleviate these

problems.

4.2.3 Results on Baggage Surface dataset

After creating the new dataset called Baggage Surface-900 dataset, based on the

suggestions from Section 4.2.2, we get the following results that justify the creation of the

dataset.

50



Set F1-Score mAP@[0.5]

Train 0.789 0.801

Validation 0.692 0.699

Test 0.700 0.720

Table 10. Performance of Mask R-CNN on newly created Baggage Surface-900 dataset

As seen in Table 10, the performance has improved significantly from Table 9,

especially in mAP value. This result can be reinforced by the figure below as the mask much

accurately covers the baggage.

Figure 40. Mask accurately covers and predicts the baggage as hard from the test set.

As Mask R-CNN receives a mask as input during training, complex geometric

transformation of images either needs to be created by annotating each new image which can

be time-consuming or use the in-built support of certain geometric transformations using the

imgaug library. Based on research done by Google Brain Team, these are top three

augmentations to increase mAP score upto 3%: [29]

● Rotation: Image rotation. Please note that the bounding boxes get larger relative to

the object.

● Equalize: Flattens the pixel histogram for the image

● Bounding Box Movement along Y-axis: Moves the objects in the bounding box up

and down the Y axis (50% odds of up or down)

51



For the first augmentation, flipping horizontally and flipping vertically is also added.

Set F1-Score mAP@[0.5]

Train 0.870 0.891

Validation 0.710 0.723

Test 0.770 0.799

Table 11. Performance of Mask R-CNN on first augmentations on Baggage Surface-900 dataset. This is

the best performing model.

As seen in the table above, by at least 2% or more for all F1-score and mAP scores

and hence, more augmentation is added to see if performance can be improved.

The following augmentations are added for second augmentations [31]:

● Cutout: Gaussian channel wise noise added to randomly removed sections of image as
seen in figure below.

Figure 41. Original image along with cutout augmentation with gaussian noise of the same image

● Motion Blur: Apply motion blur with a kernel size of 15x15 pixels and a blur angle of

either -45 or 45 degrees (randomly picked per image)

● Gaussian Noise Injection: Blend the Gaussian Noise (as seen in previous figure) into

image.

● Black and White: Using grayscale.

52



Set F1-Score mAP@[0.5]

Train 0.752 0.767

Validation 0.601 0.637

Test 0.633 0.655

Table 12. Performance of Mask R-CNN on second augmentations on Baggage Surface-900 dataset and

test set

All scores go down after adding these new augmentations. Further testing revealed

that decrease can be attributed to Cutout augmentation. Cutout creates similar results to when

Mask R-CNN was trained on the MVB dataset. This is because cutout starts to train models

on images with partial sections of baggage and hence, any material which resembles hard or

soft baggage structure is masked and classified as well (similar to figure 37). By removing

Cutout augmentation, results from the previous table can be achieved again.

Learning rate as a hyper-parameter was also changed with two forms of testing done:

● Increased the Learning rate to 0.02 as mentioned in the Mask R-CNN Report[32].

Matterport Model has a Learning Rate of 0.01 by default.

● Using Leaning Rate of 0.01 for head layers, 0.001 for Resnet 3+ layers and 0.0001 for

all layers.

Both of these changes had no effect on the result and actually reinforces that users of

the Matterport Mask R-CNN model with the Learning Rate of 0.01 provide the optimal result

most of the time. Learning rate of 0.02 may cause weights to explode due to slightly different

implementation of Mask R-CNN compared to the original implementation in Caffe[33].

When the Baggage Surface-1700 dataset was created, the environment of the jupyter

notebook in the GPU farm where training was performed, was broken due to the upgradation

of the farm - more details provided in the difficulties encountered section. After several

attempts, it was decided that more effort will be put into improving the performances of the

other models while fixing the performance issue after upgradation of the farm would be a

lower priority due to lack of time.

53



One way to potentially combat this issue was to use the best Mask R-CNN model

weights as seen in table 11 to train a new model using these weights as the base on the head

layers for 100 epochs - results of which can be seen in the table 13.

