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Abstract

The COVID-19 pandemic is caused by the spread of the coronavirus, which mainly occurs

through physical contact. As the leading public transport in Hong Kong, the Mass Transit

Railway (MTR) can be considered to be a hotspot for the coronavirus. With the prevalence of big

data, this project aims to evaluate the behaviors of MTR passengers and how it has affected the

development of COVID-19 in Hong Kong, as well as how the behaviors have changed in

response to the latter. Preliminary data analyses have shown that they are correlated to one

another, but more in-depth findings are required to establish what causal relationships are

present. Through developing a unified data mining web application for these two data sources,

this project will streamline the research procedure for professionals and propose preventative

measures against the coronavirus for the population in Hong Kong.
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1. Introduction

1.1 Motivation

The mass transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is

known to be the root cause of the COVID-19 pandemic. Though the emergence of the first case

of COVID-19 was identified in Wuhan, China on 31 December 2019 (World Health

Organization, 2020), Hong Kong confirmed its first identified cases not long after, on 23 January

2020 (Cheung, 2020). With the exponential growth in the number of infections, studying the

dynamics of such a contagious disease - namely its possible routes of transmission and its

socioeconomic consequences - becomes most essential.

La Rosa et al. (2020) identifies direct contact with respiratory droplets as the primary method of

human transmission. SARS-CoV-2 viral particles are released as a by-product of coughing,

sneezing, breathing, etc. Thus, in an effort to curb its rapid spread, social distancing measures are

implemented, with the recommended distance declared to be 2 meters (6 feet) between each

person (European Centre for Disease Prevention and Control, 2020). In addition to this, countries

worldwide have adopted the lockdown policy, during which only essential services are allowed

to operate, so as to advise local communities to stay home unless absolutely necessary. For

instance, on 28 January 2020, employees in Hong Kong started to abide by the work-from-home

policy (Cheung et al., 2020). Even with these regulations in place, however, it is almost

impossible to abstain from the risk of exposure in commonly shared spaces such as public

transportation.
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Accounting for 47.4% market share of Hong Kong’s public transportation in 2019 (MTR

Corporation Limited., 2020), The Mass Transit Railway (MTR) is the leading transport

arrangement in Hong Kong. Observing from a more general perspective, one may assume from

the aforementioned statistics that the mobility of Hong Kong’s population is reflected through

MTR passengers’ behaviors.

As a crucial mode of transport, with the added concern of the lack of social distancing in such an

enclosed space, the MTR may be deemed as a coronavirus hot spot. This project aims to identify

the correlation between MTR passengers’ travel patterns and the development of the COVID-19

pandemic in Hong Kong, focusing predominantly on how these two factors have impacted one

another.

1.2 Familiar strangers

The market of public transport passengers can be segregated into two extremes - those whose

travel patterns exhibit high regularity versus those whose patterns are less predictable (Zhang et

al., 2016). Given the consistencies in their individual journeys (i.e. MTR routes), the former is

more likely to encounter ‘familiar strangers’ - individuals who have encountered one another

multiple times but both parties have had little or no interaction (Zhou et al., 2020). However, a

thorough comprehension of the concept of ‘familiar strangers’ poses various challenges within

itself. One, although they have been presumed significant for 4 decades now (Liang, Li & Zhang,

2016), the defining metrics in identifying familiar strangers are far from concrete. Two,
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discovering the implications of ‘familiar strangers’ involves looking at it from a

multidimensional perspective.

Zhou et al. (2020) believe that, within the public health perspective, ‘familiar strangers’ could

affect the transmission of infectious diseases within the general population. More specifically, in

this case, MTR passengers who are ‘familiar strangers’ could bear catalytic consequences

towards the coronavirus infection rate. Especially when direct physical contact comes into

question, these individuals may unknowingly contract the virus through an infected ‘familiar

stranger’. An example of this scenario would be, if two individuals were adhering to the same

MTR route and consequently boarding the same MTR trains, they could be in close proximity for

a considerable amount of time.

Previously, the significance of ‘familiar strangers’ greatly depended on hard evidence such as

personal anecdotes or surveys (Zhou et al., 2020). However, with the increased relevancy and

availability of big data analysis techniques, we can leverage these to depict a more accurate

picture of ‘familiar stranger’ groups within the MTR passenger network.

1.3 Big data

The term big data refers to the usage of complex and large data sets, typically unstructured data,

in order to pinpoint significant trends and characteristics that were not discovered previously

(Boyd & Crawford, 2011). As compared to traditional methods where data is sampled into

smaller volumes, big data involves extracting some value from the dataset, regardless of how
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extensive the repository is. Through this, one is able to gain the advantage of obtaining

additional insights. Consequently, this can lead to more informed future decisions and

predictions.

In collaboration with the Hong Kong Mass Transit Railway Corporation (MTRC), this project

intends to utilize MTR passenger traffic data from January 2020 to September 2020 to conduct

data analyses and generate appropriate visualizations. The same data fields from the equivalent

time period in 2019 may be used as the control set, so as to reflect previous regularities without

factoring in the ongoing COVID-19 pandemic.

In a study conducted by Zhou et al. (2020), it was determined that the odds of encountering

‘familiar strangers’ is heavily influenced by the number of Beijing smartcard riders at any certain

time frame. With both Beijing and Hong Kong being major metropolises, one can attempt to

replicate the findings with the public transport network in Hong Kong by exploiting MTR

check-in and check-out ticket transaction data.

