
DROLAP � A Dense�Region Based Approach to On�line

Analytical Processing

David W� Cheung Bo Zhouy Ben Kao Kan Huz Sau Dan Lee

Department of Computer Science� The University of Hong Kong� Hong Kong�

email� fdcheung� bzhou� kao� hukan� sdleeg�cs�hku�hk�

y Department of Computer Science and Engineering� Zhejiang University� Hangzhou� China�

z Department of Automation� Tsinghua University� Beijing� China�

Abstract

ROLAP �Relational OLAP� and MOLAP �Multidimensional OLAP� are two opposing

techniques for building On�line Analytical Processing �OLAP� systems� MOLAP has good

query performance but su�ers when the data distribution in the multidimensional data cube

is sparse� ROLAP can be built on mature RDBMS technology but its performance is not as

competitive� Many data warehouses contain sparse but clustered multidimensional data� We

propose a dense�region�based OLAP �DROLAP� system which surpasses both ROLAP and

MOLAP in space e�ciency and query performance� DROLAP applies the MOLAP approach

on the dense regions discovered in the data� and handles the remaining small percentage

of sparse points with the ROLAP approach� The core of building a DROLAP system lies

in the mining of dense regions in a data cube� We have de�ned the dense region mining

problem as an optimization problem� We show that conventional clustering techniques are

not suitable for this problem� and have developed an e�cient index�based algorithm EDEM

to compute dense regions� Extensive performance studies have been performed� Our results

clearly show that the DROLAP approach is superior than both the MOLAP and ROLAP

approaches� The results also show that EDEM is e�cient and e�ective in locating dense

regions�

Keywords� Data Cube� OLAP� Dense Region� Data Warehouse� Multidimensional Data Base

� Introduction

On�Line Analytical Processing �OLAP� has emerged recently as an important decision sup�

port technology ��� �� �	� �
�� It supports queries and data analysis on aggregated databases

built from data warehouses� It is a system for collecting� managing� processing and presenting

multidimensional data for analysis and management purposes� Recently� Jim Gray et al� has

introduced the data cube model for OLAP systems� and the Data Cube operator to support

�

sin
HKU CSIS Tech Report TR-99-02

multiple aggregates �
�� The Cube operator is an n�dimensional generalization of the group�by

operator which computes all possible group�bys on n given attributes�

Currently� there are two dominant approaches to implement data cube� Relational OLAP

�ROLAP� and Multidimensional OLAP �MOLAP� ��� ��� ���� ROLAP stores aggregates in

relation tables in traditional RDBMS� MOLAP� on the other hand� stores the aggregates in

multidimensional arrays� In ����� the advantages and shortcomings of these two approaches are

compared� Due to the direct access nature of arrays� MOLAP is more e�cient in processing

queries ���� On the other hand� ROLAP is more space e�cient for a large database if its

aggregates have a very sparse distribution in the data cube� ROLAP� however� requires extra

cost to build indices on the tables to support queries� Relying on indices handicaps the ROLAP

approach in query processing performance� In short� MOLAP is more desirable for query

performance� but is very space�ine�cient if the data cube is sparse� In many real applications�

unfortunately� sparsity is not uncommon�

The challenge here is how we could integrate the two approaches into a data structure

for representing a data cube that is both query� and storage�friendly� It has been recognized

widely that the data cubes in many business applications exhibit the dense�regions�in�sparse�

cube property� In other words� the cubes are sparse but not uniformly so� They are often

�lumpy�� i�e�� their data points are not distributed evenly throughout the multidimensional

space� but are mostly clustered in some dense regions� The density of these regions are much

higher than the average density of the whole space� For instance� a supplier might be selling to

stores that are mostly located in a particular city� Hence� there are few records with other city

names in the supplier�s customer table� With this type of distributions� most data points are

gathered together to form some dense regions� while the remaining small percentage of data

points are distributed sparsely in the cube space�

It is easy to see that if these dense regions can be discovered some how� then each one of them

can be represented by a highly dense array� and MOLAP �ts in perfectly for these individual

dense regions� It not only supports fast retrieval� but also has very good space e�ciency� The

left�over points� which usually constitute a small percentage of the whole data set� would best be

represented using ROLAP for space e�ciency� Because of its small size� the ROLAP�represented

sparse data can be accessed e�ciently by indices on a relational table� The overhead of using

pure ROLAP is much reduced� Our Dense�Region�based OLAP �DROLAP� approach to

an e�cient data cube representation is based on the above observation�

Following the above discussion� if dense regions can be identi�ed� we can build a DROLAP

system in the following way� ��� store each dense region in a multidimensional array �small

