
Department of Computer Science
The University of Hong Kong

COMP4801

Final Year Project

[MakerLab Project]
Pick and Place Game App

for 3D Printed Robotic Arm

Final Report

Team member

Wong Ka Ngai, Benny
UID: 3035568881

Wan Tsun Wai, Alan

UID: 3035569017

Supervisors
Dr. T. W. Chim
Mr. David Lee

Date of Submission: 18/4/2022

I

Abstract
AI versus human players in games has been an increasingly popular topic, especially after the

victory of AlphaGo. This project aims at developing a Connect Four AI for STEM education that

utilizes a mobile application and a robotic arm to play with human opponents. In order to

accomplish the objective, multiple software and hardware tools and methods were employed to

design the system workflow of the Android application. Furthermore, experiments were

conducted to select the best approaches. Based on the results, computer vision with OpenCV

circle and color detection was used to recognize the board, and an optimized minimax algorithm

with Alpha-Beta pruning was implemented to calculate the next best move. With the completed

product, players have an advanced Connect Four gaming experience by playing against the

perfect AI, which can be utilized in STEM education by demonstrating the strength of AI in

making decisions and recognizing objects. However, with the limitations in the application and

robotic arm, the product can further be improved to enhance usability and gaming experience in

the future.

Acknowledgment
Our team would like to express our sincere gratitude to Dr. T.W. Chim and Mr. David Lee for

spending their time guiding us and giving us comments throughout the development of the

project. Without their support, our team would struggle a lot in making progress. Additionally,

our team would like to thank the Department of Computer Science, Tam Wing Fan Innovation

Wing and HKU CS MakerLab for offering this project’s necessary resources and equipment. The

project cannot be finished without their assistance.

II

Table of Contents
Abstract ... I

Acknowledgment .. I

List of Figures .. IV

List of Tables ... VI

Abbreviations .. VI

1. Introduction .. 1

1.1 Background ... 1

1.2 Motivation ... 1

1.3 Objective and Deliverable ... 3

1.4 Literature Review .. 4

1.5 Contribution of Members .. 5

1.6 Report Outline ... 5

2. Methodology ... 6

2.1 Design ... 6

2.1.1 Software ... 6

2.1.2 Hardware .. 7

2.1.3 UI and UX Design.. 8

2.1.4 System Workflow .. 14

2.2 Software – Mobile Application ... 16

2.2.1 Board Detection ... 16

2.2.2 Connect Four AI Algorithm ... 17

2.2.3 Scoring System .. 20

2.3 Software – Game Modes ... 21

2.3.1 Player VS AI Mode .. 21

2.3.2 Arm Controller ... 27

2.3.3 Building Mode ... 29

2.4 Hardware – Robotic Arm .. 32

2.4.1 Background of the Robotic Arm .. 32

2.4.2 Enhancements .. 35

2.5 Hardware – Disc Stacker ... 38

III

3. Experiments, Results and Discussion ... 39

3.1 Experiment 1: Board State Detection .. 39

3.1.1 Approach 1: TensorFlow Lite Neural Network ... 39

3.1.2 Approach 2: OpenCV Circle Detection ... 41

3.1.3 Experiment Result: Fine-tuned OpenCV Circle Detection .. 42

3.2 Experiment 2: Disc Detection ... 42

3.2.1 Approach 1: RGB Color Space .. 42

3.2.2 Approach 2: HSV Color Space .. 43

3.2.3 Experiment Result: HSV Disc Detection ... 43

3.3 Experiment 3: Connect Four AI .. 43

3.3.1 Approach 1: Minimax with Alpha-Beta Pruning ... 44

3.3.2 Approach 2: Bitboard ... 46

3.3.3 Approach 3: Move Ordering .. 49

3.3.4 Approach 4: Transposition Table ... 50

3.3.5 Approach 5: Transforming into an Android Library ... 51

3.3.6 Experiment Result: Connect Four AI Android Library ... 52

3.4 Experiment 4: Disc Stacker ... 52

3.4.1 Approach 1: 3D Printing .. 52

3.4.2 Approach 2: Laser Cutting ... 54

3.4.3 Experiment Result: Hybrid Approach .. 55

4. Limitation and Future Work .. 56

4.1 Software Limitation .. 57

4.2 Hardware Limitation ... 57

4.3 Future Development .. 58

5. Conclusion ... 59

References .. 60

Appendix A .. 63

Appendix B .. 64

Appendix C .. 65

IV

List of Figures
Figure 1: An example of a winning condition p.2

Figure 2: An example of a tie game p.2

Figure 3: Two Connect Four apps with sub-optimal AI p.4

Figure 4: The color palette p.8

Figure 5: Example of color usage p.9

Figure 6: Example of UI elements p.10

Figure 7: The app icon p.10

Figure 8: Mockup and UI of home activity p.11

Figure 9: Mockup and UI of Bluetooth activity p.12

Figure 10: Process of Bluetooth connection p.12

Figure 11: User flow diagram of the app p.13

Figure 12: System Workflow diagram p.15

Figure 13: Process of identifying valid rows p.17

Figure 14: An example of a minimax tree p.17

Figure 15: An example of Alpha-Beta pruning p.18

Figure 16: An example of a terminal state by two perfect players p.21

Figure 17: GUI of selecting the first player p.22

Figure 18: GUI of set up instructions p.23

Figure 19: GUI of board detection p.24

Figure 20: GUI of the initial gaming page p.25

Figure 21: GUI of the gaming page with hint shown p.26

Figure 22: GUI of the result and scoreboard page p.27

Figure 23: GUI of Arm Controller p.28

Figure 24: GUI of Building Mode p.30

Figure 25: Playing stage of Building Mode p.31

Figure 26: Ending stage of Building Mode p.32

Figure 27: Comparison between the original and Makerlab design p.33

Figure 28: Three-DOF robotic arm p.33

Figure 29: Robot geometry designed by Florin Tobler p.34

Figure 30: Two extra components for placing end-stop switches p.35

V

Figure 31: Default configuration of the robotic arm p.36

Figure 32: Behavior of auto home positioning p.36

Figure 33: Operation range of the robotic arm p.37

Figure 34: Sectional view of the disc stacker p.38

Figure 35: Joint clamp 3D model p.39

Figure 36: Preparing custom dataset for training p.40

Figure 37: Detection results by the model p.40

Figure 38: Hough Circle Transform p.41

Figure 39: RGB color space p.42

Figure 40: HSV color space p.43

Figure 41: An example board state with a score of 18 p.44

Figure 42: Implementation of negamax with Alpha-Beta pruning p.45

Figure 43: The game board in bit order p.46

Figure 44: An example of a bitboard key p.46

Figure 45: Board state stored in position and mask bitmap p.47

Figure 46: An example of alignment checking p.48

Figure 47: Implementation of bitboard alignment checking p.48

Figure 48: The draft of the proposed disc stacker p.52

Figure 49: 3D model of disc stacker version 1 p.53

Figure 50: The printed disc stacker version 1 p.53

Figure 51: 3D model of disc stacker version 2 p.54

Figure 52: The printed disc stacker version 2 p.54

Figure 53: 3D model of disc stacker version 3 p.55

Figure 54: Layers for laser cutting p.55

Figure 55: 3D model and the printed joint clamp p.56

Figure 56: The final disc stacker p.56

VI

List of Tables
Table 1: Contribution of members p.5

Table 2: Possible states at each move p.19

Table 3: Benchmark result of the AI p.50

Abbreviations
3D Three-Dimensional

AI Artificial Intelligence

App Application

DOF Degree of Freedom

G-code Geometric Code

GUI Graphical User Interface

HSV Hue, Saturation, Value

IDE Integrated Development Environment

IOS iPhone OS

RGB Red, Green, Blue

STEM Science, Technology, Engineering, and Mathematics

UI User Interface

UX User Experience

1

1. Introduction
The following chapter gives an introduction to this report. First, a brief background on AI and

the robotic arm is given. After that, the motivation for doing this project is discussed, followed

by the objective and deliverable. Then, the literature review is presented to study related works.

Finally, the contribution of members and an outline of the report are mentioned.

1.1 Background
Early in 1997, a chess computer Deep Blue defeated the world champion Garry Kasparov,

marking a symbolic testament to the rise of AI [1]. Since then, AI versus human players in

games has become widely researched. In 2017, an AI player AlphaGo defeated the best human

player Ke Jie in the game GO, again demonstrating AI’s potential in playing games [2]. In order

to translate the AI decision into action, very often a human agent in between is needed. A robotic

arm can be utilized to automate this process. The use of robotic arms can be traced back to 1954

when George Devol invented the first industrial arm [3]. Unlike human beings, robotic arms

were able to perform with high precision and work for long hours. However, they could only

follow a predefined moving path and operate without real-time calculations.

With AI algorithms and computer vision, robotic arms in the current decade can learn to make

decisions without following the predefined rules by humans. As such, robotic arms can now be

put into more complicated working environments like medical use. It is possible to utilize robotic

arms in decision-making games to play against human players with modern powerful chips.

1.2 Motivation
Connect Four is a two-player connection board game published in 1974 [4]. A standard Connect

four game contains a vertical board with seven-column and six-row, 21 yellow discs and 21 red

discs for two players. Players alternate turns to drop one disc from the top into any of the seven

slots. The player wins if four of his discs connect to a vertical, horizontal or diagonal line (see

Figure 1). The drawing condition only occurs when the board is complete and no player can

fulfill the winning condition mentioned above (see Figure 2).

2

Figure 1: An example of a winning condition, where four red discs connect to a diagonal line

Figure 2: An example of a tie game, where the board is full and no lines can be formed

Connect Four is simple to play but hard to master. It is no easy task to make an AI Connect Four

robot as the game requires the robot to be precise in picking and placing and have strategic

thinking at the same time. The motivations for doing this project are illustrated below.

Connect Four is unique in itself that unlike most board games, its board is vertically placed. In

order to successfully place a disc inside the board, precision control of the robotic arm is crucial,

attributed to the minimal gap of the column slot. Also, it is a common practice for horizontal

board games to keep the mobile phone at a fixed distance to capture the board. However, as

Connect Four has a vertical board, the distance between the phone and the board may vary to

calibrate correctly. It adds extra difficulties to our project.

In addition, Connect Four is a solved strategy game where the first player has an unbeatable

winning strategy. This game was independently solved by James Dow Allen and Victor Allis in

1988 [5]. In theory, it is possible to build an unbeatable AI for this project. Therefore, it is

3

believed that the AI player will be a worthy opponent for human players. Unfortunately, in

comparison with unsolved games like chess, solved games like Connect Four are less popular to

study. As a result, there is no existing library to use. Development in a library specializing in

playing Connect Four is needed for this project, which should fill up the gap of missing libraries.