‘

Set F1-Score mAP@[0.5]

Train 0.781 0.800

Validation 0.768 0.765

Test 0.776 0.792
Table 13. Performance of Mask R-CNN on weights from model of table 11 train on Baggage Surface-2000

dataset  and test set for 100 epoch

While the performance again decreased with training and due to lack of time, more

modifications were abandoned for Mask R-CNN in favour of improving the other model

performance. Without the head training, the best weight models results were comparable to

table 14 as seen on table below on the Baggage Surface Dataset-2000.

Set F1-Score mAP@[0.5]

Train 0.880 0.891

Validation 0.712 0.723

Test 0.771 0.799
Table 14. Performance of Mask R-CNN on weights from model of table 11 on Baggage Surface-2000

dataset and test set

4.3 Yolo Results

SGD optimizer was used as it gave the most generalised results. Initially, Yolo was

trained using standard hyperparameters with some layers frozen. Pretrained COCO dataset

weights were used similar to Mask R-CNN. It was observed that unfreezing the layers

improves performance and hence, all the layers used for training for the rest of the

experimentation. All the experiments were carried out on Yolo-v3 and upon obtaining the

best hypertuned parameters, these were used on Yolo-v5 later to achieve any better results.

54



Dataset used Yolo-v3 is Baggage Surface-900 dataset and Baggage Surface-1700 dataset

while  Yolo-v5 used Baggage Surface-2000 dataset.

Initially results were 74.1% mAP@IoU[0.5] and 63% mAP@IoU[0.5-0.95] on the

test set.

4.3.1 Strategy to improve results
The following strategies were applied to improve model performance and are

mentioned below.

4.3.1.1 Anchor Box Fitting
Yolo-v3 uses 9 anchor boxes of varying sizes in total and bounds each object that

corresponds to the best fitted anchor box. As mentioned earlier in Section 3.2.3.1, three

anchor boxes are used in each of the three scaling stages, meaning any object which does not

fill in those boxes will have impact on its IoU value and thus, worsening performance. To

combat this, K-means algorithm is used to create 9 clusters relative to the sizes of objects

present in the training dataset than the standard fixed anchor boxes. The nine clusters formed

by K-means algorithm with their sizes used in the final test are shown in figure 42.

Figure 42. The nine Anchor Box sizes made by K-means algorithm

Keeping all the previous parameters constant, Anchor Box Fitting improved to results

around 79% mAP@IoU[0.5] and 67% mAP@IoU[0.5-0.95] on the Baggage Surface-900

dataset.

55



4.3.1.2 Mixup Augmentation
Mixup is a data augmentation technique that has increased the performance of Yolo

drastically. It blends two images to create a new image. This technique helps get better

performance with regularization and thus, prevent models from overfitting. The simplicity of

this augmentation made the fast and very useful.

4.3.1.3 Additional Data Augmentation
The following augmentations were used:.

● Shear

● Translation

● Horizontal flipping: Vertical flipping was avoided because this would not appear in

practice

● Rotation: its magnitude was low due to the same reason of not a real life incident.

● HSV color augmentation: Value (V) defines the brightness of the color, Saturation (S)

reflects the depth of purity whereas hue (H) represents chromatic information. Due to

its instinctive nature of describing the colors, it distinguishes the colors of images

better than RGB. Manipulation of these values needs to be done carefully or it may

affect the lighting significantly.

These data augmentation are used to create more data for the model. These augmentation did

not improve the model greatly but regularized the Yolo-v3  by converging earlier.

The results of these techniques are mentioned in the table below.

Experiment-1 Experiment-2 Experiment-3 Experiment-4

Remarks Standard

Parameters

Custom

Anchors

Mixup

Augmentation

Additional Data

Augmentation

Validation mAP @

IoU[0.5]

74.1%
79% 80% 80%

mAP @

IoU[0.5 - 0.95]

63%
67% 70% 70%

56



Test mAP @

IoU[0.5]

70%
72% 73% 73.3%

Data

Augmentation

translate 0.1 0.148 0.23 0.245

scale 0.5 0.472 0.80 0.898

shear 0.0 0.23 0.50 0.602

mixup 0.0 0.0 0.213 0.243

H,S,V 0.015, 0.544,

0.514

0.015, 0.544,

0.514

0.015, 0.544,

0.514
0.0138, 0.664, 0.464

Table 15. Performance of Yolo-V3 on 4 experiments

4.3.1.4 Results from Yolo-v5

Taking the parameters from the experiment that gave the best result, Yolo-v5 network

was used. This was done because Yolo-v5 is very similar in architecture to Yolo-v3[26]. Two

experiments were performed with different proportions of the dataset as summarized in table

16 below. Yolo-v5 increased mAP values significantly and hence, it was used in production

during the mobile app deployment stage for the Yolo tab. Increased performance could be

attributed primarily to the increased volume of the dataset as the images in the new dataset

were almost double the number of images that Yolo-v3 was trained on previously as the slight

modification of architecture in Yolo-v5.

