
COMP4801: Final Year Project

Blockchain: Music Licensing

Final Report

Supervisor: Dr. Allen M. H. Au

Date of Submission: 18th April 2022

Submitted By: Bevan Varghese

Group 21006

ANAND, Mahima (3035550987)

BAGRI, Siddhant (3035551785)

VARGHESE, Bevan (3035552777)

Abstract

The music industry’s growth in the last decade is largely attributed to the growth of

streaming services during the period. However, lack of consistency in the mechanisms

between different streaming platforms and the presence of several intermediaries

between the artist and the consumer have led to two major problems, namely copyright

infringement and unfair distribution of artists’ royalties. The goal of this project is to

build a blockchain-based web application that tackles these two issues. In order to do

so, the application is characterized by three main features: a decentralized file storage

system, a decentralized rights ledger, and integrated cryptocurrency wallets. These

features are implemented through a combination of industry-standard technologies and

frameworks on the server-side and the client-side. Background research on similar

projects in the domain was conducted. The main takeaway is that there are gaps in the

technical designs of these applications, which prevent them from addressing both of

the aforementioned issues simultaneously. Using this information, the system’s

components and the relationships between each component were finalized.

Solidity-powered smart contracts serve as the core component of the system. The

application offers all the functionality that can be expected of a typical music-streaming

service. Ultimately, the vision of this application is to protect the rights and royalties of

artists in the music industry.

i

Acknowledgement

I would like to extend my gratitude to all the individuals without whom this project would

not be possible. Firstly, I would like to thank my supervisor Dr. Allen Au, whose constant

support and guidance has ensured that the project stays on the right track. Next, I would

like to thank Dr. John Yuen, whose valuable feedback served as pointers for the project

going forward. I would also like to thank my Technical English instructor Ms. Grace

Chan, who provided sound advice on matters related to report-writing, presentations,

and documentation. Without her help, this report would be lacking in terms of cohesion,

completeness, and professionalism. Additionally, I would like to thank my friends and

family, whose unrelenting support has helped me persevere towards delivering the

project with high effort. Finally, I extend my gratitude to the University of Hong Kong,

who have provided my group mates and I with the opportunity to apply the knowledge

we have harnessed over the course of our degree in a practical setting.

ii

Table of Contents
Abstract i
Acknowledgement ii
List of Figures, Tables & Abbreviations v

1. Introduction 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Literature Review 2
1.4 Objectives & Scope of Deliverables 3
1.5 Report Organization 5

2. Technical Background 5
2.1 Blockchain 5
2.2 Smart Contracts 6
2.3 Layer 1 & Layer 2 Networks 7
2.4 Semi-decentralization 7
2.4 Inferences 8

3. Methodology 8
3.1 The Deliverables 9
3.2 The Underlying Blockchain Platform 10
3.3 Smart Contracts 11
3.4 The Frontend 12
3.5 The Backend 12
3.6 The Database 12
3.7 Peer-to-Peer Data Storage 13
3.8 Post-Purchase Copyright Protection 14
3.9 Encryption Algorithm 14
3.10 Software Engineering Practices 15

4. Feature Implementation 16
4.1 Smart Contract 17
4.2 User Login 18
4.3 Upload Music 18
4.4 Play Music 20
4.5 Searching 21
4.6 Sorting 21
4.7 Playlists 22
4.8 Album Art 23
4.9 Mobile Support 23

iii

5. Challenges & Difficulties 23
5.1 Piracy Concerns 23
5.2 Encryption Mechanism 24
5.3 Searching and Sorting 24

6. Business Model 25
6.1 Analysis of Different Models 25

6.1.1 Pay-Per-Stream Model 25
6.1.2 Subscription Model 25
6.1.3 The Verdict 26

6.2 Market Comparison 26
6.3 Cost Analysis 27

7. Schedule & Milestones 28
8. Future Enhancements 29
9. Conclusion 31

References 32

iv

List of Figures

Figure 1 Revenues for the global music recording industry from 2001
to 2019

1

Figure 2 Gross income from music sources vs other sources across
different age groups

4

Figure 3 System architecture diagram 9

Figure 4 Data structures for songs and playlists 13

Figure 5 Cipher block chaining 15

Figure 6 UI of the application 16

Figure 7 Metamask wallet connection request 18

Figure 8 Metamask transaction confirmation request 19

List of Tables

Table 1 Revenues and commissions per 1000 streams on different
streaming platforms (in HK$)

28

Table 2 Project timeline 29

List of Abbreviations

AES Advanced Encryption Standard

API Application Programming Interface

B2C Business-to-Consumer

CBC Cipher Block Chaining

COALA IP Coalition Of Automated Legal Applications — Intellectual Property

EVM Ethereum Virtual Machine

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IPFS InterPlanetary File Storage

UI User Interface

iv

1. Introduction

This section introduces the current state of affairs with regard to music

distribution and licensing, and proceeds to introduce the aims and goals of this project

– to build a blockchain-based music streaming and licensing platform.

1.1 Background

Technological advances in recent decades have led to the widespread availability

of music in digital formats. The transition of the music industry from traditional

brick-and-mortar stores to digitized distribution has boosted the growth of the industry.

As reported by the World Bank in 2020, more than US$350 billion was collected in

charges for the use of intellectual property, with music royalties dominating these

numbers [1]. Streaming services are the frontrunners in the music industry, due to the

combined effect of the convenience of streaming and the accessibility of smart devices

[2]. The growth of the industry and streaming services is seen in Figure 1, which depicts

the industry’s revenues globally since the turn of the century.

Figure 1: Revenues for the global music recording industry from 2001 to 2019 [2]

1

As is evident from Figure 1, the music industry’s revenue growth in recent years

coincides with that of streaming services. These services operate in tandem with artists

through middlemen like music publishers and record labels. While publishers are in

charge of musical composition copyright (the music and lyricism), record labels

manage sound recording copyright (what the consumer finally hears). Additionally,

several streaming platforms such as Spotify, Apple Music and Google Music adopt their

own revenue models and file storage mechanisms. However, inconsistencies between

the models and the presence of several middlemen have led to two main problems with

music streaming: copyright infringement and the distribution of artists’ due royalties [3].

1.2 Problem Statement

Copyright infringement refers to when consumers purchase licensed material

and distribute it to other consumers for free or for their own personal gain. Since the

music is protected by copyright law in the artist’s name, public access to this material

without due credit to the artist is a major problem in the Internet era.

The other issue relates to the protection of the artist’s income. Some streaming

services such as Spotify allow users to listen to their entire catalog of music on a

subscription-basis, while others like iTunes only allow users to purchase singles/albums

before they can listen to them. Due to these inconsistencies, unfair distribution of

royalties among artists proves to be an issue. Moreover, the presence of the

aforementioned middlemen like publishers and record labels further complicates the

division of disbursements. The result of such a convoluted system is that artists, who

make the music in the first place, are left feeling underpaid [4].

1.3 Literature Review

The problems mentioned above have generated keen interest in the research and

start-up industries. This report discusses three such projects.