It is also hoped that this project can bring some extra insights and discussions to the solved game

community.

Last but not least, after finishing this project, the robot can be displayed in public spaces to play

with people for entertaining and educational purposes. Unlike other complicated games, connect

four is easy to pick up and everyone can enjoy it even if they are just children. Furthermore,

students’ interest in computer science and AI can be aroused by playing with the unbeatable AI.

The rationale behind the perfect AI can be introduced to players after the game. Despite the fact

that they may not fully understand the theories, they can still be impressed by the power of AI

and acknowledge AI’s contribution to everyday life. It is believed that this project can be helpful

for STEM education.

1.3 Objective and Deliverable
This project proposes to develop a mobile application for a 3D printed pick-and-place robotic

arm that can play Connect Four with human opponents. The project can be broken into two parts:

a mobile application for the AI player and a fine-tuned robotic arm. The mobile application

should be able to capture and analyze the board. Then, it calls the AI to calculate the next move.

If possible, the AI constructed should be perfect for computing optimal moves. Next, the

command and position data are sent to the robotic arm. The application should also have an easy-

to-use graphical user interface that minimizes the user’s learning time. Furthermore, the robotic

arm should be able to receive the command from the application via Bluetooth and then pick and

place discs quickly and accurately.

With the finished mobile application and robotic arm, this project should be able to deliver a

mobile application that plays Connect Four with human opponents by utilizing the robotic arm

and AI. A ready-to-use Connect Four AI library should also be developed. In addition, the final

product should demonstrate the strength of AI algorithms in decision making and object

recognition so that the product can be utilized for STEM education.

4

1.4 Literature Review
There are a plethora of Connect Four game applications in the app market. In particular, “4 in a

row King” and “4 in a row” are studied, as they are the most and second most downloaded

Connect Four games in Google Play Store, with 10M+ and 5M+ downloads respectively [6][7].

They offer a similar gaming experience, in which single-player, local two-player and online

multiplayer modes are provided. In single-player mode, different levels of AI can be chosen.

However, none of the AIs can perfectly solve Connect Four, and they can be defeated if the

human plays optimally (see Figure 3). Their developers did not reveal the principles behind the

AIs and it is impossible to know what AI techniques or algorithms are utilized in their apps.

Figure 3: Two Connect Four apps with sub-optimal AI

Solving Connect Four is widely researched in the AI field. Pascal Pons’s approach utilizes a

minimax algorithm with Alpha-Beta pruning to exhaustively search for all possible states [8]. He

implemented the perfect AI into a web-based online Connect Four solver [9]. Besides the

standard gameplay, extra information like the predicted number of moves remaining and

minimax scores of board states are provided in the online solver. In addition, steps to build the

perfect AI are also revealed in his blogs for educational purposes. After reviewing the tutorials, it

5

is believed that the perfect AI built can be adopted for this project and utilized for STEM

education.

1.5 Contribution of Members
Table 1 illustrates how work is distributed in the project team.

Software
• Mobile Application

o Frontend
 UX design Benny
 UI design and implementation Benny

o Backend
 Bluetooth connection Benny
 Cloud database Alan
 Camera Alan
 Player VS AI Mode Alan
 Arm Controller Benny
 Building Mode Benny
 Score Board Alan

• AI
o Board detection Alan
o Disc detection Alan
o Connect Four AI Benny

Hardware
• Robotic arm enhancement Benny
• 3D modeling Alan
• 3D printing Benny
• Laser cutting Alan

Table 1: Contribution of members

1.6 Report Outline
The remaining paper is organized as follows. Chapter 2 describes the methodology involved in

this project so that the robotic arm is able to pick and place discs automatically. Chapter 3 then

discusses the experiments conducted in this project and their respective results. Chapter 4

follows by stating the limitations of deliverables and possible future undertakings. A short

conclusion of this project is provided in Chapter 5.

6

2. Methodology
To achieve the aforementioned objectives, the proposed product of this project is divided into

two major components, namely the software component and the hardware component. Chapter

2.1 demonstrates the overall design of this project, including the justifications for utilizing

various tools for the software and hardware component, the UI and UX design of the application,

and the system workflow.

Chapter 2.2 elaborates on the algorithms and methods implemented in the mobile application for

the software component, detailing the object detection algorithm, the Connect Four AI algorithm,

and the scoring system. The three game modes provided by the application, the Player VS AI

Mode, Arm Controller and Building mode, are introduced in Chapter 2.3.

For the hardware component, in order to adapt to this project, modifications to the robotic arm

are necessary. The enhancements made to the robotic arm are introduced in Chapter 2.4. Chapter

2.5 illustrates the disc stacker used in this project to facilitate picking and placing discs.

2.1 Design
The design choices made in this project are introduced in this section. Chapter 2.1.1 explains the

rationale for utilizing Android Studio, Firebase and Git. Chapter 2.1.2 details the tools used in

hardware development, including Arduino, Shapr3D, SolidWorks and CorelDraw. Chapter 2.1.3

describes the UI and UX design of the application. The system workflow design is presented in

Chapter 2.1.4.

2.1.1 Software
Various tools are utilized during the development of the mobile application. They are illustrated

below.

An integrated development environment (IDE) is a software application that provides

comprehensive facilities, allowing computer programmers to develop software for a particular

platform [10]. Android Studio is the IDE chosen to develop the mobile application in this

project. Android Studio has provided numerous support to its developers since its first release in

2014 [11]. It offers a plethora of packages for developers, of which the OpenCV package applies

to this project. Compared to other mobile operating systems, more than 70% of mobile phone

users use Android [12]. It is believed that development in Android matches most users.

7

The implementation of the scoring system makes use of the Firebase Database. It is a cloud

database solution provided by Google, which is fast and easy to set up [13]. Firebase is also

compatible with Android Studio, and the provided packages foster the development of client-

server interaction. Furthermore, compared to using a local database like Room or SQLite,

Firebase ensures data consistency across different Android devices. Thus, it is believed that

using Firebase is a better solution for this project.

Github and Git extension are used for version control, continuous integration, and deployment to

facilitate collaboration. Attributed to the scale of this project, branching workflow is deployed

instead of trunk-based development. The team members develop in the development branches

and are merged to the main branch only when both a feature is finished and a consensus is

reached by team members. Github provides the online code collaboration platform, while Git

Extension provides a visualization of branches, fostering merging and version control.

Collaborations can be done remotely with them.

2.1.2 Hardware
The objective of the hardware component, which is the robotic arm, is to execute the command

received precisely. The Arduino program installed on the microcontroller board is responsible

for receiving the application’s commands and instructing the robotic arm to perform the

corresponding actions. The official Arduino IDE and Visual Studio Code are used together to do

Arduino programming. The Arduino IDE provides a simple interface for compiling and

uploading programs, while Visual Studio Code provides advanced functions like autocomplete

that enrich the coding experience. Both IDEs are utilized in the development of the Arduino

program.

The claw gripper cannot pick up laying down discs and place them inside the vertical board. To

allow the robotic arm to grip a disc, a disc stacker is needed for storing the discs so the robotic

arm can pick up discs vertically at the same position. Since it is a tailor-made disc stacker, the

3D model is designed using Shapr3D. It is a free 3D modeling software that allows users to

design intuitively without much experience. Prototype models are printed and tested using

Shapr3D, Ultimaker Cura and 3D printers. After testing the prototypes and identifying their

flaws, laser cutting is chosen to produce the disc stacker. To utilize the laser cutting machine,

related software SolidWorks and CorelDraw were used to prepare sketches for cutting.

8

2.1.3 UI and UX Design
The UI is developed based on the UX hand-drawn mockup. The objective is to design a simple,

responsive, task-oriented application that puts users in control. The design principle of this

application is to create a modern, minimalistic user interface that is intuitive to use. In this

chapter, the design aesthetics will first be introduced with UI examples. An explanation of UX

design with a user flow diagram will also be given.

The app’s color theme followed suggestions from Material Design [14], which is designed to be

harmonious, ensure accessible text, and distinguish UI elements and surfaces from one another.

Teal and pink were chosen as the primary and secondary colors as they are the colors of the

Connect Four discs (see Figure 4).

Figure 4: The color palette

It is assumed that in default, players use teal discs to play against the robot, although players can

choose their color in practice. Thus, teal is chosen as the primary color. Variants of primary

colors are utilized to distinguish UI elements. For example, the system bar used the dark variant

to create contrast with the top app bar. The secondary color pink, which is also the representative

color of the robot, is used in selection controls. For example, pink is used to differentiate the

robot button from the player button when selecting the first player. Figure 5 demonstrates the use

of the primary color variant in the system bar and secondary color in the robot button.

9

Figure 5: Example of color usage

Additional colors are also chosen to convey different categories. For example, blue is chosen as

the tertiary color as it is the color of the game board. Different levels of grey are also utilized for

backgrounds. In order to keep the color theme harmonious and consistent across the application,

all colors used are chosen from the material design color palettes and share similar tint levels. As

the design aesthetic uses light colors, the base of teal, pink and blue are chosen to be at level 200.

When darker variations are needed, the level varies from 300 to 700.

Gradient colors are also employed to create the modern minimalistic feel of the application.

Horizontal linear gradients are utilized in two ways in the app. The first way is a gradient of

color from light to dark, and the other way is the gradient of primary and secondary colors. UI

elements are more natural and attractive by employing gradients [15].

Modern UI designs often feature rounded corners as psychological studies showed that rounded

corners are more appealing than sharp corners, which are considered harmful [16]. As a result,

all UI elements in the app have rounded corners with different radii. In addition, some elements

like CardViews also make use of shadows to be more eye-catching. Figure 6 illustrates the use of

gradients, rounded corners and shadows.

The font used in this app is the default Roboto font, which applies to the modern minimalistic

design aesthetic as it is sans-serif. In an attempt to match the light color theme of the app, the

default text color is lighter than black. Black text is only used with capitalization to emphasize

10

buttons. Depending on the background color, white text is also used for readability. Figure 6 also

demonstrates the different use of text colors.

Figure 6: Example of UI elements

To maintain the minimalist app theme, no image is used across the whole application. Instead, all

graphics are vector assets constructed with simple lines and circles, as shown in Figures 5 and 6.

The only image asset is the app icon, which is an adaptive icon designed using Figma. The

foreground and background of the icon are designed according to the rules mentioned above. In

addition, gradients, shadows and rounded corners are utilized in the icon (see Figure 7).

Figure 7: The app icon

11

UX design aims to identify and solve user problems. Users should find the app enjoyable and

straightforward, enabling users to effectively and efficiently achieve their objectives. In this

project, it is predictable that players’ objective is to access the three game modes and play with

the robotic arm. However, it is a prerequisite for the app to connect with the robotic arm via

Bluetooth to use the game modes. This prerequisite is accomplished by disabling all game mode

buttons except for the Bluetooth button at the home activity if no connection is detected. Their

text color is dimmed to grey to show that the three game modes are disabled (see Figure 8).