Experiment-1 Experiment-2

Dataset Baggage Surface 1700 Baggage Surface 2000

Validation mAP @ IoU[0.5] 88.3% 88%

Test mAP @ IoU[0.5] 87.4% 87.2%

Table 16. Performance of Yolo-V5 with best Yolo-V3 parameters on 2 experiments of different Baggage

surface dataset

57



4.4 Comparison of Best Models

The following best performing models for each type on the test set are mentioned

below. Please keep in mind that Classifiers were tested on the altered version of the test set

called the cropped test set as they cannot do not object detection.

Model type Model/s Modifications from

Default model

F1-Score Avg Detection

Time (CPU)

mAP@[0.5]

Classifier ResNet-18,ResNet-

34,ResNet-50,Res

Net-101,

ResNet-152

- named as Custom

Resnet

Augmentation of Random
Resized Cropping, (plus,
mention all the
augmentation from the
interim report
augmentation section),
Unfreezing train layers,
cost effective weighing for
imbalance class dataset

96.6% 0.18 seconds -

Mask R-CNN - Augmentations of
Rotation, Equalize and
Bounding Box Movement
along Y-axis, Motion Blur
and Black and White

- 10.37 seconds 79.9%

Yolo Yolo-v5 Custom Anchor Box Sizes
fitting the dataset,
augmentation of mixup,
HSV, Random Image
Cropping. Unfreezing train
layers

- 1.97 seconds 87.2%

Table 17. Best Performing Models from Each Type of Model

Using the table above, it can be observed that Yolo-v5 outperforms Mask R-CNN by

7% and even is 5 times faster at detection due to Mask R-CNN being a computational heavy

model. Hence, Yolo-v5 is the recommended model to use in the mobile application if HKAA

does not want passengers to crop images and just get results when submitting the image to the

cloud. This would make for a much easier and more convenient to use application.

However, it cannot be denied that 96.6% F1-score is an impressive result for the

Classifier model in table 15, which means that 9/10 times, the baggage in the image would be

correctly identified by manually cropping the image first. By cropping, the user is making the

58



model focus on one baggage and with being just as fast, this combined model makes an

equally compelling case for its usage. It also has 82% F1-Score on uncropped test set images.

Due to high F1-score, faster average detection time to Yolo-v5 and cropping feature

reducing the chances of submitting image with too much irrelevant background objects and

hence, incorrect detection causing damage to the baggage as well as inconvenience to the

customer, this project recommends the usage of combined classifier model for the smart

phone application part that HKAA will integrate into their HKG MyFlight App.

Nonetheless, our application provides the HKAA staff to use and check all the models

as explained in Section 3.4 to make their own decision on which model in table 15 to use as

the Baggage surface identifier for the Self-service Bag drop system.

4.5 Difficulties Encountered

Several difficulties were encountered while using the dataset and during the

experimentation and implementation of the algorithms for the aggregated approach outlined

in this report. In particular, the metadata of our dataset was in JSON format contrary to VIA

format that our pre-trained Mask R-CNN model needed. Similarly, Yolo required a specific

formatting of images and their box coordinates. This transformation from JSON to VIA

format was a time consuming task. Not only was the transformation time consuming, during

the reformatting stages for the networks, some internal library glitches led to several hours of

training wasted. One such annotator’s internal library issue during reformatting was to not

normalize the values appropriately and the model was not made to handle this exceptional

edge case when the dataset consisted of labels going beyond the boundary of the image. The

implementation was thoroughly checked and no more errors were encountered later.

The Baggage Surface Dataset was created using copyright free images, which meant

the pool of images that could be added to the dataset was limited and was a herculean task to

expand this dataset to 2,200 images. It was tough to find soft baggage compared to hard

baggage online and hence, was a challenging task to keep the number of object classes at a

similar number. Most easy to secure images online had fashion models in images with perfect

lighting (see figure 43) which is not realistic when taking images for the application. Hence,

more time and effort were put in digging through images to find these typical images.