Ujo offers an Ethereum platform to eliminate confusion of music ownership and

automate payments [5]. Easy license access is allowed through the COALA IP

specification. IPFS is used to store the data, in order to maintain reliability and

2

decentralization. The caveat with Ujo, however, is the lack of a proper post-purchase

copyright protection mechanism. Consequently, there are ways for users to illegally

redistribute the music.

SingularDTV is a content distribution system on the Ethereum network [6]. Smart

contracts power the platform, as they are used to democratize royalty collections and

management of intellectual property. The platform’s artists are given the power to

create their own cryptocurrency tokens. By doing so, they can incentivize certain actions

among their fanbase. As an artist becomes more popular, their tokens become more

valuable and fans can also benefit from supporting newer talents. Much like Ujo,

copyright protection is not a priority for SingularDTV. Moreover, artists cannot

necessarily be expected to be aware of the economics involved in managing your own

tokens.

Vezt is an alternate business model and acts as a rights marketplace [7]. Fans

purchase partial ownership of the royalty rights and thereby directly fund the artists.

Songs are essentially perceived as mini-corporations. Royalty rights may be purchased

in a similar fashion to shares in a stock market. This not only incentivizes fans to

support the artist’s growth but also allows artists to generate large funding. Similar to

SingularDTV however, this business model would be very difficult for artists to manage,

without sufficient knowledge of financial markets. Additionally, artists lose some

amount of autonomy when sharing the royalty rights with investors.

1.4 Objectives & Scope of Deliverables

The goal of this project is to build a blockchain-based web application that

addresses the two problems of copyright infringement and unfair royalty distribution, as

mentioned in Section 1.2. The platform has three main features:

(i) Decentralized file storage: This allows artists to upload their musical

compositions and recordings, which can be accessed by anyone on the platform

for a fee.

3

(ii) Decentralized rights ledger: This ensures validation of rights and licensing

such that a track can be played by the user only after the transaction is

confirmed.

(iii) Integrated cryptocurrency wallets: This enforces payments from the users

for purchases and direct payments to the artists for royalties.

Blockchain’s three fundamental characteristics make it ideal for the protection of

copyright and licensing information. The three characteristics are as follows:

1. Decentralization: There is no single governing authority or person presiding

over the platform. Instead, it is controlled by a distributed network of members.

2. Immutability: Data stored on the blockchain ledger cannot be altered or

changed.

3. Transparency: Anyone can join the blockchain network and view the

information stored.

Given the competition in the music industry, smaller artists struggle to make their

careers financially viable. Figure 2 illustrates the dependency of these artists on

alternate sources of income due to their limited earnings from music.

Figure 2: Gross income from music sources vs other sources across different age groups

[8]

4

The elimination of costs associated with middlemen in our project’s

implementation is expected to lead to higher revenue-per-stream for all artists. Lost

royalties as a consequence of unnoticed copyright infringement will also be minimized,

owing to the decentralized setups for file storage and rights’ information.

1.5 Report Organization

The remainder of this report proceeds as follows: first, to offer technical

background and insight, Section 2 elaborates on the core technologies driving the

platform. More specifically, blockchain, smart contracts, layer 1 and layer 2

implementations, and semi-decentralized applications are discussed. Section 3

elaborates on the methodology behind the implementation, and how different elements

are incorporated to interact in a functional manner. Section 4 further discusses the

features offered by the platform and the implementation details for each feature.

Section 5 lays down the business model that the platform will operate on, so as to meet

costs while delivering streaming services to the user. Section 6 discusses some of the

challenges and limitations encountered over the course of development, as well as

some of the solutions to address these difficulties. The project timeline is highlighted in

Section 7. Further, Section 8 elaborates on some of the future enhancements of the

platform and how they can be implemented. Finally, Section 9 recapitulates the project’s

goals and concludes with the future direction for applications in this domain.

2. Technical Background

This section outlines the key technologies and their suitable characteristics that

will form the backbone of our project, namely - blockchain and smart contracts. It then

describes why their application in solving the problem of music licensing presents a

desirable solution.

5

2.1 Blockchain

A blockchain is defined as a digital public ledger for recording transactions [9].

This essentially serves as a database which stores information as a growing chain of

‘blocks’. The suitability of a blockchain arises from its properties of being decentralized,

transparent and immutable.

Through its decentralized network architecture, each member has access to an

identical copy of the data stored on the blockchain ledger which updates in real time.

New data is verified and added via a consensus algorithm and any compromise to a

member’s ledger would be rejected by majority members on the network [9]. This

ensures data transparency and keeps the blockchain reliable. Moreover, without

regulation from a centralized authority, peer to peer transactions can take place

instantly eliminating the need to pay an intermediary fee.

Once created, it is impossible to alter the chain, rendering it permanent and

immutable. This is achieved by cryptographic hashing. Each new block comprises of the

following – (i) the recorded data, (ii) the hash value of the previous block linking it to the

rest of the chain, and (ii) a new hash value generated from the contents of the current

block and the previous block’s hash which allows for linkage to the next block. Thus, any

modification to a block would also alter its hash value and conflict with the existing

block and would subsequently require every other block to be modified.

2.2 Smart Contracts

Smart contracts are programs stored on the blockchain that execute when

predefined conditions, or “trigger-events”, are met [10]. Hence, the execution of an

agreement or another event can be automated without the effort or time of any

intermediaries. Much like regular contracts, they define rules in the form of code which

are automatically enforceable by specified function calls. Smart contracts are most

commonly used for executing virtual currency transactions [10]. They possess the

6

benefit of being trackable since any interaction with a smart contract is irreversible.

Each contract requires some gas fees to execute.

2.3 Layer 1 & Layer 2 Networks

The increasing popularity of cryptocurrencies has increased the need for

blockchain layers for improved transaction rates, network security and recordkeeping.

When the demand on the network is high, it gets clogged. This causes the pooling up of

pending transactions. As a result, the processing and execution times are increased. In

order to handle this, miners on the network begin to prioritize transactions with higher

gas prices. Consequently, the minimum cost of executing a transaction increases to the

point where the gas fees skyrockets unreasonably.

This is where layering alleviates the issue. Where layer 1 is the native underlying

blockchain, layer 2 is a third-party integration that operates on this layer so as to

improve its efficiency [11]. The dual-layered structure allows for an increased number of

nodes, which further results in a higher transaction throughput [11]. The layer 2

blockchain offloads a portion of layer 1’s transactional burden onto another system

architecture for managing the processing load. The processed load is then reported to

layer 1 for finalization. This reduces congestion and improves network scalability. Layer

2 solutions utilize smart contracts to make these transactions [11].

2.4 Semi-decentralization

The defining characteristic of blockchain-based applications is decentralization.

However, as quoted by Deloitte Insights, “blockchain-based systems are comparatively

slow” [12]. While several organizations are moving towards the adoption of blockchain

technology, the sluggish transaction speed acts as a bottleneck for these systems. The

time taken for creation of new blocks, processing gas payments, and verifying

transactions is quite significant, especially when dealing with the user experience of an

application. In the context of a music-streaming platform, performing operations such

as searching and sorting, in addition to uploading, encrypting, and playing, could prove

7

to be very computationally expensive. A simple solution to combat this feasibility issue

is a semi-decentralized architecture: the combination of a backend API with a

blockchain solution, to extract the best features from both [13]. The integrity of

information on the blockchain is preserved while the efficiency of performance is

maintained with the help of the backend.