During development, the project team identified the user’s desire to check the rankings of Player

VS AI Mode. Thus, the final product added an extra scoreboard button on the homepage that can

be accessed without a Bluetooth connection.

Figure 8: Mockup and UI of home activity

When the Bluetooth button is clicked, the Bluetooth activity is launched. Users press the scan

button to scan nearby devices. When the robotic arm is discovered, users click the item to

establish the connection (see Figure 9). The app returns to the home page, and toast messages

“Connecting” are shown. The toast message “Connected” is shown once the connection is

constructed and all buttons are enabled. The Bluetooth button icon changes to disable Bluetooth

so that users can click it again to disconnect (see Figure 10). The toast message “Connecting

fail!” will be shown if it fails to connect. If the mobile device has been paired with the robotic

arm before, a Bluetooth connection will be automatically established once the app is launched.

This feature provides a better, more satisfying user experience by preventing rework.

12

Figure 9: Mockup and UI of Bluetooth activity

Figure 10: Process of Bluetooth connection

Figure 11 denotes the user flow of the application. The designed UX matches the usefulness,

findability and usability in the UX honeycomb proposed by Peter Morville [17]. This simple

structure provides high findability and usefulness, as the home page provides everything needed.

The design is also usable. In an attempt to make the app learnable, the flow is designed to be

straightforward and easy to follow, such that users can understand how to use the app for the first

time. It is forgiving that users have a careful understanding of task flows with the instruction

page in Player VS AI Mode, which minimizes user errors. Even if the user fails to capture the

board after the instruction, the refresh button allows the user to reposition the phone and

13

recapture the board without redoing everything. The app is satisfying in that the mentioned

Bluetooth connection conveys connection status through toast messages and prevents rework by

auto-connection. The error of an unexpected Bluetooth disconnection is also handled. If

Bluetooth suddenly disconnects, all games cannot proceed. These activities will receive a

broadcast message of disconnection and they will end themselves. The home page will resume to

the foreground such that users can establish a connection again. Details of the three game modes

will be discussed in Chapter 2.3.

Figure 11: User flow diagram of the app

14

2.1.4 System Workflow
The Connect Four game system workflow of this project is demonstrated in Figure 12.

Developed in Android Studio, the game app first accesses the mobile phone camera and captures

the Connect Four game board images using the OpenCV library. Next, they are sent to the image

processing functions. After preprocessing, the OpenCV circle and color detection algorithms

perform calculations to identify the board state. Finally, the board state is temporarily stored in

the application.

Android Studio utilizes Java for application development, and the board state cannot be sent

directly to the Connect Four AI algorithm written in C++. Instead, Java Native Interface (JNI) is

utilized to interact with native C++ code. It translates Java data types into C++ data types. By

configuring with CMake, the C++ AI algorithm can be compiled for the application. The

algorithm also utilizes an external book loaded into the transposition table to reduce computation

time. The returned result is translated back into Java format through JNI and the application gets

the optimal moves for the board state.

The application sends the corresponding G-codes to the Arduino microcontroller board via

Bluetooth with the optimal moves obtained. The board then instructs the stepper motors and

servo motor, controlling the robotic arm to pick and place a disc into the optimal column. The

above process is repeated until the game ends.

When the game is finished, the player sends their name and game score to Firebase via the

Internet. Firebase adds this new record to the cloud database and ranks all records in descending

score order. The ranking is returned to the application and the player knows how well he/she

performed compared to other players.

15

Figure 12: System Workflow diagram

16

2.2 Software – Mobile Application
This chapter introduces the algorithms and methods to develop the Connect Four game app.

Chapter 2.2.1 details the methodology of board recognition using the OpenCV library. Chapter

2.2.2 briefly describes how the perfect AI constructed continuously determines the optimal move

to play using the minimax algorithm with Alpha-Beta pruning. Finally, Chapter 2.2.3 explains

the rationale behind the scoring system to evaluate players’ performance.

2.2.1 Board Detection
Computer vision, a field of AI, derives meaningful information from visual inputs like images. It

enables computers to observe and understand. The mobile application will adapt computer vision

to recognize the board. To accomplish this, the OpenCV library will be used. OpenCV is a

powerful open-source computer vision library that provides optimized algorithms to accomplish

various computer vision tasks, including but not limited to object identification, face recognition

and model extraction.

The procedure of Connect Four board detection works as follows. First, the board image is

captured by the phone camera and stored in OpenCV Mat format, which is a matrix form

commonly used for images. Then, trimming and blurring are applied to the image for noise

reduction. After preprocessing, background noises are removed, leaving only the board. It then

passes to the OpenCV HoughCircles() function to detect the 42 circular slots of the board [18].

The function finds not only the circle but also the center. Coordinates found in an image

snapshot are stored in an array to increase accuracy. It is considered a valid circular slot if a

circle with the same coordinate is detected in multiple snapshots. A valid row is identified with

seven valid centers with similar y coordinates (see Figure 13). When the algorithm gets six valid

rows, it successfully identifies the board.

With the 42 coordinates, the remaining work is to identify the change of color in these

coordinates for disc detection. Instead of RGB, HSV is used to identify discs as hue better

recognizes colors at different brightness levels. Hue values at the coordinates are obtained to

check for teal or pink color. With this method, disc detection with high accuracy can be

achieved.

17

Figure 13: Process of identifying valid rows

2.2.2 Connect Four AI Algorithm
With the current game state obtained, the application calculates the next move and sends the

corresponding command to the robotic arm. In this project, a minimax algorithm with Alpha-

Beta pruning will be used, as minimax is widely used in two player turn-based games. In

minimax, the two players are called maximizer and minimizer, where the maximizer tries to

attain the highest possible score and the minimizer does the converse [19]. The algorithm is

contingent upon the minimax tree, which is similar to the decision tree. Each layer of the tree

consists of either maximized nodes or minimized nodes. A node represents a board state which

has an associated value. The algorithm traverses the tree and chooses the path that obtains the

optimal result (see Figure 14). As Connect Four is a zero-sum game, where a player’s loss equals

another player’s gain, minimax can be further simplified to negamax. Only a single version of

the recursive function is needed as the score of a position to a player is the negation of another

player’s score.

Figure 14: An example of a minimax tree, where the root chooses left with optimal value 3

18

However, it is still time-consuming to traverse when the tree is substantial. Alpha-Beta pruning

optimizes the algorithm by cutting off branches that need not be searched as a better move is

available (see Figure 15) [20]. It significantly reduces computation time.

Figure 15: An example of Alpha-Beta pruning, the rightmost branch is cut as 5>C is guaranteed

It has been proven that the time complexity for the minimax algorithm is O(bd), where b is the

branching factor and d is the depth of the tree. In Connect Four, the branching factor is seven

because a node can have seven children by placing a new disc into the seven columns. The

search depth is 42 piles because 42 is the maximum number of turns taken for a Connect Four

game. The minimax algorithm is inefficient with the exponential growth in time complexity, so

Alpha-Beta pruning is implemented. Given that the best moves are searched first, employing

Alpha-Beta pruning narrows time complexity to O(bd/2), reducing half of the exponent.

However, it is still inefficient and may not be able to solve in computation time. Studies have

shown that the precise number of reachable states from the initial empty board state is

4,531,985,219,092, with 2,626,652,048,471 non-terminal states and 1,905,333,170,621 terminal

states [21][22]. Table 2 lists all the legal Connect Four positions after each move [23]. The

numbers are significant, but they are still manageable compared to other complex board games

like chess. With further optimization applied to the algorithm, it is possible to build the perfect

Connect Four AI with an exhaustive search.

19

Move Possible States Move Possible States
0 1 22 22010823988
1 7 23 38263228189
2 49 24 60830813459
3 238 25 97266114959
4 1120 26 140728569039
5 4263 27 205289508055
6 16422 28 268057611944
7 54859 29 352626845666
8 184275 30 410378505447
9 558186 31 479206477733
10 1662623 32 488906447183
11 4568683 33 496636890702
12 12236101 34 433471730336
13 30929111 35 370947887723
14 75437595 36 266313901222
15 176541259 37 183615682381
16 394591391 38 104004465349
17 858218743 39 55156010773
18 1763883894 40 22695896495
19 3568259802 41 7811825938
20 6746155945 42 1459332899
21 12673345045 Total 4531985219092

Table 2: Possible states at each move

The AI is optimized by following Pascal Pons’s tutorials [8]. In short, the general idea is to

employ several optimization techniques such that the perfect AI can solve positions in

computation time. First, positions are encoded using bitmaps instead of arrays to reduce running

time significantly. Then, to prioritize the exploration of the best nodes, a move exploration order

is implemented, allowing maximal reduction of the Alpha-Beta exploration window for the

subsequent nodes. Next, a transposition table is utilized to cache calculated outcomes to avoid

analyzing the same positions multiple times. Finally, a pre-generated book storing some common

positions with respective values is also loaded to the transposition table to enhance the

transposition table further. Thus, the algorithm can avoid some time-consuming calculations.

Details of the steps to build the perfect Connect Four AI will be discussed in Chapter 3.3.

20

2.2.3 Scoring System
Besides the basic rules from the Connect Four game, new rules are added to the game to improve

the learning and gaming experience of the player. A scoring system is implemented to evaluate

players’ performance during and after the game ends. By awarding scores to the player, it is

hoped that players use it as feedback to review their mistakes, advance their skills and strive for a

better score.

At the beginning of the player’s turn, the app captures the current board state with the

aforementioned board detection algorithm. The board state is analyzed with the Connect Four AI

algorithm and the app gets an array of optimal moves. The board detection algorithm records a

change in board state when the player places a disc, and by comparing it with the previous board

state, the player’s move can be obtained. If it is one of the optimal moves, 5 points will be

awarded to the player. By observing an increase of 5 points, players understand that the move is

optimal.

As the Connect Four AI is perfect, players can never defect the robot unless all moves are

optimal. As a result, players may feel frustrated after many rounds of defeats and thus give up.

The app motivates players to try and learn by adding a hint button to the game to assist players.

When the player is clueless, he/she can press the “Show Hint” button and all optimal moves of

the current board state will be displayed. However, if the player chooses to get a hint, points will

not be awarded for that move. Hints are for assistance only and players should not rely on them.

When players are more advanced, their strategies will be closer to optimal and the use of hints

will be reduced, therefore attaining higher scores.