59



Figure 43. A fashion model poses with baggage on a set. An unrealistic situation for the models to

encounter.

The Mask R-CNN model was functioning properly until HKU GPU Farm 2 was updated

without prior notice in March, 2021. Training the model in the previously used virtual

environment was not possible as GPU was not being identified and meant 2 hour per epoch.

One way to fix this unreasonable training time was to open the training iPython notebook

inside the virtual environment before starting the training. However, this resulted in the

performance across all metrics to drop by at least 10% as seen in the table below even with

all other parameters as well as the dataset remaining the same.

Set F1-Score mAP@[0.5]

Train 0.672 0.673

Validation 0.555 0.576

Test 0.567 0.585
Table 18. Mask R-CNN performance on Baggage Surface-900 Dataset after HKU GPU farm upgradation

The GPU training time was fixed when it was realised that CUDA was updated to

11.2, which is incompatible with the tensorflow version of 11.15.0, the requirement for

Matterport Mask R-CNN model. Luckily, CUDA 10.0 was still provided for legacy software

and hence, the GPU training time was fixed. Nevertheless, training in the current

60



environment still resulted in worse performance than before this issue and changing weight

parameters or any augmentation made the performance of the model worse.

The issue still persisted even with clean installation of Matterport Mask R-CNN

libraries in a newly created virtual environment. Due to time constraints, it was decided to put

more effort in improving the application as well as Yolo performance by adding the crop

feature and increasing the dataset respectively.

Some of the difficulties were associated with the glitches present in the

non-augmented dataset in 3.1 used for training. There was a corrupted image which could not

be used in training, however, for most of the time there were alternate images available for

the same identity and hence the removal of such images had limited impact on the actual

training and testing. These were identified when we ran the algorithm for the first time. In

hindsight, it was disheartening to see this issue ruin several hours of our training process.

Likewise, there were some images whose mask coordinates were not present in the metadata

JSON file. Such exceptional issues were properly handled thereafter by making minor

adjustments in the algorithm.

Initially while constructing our model, we used the traditional keras library for

constructing and running our model. The version we used has an issue in its accuracy

calculation which wasted quite a lot of our time understanding why the accuracy number

quoted by the model was abnormal. This bug was long time undetected for hours of training

that needed to be redone. The issue was fully fixed by using the tensorflow.keras most stable

version.

Another highlight of a challenge faced was to make use of a keras library function

called train_on_batch(). This function is normally not used in practice because of other

available functions such as fit() and fit_generator() which automate most of the training

process requiring the user to give only a few arguments. As discussed about the cost-effective

weighing technique in section ‘Cost Sensitive Learning’, one potential way to implement was

to give the ‘class_weights’ argument in the fit_generator() but looking at it more precisely,

the training is always done in batches so it makes more sense to give class weights depending

on the sample sizes for each class in the selected batch than on the overall data. In order to

apply this, train_on_batch() function was used and the whole algorithm for training was

written manually.

61



Mask R-CNN’s code was created to work only on one class (excluding background

class) so it needed to be extended to handle more classes. However, a limitation that was also

reported to the IT team of HKU GPU farm lart, was that none of the available GPUs in the

user's quota must be in use before opening the jupyter notebook. The rest of the GPUs must

be occupied after opening the jupyter lab and the jupyter lab would not open if the user has

already occupied one or more GPUs for some other tasks. There were instances when the

jupyter notebook could not be opened for processing because other models were being

trained in parallel. While using the HKU GPU Farm (set up mentioned above), Mask R-CNN

was not using GPU due to having incompatible CUDA and CUNN versions. This led to a lot

of usage of time in training as each epoch took around an hour to complete. Hence, Mask

R-CNN was also required to be downgraded to Tensorflow GPU 1.15 to match versions of

CUDA and CNN. This helped bring down the epoch time to 5 minutes per epoch. Both of

these tasks not only required a good understanding of the model but also attention to detail to

make sure any modifications did not affect the calculations of the model. Finally, F1-Score

and mAP scores could not be calculated by using the keras library and had to be created using

a custom algorithm which ran on the training and validation set after training the model.