2.5 Inferences

The qualities of the aforementioned technologies can be leveraged to build a

decentralized music-sharing platform. Using blockchain technology would ensure a

timely, transparent, and traceable payment system. Moreover, decentralization would

allow for the development of a uniform, universal database. Payments can be made via

cryptocurrencies. Smart contracts can automatically distribute the revenue among

owners in pre-decided proportions as per the copyright agreement. Additionally, the

layer 2 scaling solutions prove beneficial to building a decentralized application (DApp)

on the blockchain network. The hybridization of the application into a

semi-decentralized application would allow all these features to be delivered while still

maintaining a high standard of user experience.

3. Methodology

This section explains the technology and engineering choices for the system,

their advantages and the expected difficulties from these choices. The architecture

diagram in Section 3.1 represents the architecture of the system and an explanation of

its components follows in later subsections.

3.1 The Deliverables

As mentioned in the introduction, the goal is to develop a decentralized music

platform that handles file storage, royalty collections, and rights & licensing. A

web-based platform powered by blockchain technology will be developed by the end of

this project. More specifically, the platform combines three main features:

8

● Decentralized file storage to host the music files and serve them to listeners

upon request. This is implemented using IPFS and Infura. All uploaded files are

visible to every user on the network. However, their access is restricted to those

who stream the songs.

● Decentralized rights ledger implemented via smart contracts to manage and

validate copyright, licensing, and availability of media on the platform. A listener

is only able to play a track upon a confirmed transaction with payment redirected

to the wallets of copyright owners listed in the contract.

● Integrated Cryptocurrency Wallets using Metamask for automatic payments from

listeners and to artists for quick, efficient transfers.

Figure 3: System architecture diagram

The above features and their implementations will also encompass a proper

post-purchase copyright protection mechanism. This will ensure that the rights of a

song are protected even after it is accessible to a user. The details of the same are

discussed in Section 3.8. The application will be built through a combination of

industry-standard backend and client-side frameworks, which will be discussed in later

sub-sections.

9

3.2 The Underlying Blockchain Platform

When it comes to building blockchain-based applications, Ethereum and

Hyperledger Fabric are the two most popular blockchain platforms [14]. While both

platforms come with their own sets of advantages and disadvantages, Ethereum

combined with Polygon as a secondary scaling solution was found to be most suitable

for the development of this project.

Being an open-source platform backed by a highly active community, Ethereum

offers the fundamental functionality that any blockchain has, from transaction

initialization to transaction validation, and so on. Moreover, it is heavily tested and

thoroughly documented, thus making the development process smoother. Ethereum

supports public as well as private platforms, making it suitable for

Business-to-Consumer (B2C) transactions. Given that the project’s target audience is

the general public, Ethereum is preferred to its counterpart Hyperledger Fabric, which

only grants blockchain access to a set of predefined users [14].

A potential security concern in choosing Ethereum over Hyperledger Fabric is

that the former posts all transactions to the public ledger, making it visible to all users.

In contrast, Hyperledger Fabric provides transaction privacy, wherein visibility and

accessibility can be specified by the developers [14]. However, it is worth noting that

through the use of an appropriate encryption mechanism, it can be ensured that only by

using both the public and the private keys can a user access their own transaction

information on the blockchain.

The main piece of functionality that comes with Ethereum is the support for

smart contracts. This makes the blockchain programmable since smart contracts run

pieces of code upon certain trigger-events. Details and implementation of the same will

be discussed in the next sub-section.

However, the Ethereum network by itself has some limitations as a blockchain

development platform in terms of low throughput, risk of clogging and a

10

non-customizable technology stack. To deal with this, the team is using Polygon along

with MATIC - its associated cryptocurrency. Polygon is a framework which serves the

purpose of developing and connecting to networks that are Ethereum compatible [15]. It

also provides the benefits of higher security alongside lower gas fees for processing

transactions and faster speeds [15]. It has adaptor modules and a protocol to facilitate

the exchange of messages with Ethereum [15].

3.3 Smart Contracts

Smart contracts serve as the project’s centerpiece. To develop the smart

contracts, the programming language Solidity is being used, because the language was

specifically designed to write smart contracts, as well as to target the Ethereum Virtual

Machine (EVM) [16].

When an artist uploads a single, it is captured on the blockchain in a smart

contract. This smart contract contains all relevant information in terms of ownership,

such as the artist’s name, the song’s title, the recording of the track, the rights to the

track, information on the availability of the track, and the artist’s crypto wallet address

for payments [16]. The contract also serves the purpose of automating transactions.

When listeners stream the single on the platform, a “play” event is triggered, and as a

result, the artist gets paid.

For developing, prototyping, and testing the smart contracts, Truffle is used as

the blockchain pipeline. Truffle is a development environment for blockchains using the

EVM, which should facilitate the implementation of smart contracts as intended.

MetaMask is currently being used for testing these contracts via the Polygon testnet.

MetaMask is a cryptocurrency wallet software which allows users to interact with

DApps on the Ethereum blockchain.

11

3.4 The Frontend

The client-side of the project presents the users with a GUI for interaction and

engagement. Some functions such as the uploading of tracks interact with the

blockchain through the backend API. Other features such as the music player and

crypto wallets are presented on the frontend. ReactJS is used to develop the frontend,

as it is the industry-standard framework used to design UI components. To help with

styling, libraries such as MaterialUI and Bootstrap are used.

3.5 The Backend

The backend provides an API to support important additional functionality such

as IPFS uploading, encryption and decryption, playlist support, etc. To design the API,

Express is used as the web framework on top of Node.js. Following the use of

JavaScript to build the server-side, Web3.js will be used to connect the Node.js server to

the chain. Web3.js is essentially a collection of JavaScript libraries that facilitate

interaction with a local or remote Ethereum node using HTTP requests [17]. The API

endpoints offered are /upload, /play, /fetch-all-playlists, and

/add-song-to-playlist. The functionality of each endpoint is discussed further in

Section 4.

3.6 The Database

The backend is supplemented by MongoDB. MongoDB is a NoSQL database

wherein data is organized in the form of documents within collections (similar to rows

within tables). The database will be used to store collections of songs and playlists. The

structure of songs and playlists can be seen in Figure 4.

12

Figure 4: Data structures for songs and playlists

3.7 Peer-to-Peer Data Storage

From a development perspective, storing large amounts of data in the form of

files on Ethereum blockchain would be considerably expensive. To manage this, the

platform’s chain is linked to the InterPlanetary File System (IPFS) - a distributed

peer-to-peer storage system [18]. It serves the purpose of storing and accessing files via

their cryptographic hashes stored on the blockchain.

However, if the IPFS node is down for some reason, the audio file may become

temporarily unavailable. Infura is used to solve this problem. Infura is a Web3

infrastructure that makes access to the blockchain faster by connecting instantly to the

Ethereum and IPFS networks [19]. Infura will pin uploaded IPFS files and keep them

available to the network in a reliable manner. It will also accommodate scaling as the

number of files grows.