The highest possible score is 105, which is also the winning score. Connect Four is a solved

strategy game, and the first player is guaranteed to win if all moves are optimal. If the AI goes

first, the human player will undoubtedly lose. Thus, the only possible scenario to defeat the

perfect AI is to play as the first player and perform optimally at all moves, like how the AI

performs. When both players are optimal, the first player can only win at the last move (see

Figure 16). Therefore the score without using hints will be 21 x 5 = 105. For a drawing scenario,

the player needs to perform optimally for 20 moves and sub-optimally for one move. For

example, placing the first disc in the third or fifth column but not the middle column is sub-

21

optimal, giving a chance for the robot to tie. The score in a tie is 100 when no hints are used. In

any other case, players will lose against the perfect AI.

Figure 16: An example of a terminal state by two perfect players

2.3 Software – Game Modes
The proposed application is more than just an interface to play Connect Four with the AI. Three

game modes are provided by utilizing the robotic arm and the game board to make the app more

intriguing. The first game mode, Player VS AI Mode, is this project’s main objective, where

players fight against the unbeatable AI in the Connect Four game. The second game mode, Arm

Controller, allows players to familiarize themselves with the robotic arm by having direct

control. The third game mode, Building Mode, works like a claw machine. Players have to pick

and place discs into the game board to build the specified pattern within a time limit.

By dint of the system workflow, all three game modes can only be accessed with a Bluetooth

connection. Thus, the following chapters assume the Bluetooth connection between the app and

the robotic arm is established.

2.3.1 Player VS AI Mode
In Player VS AI Mode, players play Connect Four on a physical game board with the AI that

utilizes the robotic arm to pick and place discs. This game mode is of utmost importance as it is

the objective of this project. It offers players a new, novel Connect Four gaming experience as

unlike human adversaries, the opponent AI is perfect and unbeatable. By playing against the

22

world’s best player, players learn from mistakes, advance skills and strive for better scores. It is

also hoped that the robustness of AI algorithms in strategic thinking and object recognition can

be demonstrated to the players, raising their awareness of the AI field.

After the player enters the Player VS AI Mode, a page asking the user to choose the first player

will be shown. Figure 17 shows the GUI for selecting the first player. The playing order is

arranged according to the button pressed. It is noteworthy that defeat is promised if the player

clicks the Robot button allowing the robot first, as the first player is guaranteed to win if all

moves are optimal. It tests players’ understanding of the Connect Four game and the AI.

Figure 17: GUI of selecting the first player

23

Once the button is clicked, auto home positioning will be performed to restore the robotic arm to

the home position. Next, the instruction page guides the player to set up the gaming environment

(see Figure 18). As the board is vertical, it can only be lifted after auto home positioning so as

not to block the process. Then, players should put the phone on a holder and place it in front of

the board to prepare for capturing. With the instructions followed, players can proceed to board

recognition by clicking the “I am ready!” button.

Figure 18: GUI of set up instructions

24

The whole board should be captured for better detection, filling the whole monochrome camera

frame (see Figure 19). If the board cannot be detected after a long duration, the phone position

can be nudged, and the refresh button on the top can be clicked to reanalyze the board. The

detection process is finished when all 42 slots are identified, displaying six rows of linked-up

dots. The camera frame becomes colored, indicating that detection is completed. The phone

position should not be moved after the detection. Details of board detection will be explained in

Chapter 3.1. The page then automatically proceeds to the gaming page.

Figure 19: GUI of board detection

25

Figure 20 illustrates the GUI of the gaming page at the beginning. The page comprises four

sections: the message, board, hint, and score section.

Figure 20: GUI of the initial gaming page

The message section comprises a robot icon, a chat bubble, and a turn indicator. The turn

indicator varies the displayed text and icon to show the current turn, reminding the player who

should be making a move. The dialog from the robot tells different information to the player

depending on the game state. At the start, the robot first welcomes the player. Then, when the

player makes a move, it tells the player whether it is a good move or a bad move. After the robot

moves, it tells the player the expected number of moves remaining for the player to lose or win

(see Figure 21). If there is a chance to draw, it also tells the player. The prediction is calculated

by using the minimax score of the board state, which will be explained in Chapter 3.3.1.

The board section displays the physical board state in a virtual form, updated in real-time. The

phone camera takes snapshots of the environment in the background, and board states are

analyzed with disc detection. They are then retrieved and translated into the board section UI

(see Figure 21).

26

The hint section consists of a row with seven slots and a “show hint” button. It serves as

assistance to enhance the gaming experience when players fail to select a move. All optimal

moves are displayed in the seven slots when the button is pressed. For example, Figure 21 shows

that placing at column 6 is the only optimal move for the board state. The disc color in the hint

section also changes with the color chosen to use by the player. In the case of Figure 21, the

player is using teal discs. The button is disabled when it is the robot’s turn.

The score section shows the accumulated score of the player during the game. Five points are

added to the current score whenever the player makes an optimal move. No points will be added

even if the move is optimal if the hint is used. For instance, in Figure 21, the score remains at 15

after the player’s turn as the hint is used. As discussed in Chapter 2.2.3, it is hoped that players

can aim for optimal moves to get a higher score.

Figure 21: GUI of the gaming page with hint shown

After the game ends, players are redirected to the result page (see Figure 22). The emoji and the

text change depending on winning, losing or drawing. The player’s total score in the game will

be displayed, and they can input their name in the text field to submit their score to the database.

27

When the name is entered and the submit button is clicked, a toast message indicating successful

submission will be shown, and the scoreboard page is displayed (see Figure 22). This process

requires an internet connection as the Firebase cloud database is used. The scoreboard page,

which is the same page as clicking the scoreboard button on the home page, is displayed to show

players’ rankings. Players can evaluate their performance by checking their ranks.

Figure 22: GUI of the result and scoreboard page

2.3.2 Arm Controller
Players can use the Arm Controller to manually control the robotic arm and move the arm to

some predefined positions. It serves as a testing platform such that players can get used to the

control of the robotic arm.

After the player enters the Arm Controller, auto home positioning will restore the robotic arm to

the home position. Figure 23 shows the GUI of the Arm Controller. It is divided into two

components, the first half is the button pad and the second half is the gamepad.

28

Figure 23: GUI of Arm Controller

The first half consists of a switch and 12 buttons. The switch is used to control the power of the

three stepper motors. The robotic arm can be turned on or off simply by switching here. Auto

home positioning will also be performed when the robotic arm is turned on with this switch to

restore its starting position. The 3 x 4 keypad, which resembles the telephone keypad design,

contains seven column buttons corresponding to the game board’s seven column slots. The

robotic arm automatically moves to these positions to place discs into column slots in the Player

VS AI mode. The disc button moves the robotic arm to the position for picking discs, and the

home button returns the robotic arm to the home coordinate. Three extra buttons also provide

further testing and debugging: the bottom, rest, and end stop.

Players can comprehend how the robotic arm picks and places discs with the button pad. This

helps provide insights for them as they need to manually control the arm to pick and place discs

in the Building Mode. In addition, it also acts as a calibration tool. For example, the distance

between the robotic arm, the disc stack and the game board must be fixed, as absolute

positioning is required for picking and placing. Using the disc and the seven column buttons,

29

players understand the position of picking and placing discs and are thus able to calibrate the disc

stacker and game board position.

The second half of the Arm Controller is the gamepad, which has eight buttons that control the

gripper and the movement of the robotic arm in the three axes. This section is forged by using

fragment, which allows the same gamepad to be reused by the Building Mode. In order to imitate

the actual behavior of a real-life gamepad, when the buttons are held, the robotic arm continues

to move in the corresponding direction. This behavior is accomplished by repeatedly sending G-

code commands that move the robotic arm along the specified axis in small increments. Players

can advance their pilot skills here such that they are strengthened to play the Building Mode.

2.3.3 Building Mode
The Building Mode offers the gaming experience of playing with a claw machine. Players

challenge themselves to finish the given pattern within the time limit by carefully controlling the

robotic arm’s claw gripper to pick and place discs into the game board.

After the player enters the Building Mode, auto home positioning will restore the robotic arm to

its home position. Then, a random pattern will be drawn from the pattern list and shown to the

player. Figure 24 illustrates the GUI of the Building Mode. It consists of the pattern panel and

the gamepad panel.

30

Figure 24: GUI of Building Mode

The pattern panel controls the timer and the disc pattern. First, a large countdown timer is

displayed at the top to remind players of the remaining time, followed by the target pattern to

build. Then, a short line of text is shown under the pattern to introduce this game mode briefly.

Finally, start and refresh buttons are provided to start the timer and refresh the pattern. The

gamepad panel is the same fragment used in the Arm Controller, where players utilize the eight

control buttons to move the robotic arm in 3D and finish the pick and place tasks to build the

pattern. It is believed that with this concise UI, new players have no problem understanding how

to play with this game mode.

Before starting the game, if players are not satisfied with the pattern, or if the players have built

the pattern before, the refresh button can be clicked to draw another pattern randomly. There are

fifteen patterns. Each of them is built from nine to ten discs. When players are ready to play, they

can press the start button to start the ten-minute countdown timer. Figure 25 demonstrates the

playing stage of building mode. Once the game starts, the refresh button is disabled. The clock

icon of the timer button changes to disable clock, and the text changes from “start” to “finish”,

indicating that the functionality has changed to stop the timer.

31

Figure 25: Playing stage of Building Mode

Players continue to build the pattern using the gamepad to pick and place discs. Players click the

finish button once the pattern is finished to stop the timer. A toast message indicating the amount

of time used to build this pattern is shown (see Figure 26). The countdown timer is reset to ten

minutes, and the refresh button is enabled. It goes back to the state before starting the game, such

that players can effortlessly start a new round without quitting this page. However, the target

pattern is not refreshed, but they can always play with another pattern by clicking refresh. With

the time spent feedback provided, players are encouraged to challenge the same pattern

repeatedly to master the pattern and reduce the time spent.

If players fail to build the pattern within the time limit, a toast message “Time’s up!!” will be

shown. The page will also reset as mentioned so that players can challenge again without

returning home and entering Building Mode. They are encouraged to play more rounds with the

same pattern to advance their skills and finish the pattern within the time limit.

32

Figure 26: Ending stage of Building Mode

2.4 Hardware – Robotic Arm
This chapter introduces the robotic arm utilized to play Connect Four. Chapter 2.4.1 provides the

background information on the given robotic arm. Chapter 2.4.2 describes the enhancements

made to the robotic arm such that it is adapted to this project.

2.4.1 Background of the Robotic Arm
The robotic arm utilized in this project is provided by HKU CS MakerLab, which is a modified

version of the robotic arm created by Florin Tobler [24]. In comparison with the original design,

the robotic arm has a more extended arm and a servo gripper that utilizes the Tower pro SG90s

servo (see Figure 27). Although the arm is changed, it still has three degrees of freedom,

allowing movements along the three rotational axes (see Figure 28).