5. Future Work

Mask R-CNN’s testing could not be completed due to breakdown of HKU GPU farm

2 environment owing to the abrupt upgrade. Implementing the TensorFlow object detector

implementation of Mask R-CNN, which is the second most popular implementation of it may

fix the library issue currently faced by Matterport Mask R-CNN as TensorFlow Object

detector Mask R-CNN support TensorFlow Version 2. As measured in Section 4.4, Mask

R-CNN is slow during detection and its masks are not refined enough for large objects with

complex shapes and especially suffers from stair effects.

Released in October of 2020 [27], SOLOv2 is not only at least a 20% faster model but

also performs better in instance segmentation. The implementation of SOLOv2 was done in

February of 2021[28] and can be used to replace or compare Mask R-CNN for this project.

As mentioned before, Yolo-v5 is a community effort (not made by the original author

of Yolo-v3) and suffers from glitches. There are also arguments that Yolo-v4 (also a

community effort) performs better than Yolo-v5, however, there is not enough substantial

62



proof to back up this claim. Hence, comparison of these two community models’

performance can be done to see which model outperforms the other on this project.

Baggage Surface Dataset as well as MVB dataset did not take into account handbag or

backpack as a soft surface material as well as small suitcase as hard surface material and was

out of the scope for this project. However, in some rare cases, these can be checked in by the

passenger and hence, can be a good extension of the current datasets. It is also important to

note that any hard baggage with a luggage cover would be misclassified as having a soft

surface - one way to make model predictions may be to look at the corners of the baggage as

they may not be covered by the luggage cover sometimes. A similar situation is also observed

for baggage that is covered in tape for protection. Clearly more research is needed on how

this issue can be tackled without asking the passenger to remove the cover.

Figure 44. From left to right: Backpack, small office suitcase and baggage covered with cloth cover (the
hard surface can be seen from corners but not true for all covers)

One of the challenging aspects of the Baggage Surface Dataset was collecting more

training images. This can be achieved by paying for premium accounts in stock photo

websites but also first hand by collecting images on the airport by taking consent of the

passengers to take photos of them with their baggage. It is also important to keep in mind that

most people would at least use this app first time in the airport by either being directed to

download by the smart kiosk and thus, better results can be achieved for our model by

collecting the images in the HKIA environment. Although it was always the plan to visit the

Airport, the COVID-19 pandemic as well as the busy schedule of HKAA meant we were not

able to do so.

5.1 Project Schedule

Date Deliverables Status

63



September 2020 Preparations and Deliverables of Phase 1:

● Detailed Project Plan

● Project Web Page

Review:

● All details provided by HKAA on the self-service bag drop system.

Research:

● Self-service bag drop system implemented in the airport

● Existing algorithm to achieve our objectives.

Completed

October 2020 Design:

● Basic System architecture of the solution

Research:

● Implementation of Yolo versions, ResNet50, and Mask R-CNN

● Camera for live feed

Implement:

● Implementation of Mask R-CNN

Completed

November 2020 Research:

● Implementation of Yolo-v3, ResNet50, VGG-16, Custom Model

● Environmental conditions in the airport where the model will perform

Implement:

● Design Custom Model

● Train Yolo-v3, ResNet50, VGG-16, Custom Model

● MVB Data preparation and transformation (Augmentation)

Completed

December 2020 Preparations of Phase 2:

● Interim report

● First presentation

● Demo in the first presentation

Implement:

● Target the classes sample size imbalance problem

● Evaluate the performance of  ResNet50,VGG-16, Custom Model and Mask R-CNN

● Test the top two best performing models in a simulated environment of HKIA.

Completed

January 2020 Deliverables of Phase 2:

● Interim report

● First presentation

Implement:

● Fine tune the machine learning models

● Trying variants of ResNets

● Mitigate the overfitting issues in ResNets

● Trying variants of mask R-CNN classifiers

● Creating Baggage Surface Dataset-900 and Test set

Completed

64



February 2020 Research:

● Camera Effect on Deep Neural Networks

● Regularization and hypertuning techniques for Yolo

● Research on Backend and Frontend architecture of mobile app

Implement:

● Fine tune the mask R-CNN

● Suitable dataset collection for Yolo-v3 and mask R-CNN training

● Implementation of Yolo-v3 and Yolo-v5

● Test the best performing model in HKIA environment

Completed

March 2020 Preparations of Phase 3:

● Final report

● Final presentation

● Demo(using mobile app) in the final presentation

Implement:

● Complete the frontend using React Native

● Complete the backend implementation using AWS services

● Fine Tuning Yolo-v3

● Create Baggage Surface Dataset-1700

Testing:

● Testing Yolo-v3 and Yolo-v5 (same parameters as Yolo-v3)

● Choosing the best model version for Yolo and Mask-RCNN

● Test and debug the implemented mobile application

Completed

April 2020 Implement:

● Create Baggage Surface Dataset-2000

● Test all the models on this final Baggage Surface Dataset

Deliverables of Phase 3:

● Final report

● Final presentation

● Demo in the final presentation

Completed

6. Conclusion
This project aims to create a robust machine learning with fixed camera setup to identify

baggage material as hard or soft. Three model types - Classifiers, Mask R-CNN and Yolo

were trained on the primary dataset of Baggage Surface which was hand annotated and the

secondary dataset called MVB. A test set was created to compare performances which

showed that Custom ResNet50 is the fastest model that performs the best with 96.6%

F1-score however, it requires cropped images from the test set to achieve this. Yolo-V5

performs the best on the test set with 88% mAP while Mask R-CNN lags behind with 80%

mAP due to technical difficulties. A smartphone application containing all the best

performing model types was created for HKAA staff to test and make the final decision on

65



which model they would want to use. This project has the potential to improve the existing

architecture by using new state of the art models such as SOLOv2 and address more

challenging use cases such as covered luggage. With the smartphone app being integrated

into the HKG, MyFlight App once finalised by HKAA, would be one step closer to make

HKIA airport of the future.

7. References

[1] “Facts and Figures, HKIA at a Glance.” Hong Kong International Airport,

www.hongkongairport.com/en/the-airport/hkia-at-a-glance/fact-figures.page.

[2] “Self Bag Drop Service, Airport Facilities & Services.” Hong Kong International Airport,

www.hongkongairport.com/en/passenger-guide/airport-facilities-services/self-bag-drop-service.

[3] “New Self-Service Bag-Drop System Will Cut Check-in Times at Hong Kong International Airport by a

Third.” South China Morning Post, 16 Sept. 2015,

www.scmp.com/news/hong-kong/economy/article/1858602/new-self-service-bag-drop-system-will-cut-check-ti

mes-hong.

[4] Hkairportofficial, A Smart Airport Experience - Smart Check-in Kiosk + Self-Bag Drop Service. Youtube, 6

Nov. 2019, www.youtube.com/watch?v=-a0JYmmSo9A.

[5] Martin ThomaMartin Thoma 2, et al. “What Is the Difference between Object Detection, Semantic

Segmentation and Localization?” Computer Science Stack Exchange, 1 June 2016,

cs.stackexchange.com/questions/51387/what-is-the-

difference-between-object-detection-semantic-segmentation-and-local.

[6] “Better Baggage Handling with SITA.” Filament AI, 24 Aug. 2020,

www.filament.ai/2019/04/01/sita-baggage-classifier-data-study/.

[7] Zhang, Zhulin, et al. “MVB: A Large-Scale Dataset for Baggage Re-Identification and Merged Siamese

Networks.” ArXiv.org, 26 July 2019, arxiv.org/abs/1907.11366.

[8] VolumeNet. 同方威视箱包再识别技术挑战赛, http://volumenet.cn/#/.

[9] “Common Objects in Context.” COCO, cocodataset.org/.

[10] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” https://Arxiv.org/, 25 Dec. 2015,

arxiv.org/pdf/1612.08242.pdf.

66



[11] Santad, Tossaporn, et al. Application of YOLO Deep Learning Model for Real Time Abandoned Baggage

Detection - IEEE Conference Publication. IEEE, 9 Oct. 2018, ieeexplore.ieee.org/document/8574819.

[12] Tzutalin. “LabelImg.” GitHub, github.com/tzutalin/labelImg.

[13] Keras. “ResNet-50.” Kaggle, 12 Dec. 2017, www.kaggle.com/keras/resnet50.