Moreover, the COVID-19 data published by the Hong Kong Centre for Health Protection

(HKCHP) will be used as an additional data source so as to better comprehend the societal

implications. Through incorporating the 2 datasets, meaningful insights can be derived,

especially from geospatial and temporal points of view.
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1.3 Objectives

This project aims to implement a single unified platform that allows for efficient behavior

analyses of MTR passengers in correlation with the pre-existing COVID-19 data. The scope of

this project can be streamlined into several technical requirements.

Firstly, a centralized database will be created to store the MTR passenger data and COVID-19

data. Once this data repository is properly established, the next step involves uncovering the

relationship between the two datasets and what exactly the correlation entails - for instance,

quantifying the extent of a causal relationship, if it exists. At this stage, we hope to understand

the impact of MTR passenger behavior on the development of the COVID-19 in Hong Kong, as

well as how these behaviors have adapted in response to the outbreak.

Last but not least, we aim to develop a scalable system in the form of a web application. The

application would serve as a querying and visualization tool, dynamically displaying relevant

statistics or graphs in response to the users’ data queries. In addition to this, we hope to integrate

MTR and COVID-19 risk metrics as well; its details and use cases will be elaborated on in the

later sections.

1.4 Project contribution

At present, previous researchers have attempted to use the data provided by the MTRC to

generate visualizations but no key conclusions were made. These diagrams were also built on

traditional data processing software such as Microsoft Excel, which might not be sustainable in
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the long run due to the volume of the data available. This current workflow is also

time-consuming and rather inefficient.

Upon successful implementation of the above requirements, the application will be accessible for

interested researchers who have been provisioned with the proper access credentials. These

research findings could serve as baseline information for professionals in the public health,

public transportation, and/or government sectors. With the proper data pipeline, researchers will

be able to gather the required findings in a more efficient manner. In addition to this, we plan to

use the ArcGIS platform made available to us through our partner, the Environmental Systems

Research Institute (ESRI), to project the data into its geospatial dimensions for more substantial

analyses.

1.5 Outline

This report first covers the background theories and motivation behind the project. Following

this general overview, the key objectives and significance of the project are properly identified.

The second chapter explains the methodologies used to implement the system, including but not

limited to, the technologies and data analysis methods specific to each technical requirement.

Particularly, it begins by detailing the workflow and moves on to describe each phase in the

implementation – building the data pipeline, mobility trend analysis, geospatial analysis and the

mobile application development phase. The third chapter showcases the progress of the project

thus far. Interim results, along with challenges and future steps (i.e. project schedule and
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potential ideas) will be discussed. The final chapter concludes the report. It will reiterate the

eventual goals and objectives of the project and highlight how we plan to accomplish that

through the aforementioned methodologies.
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2. Methodology

2.1 Overview

This chapter gives a detailed summary of how this project plans to leverage big data techniques

in order to conduct MTR passenger behavior analysis in relation to COVID-19.

Figure 2.1 Project workflow

The implementation of the project adopts a number of steps in its workflow. Firstly, an

appropriate data pipeline will be developed to handle the MTR passenger and COVID-19 data

feed. Afterward, in order to study the correlation between the two datasets, the data analysis

phase is further subdivided into mobility trend analysis, geospatial analysis and contact and

behavior-based analysis. Once this is completed, the final phase involves compiling the findings

and data reports from the analytics obtained into a single web application. Each of these phases

will be further elaborated on in the coming subsections.
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2.2 Data pipeline

In its raw form, the MTR passenger data supplied by the MTRC and the open-source COVID-19

data from HKCHP were both stored in CSV format. The former was entrusted to our team in the

form of DVD copies, wherein any interested researcher would then be subjected to the

overwhelming manual process of obtaining said DVDs and then copying the data onto their

personal computers. It is crucial to note that data processing and retrieval is especially tedious

with such high volumes of data. Hence, through migrating the data onto a MySQL database on

our designated server, we not only alleviate this issue but also present enhancements to the

current workflow.

MySQL is a relational database management system (RDBMS) that operates using Structured

Query Language (SQL). SQL is the language used for accessing and manipulating the data.

Using SQL, otherwise known as the relational database model, is preferable in this case as

opposed to using a NoSQL database. With the latter, the structure of the database (i.e. the

database schema) is dynamic and not enforced. As opposed to this, however, an SQL database

emphasizes a user-defined set of rules which then regulates the relationships between the

different data fields (“What is MySQL?”, 2020). This ensures data consistency such that required

fields are accounted for and no duplicates are present within the data. With our end goal of

achieving a scalable system, it is imperative that the MTR data and COVID-19 data maintain

consistency despite undergoing regular updates. In addition to this, the relational database model
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is favored in situations where complex queries and data reports need to be generated (“What is a

relational database?”, 2020).

Furthermore, in order to preserve data confidentiality as agreed upon with the MTRC, we made

the conscious decision of using a designated private server instead of a public database server.

We will employ an SSH-based protocol for security measures as well.

Figure 2.2 SSH protocol. From SSH (Secure Shell), 2020, https://www.ssh.com/ssh/.

The client user connects to the database server via SSH, wherein a secure channel is opened in

response to the authentication of the user’s credentials (Figure 2.2). For an added layer of

security, a multi-hop SSH tunnel is used to access the server containing our database - a user

accesses the first server using cs.hku.hk credentials, after which the user uses credentials unique

to our team to access the second server where the database resides.