33

Figure 27: Comparison between the original design (left) and Makerlab design (right)

Figure 28: Three-DOF robotic arm

The original geometry algorithm designed by Florin Tobler can also be applied to the robotic

arm. Figure 29 shows Florin Tobler’s contribution to the geometric structure of the robotic arm

and the corresponding kinematic algorithm. Based on his design, the robotic arm community

developed Arduino firmware to control the robotic arm [25]. The firmware is open-source,

allowing modifications based on different variations of the robotic arm. Makerlab also developed

the firmware that suits the modified robotic arm [26].

34

Figure 29: Robot geometry designed by Florin Tobler

The x, y, and z-axis movements on the 3D Cartesian coordinate plane are accomplished by

varying the number of steps of the three stepper motors. RAMPS 1.4 expansion board is installed

on top of the Arduino MEGA 2560 such that a stable current can be provided to the stepper

motors. However, it is too complicated to specify the number of steps to move the arm.

Therefore, G-code is applied to instruct the robotic arm. G-code stands for “Geometric Code”,

which instructs machines to move to a location with a specified moving speed and path [27]. In

this project, when the arm receives the G-code commands, the Arduino program will

automatically interpret the commands and translate them into the number of steps required for

each motor. For example, G1 X0 Y225 Z180 moves the end effector to the specified x, y and z

coordinates. Using G-code commands is more intuitive to control and fine-tune the robotic arm

movement than using steps, which fosters the implementation of picking and placing discs.

A Bluetooth module SPP-CA with a baud rate of 9600 is also installed to provide a Bluetooth

connection to the robotic arm. The connection can be established quickly, and the module’s light

indicates the connection state. When it is blinking, it can be discovered by the android phone and

is ready for connection. Once the connection is successful, it keeps the light on. With the

Bluetooth module, G-codes can be sent via Bluetooth, enabling the control of the robotic arm

using the application.

35

2.4.2 Enhancements
In order to adapt to play Connect Four, enhancements to the robotic arm are necessary. The three

stepper motors have no absolute encoder and thus cannot perform absolute-type positioning by

themselves. However, the arm needs to initialize at an absolute position such that the Cartesian

coordinate system can refer to. Three end-stops switches are installed to implement the auto

home positioning function. Figure 30 shows the two extra components installed on the robotic

arm for placing the three end-stop switches.

Figure 30: Two extra components for placing end-stop switches

The Arduino program developed by Makerlab is reinforced to include the auto home positioning

function regarding the community firmware. Figure 31 reveals the default configuration of the

community robotic arm [28]. The coordinate of the home position is defined with INITIAL_X,

INITIAL_Y and INITIAL_Z (in mm), and their values are calculated with respect to shank

length and end effector. The modified robotic arm utilized in this project has a longer shank

length than the original one. Therefore, the value of INITIAL_Z, which is the shank length, is

180 instead of the default 120. The mini servo gripper employed has an end effector offset of 45,

so the value of INITIAL_Y, which is the sum of shank length and end effector offset, is 225.

INITIAL_X remains unchanged at 0.

36

Figure 31: Default configuration of the robotic arm

The G-code used to initialize auto home in this project is G28. The behavior of auto home

positioning is illustrated in Figure 32. The stepper motors move shanks and the main body to hit

their corresponding end stops. Once the end stop is hit, motors will move in the reverse direction

by the home step value. Home step values of the three axes are tested to suit the project’s robotic

arm. A right angle is formed between the lower and upper shank once the auto home is finished.

Figure 32: Behavior of auto home positioning

37

The G-code commands that control the mini servo gripper are also modified to be more intuitive.

M3 and M5 are the commands controlling the on and off of the servo gripper. After

modification, M3 T90 represents a wide-open of the gripper, and M3 T0 represents a complete

close. The reverse applies to M5, where M5 T0 represents a wide-open of the gripper, and M5

T90 represents a complete close. Using 90 degrees as the moving range makes it easier to specify

the angle to open and close the gripper.

It could be dangerous if the robotic arm moves beyond the limit. Thus, an Arduino function is

added in the interpolation section to check if the movement exceeds the operation range of the

robotic arm. Figure 33 demonstrates the operation range of the arm. The community firmware

contains the function and formula to calculate R_MIN and R_MAX, and it is utilized to

implement the operation range. Besides, the application also keeps track of the 3D coordinates to

ensure that all moving commands sent are within range.

Figure 33: Operation range of the robotic arm

38

2.5 Hardware – Disc Stacker
The robotic arm needs to place discs inside the vertical game board, so a disc stacker that stores

discs vertically is necessary to make gripping possible. The disc stacker should be able to roll out

a new disc to refill once the gripper picks a disc. With this behavior, the claw gripper can grip

discs continuously at the exit of the disc stacker until there is no disc left. To simplify the design

of the disc stacker, no mechanical parts and motors are involved. Three ramps with a slope of 10

degrees are designed, utilizing gravitational forces to roll out discs.

Figure 34 shows the sectional view of the disc stacker. The ramps, front and back plates are

created by laser cutting wooden and acrylic plates. Joint clamps are designed and printed with

3D printers to combine the plates as a disc stacker (see Figure 35). The clamps are trapezoidal

prisms with a 1.5 cm width by 1 cm height groove to fit the components. The bottom base is 3

cm, with a height of 2 cm and a depth of 5 cm. The dimension is designed to also act as the

support base of the disc stacker as the stacker has a width of 1.5 cm only, which cannot sit by

itself. The stacker can stand without toppling with the clamps installed at the bottom. With this

design, the stacker can be assembled and disassembled effortlessly. Attempts leading to this final

design will be discussed in Chapter 3.4.

Figure 34: Sectional view of the disc stacker

39

Figure 35: Joint clamp 3D model

3. Experiments, Results and Discussion
The project team has done multiple tests to acquire the best possible outcomes in different

aspects of this project. The following chapter demonstrates the experiments conducted. Two

approaches are undertaken to detect the Connect Four game board accurately, and they are

discussed in Chapter 3.1. The attempts to determine the disc detection method are described in

Chapter 3.2. Chapter 3.3 details the steps to construct the perfect Connect Four AI, and Chapter

3.4 presents the trails done in building the disc stacker.

3.1 Experiment 1: Board State Detection
Computer vision contributes a vital role in the application to retrieve the game state from the

physical game board accurately. If board state detection fails to deliver correct results,

subsequent Connect Four AI cannot generate optimal moves and wrong decisions will be made,

causing garbage in, garbage out. Thus, two approaches are tested to select the best way to detect

the board state.

3.1.1 Approach 1: TensorFlow Lite Neural Network
Neural network model training with TensorFlow Lite is the first tested approach. YOLOv5s

model, which is widely used in object detection, is selected for supervised learning. Since there

is no existing library for Connect Four, a dataset must be prepared. First, photos of the board and

the discs were captured and labeled manually (see Figure 36). Then, supervised learning is

performed to generate the custom model in the Pytorch framework. After translation, the model

was applied to the app for board detection. It is hoped that the board state can be constructed by

identifying all discs in the image.

40

Figure 36: Preparing custom dataset for training

The performance of the trained model was not satisfactory. Figure 37 demonstrates the results of

the model. The detection algorithm is too sensitive to recognize irrelevant objects, and multiple

objects were detected in the same area that detection boxes overlap and interfere. Moreover, it

fails to detect some discs on the board. With its unstable performance in detecting discs, an

accurate board state cannot be inferred.

Figure 37: Detection results by the model

41

3.1.2 Approach 2: OpenCV Circle Detection
Instead of inferring the board state from detecting disc objects, another approach is tested to

detect the whole board first and then respond to state changes. The Connect Four board consists

of 42 circular slots, so detecting 42 circles in a 7x6 grid should identify the game board. In

particular, OpenCV HoughCircles() function is utilized to detect circles efficiently [18].

The function is derived from Hough Circle Transform, which is based on the circle equation

𝑟𝑟2 = (𝑥𝑥 − ℎ)2 + (𝑦𝑦 − 𝑘𝑘)2. With h and k being the x and y coordinate of the circle center and r is

the radius, a circle can be formed. Figure 38 shows how Hough Circle Transform detects circles

with this equation. Circles with the same radius are plotted along the edge pixels of the circle

image input. These circles overlap at a point, namely the accumulator point, which is the center

of the input circle.

Figure 38: Hough Circle Transform

However, the radius of the input circle must be known to plot the circles along the edge.

Therefore, the function utilizes a brute force approach to test a range of radii. The radius that

causes the highest overlapping frequency is believed to be the actual radius of the input circle.

Thus, the radius and center coordinate of the input circle can be found.

This approach successfully detects the board with the 42 circles identified, which is much more

stable than the previous method. However, there is a noticeable increase in computation time for

board images with complicated backgrounds. Therefore, enhancements to the algorithm are

required.

42

3.1.3 Experiment Result: Fine-tuned OpenCV Circle Detection
The circle detection method has a reliable performance in detecting the whole board, and it is

believed to be the correct approach. Enhancements are made to turn it into a robust algorithm.

Trimming is applied to the input images to delete unnecessary, complicated backgrounds. The

image is also blurred to reduce noise, sharpness and details, facilitating edge detection of circles.

Tests are also conducted to fine-tune the function’s input parameters, making it more applicable

to the project scenario. For example, the range of radii is reduced to identify the game board’s

circular slots quickly.

3.2 Experiment 2: Disc Detection
With the circle detection approach implemented, the next step is to detect discs that fall inside

the slots. In particular, color detection can be utilized to identify color changes at the 42 center

coordinates. The problem is reduced from complicated disc object detection to simple color

detection. RGB and HSV color spaces are tested to identify their performance accuracy.

3.2.1 Approach 1: RGB Color Space
RGB color space is based on the RGB color model, where red, green and blue lights are

combined to produce different colors. White light is produced when each color is mixed together,

and black is produced without mixing. Figure 39 shows the RGB color space, in which the more

significant the RGB value, the lighter the color. Although it is commonly used, its performance

is poor in color recognition as it is correlated to light intensity. In this project, the disc color of

same-colored discs in RGB color space differs depending on the light direction and position, so it

fails to classify that these discs share the same color.

Figure 39: RGB color space

43

3.2.2 Approach 2: HSV Color Space
A color space that is independent of light intensity should be used. HSV color space, which

stands for hue, saturation and value, can solve the problem. Hue represents the color, saturation

represents the amount of grey mixed, and value represents brightness. Hue values express colors

in degrees, which can be used to check if the input falls within the color range of teal and pink

(see Figure 40). By separating color from saturation and brightness, robustness to the change of

light can be achieved.