13

3.8 Post-Purchase Copyright Protection

An important goal of the project is to protect the music copyright. Unlike the

start-ups discussed in Section 1.3, the system implements a post-purchase copyright

protection mechanism. There are different implementations for the network, storage,

service and view layers.

Network Layer: Every peer is connected via the blockchain network. A user must

be synchronized with all the information on the chain to avail of any services. This

ensures that no rights are tampered with and all peers have the same version of the

data.

Storage Layer: IPFS is the storage of choice. It is a peer-to-peer protocol which

allows for reliable decentralized storage [18]. A file uploaded to IPFS can only be

accessed by a unique hash, which is generated during file-upload. These hashes are

saved on the smart contract, along with other details such as the song title and

contributing artists. The usage of smart contracts ensures the immutability and

traceability of data.

Service Layer: This layer manages offline ownership enforcement, by using

watermarking on audio files. A watermark on an audio file refers to adding a short

sound effect or voice-over into the audio file to claim ownership [20]. This

implementation also allows the system to recognize illegal or inorganic uploads. The

service layer will also provide an encryption function to protect the IPFS hash and audio

file in case the IPFS hash is leaked. The specifics of the encryption feature are

discussed in Section 3.9 and Section 4.3.

View Layer: Access to audio files is limited to the system itself, i.e, users can only

use the frontend to pay for and play music. This ensures that no one gains access to the

files outside the system to distribute them.

3.9 Encryption Algorithm

The audio file for each song will be encrypted by the backend, before being

uploaded to IPFS. The encryption algorithm used is Advanced Encryption Standard

14

(AES). AES is one of the most popularly used block cipher mechanisms. By repeatedly

executing the same encryption operations several times, the encrypted file is generated.

The key length for AES can vary between one of 128, 192, and 256 bits. Moreover, there

are six different modes in which AES can be used: authenticated encryption with

additional data (AEAD), electronic codebook (ECB), cipher block chaining (CBC), cipher

feedback (CFB), output feedback (OFB), and counter (CTR). For this project,

AES-256-CBC is used, which indicates AES with a 256-bit key, using cipher block

chaining.

Figure 5: Cipher Block Chaining (CBC)

To perform CBC, a randomly generated number is required. This number is

referred to as the initialization vector (IV). The input message is divided into blocks. An

XOR operation is performed on each block with the defined IV. The name CBC is derived

from the fact that the output of each encryption operation is fed in as the input for the

next block. This encryption operation is performed a certain number of times to produce

the final encrypted message. For decryption, the key, IV, and encrypted message are fed

in as inputs. This operation is performed the same number of times as specified during

encryption. If the key and IV used are the same as the original ones used for encryption,

then the original message is retrieved and the file is decrypted.

15

3.10 Software Engineering Practices

The crux of software engineering in today’s world is to follow an effective

workflow to productively address complex problems and deliver products of the highest

quality. Agile methodologies have been adopted by the team over the course of

development, with the Scrum framework particularly serving as a guideline.

Jira is used as the project management tool of choice, wherein job functions are

organized into sprints. Each sprint is set for a duration of two weeks. Every task, bug

and user story is recorded in the Jira backlog and moved to the active sprint board in

order of priority and precedence. Work is divided internally within the team as equitably

as possible at bi-weekly meetings.

4. Feature Implementation

This section describes the project’s main features. It goes over the

implementation details and the approach used to effectively deliver the proposed

features. The overall UI of the application is presented below in Figure 6.

Figure 6: UI of the application

16

At the top of the page is the navigation bar, which presents the user’s wallet

address on the right side. Below that is the toolbar, where the user can choose the

playlist using the dropdown menu, search for songs using the search-bar, sort the music

according to recency/artist/title, upload new songs, and create playlists. Below that is

the feed where all the music is rendered. Finally, the audio player is embedded at the

bottom of the page.

4.1 Smart Contract

The platform is powered by a smart contract which is defined as follows:

1. struct Song: Indicates each song, with the following details

a. uint id: Identifies the song.

b. string hash: IPFS hash of the audio file.

c. string title: Title of the song.

d. string costPerStream: The cost for each stream of the song in

MATIC.

e. string artHash: IPFS hash of the song’s artwork.

f. string artist: Artist’s name.

g. address author: Wallet address of the uploader.

2. function uploadSong(): A function to upload the song to the smart

contract, using the details provided.

3. function stream(): A function to perform the payment from the user to the

artist (via the contract), whenever a user requests to stream a song. The payment

is equivalent to the cost-per-stream specified during upload.

4. event SongUploaded: An event which is emitted when a song is added

successfully.

5. event PaidForStream: An event which is emitted when a successful

payment is made.

17

4.2 User Login

When the platform is launched, the user’s browser connects to the chain through

Web3.js. The user is asked to log into their Metamask account. Upon successful login,

the user’s wallet address is displayed in the navigation bar and he/she is now granted

access to the platform. The screenshot below shows the initial metamask connection

popup for login.

Figure 7: Metamask wallet connection request

4.3 Upload Music

Users are allowed to upload music to the platform. The files are stored using

IPFS, as mentioned in earlier sections. The files are encrypted so as to prevent illegal

redistribution and violation of copyright. The flow for uploading music is described as

follows:

1. User fills out the form: The user presses the “New Song” button and a modal

containing the form for the new song is shown, with fields for the audio file, the

song’s title, the artist’s name, the cost-per-stream (in MATIC), and an optional

field for the album artwork. The user then presses the “Submit” button.

18

2. Frontend processes the data: The audio file is captured and converted into a

base64 string (”data:audio/mpeg;base64,/+MYxAAEaAIEeUAQ…”) which

is further converted into a file-buffer object. Validation is performed on the

remaining fields, such as limiting the cost-per-stream to 0.007 MATIC, in

accordance with the business model proposed in Section 6.

3. Frontend sends the data to the backend: The frontend makes a POST request to

the API endpoint /upload, including all the song’s data in the request body. The

frontend then waits for the backend’s response.

4. Backend encrypts the file: The backend generates a unique key (and initialization

vector) and encrypts the received file-buffer using the AES-256-CBC algorithm.

5. Backend uploads the file to IPFS: The backend then uploads the encrypted file to

IPFS and saves the IPFS hash that is received as a response.

6. Backend saves information to the database: After receiving the IPFS hash of the

file, the backend saves all the information about the song, including the unique

encryption key, to the database.

Figure 8: Metamask transaction confirmation request

7. Backend returns IPFS hash to the frontend: The backend now returns the IPFS

hash of the file to the frontend.

19

8. Frontend interacts with the contract: The frontend now uploads the song’s

metadata (including the returned IPFS hash) through the contract’s

uploadVideo method. If the user’s wallet has sufficient balance to pay off the

gas fee, then the transaction goes through and the song is successfully

uploaded. Metamask provides a confirmation on the success or failure of the

transaction, as denoted in Figure 8.

9. Frontend displays the new song: Upon receiving the transaction hash from the

contract, the frontend displays the uploaded song, which is now available for all

users to play.