17
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Figure 2.3 Web Platform Layers of Security

2.3 Database modeling

Prior to following through with data migration, however, the data needs to be preprocessed. This

problem arises largely due to several data format inconsistencies and missing data fields. For

instance, a null exit station field is observed for approximately 1 million MTR passenger data

records - these records are deemed not valuable for our research purpose, hence introducing the

need to eliminate them. Another prime example is the inconsistent wordings present among the

COVID-19 data fields, its effect most prominent in the fields determining case classification

throughout the different months.
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In the interest of facilitating the course of our research and its further implications, new fields

were added onto the COVID-19 cases table - namely the ‘Asymptomatic’ and ‘Age Group’

categorizations. ‘Asymptomatic’ was previously reported under the ‘Date of Onset’ field,

however, we found that it would be more coherent if separated into its own field. Several

assumptions were made in accomplishing this:

a) Given that we are working with historical data dating back to several months ago,

a patient previously listed as ‘Asymptomatic’ could not suddenly develop

symptoms; and conversely,

b) If a patient is listed under ‘Unknown’ or ‘Pending’, we determine that they were

established to be asymptomatic.

‘Age group’ was added in accordance with the MTR Octopus smart card age divisions, as

dictated in the figure below under the eligibility section (Figure 2.4).
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Figure 2.4 Octopus card types. From Octopus, 2021,

https://www.octopus.com.hk/en/consumer/octopus-cards/products/on-loan/standard.html

Figure 2.5 and Figure 2.6 show an excerpt of the clean data in comparison with the raw data

obtained from HKCHP’s API.

Figure 2.5 Raw COVID-19 cases data

Figure 2.6 Clean COVID-19 cases data
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Majority of this data cleaning process - for both the MTR data and the COVID-19 data - was

performed in R.

The end product of this stage is to have both the MTR database and the COVID-19 database on

the server. The former will consist of individual trip transactions, specifically the entry and exit

MTR station, the passenger’s identification number, and their Octopus card type. The latter will

cover the details of confirmed COVID-19 cases from January to September 2020, the daily

cumulative number of cases, and the residential address of each confirmed case. The database

schema is designed such that minimum latency is preserved; it comprises only relevant

information. The entity relationships have been defined as seen in figure 2.7 below.
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Figure 2.7 Database entity-relationship diagram

As seen in Figure 2.7, <Month><Year>_Simplified holds the MTR passenger transaction data

from January - April 2020 and January - April 2019, with 2019 data being retained as a control

set if necessary. Station_codes tracks the station code keys and its corresponding names, while

the geolocation data, specifying a particular station’s longitude and latitude, is maintained in the

mtr_geolocation table. As a supplementary component, we have mapped the COVID-19

hospitals to its closest MTR stations in hospitals_and_closest_mtr. As for the COVID-19 data,
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we organize the clean cases by month in clean-cases-<month>-<year>.

Building_list_<month>_geocoded contains information on the buildings where these probable

and confirmed cases reside.

2.3 Mobility trend analysis

Mobility trend analysis is a necessary preliminary step in our research to determine the

correlation between the MTR dataset and the COVID-19 dataset. It will be conducted as an

attempt to detect the influence of MTR passenger behavior on the fluctuations in the number of

COVID-19 cases, and vice versa. This will be done on Python - using libraries such as Pandas,

Matplotlib, Plotly, etc. To capture the general mobility trend, we will look into the variations in

MTR ridership within the period of January to September 2020, as well as the same period in

2019 so as to provide us with the baseline statistics before the occurrence of the COVID-19

pandemic. To explore the mobility trend in further detail, sociodemographic factors can be taken

into account. For this we can take advantage of the data field specifying Octopus card types -

Adult, Elderly, and Child Octopus holders can be classified into their respective age groups.

In conjunction with monthly data reports, we will observe daily travel patterns as well. However,

before this can be fulfilled, we will proceed by narrowing down the key dates that we plan to

look into in greater detail. These include but are not limited to, Chinese New Year holidays 2020,

the enforcing of the work-from-home policy, and the curfew policy.
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In order to draw a side-by-side comparison of both datasets, we will also group the COVID-19

cases by age demographic (i.e. Adult, Elderly, and Child), and calculate the cumulative number

of cases for the key dates identified. Although these analyses will be beneficial towards our

correlation hypothesis, observing the general trend will not contribute much to the predictive

analytics aspect of this project. Hence, this prompts us to study the locality of MTR passengers

and the confirmed COVID-19 cases.

2.4 Geospatial analysis

Through conducting geospatial analyses, we aim to expedite the process of identifying hotspots

for COVID-19 confirmed cases and the corresponding MTR stations. In this phase, we will

primarily be utilizing the ArcGIS software provided by ESRI. It is more than capable of

processing our highly complex and substantial dataset (approximately 1 billion ticket

transactions per month) to generate the geospatial visualizations we require.

We will use the MTR data to look into the density of passengers in each MTR station as well as

the travel density between stations in the MTR network map. In order to integrate the COVID-19

confirmed cases into the same spatial dimension, we will first retrieve the geocode of the cases’

locations (i.e. their residential building) using the geolocation API available in the ArcGIS

software. Then, using the Google Maps API, we attempt to match the building to the closest

MTR station. As a final step, we will project the density of confirmed COVID-19 cases in the

vicinity of each MTR station onto the same map.
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2.5 Contact and behavior-based research

Another category of analysis worth exploring can be identified as contact and behavior-based

research. This comes in alignment with our primary goal of adopting the big data analysis

approach - particularly, we are attempting to derive several insights from massive volumes of

MTR passenger data. We hypothesize that, especially with regards to the development of the

COVID-19 pandemic, identifying, followed by interpreting passengers’ travel patterns and

behavior could lead to relevant observations. We have included two metrics belonging to the

contact and behavior-based research category as part of our project scope - namely the

identification of ‘someone like you’ and sensor individuals. These areas of analysis, which

principally hedge around the ‘familiar stranger’ theory previously elaborated on in the

introduction, could have had a significant effect on the spread pattern of COVID-19.