Figure 40: HSV color space

3.2.3 Experiment Result: HSV Disc Detection
After testing in different environments, HSV is more robust to the change in environment. With

different conditions and light levels, HSV can still detect the colors teal and pink accurately.

Disc detection employing HSV color space is outstanding with no errors identified. Thus, it is

the approach applied in this project.

3.3 Experiment 3: Connect Four AI
One of the motivations for doing this project is to build an unbeatable Connect Four AI, but it is

not the main objective of this project. Many existing Connect Four AIs use depth limit

approaches. Some even apply machine learning. These AIs are workable and adequate for this

project, but it is still hoped to reach the extra goal of building a perfect AI. Thanks to Pascal

Pons, his approach to solving Connect Four is exhaustive, meaning that the AI is always optimal

[8]. This chapter details the steps to build the perfect AI by following his tutorials.

44

3.3.1 Approach 1: Minimax with Alpha-Beta Pruning
The minimax algorithm is a typical solver for many board games. For example, in Connect Four,

each node is a board position and the algorithm searches for the best path in the tree. At each

layer of the tree, two players, namely the maximizer and minimizer, choose the best move to

maximize the score, which is also minimizing the opponent’s score.

The score of a position can be positive, negative or null, and it is calculated as follows. If the

current player can win, the score is positive and is calculated by 22 – the total number of discs

needed to win. If the player can win with the last disc, the score will be 22 – 21 = 1. If the player

can only lose, the score is negative and is calculated by the total number of discs needed to

defeat the player by the opponent – 22. If the opponent can win with the last disc, the score for

the player will be -1. A null score only occurs if the game can end with a tie. Figure 41

demonstrates a position with a score of 18. The current red player can win in two moves with the

fourth disc, so 22 – 4 = 18. After the red player places the third disc, the yellow player becomes

the current player, and the score of this position will be -18 as 4 – 22 = -18. This scoring method

is not only used in the minimax algorithm but also in the calculation to predict the remaining

number of moves to win or lose by the player.

Figure 41: An example board state with a score of 18

The minimax recursive algorithm can be implemented with this scoring method. Scores are

assigned to the terminal nodes by using this method. For non-terminal nodes, when it is the

player’s turn (maximizer), the score is the maximum of the next positions. When it is the

45

opponent’s turn (minimizer), the score is the minimum of the next positions. As mentioned

above, the player’s score of a position is the opposite of the opponent’s. The negamax variant

can be applied such that one recursive function calculates for both the maximizer and minimizer.

Alpha-Beta pruning is implemented to the negamax variant for optimization. Alpha is the best

option found for the maximizer, and Beta is the best option found for the minimizer. By tracking

the [Alpha, Beta] window at each node, if Alpha >= Beta, pruning occurs. For a minimizer, the

highest score that offers to the parent maximizer can only be the current Beta, which is useless to

the parent as it can choose a value of Alpha. Therefore, the remaining unexplored children for

this minimizer can be pruned. The same logic applies to the maximizer. Figure 42 shows the

actual implementation of negamax with Alpha-Beta pruning.

Figure 42: Implementation of negamax with Alpha-Beta pruning

However, the algorithm can only solve positions with more than 14 moves. For early game

states, the trees are still too significant after pruning, and they cannot be solved within a minute.

In order to implement this AI into the application, it should be able to solve any board state

instantly. More optimization steps are taken to achieve this target.

46

3.3.2 Approach 2: Bitboard
Board position can be encoded using a bitmap and stored in a compact way, which can speed up

the operations with the game board. The Connect Four board has seven columns and six rows,

which is 42 slots. 49 bits are used to represent the board, with an additional row added on top for

convenience. Figure 43 shows the board in bit order.

Figure 43: The game board in bit order

The current player’s discs are encoded as 1, while the opponent’s discs are 0. To distinguish

between the opponent’s discs and empty cells, the lowest empty cell for each column is encoded

as 1. The extra row added on top can be used to encode the situation of a full column. Figure 44

demonstrates the implementation of this encoding method. The discs are encoded as 1 for the

current player x and 0 for the opponent o. Extra 1s are added to each column to indicate the start

of empty slots.

Figure 44: An example of a bitboard key

Positions are stored using two bitmaps such that bitwise operations can be computed efficiently.

One bitmap contains only the discs played by the current player, and another bitmap is a mask

locating all non-empty slots. Figure 45 illustrates how the previous example is stored in position

47

bitmap and mask bitmap. The previous key can be obtained by adding the two bitmaps with a

bottom mask.

Figure 45: Board state stored in position and mask bitmap

With the two separated bitmaps, bitwise operations can be easily performed to play with the

bitboard. For example, to know if a column is playable, the mask can be used to check the

availability of the highest slot of the column. To play a column, an XOR operation is performed

on the current position with the mask. Then, an extra bit that represents the played slot is added

to the mask.

The checking of a winning condition can be done quickly using bitboards. For example, slots are

checked horizontally to check for a horizontal four in a row, like slots 0, 7, 14, and 21. The

difference between horizontal slots is 7. By the same token, vertical checking has a difference of

1, and the two diagonal checkings have a difference of 6 and 8. With these differences, bit

shifting can be performed to check for alignment. For example, four discs played by the current

player occupy slots 0, 7, 14, and 21, and they are encoded into 1s in the position bitmap (see

Figure 46). Then, a copy of the position bitmap is shifted to the right by 7, bitwise AND is

performed with the original bitmap. The resulting bitmap has three 1s at slots 0, 7, and 14,

indicating the result of AND operation to the bit representations of disc 1&2, 2&3, 3&4. Next, a

copy of this result is shifted to the right by 14 and performed AND with the original result. The

bit at slot 0 of this final result indicates the result of AND operation to the bit representation of

disc 1&2&3&4. If the final result is not 0, there must be a horizontal alignment.

48

Figure 46: An example of alignment checking

By shifting bits and combining bits, all horizontal alignments of a position can be checked at

once, without concern for the newest disc. Figure 47 shows the actual implementation of

alignment checking. The above logic applies to vertical and the two diagonals by changing the

right shift to 1, 6 and 8 respectively. With the implementation of bitboard, the data structure in

this AI is optimized. Bit operations replace indexing, reading and writing of arrays, enhancing

efficiency.

Figure 47: Implementation of bitboard alignment checking

49

3.3.3 Approach 3: Move Ordering
The exploration order of child nodes has a significant impact on the efficiency of Alpha-Beta

pruning. If better nodes are explored first, the [Alpha; Beta] exploration window for the sibling

nodes can be reduced, thus increasing pruning. Conversely, if the worst nodes are explored first,

not much pruning occurs and the performance will be similar to the original minimax. In

Connect Four, the best next move is unknown, so heuristics are implemented in an attempt to

order moves optimally.

To begin with, move order can be improved by exploring moves in the middle column first.

Middle column moves have higher chances to produce alignments and on average, they are

better moves that should be explored first. The strategy is to explore from the middle column to

the edge columns, which is in a static order of columns 4, 3, 5, 2, 6, 1, 7. This simple approach

has little overhead as no complicated calculation is involved in reordering child nodes, yet it

enhances efficiency by increasing pruning.

The following strategy avoids exploring bad moves leading to the opponent’s win at the next

turn. There are three rules to follow. First, the disc should be placed in a column where the

opponent has a winning slot to block the opponent’s winning. Second, the disc should not be

placed under the opponent’s winning slot, as it facilitates the opponent’s winning. Third, if the

opponent has two or more winning slots, it is guaranteed to lose and no moves need to be

explored. By following these rules, child nodes of positions will be all possible positions that do

not make the opponent win at the next move. This method reduces the total number of explored

nodes and increases pruning.

In addition, the possible moves are evaluated by checking for 3-disc alignments to improve move

ordering better. Moves with open-ended 3-disc alignments have the potential to create winning

opportunities later in the game, and they are in general better moves than others. Similar to the

winning condition check mentioned above, bitboard bitwise operations are performed to identify

all open-ended 3-disc alignments and count the winning spots of a board position. With the

number of winning slots identified for board positions, possible moves can be sorted by their

winning slot count. In case of a tie, the initial middle-to-edge ordering mechanism retains.

50

3.3.4 Approach 4: Transposition Table
When the tree is being explored, the same positions are repeatedly analyzed as they can be

reached from different sequences of moves. Re-computing the explored board positions can be

avoided by caching the outcomes. Similar to dynamic programming, memory spaces are traded

off to decrease computation time. A simple approach is employed to keep the newest positions

and override previous entries with no collision management. This approach can increase the

cache’s hit rate as recently explored nodes are close to the current position and are more likely to

hit. With Alpha-Beta pruning, the positions’ values can be upper or lower bound. Both cases are

stored in the transposition table, with a constant offset added to lower bound values to

differentiate them.

As mentioned above, the position key contains 49 bits, associated with 8 bits value. 64 bits entry

can store the key-value pair in the transposition table, but in an attempt to be more memory

efficient, only the last 32 bits of the key will be stored. The last 32 bits can be gotten with

position key modulo 232. The transposition table uses modular indexing. It contains S entries and

S is an odd number, so an entry is stored at position key modulo S. With S and 232 being prime

with each other, by the Chinese remainder theorem, the index and key pair (key%S, key%232)

can map back to the 49bits key which is smaller than Sx232. S is chosen to be the smallest prime

number greater than 223. With 5 bytes per entry and 223 entries available, the transposition table

has a size of about 40MB.

After following all the tutorials by Pascal Pon and finishing all the optimizations, the AI can now

solve all positions. Table 3 illustrates the benchmark conducted by Pascal Pons with 6000

positions. These positions are divided into 6 test sets according to the number of moves and

remaining moves. In early game states where at least 28 moves remain, the AI needs around 5s

to solve a position. The time taken is much longer than other test sets as it has a substantial

average number of explored nodes per test case.

Test Set
name

nb moves nb remaining moves Mean time mean nb of
pos

K
pos/s

End-Easy 28 < moves remaining < 14 4.722 μs 54.93 11,630
Middle-
Easy

14 < moves <= 28 remaining < 14 39.90 μs 517.4 12,960

Middle-
Medium

14 < moves <= 28 14 <= remaining < 28 3.736 ms 48,450 12,970

51

Begin-
Easy

moves <= 14 remaining < 14 275.5 μs 3,693 13,400

Begin-
Medium

moves <= 14 14 <= remaining < 28 113.4 ms 1,459,000 12,870

Begin-
Hard

moves <= 14 28 <= remaining 5.667 s 72,490,000 12,790

Table 3: Benchmark result of the AI

Considering the robotic arm requires time to pick and place discs, it is not acceptable to wait for

an extra 5s to calculate early game states as the added idling time would be too long. Pascal

Pons’s online Connect Four solver can solve early game positions much faster than the AI built

from his tutorial [9]. After research, it is discovered that an extra book is added to the original AI

to stimulate the calculation of early game states. The book is a pre-generated 32MB byte

sequence file that stores key-value pairs [29]. By adding an extra function to load the book into

the transposition table, it has 32MB of ready-to-use entries in the cache right after initialization.