4.4 Play Music

Users are able to play music upon request from the music-feed provided. Upon

launch, the feed brings the latest uploaded song into focus. Users are free to select any

song from the uploaded set, so long as they have sufficient funds in their account. The

flow for playing music is described as follows:

1. User selects a song: The user clicks on a song to play. The system identifies this

song using the song ID provided by the contract.

2. User makes payment: A transaction dialog is triggered in Metamask, wherein the

user confirms the payment. The amount is equal to the cost-per-stream specified

by the uploader (in MATIC). This amount is paid to the artist via the smart

contract.

3. Frontend makes a request to the backend: The frontend makes a POST request

to the API endpoint /play, sending the song’s ID and IPFS hash in the request

body. The frontend awaits a response from the backend.

4. Backend retrieves the song’s encryption key: Using the provided details, the

backend fetches the song’s document from the database and retrieves the

encryption key.

5. Backend fetches the audio file from IPFS: The backend uses the hash to fetch

the encrypted audio file (as a base64 string) from IPFS.

20

6. Backend decrypts the audio file: Using the encryption key, the backend decrypts

the audio file and returns it to the frontend. Currently, the file is in a base64 string

format.

7. Frontend processes the response: The frontend receives the decrypted audio file

(as a base64 string). This string gets converted into a blob, which is a file-like

object of immutable, raw data [21]. This file can be fed into the audio player.

8. Frontend creates an access URL: Since media files require an src attribute, the

frontend uses the web API’s URL.createObjectURL() method to create a

unique URL for the blob. This URL is released when the window is closed or when

the audio track changes.

9. Audio player plays from URL: Using the URL created, the audio player’s src tag is

updated. The song starts playing.

4.5 Searching

The user is allowed to search for a song through the search-bar provided. The

functionality is implemented within the frontend itself, using state management in

React [22]. After communicating with the chain during the initial load, the frontend (i.e.,

React) receives the updated list of songs. These songs are saved to the React

component’s “state”, which is essentially a data structure that defines the UI. React uses

the state’s data to render the UI accordingly. Hence, the songs are saved to the state

variable songs. To implement search functionality, a state variable called

searchQuery is created. Whenever the value in the search-bar changes, the

searchQuery updates accordingly. Hence, only songs that match the searchQuery

in terms of title/artist are shown in the feed. Therefore, by using React state

management, search functionality is enabled without needing back-and-forth

communication with the backend or the chain.

4.6 Sorting

The user is allowed to change the sorting order of songs through the dropdown

menu provided. Similar to search functionality, sorting is implemented using React state

21

management as well. In this case, the sortingFilter state variable is set to one of

the available fields: “recent”, “title”, or “artist”. Based on the field that is specified, the

songs are sorted and displayed accordingly. The specified sorting is preserved even

when the searchQuery changes. Therefore, React state management facilitates

sorting functionality without a helping hand from the backend or the chain.

4.7 Playlists

Users are allowed to create playlists, add songs to playlists, and select a playlist

to listen to. The workflows for each function are described as follows:

(i) Creating a playlist: The user presses the “New Playlist” button, which triggers

the modal to open. Here, the user enters the name of the playlist to be created. Upon

confirmation, the frontend makes a POST request to the API endpoint

/create-playlist along with the playlist title. The backend creates a new playlist in

the database with the aforementioned title, playlist-ID, and an empty array of song-ID’s.

This array will be used to denote the songs that are in the playlist. The backend then

responds with the playlist-ID, following which the frontend displays the playlist.

(ii) Selecting a playlist: When the application is loaded initially, a GET request is

made to the API endpoint /fetch-all-playlists. The backend retrieves all playlists

from the database and returns it to the frontend. The array of playlists is saved to the

React state. Using the dropdown menu, the user can select a playlist they would like to

listen to. Based on the information about each playlist saved in the state, the frontend

displays only those songs which are in the selected playlist. This is done by checking if

each song’s ID is in the playlist’s array of song-ID’s.

(iii) Adding songs to a playlist: When a user selects a playlist, an “Add Song”

button is visible. When this button is clicked, a table of songs not in the current playlist

is shown. When the user selects a song to add to the playlist, the frontend makes a

POST request to the API endpoint /add-song-to-playlist, along with the IDs of the

new song and the corresponding playlist. Using this information, the backend finds the

playlist’s document in the database and pushes the song-ID to the array of songs. The

22

backend then responds to the frontend with a successful message, and the frontend

displays the added song in the playlist.

4.8 Album Art

Expanding upon the steps described in Section 4.3 for uploading music, an

optional field for album artwork is presented to the user. If the user uploads an artwork

image for the track, the frontend forwards the image buffer to the API endpoint

/upload, along with all the other data. The backend uploads the image to a separate

IPFS URL, and returns the artwork’s hash to the frontend. The frontend uploads this

hash to the contract while uploading all the other details of the song. When rendering

each song, the image uses the artwork’s IPFS hash as the src and displays the artwork

accordingly.

4.9 Mobile Support

Considering the platform is a web-application, it supports mobile devices as well.

The users will have to install the Metamask application from their respective app store

and log in to their account. They can then open the platform on a browser and stream

music on their mobile device.

5. Challenges & Difficulties

This section describes the main challenge faced by the platform as well as

solutions to issues that were discussed in the interim report.

5.1 Piracy Concerns

A core objective of the project is to prevent copyright infringement, which is the

most prominent issue faced by the media industry. The platform is designed in such a

way that it would be difficult to pirate any uploaded content, given the encryption and

costs associated with each song. The loophole with online media however, is that data

needs to be stored on the user’s machine ultimately. This is an industry-wide issue,

faced by even the media streaming giants Netflix, Amazon Prime, and YouTube [23]. In

23

the case of this platform, the decrypted audio file is temporarily stored on the user’s

browser so that the HTML audio tag can access the file through the src attribute. Since

the internet is currently designed in such a way that media needs to be locally stored in

order to be accessed, it is difficult, but not impossible, to pirate any content posted on

the platform.

5.2 Encryption Mechanism

The goal of the encryption mechanism is to ensure that the audio file is protected

even if the IPFS hash is leaked. At the interim stage, the team proposed testing two

approaches to solve the issue. The first approach involved encrypting the IPFS hashes

in the backend such that users cannot see the decrypted hashes in the response. When

a user plays a song, the backend will facilitate the IPFS call and only return an encrypted

hash whose key is stored secretly. The second method involved encrypting the audio

files directly. In this case, even if a user gets the IPFS hash, they can only access the

encrypted audio file. The decryption key will be stored in the backend and it will be used

to decrypt the audio file for users who have paid for the stream. Encryption of the file

itself not only served as a more secure method but also did not show any significant

decrease in server response time. Hence, after testing both approaches, the team

settled on the latter approach.

5.3 Searching and Sorting

In terms of user experience and engagement, the platform should allow users to

search for any song they wish to listen to, instead of scrolling through the music-feed.

Similarly, users would like to sort the music feed in an order they desire, be it in terms of

title, artists, or recency. Since all the data so far is stored either on IPFS or in the smart

contract, performing searching or sorting directly on the chain would prove to be

expensive. In order to tackle this problem, the plan was to develop a search-function

either within the frontend or the backend. After performing further development, the

team settled on using React state management on the frontend to facilitate searching

and sorting.