MOLAP�� ��� build a R�tree index on the small MOLAPs� �
� store all the sparse points not

in any dense region in a ROLAP� Figure � illustrates such a structure� To answer a query� the

R�tree index is searched to locate the relevant dense regions� The correponding small MOLAPs

are retrieved on which the query is applied as in a traditional MOLAP system� Also� the

ROLAP for sparse points is searched via the supporting indices� We remark that for a data

�

cube with a small sparse point population� the ROLAP table and the R�tree index can possibly

be stored in main memory for e�cient query processing� A fast query reponse time and small

I�O cost thus ensues�

Pi

Pj

.

. . .

. . .

. . .

Dense regions

Table

Sparse points

Figure �� Dense regions and sparse points indexed by a R�tree like structure

Our dense�region based data structure has clear advantages over either the MOLAP or the

ROLAP approaches� In a MOLAP system� the data cube is usually partitioned into many

equal�sized chunks� Compression is applied on sparse chunks to reduce the storage requirement

����� Consequently� processing a query involves retrieving and decompressing many chunks�

DROLAP� on the other hand� only stores �in MOLAPs� regions that are dense� thus avoiding

the decompression problem�

Comparing with the ROLAP approach� DROLAP inherits the merit of fast query perfor�

mance from MOLAP� because most of its data are stored in dense arrays� DROLAP is also

more space e�cient because only the measure attributes are stored in the dense arrays� not

all the attributes as in ROLAP� Moreover� ROLAP requires building �fat� indices which could

consume a lot of disk space� sometimes even more than the tables themselves would take ����

We note that the DROLAP data organization is based on three well�studied structures�

namely� MOLAP� ROLAP� and index trees� Realization is thus straight forward once dense

regions are identi�ed� Our contribution is in the study of three fundamental issues which make

DROLAP possible� First� what constitutes a dense region� Second� given a data cube� how one

could e�ciently and e�ectively identify the dense regions� Third� how much performance gain

�in terms of space and query response time� DROLAP can achieve over MOLAP and ROLAP�

The rest of this paper is organized as follows� In Section �� we �rst de�ne formally the

dense�region�mining problem� We will show that many available techniques such as clustering

or classi�cation are inadequate in locating dense regions� A simple brute�force approach� such as

traversing the whole cube checking density at each sub�space� is possible but vastly ine�cient�

In Section
 we develop an e�cient algorithm EDEM �E�cient DEnse region Mining� for

mining dense regions in a data cube� The idea is to wisely reduce the search space to cover only

those regions that can be parts of some dense regions� To study performance� we implemented a

DROLAP system and compared it with MOLAP and ROLAP� We present the results in Section

�� Our results clearly show that DROLAP performs better than both MOLAP and ROLAP in

space e�ciency and query performance� Finally� we conclude our paper in Section ��

� Problem De�nition and Related Works

In this section we formally de�ne the dense�region�mining problem� To simplify our discussion�

we �rst de�ne some terms� We assume that each dimension �corresponding to an attribute� of

a data cube is discrete� that it covers only a �nite set of values�� We consider the whole data

cube space be partitioned into equal�sized cells� A cell is a small rectangular sub�cube� A cell

that contains at least one data point is called a valid cell� The volume of a cell is the number

of possible distinct tuples in the cell� A region consists of a number of cells� The volume of a

region is the sum of the volume of its cells� The density of a region is equal to the number of

data points it contains divided by its volume�

One may be tempted to de�ne a dense region to be one whose density is larger than a

certain user�supplied minimum threshold� lets say �min� However� if the density distribution

inside a region is non�uniform� anomaly occurs� For example� in Figure �� region C has a high

density �� �min�� but the area around C inside region D is empty� �Like popcorn� not much

substance on the outside� but real hard kernel within�� The overall density of region D could be

larger than �min and we would have regarded D as a dense region and we would have stored it

as an array� This wastes space because storing the smaller region C is already su�cient� Also�

any query that falls only on the region D�C would cause the system to retrieve and process the

MOLAP representing D� only to �nd a null answer set� It thus wastes time as well�

One modi�cation to the simple dense region de�nition is to require that every cell in the

region be denser than �min� The problem of this de�nition is that it may result in too many

sparse points and too many small dense regions� For example� region A has a good�enough

overall density� but unfortunately� a few cells of A just fall short of meeting the �min density

requirement �think of A as a piece of swiss cheese�� Requiring the density of every cell of a

dense region be greater than the threshold has two adverse e�ects� First� it would break the

region up into many smaller regions� enlarging the R�tree index� Second� the data points of the