As a result, the table is no longer empty at the start, saving time for lengthy calculations at early

game states.

3.3.5 Approach 5: Transforming into an Android Library
The Connect Four AI is written in C++, and it cannot be implemented directly into the Android

application, which utilizes Java. However, it is possible to add C++ code to the Android project

with the help of the Java Native Interface (JNI) [30]. First, add the native source files to the

Android project under the cpp directory. Next, build script CMake is configured to build the

code into a library. Then, the path to CMake is provided to Gradle such that it can package the

library with the app.

Although the procedures sound simple, the actual implementation is not because the C++ codes

are not intended to use as a native library. JNI acts as an intermediate layer for communication

between Java and C++ codes. The board state is translated from Java string jstring into C++

string std::string via JNI for AI computations. The scores returned by the AI are also translated

from C++ back to Java via JNI. The AI codes are also renovated to be an Android native library.

A function is added for JNI to call, replacing the original main function. The original

std::ifstream for book loading cannot be used to load the book under the same directory. In

Android, assets should be put in the assets folder, which will be handled by Android Asset

Packaging Tool (AAPT). To avoid compression of the book by AAPT, the file extension is

52

changed to .jpg, which AAPT ignores. Changing the file extension has no impact on the book, as

it is just a byte sequence file. AssetManager is used instead to read the book, and functions that

load the book into the transposition table are modified to adapt to the change.

3.3.6 Experiment Result: Connect Four AI Android Library
The Connect Four AI has successfully transformed into an Android library with the above

modifications. It can optimally solve any Connect Four board states. Any Android project can

easily import this library to solve Connect Four perfectly. The library is available to download at

https://github.com/bennywong3/c4solver-android-library.

3.4 Experiment 4: Disc Stacker
It is not simple to design a workable disc stacker. The task of the disc stacker is to roll out all 21

discs and auto-refill once the robotic arm picks a disc. In addition, all discs should be gripped at

the same position and the stacker should store at least 21 discs. Several versions of stackers are

developed to incorporate these features, and different tools and methods are utilized.

3.4.1 Approach 1: 3D Printing
Before building the model, a draft of the disc stacker is drawn (see Figure 48). The posited disc

stacker should have three ramps utilizing gravity to refill discs at the exit. Discs are put inside the

stacker at the top opening and rolls out at the bottom exit, where the robotic arm grasps discs.

Figure 48: The draft of the proposed disc stacker

The first version is designed based on the draft (see Figure 49). Three tracks with a 5-degree

slope have a height of at least 3 cm as the disc diameter is 3 cm. Unfortunately, the 3D model is

too large to fit in the build plate of Ultimaker 3 extended, the exit has to be printed separately,

https://github.com/bennywong3/c4solver-android-library

53

and the model has to be printed vertically. As a result, support structures are generated for

overhangs and bridges. However, support removal caused damage to the ramps, and discs cannot

slide down smoothly (see Figure 50). Moreover, the track height provides no tolerance that discs

could get stuck and fail to travel through.

Figure 49: 3D model of disc stacker version 1

Figure 50: The printed disc stacker version 1

With the experience from version 1, version 2 is designed to increase the track height, providing

more tolerance for discs to traverse (see Figure 51). In addition, Ultimaker S5, with a larger build

volume, is chosen to print the model horizontally.

54

Figure 51: 3D model of disc stacker version 2

However, problems are identified in this version. Warping occurs even if a raft is used (see

Figure 52). The exit is too shallow that sometimes discs roll to the exit and then pop out. The 5-

degree ramps also fail to provide enough gravitational force for every disc to roll.

Figure 52: The printed disc stacker version 2

3.4.2 Approach 2: Laser Cutting
Shortcomings of using 3D printers are identified with the above experience. Print failures cannot

be fixed easily and reprinting is a must. Models are subject to the build volume of 3D printers

and print-in-place is not possible for large designs. It is also time-consuming to print large

models and many PLAs are wasted if the print fails.

As the disc stacker design consists of only simple shapes, laser cutting can be utilized instead of

3D printing. The ramps, front and back plates can be created by cutting wooden and acrylic

plates. Models can be sizable as the physical space inside 3D printers no longer bounds the

55

designs. A new version is created to have 10-degree slopes, with a deeper exit that fits the

rounded disc shape to prevent discs from popping out (see Figure 53).

Figure 53: 3D model of disc stacker version 3

The model is separated into layers for cutting (see Figure 54), and they are translated into dxf

format to use the GCC LaserPro Spirit for laser cutting. Discs can smoothly roll out with this

design.

Figure 54: Layers for laser cutting

3.4.3 Experiment Result: Hybrid Approach
There are various methods that can combine the layers. However, the model fails to balance after

integration as the base width is only 1.5cm. To address this issue, joint clamps are designed and

3D printed to act as the support base and hold layers together (see Figure 55).

56

Figure 55: 3D model and the printed joint clamp

The trapezoidal prism shape provides rigid support to the stacker, and the groove tightly joints

layers together. Figure 56 shows the final version of the disc stacker. Layers are assembled by

the joint clamps and can be taken apart effortlessly when needed. Multiple tests are conducted to

prove that it can smoothly roll out all 21 discs to the exit with no disc popping out. It is assured

that the robotic arm can grasp all discs at the exit position.

Figure 56: The final disc stacker

4. Limitation and Future Work
This chapter describes the limitations of the product delivered in this project, subdivided into

software and hardware limitations. Future work can be done to undermine their effects, add extra

functionalities to the product, and improve players’ gaming experience.

57

4.1 Software Limitation
Android Studio is the chosen platform for development, so the delivered application cannot

provide iOS support. This limitation is unavoidable. However, it is insignificant as well. As

cross-platform support is not the primary objective of this project, this limitation is considered a

minor drawback.

Another limitation is found in Connect Four game board detection. The 42 circular slots can be

seen through at the original game board. However, when put into a complex environment, the

detection algorithm fails to identify the board and discs effectively. For example, if the

background has circular patterns, more than 42 circles will be identified and thus cannot

accurately recognize the board. Furthermore, disc detection will fail if the board is placed in

front of a pink or teal-colored wall as discs share the same color with the background. Therefore,

the board is modified by installing black paper at the back. The above circumstances can be

avoided with the black paper, but the see-through property of the game board is no longer

available.

4.2 Hardware Limitation
In the project, it is assumed that the game board and the robotic arm are center-aligned. The

distance between the robotic arm, game board and disc stacker is assumed to be fixed to pick and

place discs into different columns with the coordinates preset. If the board is placed at another

position, the arm fails to place discs inside the board. Only the distance between the board and

the mobile phone can be changed during the board detection process. It is necessary to have the

same setup for the robotic arm to have expected performance.

Another limitation is found in picking up discs. Ideally, the robotic arm can act like a human,

picking a disc from a group of laying down discs under the vertical board and placing it inside

the board. Object recognition on the laying down discs is compulsory to accomplish this.

However, as the mobile phone camera is used to capture and analyze the vertical board, it is not

feasible to simultaneously capture the horizontal laying down discs. Even if an extra camera is

installed for disc capturing, it is necessary to build a new AI model from the ground up for

recognizing and picking the laying down discs. To mitigate this, a disc stacker is employed such

that the arm can pick up discs vertically at a fixed position without any recognition needed.

58

The project also assumes a rigid connection between components of the robotic arm and

consistent behavior of the arm. However, in real-life operations, gears are not closely connected

and displacement could occur, decreasing positioning accuracy. Besides, plastic gears are easier

to be worn out and damaged, again aggravating the positioning performance. As a result, the

robotic arm scarcely fails to place a disc into the minimal column gap.

4.3 Future Development
Addressing the limitation in board detection, a new approach can be explored such that the

application can still distinguish the board from the surroundings even if the board can be seen

through and noisy backgrounds are captured. For example, 3D object detection could be used to

differentiate the game board from the environment. In addition, the current approach to board

and disc detection can also be enhanced to be more resilient to various circumstances.

The Arm Controller can also add a manual calibration function such that the distance between

the robotic arm, game board and disc stacker need not be fixed. In the final product, users can

move the arm to the disc-picking and seven column positions via buttons inside the Arm

Controller. Users can also manually control the arm with the gamepad. Extra functions can be

included to define the board and stacker position manually. Users move the arm to the seven

column and disc picking positions, and the application overrides the preset coordinates with

these positions. Then, the application can locate the new board and stacker positions and play

Connect Four with the players.

It is also possible to implement a difficulty system in the Player VS AI Mode. Players can only

play with the perfect Connect Four AI in the delivered product, which could be too challenging

and provide no sense of accomplishment for some players. Other Connect Four AIs can be

developed to deliver different difficulty levels to players. For example, machine learning can be

applied to build an AI that makes a similar strategy as a human player. Depth limit search can

also be utilized to create a weaker version of the perfect AI.

59

5. Conclusion
This project aims to construct a Connect Four AI player that automatically picks and places discs

using a mobile application and a 3D printed robotic arm. To achieve this objective, the employed

implementations of the software and hardware components are discussed in this report. Multiple

tools and techniques in software and hardware were applied in this project. In particular, several

experiments were carried out to select the best approaches. Through optimizing the minimax

algorithm with Alpha-Beta pruning, a perfect Connect Four AI is built to play against human

players in the delivered application. By comparing the performance of different object

recognition techniques, circle detection and HSV color detection are chosen to generate fast and

accurate results of board states. With 3D printing and laser cutting, a disc stacker is constructed

to facilitate disc picking. Despite having limitations in the application and robotic arm, the

deliverables can further be improved by future undertakings, enhancing the Connect Four

gaming experience and usability of the product under different scenarios.

To conclude, the finished product accomplishes the objective mentioned earlier with extra

features that the AI opponent is perfect and unbeatable, and players can play games other than

Connect Four with the application. The final product demonstrates the robustness of AI in

strategic thinking and object recognition, which can be utilized in STEM education. Students’

interest in AI and computer science can be aroused by playing with the deliverables.

60

References
[1] “Deep Blue (Chess Computer),” Chess.com. [Online]. Available:

https://www.chess.com/terms/deep-blue-chess-computer. [Accessed: 27-Oct-2021].

[2] P. Mozur, “Google's AlphaGo defeats Chinese go master in win for A.I.,” The New York

Times, 23-May-2017. [Online]. Available:

https://www.nytimes.com/2017/05/23/business/google-deepmind-alphago-go-champion-

defeat.html. [Accessed: 27-Oct-2021].