24

6. Business Model

In this section, the business model adopted for the project is discussed. An

analysis of popular models in the industry is conducted, following which a market

comparison is done to finalize the numbers.

6.1 Analysis of Different Models

6.1.1 Pay-Per-Stream Model

As the name suggests, the idea behind a pay-per-stream model is that users pay

the platform a certain fee for each stream that they request [24].

Advantages: Such a model is both affordable and flexible for users. There is no

obligation for the users to commit to the platform and use the services. Moreover, the

platform owners can redistribute revenue only to the artists whose music has been

streamed. Additionally, advertisements will not be required, since users pay as they use

the platform. Advertisements can be very disruptive while listening to music. User

experience is preserved in this manner.

Disadvantages: It is difficult for the platform to retain customers with such a

model. Firstly, customers may find it easier to use a platform where they are not

expected to make a payment for every stream. Secondly, since there is no obligation or

additional incentive to keep using the platform, the users may find it easier to depart.

Furthermore, pay-per-stream models can fluctuate a lot in terms of revenue, depending

on the service usage.

6.1.2 Subscription Model

A subscription model is one wherein users pay a periodic fee (every month, for

instance) as a subscription fee to the platform [25].

Advantages: Given that the users make a commitment to the platform when they

pay the fee, there is a greater incentive for them to use the platform and get their

money’s worth. The familiarity they gain with the platform over time makes them more

likely to stay as a subscriber, as opposed to leaving for a different service. The

25

predictability of revenue each month allows the platform shareholders to make

business decisions with lesser risks.

Disadvantages: Subscription models come with higher upfront costs and longer

commitments than their counterparts. For example, one-year plans tend to work out

cheaper than one-month plans for most platforms. Since users make a long-term

commitment, a feeling of guilt arises when they do not use the platform. Another issue

with this model is the unfair distribution of royalties to artists. Artists receive a specific

percentage of the revenue, even if they were not responsible for that percentage of

streams during the time period [25].

6.1.3 The Verdict

For the subscription model, the benefits are more suited to the platform and not

the artist. For the pay-per-stream model however, benefits are catered to both users as

well as artists. The model also captures the essence of blockchain technology,

considering it eliminates the need for centralization and gives freedom to peers. Hence,

the pay-per-stream model is adopted for this project. As for commission, the platform

will take 15% of all the payments made for streaming.

6.2 Market Comparison

With the pay-per-stream model chosen for this project, a market comparison was

conducted with two giants of the music-streaming industry: Apple Music and Spotify.

Apple Music: Apple Music adopts a subscription model. On average, Apple Music

users pay around HK$0.06 per stream globally (varies by country) [26]. Publishers take

around 50% of the cut [27], while record labels can take anywhere between 10-35%,

depending on the type of deal [28]. Artists end up receiving about between 15-40%

approximately, which caps their revenue-per-stream at around HK$0.009 to HK$0.024

per stream.

Spotify: Spotify also adopts a subscription model. Spotify does not release their

data on royalty distributions directly, but inferences can be made from some of their

reports. [29] Some artists on the platform get paid, even if their songs are not streamed.

26

The average user pays around HK$0.029 per stream. Similar to Apple Music, publishers

receive 50% of the cut [27] while record labels take upto 35% [28]. This leaves artists

with around 15-40% of the revenue. Hence, their revenue-per-stream totals at about

HK$0.009 to HK$0.024 per stream.

6.3 Cost Analysis

● The average cost-per-stream on our platform is 0.0183225 MATIC, which

equates to around HK$0.02. Given the platform’s rate of commission is

20%, the artists get around HK$0.016 on average for each stream. The

revenue-per-stream falls in a similar bracket to the industry giants, but the

artist gets around 80% of the cut here, owing to the reduced streaming

costs.

● At this cost, the user pays approximately HK$20/month, assuming they

listen to 1,000 streams each month. In comparison, Spotify and Apple

Music users pay upwards of HK$58/month.

● For HK$58/month, a user can expect to listen to approximately 2,900

streams. With the average song running for four minutes in duration, that

equates to around 11,600 minutes of streaming. In comparison, the

average Spotify monthly usage is 3,540 minutes while the average Apple

Music monthly usage is 3,960 minutes.

● To match the average monthly costs of Spotify and Apple Music, our

platform can offer streams as high as HK$0.058. From this, artists would

get HK$0.0464. This is nearly four times the revenue rate offered by Apple

Music (average of HK$0.0165) and six times the revenue rate offered by

Spotify (average of HK$0.007975).

Table 1 given below compares the numbers that have been mentioned across the

three platforms. The feasibility of the proposed business model can be verified from the

table.

27

Spotify Apple Music BeatChain

Average Pay 29 60 20

Publisher
Commission

14.5 30 0

Average Record
Label Commission

6.525 13.5 0

Total Average
Commission

21.025 43.5 4

Average Artist
Income

7.975 16.5 16

Table 1: Revenues and commissions per 1000 streams on different streaming platforms (in HK$)

7. Schedule & Milestones

Table 2 below outlines the current status of development and the timeline of

deliverables for the project:

Time Period Tasks Planned/Deliverables Status

August 2021 -
September 2021

Project topic deliberation and background
research

Complete

October 2021 -
November 2021

➔ Phase 1 Deliverable:
➔ Project proposal report
➔ Project webpage

➔ Enhancing our domain knowledge and
development capabilities regarding
blockchain and smart contract
development over the Ethereum Platform

➔ Finalizing the system design of our
application

Complete

28

December 2021 -
January 2022

➔ Commencing application development

➔ Phase 2 Deliverable:
➔ Interim Report
➔ First Project Presentation

Complete

February 2022 -
March 2022

➔ Completion of application development
➔ Testing and debugging
➔ Code review, documentation and

refinement

Complete

April 2022 ➔ Phase 3 Deliverable:
➔ Final Project Presentation
➔ Final Report

Complete

Table 2: Project timeline

8. Future Enhancements

This section discusses potential enhancements and features that could be added

to the platform during the next phase of development.

1. Featured artists: Currently, the platform only supports one artist per song. A

common theme in the music industry is for multiple artists to perform on the

same track. Such artists are known as featured artists. The contract’s

song-structure can be changed so that each song can have multiple artists, each

identified by their wallet address. By allowing artists to describe the revenue-split

during the upload process, artists can be paid their due percentage of the

royalties automatically.

2. Album playthroughs: A feature that users would like is to listen to an album

sequentially from the first track to the last track. Users can make playlists (to

denote albums) and manually play each song of the playlist to resemble the

experience. A future enhancement would be to allow users to pay the overall cost

29

of all the songs in the album with a single click, thereby allowing them to listen to

the whole album seamlessly and without interruptions.

3. Privacy toggle for playlists: All playlists that are created on the platform are

visible to all other users. By simply adding a boolean variable to indicate whether

a playlist should be made private or public, the platform can allow users to make

playlists for their own, personalized listening.

4. Ratings and comments: A simple feedback mechanism for each song would go a

long way in polishing the user experience. Users would be able to identify music

that they would like based on the feedback provided by their peers, in terms of

ratings and comments. Since users are required to pay for a song before listening

to it, they would appreciate knowing how other listeners perceive the song.