2.5.1 Someone Like You

We define someone like you as any rider who shares a route or trajectory within the same time

frame with another rider. Given the shared location and overlap in time frame, these groups of

passengers are likely to have encountered one another. For instance, any two riders with

corresponding entry and exit stations can be assumed to have shared a trip if they were travelling

simultaneously. A real-life illustration of this would be, those whose workplaces are located

close to the same MTR stop, presumably commute to work at around the same time in the

mornings. By shifting the perspective to the entirety of the MTR network route, we fulfill the
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goal of distinguishing those corridors (i.e., MTR routes) with the largest number of someone like

you’s.

The data processing involves a number of steps; the pseudocode is detailed below as follows:

1. Create all possible station pairs within the MTR network. All the permutations will be

considered - that is, n stations will result in n*(n-1) station pairs.

2. Divide a whole day’s period into 48 time frames, each with a half-hour timespan. This

parameter could be fine-tuned accordingly. Decreasing it would narrow down groups of

passengers, and vice versa.

3. For each day of MTR passenger data, all trips are grouped in accordance with the

predefined station pairs in step 1.

4. These trips are further grouped into the time frames in step 2. For this step, we capture

the entry_time for each trip and associate them with their respective 30-minute time

frame clusters.

5. For each of the station pairs we collected, we accumulate the number of trips daily.

Specifically, this involves totaling the number of trips in the 48 time frame groupings.

6. Count the total number of someone like you’s for each week for each station pair, taking

note of the start date.

7. The result is captured as the average amount of someone like you’s throughout weekdays

and weekends for each station pair. This data is saved in a CSV file containing start

station, end station, week start date, amount of someone like you’s on weekdays, amount

of someone like you’s on weekends.
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Figure 2.8 ‘Someone Like You’ analysis step-by-step

Figure 2.8 provides an illustration of the procedure, alongside example station codes and pairs.

Following through with the above methodology, however, requires some assumptions. Firstly, we

conduct the analysis under the assumption that, if an individual is a someone like you to another,

they do not necessarily have to be sitting in the same MTR carriage. Secondly, given an

occurrence wherein the entry station and the exit station are the same between two individuals, it

is assumed that their journeys’ routes correspond to one another as well. We note that this might

not always be the case: a passenger might interchange lines at a different station but still reach

the same destination. However, it is reasonable to conclude that tolerating these outliers and edge

cases would not have a considerable effect on our resulting data reports.

It is believed that the someone like you study could alleviate the issue of COVID-19 spread.

These specific routes have been pinpointed to have the most number of someone like you’s.
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Although still in its early research stages, a possible future use case could involve using these

routes to influence the scheduling of MTR routes, hence serving as an additional preventative

measure against the virus.

2.5.2 Sensor Individuals

Sensor individuals can be examined at a station level; they are defined as MTR passengers who

bear the highest risk of physical contact with others. As opposed to the someone like you analysis

wherein the passenger’s routes play less of a role in the results (only the starting point and

destination is taken into consideration), classifying such sensor individuals prompts us to study

the possibility of encountering other individuals from station to station. This alludes to one of the

common themes in the ‘familiar stranger’ theory - the co-presence phenomena, which recognizes

an individual’s spatio-temporal pattern in their respective journeys, and then proceeds to ask the

question of whether or not overlaps exist between multiple patterns. Considering the context of

the development of COVID-19, to determine those sensor individuals could allow us to identify

specifically which individual is believed to be a super spreader in the public transport system.

As the database currently only holds records of entry and exit stations and their respective

timestamps, this data needs to be modified such that we can properly single out each station

involved in that particular route. The objective is to transform the origin-destination station pairs

into a route detailing the station codes encountered by the rider on that journey and its estimated

timestamps, closely following the pseudocode below:

1. A weighted undirected graph is initialized using the networkx package in Python.

28



2. The entirety of the MTR station network is modeled in this graph, with each node

representing a single MTR station, and the weight defined to be the travel time between

the MTR stations.

3. We take each origin-destination pair from the MTR passenger data provided, and

determine the shortest path from start_station to end_station by implementing a modified

version of Djikstra’s algorithm.

4. The timestamp for each layover station is determined by adding the start time to the each

weight of the graph (i.e., the travel time between stations). However, in order to

compensate for the discrepancies in the calculated time derived from the model and the

actual time taken, this difference is divided by the total number of stations involved in the

trip, and added back into the time taken to travel between the layover stations.

Figure 2.9 Sensor Individuals analysis step-by-step

Figure 2.9 serves as an illustration for the sensor individuals analysis approach. As with the

someone like you study, we needed to establish several assumptions with the above methodology.

Because the graph was modeled in such a way where its judgment is constructed mainly from the

travel time between stations, it is impossible to distinguish between the different MTR lines
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whilst coming up with the results. Hence, we make the assumption that trips that could involve

multiple route possibilities, are considered to have taken the same identical route. Another

assumption is that, in the event that a journey involves different MTR lines, the interchange time

to switch between these lines is not taken into consideration when determining the individual

timestamps.