[14] Tharwat, Alaa. (2018). Classification assessment methods. Applied Computing and Informatics.

https://doi.org/10.1016/j.aci.2018.08.003

[15] SowmiyaNarayanan, G. “Image Segmentation Using Mask R-CNN.” Medium, Towards Data Science, 12

July 2020, towardsdatascience.com/image-segmentation-using-mask-r-cnn-8067560ed773.

[16] Sarah O'Gara, and Kevin McGuinness. “Comparing Data Augmentation Strategies for Deep Image

Classification.” 2019, https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1003&context=impstwo.

[17] Qi Dong, et al. “Imbalanced Deep Learning by Minority Class Incremental Rectification.” arxiv.org,

https://arxiv.org/pdf/1804.10851.pdf.

[18] Yunru Liu, et al. “SelectNet: Learning to Sample from the Wild for Imbalanced Data Training.” arxiv.org,

https://arxiv.org/pdf/1905.09872.pdf.

[19] Matjaz Kukar, and Igor Kononenko. “Cost-Sensitive Learning with Neural Networks.”

citeseerx.ist.psu.edu, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.8285&rep=rep1&type=pdf.

[20] Jost Tobias Springenberg, et al. “STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET.”

arxiv.org, https://arxiv.org/pdf/1412.6806.pdf.

[21] Bobba, Ravikiran. “Taming the Hyper-Parameters of Mask RCNN.” Medium, Analytics Vidhya, 18 Dec.

2019, medium.com/analytics-vidhya/taming-the-hyper-parameters-of-mask-rcnn-3742cb3f0e1b.

[22] Abdulla, Waleed. “Splash of Color: Instance Segmentation with Mask R-CNN and TensorFlow.” Medium,

Matterport Engineering Techblog, 10 Dec. 2018,

engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238

b46.

[23] “Common Objects in Context.” COCO, cocodataset.org/#explore.

[24] Navid Ghassemi, and Hadi Mahami. “Material Recognition for Automated Progress Monitoring using Deep

Learning Methods.” arxiv.org, https://arxiv.org/pdf/2006.16344.pdf.

[25] Gondhalekar, Amey. “Data Augmentation -  Is It Really Necessary?” Medium, Analytics Vidhya, 24 Mar.

2020,

medium.com/analytics-vidhya/data-augmentation-is-it-really-necessary-b3cb12ab3c3f#:~:text=Data%20augmen

67

https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1003&context=impstwo
https://arxiv.org/pdf/1804.10851.pdf
https://arxiv.org/pdf/1905.09872.pdf
https://arxiv.org/pdf/1412.6806.pdf
https://arxiv.org/pdf/2006.16344.pdf


tation%20is%20a%20technique,data%20from%20existing%20training%20data.&text=It%20helps%20us%20to

%20increase,images%20as%20distinct%20images%20anyway.

[26] Solawetz, Jacob. “YOLOv5 New Version - Improvements And Evaluation.” Roboflow Blog, Roboflow

Blog, 4 Mar. 2021, blog.roboflow.com/yolov5-improvements-and-evaluation/.

[27] SOLOv2: Dynamic and Fast Instance Segmentation, Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li,

Chunhua Shen In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020 arXiv preprint

(arXiv 2003.10152)

[28] WXinlong. “WXinlong/SOLO.” GitHub, github.com/WXinlong/SOLO.

[29] Wright, Less. “State of the Art Object Detection - Use These Top 3 Data Augmentations and Google Brain's

Optimal...” Medium, Medium, 27 June 2019,

lessw.medium.com/state-of-the-art-object-detection-use-these-top-3-data-augmentations-and-google-brains-opti

mal-57ac6d8d1de5#:~:text=The%20top%203%20augmentations%20used,bounding%20box%20size%20must%

20increase.

[30] “TorchServe¶.” TorchServe - PyTorch/Serve Master Documentation, pytorch.org/serve/.

[31] Shorten, Connor, and Taghi M. Khoshgoftaar. “A Survey on Image Data Augmentation for Deep

Learning.” Journal of Big Data, Springer International Publishing, 6 July 2019,

journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0#Sec3.

[32] arXiv: 1703.06870 [cs.CV].

[33] Matterport. “Learning Rate Decay · Issue #289 · Matterport/Mask_RCNN.” GitHub,

github.com/matterport/Mask_RCNN/issues/289.

68