5. Mobile and desktop applications: The platform is currently developed as a

web-application. While it is supported on both mobile and desktop platforms, a

key development would be to build standalone applications for both platforms.

By catering the UI to the user’s device specifically, the platform would go a long

way in terms of user experience.

6. Song recommendations: Similar to other music streaming platforms, a

recommendation system could be built. The system should be able to

recommend songs to each user based on their own preferences (content-based

filtering), as well as the preferences of other users who enjoy similar genres of

music (collaborative-based filtering).

7. Blockchain development: With the release of Ethereum 2.0 expected in around

three to six months, the platform may see significant improvements in terms of

efficiency and responsiveness [30]. Gas fees could be decreased as well,

allowing both the platform to face lower costs as well as artists to pay lower fees

while uploading music.

30

9. Conclusion

There are two main problems that plague the music industry today, namely

copyright infringement and the unfair distribution of artists’ royalties. This project

explores the application of blockchain technology to solve these two issues. The aim of

the project is to develop a blockchain-based web-application that is characterized by a

decentralized rights ledger, decentralized file storage, and smart contracts that ensure

fair distribution of royalties. The platform currently offers all the basic functionalities of

a typical music player, but does so while staying true to its objectives. Artists are

allowed to upload music and get paid for it, while listeners are allowed to pay for music

they would like to listen to as well as make playlists.

The ultimate vision of this application is to protect the rights and dues of artists

in today’s music industry. The media-streaming industry still has its fair share of issues

when it comes to online distribution and piracy. Nonetheless, the application of

blockchain technology is a step in the right direction for the protection of copyright. In

view of the expected release of Ethereum 2.0 within the next year, blockchain

technology can and should be applied to solve more problems, both within the music

industry and otherwise.

31

References

[1] “Charges for the use of intellectual property, receipts (BOP, current US$),” The World

Bank DataBank. [Online]. Available:

https://data.worldbank.org/indicator/BX.GSR.ROYL.CD?end=2020&most_recent_

value_desc=true&start=1980&view=chart.

[2] J. Stone, “The state of the music industry in 2020,” Toptal Finance Blog, October 06,

2020. [Online]. Available:

https://www.toptal.com/finance/market-research-analysts/state-of-music-industr

y.

[3] S. Zhao and D. O’Mahony. “BMCProtector: A blockchain and smart contract based

application for music copyright protection,” Trinity College Dublin, Ireland, 2018.

[Online]. Available:

https://www.researchgate.net/publication/330891236_BMCProtector_A_Blockch

ain_and_Smart_Contract_Based_Application_for_Music_Copyright_Protection.

[4] B. Sisario. “Musicians say streaming doesn’t pay. Can the industry change?” The New

York Times, May 07, 2021. [Online]. Available:

https://www.nytimes.com/2021/05/07/arts/music/streaming-music-payments.h

tml

[5] S. de la Rouviere, “Introducing ujo portal: Making musicians more money.,” Medium,

13-Dec-2018. [Online]. Available:

https://blog.ujomusic.com/introducing-ujo-portal-making-musicians-more-money

-9224d808a57a.

[6] SingularDTV, “Introducing the Breaker Royalty Management Platform,” Medium,

24-Jun-2021. [Online]. Available:

https://singulardtv.medium.com/introducing-the-breaker-royalty-management-pla

tform-60a819b80c1e

32

https://data.worldbank.org/indicator/BX.GSR.ROYL.CD?end=2020&most_recent_value_desc=true&start=1980&view=chart
https://data.worldbank.org/indicator/BX.GSR.ROYL.CD?end=2020&most_recent_value_desc=true&start=1980&view=chart
https://www.toptal.com/finance/market-research-analysts/state-of-music-industry
https://www.toptal.com/finance/market-research-analysts/state-of-music-industry
https://www.researchgate.net/publication/330891236_BMCProtector_A_Blockchain_and_Smart_Contract_Based_Application_for_Music_Copyright_Protection
https://www.researchgate.net/publication/330891236_BMCProtector_A_Blockchain_and_Smart_Contract_Based_Application_for_Music_Copyright_Protection
https://www.nytimes.com/2021/05/07/arts/music/streaming-music-payments.html
https://www.nytimes.com/2021/05/07/arts/music/streaming-music-payments.html
https://blog.ujomusic.com/introducing-ujo-portal-making-musicians-more-money-9224d808a57a
https://blog.ujomusic.com/introducing-ujo-portal-making-musicians-more-money-9224d808a57a
https://singulardtv.medium.com/introducing-the-breaker-royalty-management-platform-60a819b80c1e
https://singulardtv.medium.com/introducing-the-breaker-royalty-management-platform-60a819b80c1e

[7] “Music fans share ownership with artists in their favorite songs,” Vezt. [Online].

Available: https://vezt.co/

[8] “Money from music survey data portal,” Future of Music Coalition's Artists Revenue

Streams Project. [Online]. Available:

http://arsdata.futureofmusic.org/dashboard/show?utf8=%E2%9C%93&role_com

poser=true&role_recording=true&role_salaried=true&role_performer=true&role_se

ssion=true&role_teacher=true&mgenre=ALL&ft=false&trained=false&careerexp=A

LL&gender_male=true&gender_female=true&gender_transgender=true&gender_u

nanswered=true&emigroup=1. .

[9] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Bus. inf. syst. eng., vol.

59, no. 3, pp. 183–187, 2017.

[10] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang, “Blockchain-enabled

smart contracts: Architecture, applications, and future trends,” IEEE Trans. Syst.

Man Cybern. Syst., vol. 49, no. 11, pp. 2266–2277, 2019

[11] Bybit Learn, “Blockchain layer 1 vs. layer 2: Things you must know,” Bybit Learn,

08-Oct-2021. [Online]. Available:

https://learn.bybit.com/blockchain/blockchain-layer-1-vs-layer-2/.

[12] L. Kenny. “The blockchain scalability problem and the race for visa-like transaction

speed,” Medium, 31-Jan-2019. [Online]. Available:

https://towardsdatascience.com/the-blockchain-scalability-problem-the-race-for-

visa-like-transaction-speed-5cce48f9d44

[13] CSIRO. “Semi decentralised applications (semi-dapp),” Blockchain Patterns. 2021.