The sensor individuals study serves as a starting platform for a multitude of additional research

topics. A specific use case that concerns COVID-19, for instance, is the ability to identify a

possible super spreader through locating the individual possessing the highest co-presence with

regards to the other passengers in the public transport system in Hong Kong.

2.5 Interactive UI-based platform

The web-based UI platform aims to fulfill several technical requirements by supporting queries,

visualizations and advanced analysis options. Prior to its development stages, constructing a

robust system architecture is of utmost importance when it comes to big data solutions; data

security, appropriate schemas and a suitable but scalable technology stack are incorporated

within the design decisions.
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Figure 2.10 Platform architecture

Figure 2.11 Technology stack
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As detailed in figure 2.10, the data layer is held within the HKU CS Hincare server, only

accessible via SSH to those authorized. The server layer hosts the querying mechanism, utilizing

Python in conjunction with Django as its web framework. On the client layer shown in figure

2.11, the UI is rendered by React, a JavaScript library, in conjunction with Bootstrap so as to

present an aesthetic front. React allows for UI components to be reused, which is especially

necessary with the multitude of queries present within the system, and when we bring the issue

of scaling into consideration. The visualization aspect of the system, with ArcGIS as its core

backbone technology, is supported on the client layer as well.

The platform provides users with the means to query for MTR passenger data in a simplistic

manner, in turn obtaining downloadable CSV files. Likewise, this functionality will be

implemented for the COVID-19 data as well, so as to significantly expedite the process of data

retrieval, in accordance with the user’s needs. With the data pipeline in place, simply filling out

several parameters on the user’s end should be sufficient. The specific queries supported will be

elaborated on in the results section.

Django employs a Model-View-Template design pattern - the team defines the API endpoints in

Views and the Models operate by consuming this logic and integrating directly with the database

objects. This query functionality is made possible through REST API calls to the backend server,

which handles these requests accordingly. Django streamlines this process through its built-in

support for passing state using request and response objects. Once the backend receives a request

(i.e., a REST API call is sent to the running backend), Django encapsulates the request metadata

into a HttpRequest object. This HttpRequest object handles the request type by directly querying
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into the database defined and returning a QuerySet object, which is then parsed into columns

stored in a CSV file. On the client side, the user receives this compiled CSV file containing the

data requested.

In addition to this, to ensure data confidentiality (especially applicable to data provisioned by the

MTRC), a security layer is implemented onto our platform through the use of JSON web tokens.

We used the rest_framework_simplejwt module to accomplish this; verification of a user’s login

credentials is subject to the following details:

1. Upon login, a request is sent to the backend server, which uses the user’s credentials to

generate a JSON web token pair - the access token and the refresh token. The token

expiration time is currently set to a maximum of 20 minutes, after which the user has to

repeat the login step to obtain a new JSON web token pair.

2. To maintain access control, any subsequent requests sent to the backend server requires

for the JSON access token to be verified in order to prove authentication of the

credentials provided by the user.

ArcGIS is integrated onto the platform through the JavaScript API with credentials provisioned

by ESRI. This API specifically serves the function of rendering such visualizations for

web-based platforms. The module arcgis-js-api supports handling of user input in order to

dynamically generate the ArcGIS visualizations, thus satisfying the user experience requirement

of the platform. As opposed to the query mechanism which is run on the Python Django backend

and subsequently consumed by the frontend through REST API calls, the ArcGIS visualizations

are rendered directly on the frontend side due to its fairly lightweight and straightforward nature.
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After the user specifies the required data for a preferred visualization type, a set number of steps

are executed synchronously. Firstly, similar to the aforementioned queries, the data is fetched

through REST API calls to the running backend service. This could include geolocation data

indicating longitude and latitude of either the MTR stations, COVID-19 cases, buildings and

more. The response is then used to create the ArcGIS Graphic objects, which are then combined

into a single dataset contained within the ArcGIS FeatureLayer object. The FeatureLayer object

acts as the data source for the ArcGIS Map object - a component that presents the baseline map

for visualizations when rendered. Different visualizations are generated through altering the

configurations and parameters for the Graphic and the FeatureLayer objects, which are

customizable depending on the function of that particular metric.

2.6 Summary

This chapter proposed the workflow of implementation required in order to fulfill the technical

requirements of the project. The engineering decisions were justified in each section – namely

the choice of an SQL database, and the use of Python and ArcGIS for mobility trend analysis and

geospatial analysis, and contact and behavior-based research. The technical requirements of the

final product, the web application, is detailed in the last subsection. This includes details on our

system architecture, technology stack and the interactions that occur between each layer.
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3. Results

3.1 Overview

This chapter includes details of our preliminary findings for the first and second wave of

COVID-19 in Hong Kong, features of our UI-based web platform, challenges we encountered

and concludes with future improvements that can be made to said platform.

3.2 First wave of COVID-19 in Hong Kong

Hong Kong’s first wave of COVID-19 started with the first confirmed case on 23 January 2020

and continued on until early March. Our preliminary findings reveal a significant decrease of

44% in MTR travel within Hong Kong during the first wave. Interestingly, this occurrence was

recorded during the Chinese New Year holiday, wherein travel is generally popular within Hong

Kong as well as between Hong Kong and its neighboring cities.
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Figure 3.1 COVID-19 cases and MTR passenger count in February 2020 (by age group)

Figure 3.1 showcases a piece of evidence of the correlation between COVID-19 cases and the

MTR passenger count. In this figure, the MTR passengers and the COVID-19 cases in February

are grouped by age demographic - Adult, Elder, and Child, and the weekends are highlighted in

the grey bars. There seems to be a general trend in the decrease of MTR passengers on

weekends. However, through this side-by-side comparison, we can observe that the two graphs

decline at similar time periods, implying that the decrease in MTR passengers and the decrease

in COVID-19 cases are correlated with one another.