[3] M. E. Moran, “Evolution of robotic arms,” Journal of robotic surgery, 2007. [Online].

Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247431/. [Accessed: 27-Oct-

2021].

[4] G. Team, “The rules of Connect 4 (according to M. Bradley & Hasbro),” Gamesver, 02-

Jul-2021. [Online]. Available: https://www.gamesver.com/the-rules-of-connect-4-

according-to-m-bradley-hasbro/. [Accessed: 27-Oct-2021].

[5] P. Pons, “Part 1 – introduction,” Solving Connect 4: how to build a perfect AI, 01-May-

2016. [Online]. Available: http://blog.gamesolver.org/solving-connect-four/01-

introduction/. [Accessed: 27-Oct-2021].

[6] “4 in a row king,” Mobirix, 20-Dec-2020. [Online]. Available:

https://play.google.com/store/apps/details?id=com.mobirix.connectfour. [Accessed: 17-

Apr-2022].

[7] “4 in a row,” Quarzo Apps, 4-Jan-2022. [Online]. Available:

https://play.google.com/store/apps/details?id=com.quarzo.fourinarow. [Accessed: 17-Apr-

2022].

[8] P. Pons, “Solving connect 4: How to build a perfect AI,” Solving Connect 4: how to build a

perfect AI. [Online]. Available: http://blog.gamesolver.org/. [Accessed: 17-Apr-2022].

[9] P. Pons, “Connect 4 solver,” Game Solver. [Online]. Available:
https://connect4.gamesolver.org/. [Accessed: 17-Apr-2022].

61

[10] K. L. Busbee, “Integrated Development Environment,” Rebus Press, 15-Dec-2018.

[Online]. Available:

https://press.rebus.community/programmingfundamentals/chapter/integrated-development-

environment/. [Accessed: 27-Oct-2021].

[11] E. Protalinski, “Google releases Android Studio 1.0, the first stable version of its ide,”

VentureBeat, 08-Dec-2014. [Online]. Available:

https://venturebeat.com/2014/12/08/google-releases-android-studio-1-0-the-first-stable-

version-of-its-ide/. [Accessed: 27-Oct-2021].

[12] “Mobile Operating System Market Share Worldwide,” StatCounter Global Stats. [Online]

Available: https://gs.statcounter.com/os-market-share/mobile/worldwide [Accessed: 27-

Oct-2021].

[13] “Firebase,” Google. [Online]. Available: https://firebase.google.com/. [Accessed: 17-Apr-
2022].

[14] “The color system,” Material Design. [Online]. Available: https://material.io/design/color/

the-color-system.html. [Accessed: 22-Jan-2022].

[15] R. Sparks, “Gradient - nature effortlessly achieves what takes designers so much effort to
copy.,” Medium, 02-May-2021. [Online]. Available: https://uxplanet.org/gradient-nature-
effortlessly-achieves-what-takes-designers-so-much-effort-to-copy-e08c07e82421.
[Accessed: 17-Apr-2022].

[16] S. Subramaniyan, “The rounded user experience,” Medium, 30-Jul-2020. [Online].
Available: https://uxplanet.org/the-rounded-user-experience-ff7a1898ab33. [Accessed: 17-
Apr-2022].

[17] E. Macpherson, “The UX honeycomb: Seven essential considerations for developers,”
Medium, 08-Oct-2019. [Online]. Available: https://medium.com/mytake/the-ux-
honeycomb-seven-essential-considerations-for-developers-accc372a398c. [Accessed: 17-
Apr-2022].

[18] “Hough Circle Transform,” OpenCV. [Online]. Available:

https://docs.opencv.org/4.x/da/d53/tutorial_py_houghcircles.html. [Accessed: 18-Oct-

2021].

62

[19] “Minimax Algorithm in Game Theory | Set 1 (Introduction),” GeeksforGeeks, 31-Mar-

2021. [Online]. Available: https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-1-introduction/. [Accessed: 27-Oct-2021].

[20] “Minimax algorithm in Game theory: Set 4 (alpha-beta pruning),” GeeksforGeeks, 18-Aug-

2021. [Online]. Available: https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-4-alpha-beta-pruning/. [Accessed: 27-Oct-2021].

[21] S. Edelkamp, and P. Kissmann, “Symbolic Classification of General Two-Player Games,”
in Ki 2008: Advances in artificial intelligence, Heidelberg, Berlin: Springer, 2008, pp.
185–192.

[22] B. Haran, “Connect four - numberphile,” YouTube, 01-Dec-2013. [Online]. Available:
https://www.youtube.com/watch?v=yDWPi1pZ0Po. [Accessed: 17-Apr-2022].

[23] The on-line encyclopedia of integer sequences® (OEIS®). [Online]. Available:
https://oeis.org/A212693/b212693.txt. [Accessed: 17-Apr-2022].

[24] F. Tobler, “Robotarm by ftobler,” Thingiverse, 14-Aug-2016. [Online]. Available:
https://www.thingiverse.com/thing:1718984. [Accessed: 17-Apr-2022].

[25] 20sffactory, “20sffactory/COMMUNITY_ROBOT_ARM: Repository of Community
Robot Arm Documents,” GitHub, 20-Jan-2022. [Online]. Available:
https://github.com/20sffactory/community_robot_arm. [Accessed: 17-Apr-2022].

[26] Hkucs-Makerlab, “Hkucs-makerlab/robotarm,” GitHub, 26-May-2020. [Online].
Available: https://github.com/hkucs-makerlab/robotArm. [Accessed: 17-Apr-2022].

[27] Dejan, “G-code explained: List of most important G-code commands,” How To
Mechatronics, 06-May-2020. [Online]. Available:
https://howtomechatronics.com/tutorials/g-code-explained-list-of-most-important-g-code-
commands/. [Accessed: 17-Apr-2022].

[28] 20sffactory, “Firmware guide,” 20sffactory, 20-Jan-2022. [Online]. Available:
https://www.20sffactory.com/robot/resource/firmware. [Accessed: 17-Apr-2022].

[29] P. Pons, “Release opening book · Pascalpons/Connect4,” GitHub, 25-Jan-2019. [Online].
Available: https://github.com/PascalPons/connect4/releases/tag/book. [Accessed: 17-Apr-
2022].

[30] “Add C and C++ code to your project : android developers,” Android Developers.
[Online]. Available: https://developer.android.com/studio/projects/add-native-code.
[Accessed: 17-Apr-2022].

63

Appendix A
Installation guide of the Connect Four game application and Arduino program

Follow these steps to install the Connect Four game application.

1. Visit the following link.

https://github.com/bennywong3/Play-Connect4-with-Robotic-Arm-via-App

2. Click on the “Code” button on the right. A dropdown should appear.

3. Click on “Download ZIP”, and the repository should be downloaded.

4. Extract the zip file. A folder named “Play-Connect4-with-Robotic-Arm-via-App-main”

should appear.

5. Install Android Studio and open the project folder in Android Studio.

6. Enable USB Debugging mode on the Android device and connect it to the computer.

7. After Android Studio recognizes the device, click the “Run ‘app’” button to install the

Connect Four game application to the device.

Follow these steps to install the Arduino program.

1. Visit the following link.

https://github.com/bennywong3/robotic-arm-arduino

2. Click on the “Code” button on the right. A dropdown should appear.

3. Click on “Download ZIP”, and the repository should be downloaded.

4. Extract the zip file. A folder named “robotic-arm-arduino-main” should appear. Rename it

to “robotArm”.

5. Install Arduino IDE and open the “robotArm.ino” with the IDE.

6. Connect the Arduino Mega 2560 to the computer. Under “Tools”, choose the COM port

that is connecting to the board and select the board as “Arduino Mega or Mega 2560”

7. Click “Upload” to install the program on the board.

https://github.com/bennywong3/Play-Connect4-with-Robotic-Arm-via-App
https://github.com/bennywong3/robotic-arm-arduino

64

Appendix B
G-code command list

G-code example Function called Description

G1 X0 Y225 Z180 cmdMove(cmd) Move the robotic arm to coordinate (0, 225, 180)

M3 T45 cmdGripperOn(cmd)
Open the gripper at 45 degrees
(90 degrees is a wide-open and 0 degrees is a
complete close)

M5 T45 cmdGripperOff(cmd)
Close the gripper at 45 degrees
(90 degrees is a complete close and 0 degrees is
a wide-open)

M17 cmdStepperOn() Turn on stepper motors

M18 cmdStepperOff() Turn off stepper motors

G28 homeSequence() Use end-stop switches to perform auto home
positioning

65

Appendix C
Related diagrams

RAMPS 1.4 pinouts

Blueprint of the original robotic arm by Florin Tobler

	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1. Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objective and Deliverable
	1.4 Literature Review
	1.5 Contribution of Members
	1.6 Report Outline

	2. Methodology
	2
	2.1 Design
	2.1.1 Software
	2.1.2 Hardware
	2.1.3 UI and UX Design
	2.1.4 System Workflow

	2.2 Software – Mobile Application
	2.2.1 Board Detection
	2.2.2 Connect Four AI Algorithm
	2.2.3 Scoring System

	2.3 Software – Game Modes
	2.3.1 Player VS AI Mode
	2.3.2 Arm Controller
	2.3.3 Building Mode

	2.4 Hardware – Robotic Arm
	2.4.1 Background of the Robotic Arm
	2.4.2 Enhancements

	2.5 Hardware – Disc Stacker

	3. Experiments, Results and Discussion
	3
	3.1 Experiment 1: Board State Detection
	3.1.1 Approach 1: TensorFlow Lite Neural Network
	3.1.2 Approach 2: OpenCV Circle Detection
	3.1.3 Experiment Result: Fine-tuned OpenCV Circle Detection

	3.2 Experiment 2: Disc Detection
	3.2.1 Approach 1: RGB Color Space
	3.2.2 Approach 2: HSV Color Space
	3.2.3 Experiment Result: HSV Disc Detection

	3.3 Experiment 3: Connect Four AI
	3.3.1 Approach 1: Minimax with Alpha-Beta Pruning
	3.3.2 Approach 2: Bitboard
	3.3.3 Approach 3: Move Ordering
	3.3.4 Approach 4: Transposition Table
	3.3.5 Approach 5: Transforming into an Android Library
	3.3.6 Experiment Result: Connect Four AI Android Library

	3.4 Experiment 4: Disc Stacker
	3.4.1 Approach 1: 3D Printing
	3.4.2 Approach 2: Laser Cutting
	3.4.3 Experiment Result: Hybrid Approach

	4. Limitation and Future Work
	4
	4.1 Software Limitation
	4.2 Hardware Limitation
	4.3 Future Development

	5. Conclusion
	References
	Appendix A
	Appendix B
	Appendix C