[Online]. Available:

https://research.csiro.au/blockchainpatterns/general-patterns/deployment-patter

ns/semidapp/

33

https://vezt.co/
http://arsdata.futureofmusic.org/dashboard/show?utf8=%E2%9C%93&role_composer=true&role_recording=true&role_salaried=true&role_performer=true&role_session=true&role_teacher=true&mgenre=ALL&ft=false&trained=false&careerexp=ALL&gender_male=true&gender_female=true&gender_transgender=true&gender_unanswered=true&emigroup=1
http://arsdata.futureofmusic.org/dashboard/show?utf8=%E2%9C%93&role_composer=true&role_recording=true&role_salaried=true&role_performer=true&role_session=true&role_teacher=true&mgenre=ALL&ft=false&trained=false&careerexp=ALL&gender_male=true&gender_female=true&gender_transgender=true&gender_unanswered=true&emigroup=1
http://arsdata.futureofmusic.org/dashboard/show?utf8=%E2%9C%93&role_composer=true&role_recording=true&role_salaried=true&role_performer=true&role_session=true&role_teacher=true&mgenre=ALL&ft=false&trained=false&careerexp=ALL&gender_male=true&gender_female=true&gender_transgender=true&gender_unanswered=true&emigroup=1
http://arsdata.futureofmusic.org/dashboard/show?utf8=%E2%9C%93&role_composer=true&role_recording=true&role_salaried=true&role_performer=true&role_session=true&role_teacher=true&mgenre=ALL&ft=false&trained=false&careerexp=ALL&gender_male=true&gender_female=true&gender_transgender=true&gender_unanswered=true&emigroup=1
http://arsdata.futureofmusic.org/dashboard/show?utf8=%E2%9C%93&role_composer=true&role_recording=true&role_salaried=true&role_performer=true&role_session=true&role_teacher=true&mgenre=ALL&ft=false&trained=false&careerexp=ALL&gender_male=true&gender_female=true&gender_transgender=true&gender_unanswered=true&emigroup=1
https://learn.bybit.com/blockchain/blockchain-layer-1-vs-layer-2/
https://towardsdatascience.com/the-blockchain-scalability-problem-the-race-for-visa-like-transaction-speed-5cce48f9d44
https://towardsdatascience.com/the-blockchain-scalability-problem-the-race-for-visa-like-transaction-speed-5cce48f9d44
https://research.csiro.au/blockchainpatterns/general-patterns/deployment-patterns/semidapp/
https://research.csiro.au/blockchainpatterns/general-patterns/deployment-patterns/semidapp/

[14] H. Anwar. “Hyperledger vs Ethereum,” 101 Blockchains, April 04 2019. [Online].

Available: https://101blockchains.com/hyperledger-vs-ethereum-2/

[15] “Ethereum's internet of blockchains,” Polygon, 15-Sep-2021. [Online]. Available:

https://polygon.technology/

[16] “Solidity - Solidity 0.8.9 documentation,” Solidity, September 29 2021. [Online].

Available: https://docs.soliditylang.org/en/v0.8.9/

[17] “Blockchain music rights in (about) 3 minutes”, YouTube, Feb 16 2018. [Video file].

Available:

https://www.youtube.com/watch?v=1LUKgbWihGU&ab_channel=BruceBalensiefe

r

[18] “IPFS powers the distributed web,” IPFS Powers the Distributed Web. [Online].

Available: https://ipfs.io/

[19] “Ethereum API: Ipfs API & gateway: ETH Nodes as a service,” Infura. [Online].

Available: https://infura.io/

[20] I. Team, “How to watermark audio files - all options explored,” How to Watermark

Audio Files - All Options Explored. [Online]. Available:

https://www.intrasonics.com/news/2020-10-30-how-to-watermark-audio-files-wh

ats-your-best-option

[21] “Blob”, Mozilla Developer Network. 20-Feb-2022. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Blob

[22] V. Gupta. “React state management: What is it and why to use it?”, Login Radius.

[Online]. Available:

https://www.loginradius.com/blog/engineering/react-state-management/#:~:tex

t=What%20is%20React%20State%20Management,for%20a%20JavaScript%20dat

a%20structure.

34

https://101blockchains.com/hyperledger-vs-ethereum-2/
https://polygon.technology/
https://docs.soliditylang.org/en/v0.8.7/
https://www.youtube.com/watch?v=1LUKgbWihGU&ab_channel=BruceBalensiefer
https://www.youtube.com/watch?v=1LUKgbWihGU&ab_channel=BruceBalensiefer
https://ipfs.io/
https://infura.io/
https://www.intrasonics.com/news/2020-10-30-how-to-watermark-audio-files-whats-your-best-option
https://www.intrasonics.com/news/2020-10-30-how-to-watermark-audio-files-whats-your-best-option
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://www.loginradius.com/blog/engineering/react-state-management/#:~:text=What%20is%20React%20State%20Management,for%20a%20JavaScript%20data%20structure
https://www.loginradius.com/blog/engineering/react-state-management/#:~:text=What%20is%20React%20State%20Management,for%20a%20JavaScript%20data%20structure
https://www.loginradius.com/blog/engineering/react-state-management/#:~:text=What%20is%20React%20State%20Management,for%20a%20JavaScript%20data%20structure

[23] A. Tiwari. “This is how your favourite Netflix movies and shows are pirated,”

Fossbytes, 10-July-2019. [Online]. Available:

https://fossbytes.com/how-pirate-netflix-amazon-prime-movies-shows-piracy/

[24] “Subscription vs pay-per-use - which revenue model would work for your business?”,

Subscription Flow. 2020. [Online]. Available:

https://www.subscriptionflow.com/2020/07/subscription-vs-pay-per-use-which-r

evenue-model-would-work-for-your-business/

[25] A. Paul. “Introducing pay-per-use: Consumption-based subscription for cohesity

service provider partners”, Cohesity, 16-Jun-2020. [Online]. Available:

https://www.cohesity.com/blogs/introducing-pay-per-use-consumption-based-su

bscription-for-cohesity-service-provider-partners/

[26] D. Curry. “Apple Music revenue and usage statistics (2022)”, Business of Apps,

14-Apr-2022. [Online]. Available:

https://www.businessofapps.com/data/apple-music-statistics/

[27] T. Stein. “Music publishing explained: How artists get paid for their songs”, Careers

in Music, 11-Jan-2022. [Online]. Available:

https://www.careersinmusic.com/music-publishing

[28] D. Pastukhov. “A hard look at how record companies make money: royalty splits,

types of record deals and the label business model”, Soundcharts, 10-Feb-2020.

[Online]. Available:

https://soundcharts.com/blog/splits-and-profits-record-deals-analysis

[29] M. Iqbal. “Spotify revenue and usage statistics (2022)”, Business of Apps,

19-Jan-2022. [Online]. Available:

https://www.businessofapps.com/data/spotify-statistics/

35

https://fossbytes.com/how-pirate-netflix-amazon-prime-movies-shows-piracy/
https://www.subscriptionflow.com/2020/07/subscription-vs-pay-per-use-which-revenue-model-would-work-for-your-business/
https://www.subscriptionflow.com/2020/07/subscription-vs-pay-per-use-which-revenue-model-would-work-for-your-business/
https://www.cohesity.com/blogs/introducing-pay-per-use-consumption-based-subscription-for-cohesity-service-provider-partners/
https://www.cohesity.com/blogs/introducing-pay-per-use-consumption-based-subscription-for-cohesity-service-provider-partners/
https://www.businessofapps.com/data/apple-music-statistics/
https://www.careersinmusic.com/music-publishing
https://soundcharts.com/blog/splits-and-profits-record-deals-analysis
https://www.businessofapps.com/data/spotify-statistics/

[30] D. McQuaid. “ETH 2.0: What’s happened so far and when is the next phase?”,

Currency, 05-Apr-2022. [Online]. Available:

https://currency.com/eth-2-0-what-s-happened-so-far-and-when-is-the-next-phase

36

https://currency.com/eth-2-0-what-s-happened-so-far-and-when-is-the-next-phase