3.3 Second wave of COVID-19 in Hong Kong

Hong Kong faced a second wave of COVID-19 infections around mid-March 2020, where the

new confirmed cases started to comprise mostly of imported cases (Lew, 2020). The second

wave continued on throughout April.
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Figure 3.2 COVID-19 case distribution during Hong Kong’s second wave

Figure 3.2 pinpoints the individual COVID-19 cases scattered throughout Hong Kong in April

2020. As an attempt to isolate those areas most affected by the pandemic, we used the heat map

feature in ArcGIS to highlight those confirmed cases.
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Figure 3.3 MTR station density and COVID-19 hotspots in April 2020

Figure 3.3 illustrates the density of each MTR station - in other words, how crowded each MTR

station is - juxtaposed against the diagram in Figure 3.3. The most prominent finding from this

figure can be inferred from Tsim Sha Tsui and Wan Chai. With the large MTR passenger density

in those two areas, it is no surprise that they are also observed to be coronavirus hotspots, as seen

from the red heatmap spots around them.
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Figure 3.4 Most popular MTR routes and COVID-19 hotspots in April 2020

Figure 3.4 displays MTR passenger flow along popular MTR travel routes, as well as the number

of COVID-19 confirmed cases in Hong Kong during the month of April 2020. From this figure,

we can observe a trend wherein confirmed cases tend to spread across some of these routes. This

effect is most prominent between the following MTR stations: Central and Causeway Bay, Sham

Shui Po and Mong Kok, Mong Kok and Tsim Sha Tsui, Kowloon Bay and Kwun Tong. The

above findings further emphasize on how MTR travel patterns have contributed to coronavirus

spread.
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3.3 MTR network route changes in COVID-19

The figures created below are meant to visualize the busiest MTR routes, narrowed down to the

top 20 preferred journeys taken by passengers in January 2020 (Figure 3.5) and April 2020

(Figure 3.6). These months are selected specifically for the purpose of evaluating the travel

pattern changes from when the pandemic issue came into existence, to when the second wave

emerged.

Figure 3.5 Top 20 busiest MTR routes in January 2020

In January 2020, as seen in figure 3.5 above, the busiest route hosted approximately 1 million

passengers.

40



Figure 3.6 Top 20 busiest MTR routes in April 2020

In April 2020, however, Figure 3.6 uncovers that the number of passengers on the busiest route

has dropped to approximately 300,000. A significant drop of 67% is observed in the passenger

volume. We accredited this change to the pandemic’s severe consequences on public transport.
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3.4 UI-based web platform for MTR and COVID-19 data

The team has successfully deployed our web platform on our designated FYP machine server.

The FYP machine exposes the URL http://fyp20035s1.cs.hku.hk/ for client usage. However, the

backend server, which is hosted on a separate port, only grants authorized users access to its

endpoints. The following subsections describe the features available for use upon successful

login and validation of credentials. The login page is shown in Figure 3.7 below.

Figure 3.7 Login page
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3.4.1 Query

Querying is made accessible through our platform - users have the privilege of obtaining raw

MTR data without having to acquire the original DVDs commissioned by the MTRC.

Furthermore, this data has been enhanced through our pre-processing steps, lest to assure that the

data obtained is in accordance with the user’s needs. There are several query metrics supported

by our platform at present.

Firstly, the Travel Pattern metric takes into account the MTR travel routes as a method to

understand the MTR passenger flow better. The output columns are: Origin, Destination, Date,

and Volume.

Figure 3.8 Travel pattern query page
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Origin Destination Date Volume

1 2 1-2-2020 1000

Table 3.1 Travel pattern query sample output

The output is sampled in Table 3.1 above. This signifies that, on 1-2-2020, there are 1000

passengers traveling from origin MTR station with code 1 to destination MTR station with code

2.

In addition to travel pattern analysis, Passenger Mobility analysis can be used to capture the

general trend in the number of MTR passengers in a given time frame. This query comes with

the option to filter by Octopus card type (Adult, Child, Senior, Student) as well, an option which

might be beneficial in demographic-centered studies. The output columns are: Date and Volume.
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Figure 3.9 Passenger mobility query page

Date Volume

1-1-2020 10000

Table 3.2 Passenger mobility query sample output

The sample output shown in Table 3.2 indicates that on 1-1-2020, there were a total of 10000

passengers using the MTR as a form of public transport. The output for card type-specific

queries is similar to the above, except it is filtered by the chosen demographic grouping.

Next, Station Density is meant to illustrate the density of each MTR station (i.e., how crowded

each MTR station is) within a given time frame. The user could choose to query for daily station
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density or hourly station density. The output columns are: MTR Station Code, Date and Volume.

Figure 3.10 Station density query page

MTR Station Date Volume

1 01-01-2020 100000

Table 3.3 Station density query sample output

Table 3.3 again shows the sample output: MTR station of code 1 was crowded with 10000

passengers on 01-01-2020.
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The platform supports Raw Data Queries: querying with no specifications (i.e., detailed

columns from the MTR database) as well, which fulfills the use case wherein the user requires

raw data. The output columns are: ID (with anonymity preserved), Card Type, Entry Station, Exit

Station, Entry Time, Exit Time. However, given the timeout constraints with querying large

volumes of raw data, we engineered the decision to separate raw data queries into queries within

the same month, and queries specifying an entire month’s worth of data in order to optimize the

process.

Figure 3.11 Raw data query page
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ID Card Type Entry Station Exit Station Entry Time Exit Time

12345 SEN 1 12 2020-02-01

06:00:00

2020-02-01

06:20:00

Table 3.4 Raw data query sample output

A row of the raw MTR data is sampled in Table 3.4. It contains information on a passenger with

ID 12345, card type SEN (senior) who entered MTR station with code 1 at the timestamp of

2020-02-01 06:00:00 and exited station 12 at the timestamp of 2020-02-01 06:20:00.

3.4.2 Visualization

The visualization page features relevant graphs as well as geospatial visualizations for both the

MTR passenger data and the COVID-19 data.

One of the visualization options currently supported is Station Density. The primary objective of

these diagrams is to infer the crowdedness of MTR stations located in Hong Kong. The user’s

input is customized by date range, and number of stations which is dynamically rendered to

correspond to the range slider input. This constructs an interactive map visualization of the

station density, wherein the circles shown (as in Figure 3.12) are proportionate to the passenger

volume in each station. If desired, the user can bring attention to a particular station as seen in

Figure 3.12; the pop-up holds the details for the station selected. As a supplementary feature, the

platform also recognizes that the user might need to visualize the COVID-19 cases data on the

same map. This is supported by overlaying said data onto the station density map (option ‘with
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COVID data shown in Figure 3.13), so as to take into account the correlation between the two

datasets, in an effort to further understand the sequence of events.

Figure 3.12 Station density visualization page with station details
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Figure 3.13 Station density visualization page with input form
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Another visualization option a user can choose to explore is Travel Pattern. Similar to station

density, the user customizes their desired visualization through specifying the date ranges as seen

in Figure 3.14. However, this option delves into the specific routes - that is, travel volume trends

between station pairs - instead of focusing on each MTR station. The range slider may be used to

indicate the top N preferred routes, sorted by passenger volume. As with station density,

COVID-19 confirmed cases data could be overlayed with this visualization as well.

Figure 3.14 Travel pattern density visualization page

51



Figure 3.15 Travel pattern density visualization page with input form
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Passenger volume captures the mobility trend in the form of a time series graph of passenger

volume plotted against time. With this option, the trend in overall passenger activity can be

gathered, especially through specifying key date ranges that are most affected by the pandemic.

The graph is rendered upon successfully requesting the MTR passenger data from the server.

Figure 3.16 Passenger volume visualization page
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3.4.3 Analysis

The advanced analysis feature summarizes the findings from the contact and behavior-based

research as detailed in the methodology section.

Figure 3.17 Someone Like You analysis page

Figure 3.17 shows the Someone Like You analysis page. Users are prompted to indicate the

interval, which narrows down the timespan of ‘someone like you’ encounters. The default value

is set to 30 minutes. However, as discussed in the methodologies we adopted, decreasing the

parameter could lead to increased sensitivity. This is customizable depending on the user’s
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research requirements - certain users might require investigation of those ‘someone like you’

encounters within a shorter timespan, while others might prefer dividing the day into fewer time

span groupings to gain a more holistic overall perspective. In addition to this, a particular date

needs to be chosen for this analysis to be conducted.

Date Weekend Start_Stn End_Stn Freq_SLU

1/3/2020 TRUE 1 16 8.61

Table 3.5 Someone Like You sample output

A sample output is shown in Table 3.5. The date column shows the starting date of the week. The

above signifies that there is an estimated 8.61 someone like you’s on the weekend of week

1/3/2020, entering the MTR from station code 1 and exiting from station code 16.

However, this advanced analysis is subject to a shortcoming - given the limitations of the

server’s computation power and the volume of data to be processed, running this would take up a

considerable amount of time. In order to ensure that our users are aware of this, we have

displayed the estimated completion time (set to 8 minutes after the request is sent) as a prior

warning. In the case that the analysis ends up running longer than the expected time, users have

the option to report this anomaly back to our team.
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Figure 3.18 Sensor individuals analysis page

Figure 3.18 shows the Sensor Individuals analysis page. The required input for this analysis is

the time period - date and time. The output lists down all the sub-paths (with their respective

timestamps) throughout the journeys taken by all MTR passengers on the date and time

specified. This data is available in the form of a preconfigured 10-minute time span; however,

this parameter can be easily tweaked later on.

ID Start_Stn End_Stn Entry_Time Exit_Time

12345 1 3 1/1/2020

12:05:50 AM

1/1/2020

12:07:59 AM

Table 3.6 Sensor individuals sample output
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A sample output of this analysis is shown in Table 3.6 above. This row signifies that a passenger

with ID 12345 entered MTR station 1 and exited MTR station 2 at 12:05:50 AM and 12:07:59

AM respectively, on the date of 1/1/2020.

As with the someone like you analysis, given the limitations in computation power, the user is

provided with an estimated completion time, which has been set to around 15 minutes following

the request time.

3.5 Challenges

3.5.1 Nature of Dataset

In the process of working with the MTR dataset to complete several analyses, we were faced

with the challenge of having to make several assumptions. This is especially prevalent in the

contact and behavior analysis aspect of our project - since the dataset only includes the starting

station and the exit station, we are unable to accurately pinpoint a passenger’s route, therefore

having to assume that all passengers with the same starting and ending points had to have taken

the same route. However, this only serves as a best estimate, as this is not always the case in

reality. In addition to this, the only timestamps specified within the dataset is the entry time and

the exit time. Because of this, we again have to assume that within this time frame the passenger

stays in the paid area, he follows through with his MTR journey without pursuing any other

activities within the MTR paid area.
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Another potential challenge will be establishing which key dates to further look into. There are

several factors that play into influencing MTR passenger behavior - for instance, the enforcement

of a new government policy could influence the volume of passengers. The team will need to

keep a record of these regulations and their implementation dates to recognize the extent of their

effects.

3.5.2 Computation Power

Given that we are working with large volumes of data, the performance of our system is greatly

dependent on the computation power of the server executing all these tasks. This might result in

overhead at times when there is a large number of requests. In order to alleviate this issue, the

team has utilized several optimization methods, listed below:

1. The results of all data requests are stored by the system. This means that whenever

another user requests for the same data with identical parameters to a previously

completed request, the backend simply requests for this CSV result without running the

methods again. This is acceptable since we are working with historical data for this

research project, hence the output is not subject to change no matter when the request is

made.

2. For queries made to the database, we use indexing on the tables to improve the

performance of those SELECT commands.

3. For queries that we expect to take up a large amount of time (i.e., queries with no specific

parameters asking for raw data), we performed precomputation of the results and stored

them into separate tables. These tables support direct SQL queries. We judged the
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improvement in response time through conducting manual testing: each API call takes

milliseconds to complete, as opposed to the initial completion time of 2-3 minutes.

Although we note that computation power could be further improved by hosting our data on

public cloud services such as Google Cloud Platform or Amazon Web Services, using these

publicly available platforms to analyse and store data is not advisable. This is due to the

confidentiality and privacy issue imposed by our team’s agreement with the MTRC. Hence,

scaling, computation power and robustness of the system still depends on the specifications of

our in-house server.

3.6 Future Improvements

3.6.1 Sensor Individuals

Currently, the analysis concerning sensor individuals only produces a list of passengers’

intermediate locations within the MTR network during the specified timestamps. This data has

the potential of being the baseline for further use cases. This includes the aforementioned use

case of pinpointing a COVID-19 super spreader. As a proof of concept, we have experimented

with a search algorithm where a user is able to specify one Octopus ID (perhaps the potential

super spreader concerned) and the date. The output is in the form of the passenger details for

anyone who has been considered to be this person’s sensor individuals.
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Figure 3.19 Sensor individuals algorithm proof-of-concept

Figure 3.19 shows an example run of the algorithm we have devised using a sample of our data.

An individual with ID 905294529 is said to have encountered 904802245 at two separate time

frames.

However, this is still experimental given that the complexity of the algorithm is O( ). This𝑛2

implies that, when this is run on the entirety of our dataset and not just a sample as shown above,

the analysis could end up taking a long time to complete. In the future, we will look to improve

this and later implement this as part of the analysis aspect of our platform.
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3.6.2 Real time location-based COVID-19 alerts

Given the amount of insights that could be derived from combining both the MTR dataset and

the COVID-19 dataset, the team recognizes that the platform could be of use to alleviate risk of

COVID-19 exposure especially in those MTR areas with extensive passenger volumes. However,

the system currently only utilizes historically available information. Especially given the erratic

development of the COVID-19 pandemic, using historical data is not sufficient to accurately

devise a risk metric. Agencies (2020) mentioned that a certain mutation in the coronavirus could

increase its infectious ability. In view of possible inaccuracies, we need to develop a data stream

engine for real-time coronavirus data such that this is used in addition to the historical data to

generate our predictions.

This data stream engine would need to be capable of asynchronously updating the database based

on information provided by the MTRC and HKCHP. As our current agreement only provides us

with access to a few months of historical MTR passenger data, the team does not have the

appropriate resources to develop this at the current stage. However, the team is confident that

with some improvements to the computing capabilities, the current system could be scaled to

handle this use case. Some possibilities include using the data reports generated from the contact

and behavior-based analysis to calculate a risk of exposure metric based on the number of

‘Sensor Individuals’ and/or ‘Someone Like You’ in close proximity to the user.

3.7 Summary

This chapter detailed the results and features of our platform, and outlined the potential

challenges. The team has successfully rolled out the data pipeline and conducted several
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preliminary data analyses. The latter has allowed us to identify significant relationships from the

general mobility trend and from a geospatial point of view. In addition to this, the web platform

implementing the query, visualization and analysis aspects detailed above, has been deployed

onto the designated FYP server and can be readily utilized by any researcher or interested party

who has been granted the appropriate access. This chapter also recognizes that there are several

areas for future improvements to the system. The concluding chapter will summarize the findings

so far and reiterate the key objectives of the project.
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4. Conclusion

This report has detailed the background behind the hypothesis, outlined the methodology and

described interim results proving the correlation hypothesis, before suggesting potential areas of

further research. In addition to gaining a better understanding of the correlation between MTR

passenger behavior and the development of COVID-19 in Hong Kong, this project aims to

provide a platform where users, especially professionals in the research field, are able to explore

visualizations in a simplistic, efficient manner. As a supplementary feature, the web application

hopes to assist users in generating queries and advanced analysis for assessing COVID-19 risk

based on passenger’s behaviors. This information serves as the baseline for improvements to be

made in multiple aspects - namely the avoidance of COVID-19 risk in MTR routes, and also

specific MTR stations. The eventual goal is to contribute to future research regarding the

‘familiar strangers’ theory and the field of big data as a whole.
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