�holes� are considered sparse� enlarging the ROLAP table� Both of these factors degrade the

system�s performance�

The popcorn and swiss cheese anomalies can be avoided if� in addition to the total density

requirement ��min�� we also require that each cell in a region be denser than another �smaller�

density threshold� �low� for that region be considered a dense region�

�If the attribute is continuous� e�g�� a person�s height� we quantize its range into discrete buckets�

�

Another concern about the de�nition is the minimum volume of a dense region� Technically�

a cell whose density is larger than �min can be considered as a dense region� Therefore� it is

technically correct to consider the set of dense regions be the set of dense cells� and everything

else goes to the sparse point ROLAP table� Although simple� this trivial approache again

would result in a large R�tree index and large ROLAP table� hurting performance� To rectify�

we require that each dense region be bigger than a minimum volume� Vmin� Also� the objective

of a dense�region �nding algorithm should be to maximize the coverage� or the volume� of the

dense regions found over the data points� This would reduce the number of dense regions as

well as the number of sparse points� resulting in a leaner R�tree index and ROLAP table�

B

D

A

C
.

.

.

.

.

.

.

..

.

.

...

..

.

.

.

Figure �� Two control density thresholds for dense region

��� Problem Statement

With the previous discussion� we formulate the dense region mining problem as the following

optimization problem� Let S � D� � D� � � � � � Dd be a d�dimension data cube such that�

for � � i � d� Di � fxjx � Ai� Li � x � Hig is a range in a totally ordered domain Ai�

bounded above and below by Hi and Li respectively� The data cube contains a set of data

points D � fv�� v�� ���� vng� where D is a subset of S� The data cube S is partitioned into equal

size cells such that the cell length on the i�th dimension is ci� That is� the i�th dimension is

divided into cni � �Hi�Li��ci equal intervals� We use CP �� c�� c�� � � � � cd � to denote a cell�

based partition of S� We use cell as the basic unit to reference the coordinates of regions� We

use r � ��l�� l�� � � � � ld�� �h�� h�� � � � � hd�� to denote a rectangular region representing a subspace

whose projection on the i�dimension is the interval �Li� cili� Li� cihi�� The volume of a region

is the total number of data points that can be �lled into the region� The density of a region r

�

is the number of data points that fall in r divided by the volume of r� We denote the volume

of a region r by Vr� and its density �r� �We sometimes use ��r� to denote �r for presentation��

Given a data cube S� a set of data points D in S� a cell based partition CP on S� together

with three input thresholds �min� �low and Vmin� computing the dense regions in S is to solve

the following optimization problem�

Objective� Maximize
Pm

i�� Vdri � for any set of non�overlapping rectangular regions dri�

�i � �� � � � � m�� in the cube S

Constraints� �dri � �min� �i � �� � � � � m�

Vdri � Vmin� �i � �� � � � � m�

�i � �� � � � � m for each cell cl in dri� �cl � �low�

Table �� Problem statement of dense region computing

The problem of mining dense regions is to �nd a maximal set of non�overlapping rectangular

regions such that the density of each one of them is larger than �min� volume larger than Vmin�

and the density of each cell in the regions is larger than �low� In the above de�nition� �min is

a user speci�ed minimum density threshold a region must have to be considered dense� The

parameter �low is speci�ed to avoid the inclusion of empty and low density cell� The parameter

Vmin is used to specify a lower bound on the volume of a dense region�

��� Possible techniques

Finding dense regions in high dimensional space is a non�trivial problem� It has been suggested

that techniques such as image analysis� decision tree classi�cation� and clusterization can be

used for these purpose ��� ���� However� our investigation �nds out that none of these can

deliver a suitable solution�

The techniques of grid generation in image analysis are similar to �nding dense regions in

a data cube �
�� However� the number of dimensions that are manageable by these techniques

is restricted to � or at most
� while it is at least ����	 in a data cube� Most image analysis

algorithms do not scale up well for higher dimensions� and they require scanning the entire data

set multiple times� which makes them infeasible in handling large databases�

Decision tree classi�er also su�ers major e�ciency drawbacks if it is used for mining dense

regions� For example� the SPRINT classi�er ��
� generates a large number of temporary �les

during the classi�cation process� This causes numerous I�O operations and demands large

disk space� To make things worse� every classi�cation along a speci�c dimension may cause a

splitting on some dense regions resulting in serious fragmentation of the dense regions� Costly

merges are required subsequently to remove the fragmentation� In addition� many decision tree

classi�ers cannot handle large data set because they require all or a large portion of the data

set reside permanently in memory�

Dense region mining sounds and looks similar to clusterization� However� conventional

clustering technique was not designed for this purpose� and hence cannot deliver a suitable

answer� Firstly� dense regions are non�overlapping rectangular regions with high enough density�

General clustering algorithms produce non�rectangular clusters� Using minimum bounding

boxes of the clusters may violates the density requirement� and overlapping may be introduced

between the boxes� Secondly� conventional cluster algorithm are distance�based� It trys to

assign points to clusters by optimizing some distance�based constraint� In some cases� points

on the border of a dense region may be assigned to the cluster of another dense region� Figure

 shows a simple case� There are three dense regions and some sparse points� The conventional

k�mean clustering algorithm ����� �k is set to
�� would divide the middle dense region into

parts� going to the
 di�erent clusters� This result is unacceptable for our purpose� Thirdly�

conventional clustering technique does not distinguish between points in the dense regions and

sparse points� they are treated equally and are assigned to di�erent clusters together� Hence�

the sparse points could perturb the shape of the clusters resulted signi�cantly� It is essentially

infeasible to use the results to form rectangular dense regions�

Figure
� Use k�means clustering algorithm to �nd dense regions

��� Related Works

Besides the conventional clustering techniques� recently� there have been some works in the

area of clusterization in large databases� CLARANS is a partition technique which improves

the k�mediod methods ����� BIRCH uses CF�trees to reduce the input size and adopts an

approximate technique for clustering in large database ����� CURE is another algorithm that

uses sampling and partitioning to develop a more e�ective clustering technique ���� However�

all these techniques are distance�based and su�er from the same problems as the conventional

technique if they were applied to solve our dense region problem� In the orthogonal direction�

some density�based algorithms have been proposed recently for clustering on large databases�

In the following� we will discuss their applicability in our problem�

CLIQUE is a density�based clustering algorithm ���� Its main target is to �nd out high�

density clusters in all potential subspaces in a multidimensional data space� It is also a cell�based

algorithm� The resulted clusters are described in the form of DNF expressions� Eventhough the

�

dense clusters discovered by CLIQUES are constructed from dense cell� it does not guarantee

the rectangle shape� Boundary of the clusters found can be saw�toothed and there may be holes

inside a cluster� One way to make use of these clusters for our purpose is to apply bounding

boxes on these clusters which very often would violate the density requirement� Another way to

satisfy the requirement is to disect the clusters into rectangular fragments� This fragmentation�

as has been pointed out� would not be favorable in terms of query performance� Another issue

of applying CLIQUE is that it requires a cluster and all its cells to satisfy one single density

threshold� Therefore� it cannot deliver dense regions which have a high enough total density

but have some less dense sub�regions� The last issue is the performance of CLIQUE� If we want

to compute dense regions with good accuracy� then the cell size cannot be too big� and the

number of cells would be very large� in particular� when the number of dimensions is high� In

this case� the number of combinations that CLIQUE has to check in the �rst few passes could

be overwhelming� also it will have to scan the database many times to go through all possible

subspaces� The performance is not acceptable for our purpose�

Another density�based clustering algorithm DBSCAN has been proposed in ���� The key

idea of DBSCAN is that for each point to be absorbed into a cluster� �except those on the

border�� a �x size neighborhood of it must be dense � there must be enough data points in

the neighborhood as measured against a threshold� DBSCAN has two nice features� ��� It

can separate sparse points �noise� from the clusters� ��� It can discover clusters of unusual

shapes such as those in Figure �� For our dense region mining problem� it is possible to derive

a neighborhood size and a density threshold from the given �min for DBSCAN� However� in

general� it would not be able to guarantee rectangular shape� With some modi�cation� it may

be possible for DBSCAN to deliver rectangular shape regions� however� it will be di�cult to

guarantee the density requirement for the clusters in that case� In particular� same as CLIQUE�

DBSCAN can guarantee that the density of the neighborhoods and that of the whole cluster

satisfy the threshold �min� however� it won�t be able to �nd out those dense regions in which

some sub�regions have density below �min but above �low�

.

.
.

.
.

.

.
.

.
..

.

.

. .

.
. .

.

Figure �� Clusters discovered by DBSCAN�

Eventhough many works have been done in clusterization� as has been pointed out� all

distance�based technique cannot be used to solve our problem� The few proposed density�

�

based were neither designed for this purpose� Our contribution� besides proposing the DOLAP

approach to integrate MOLAP and ROLAP� is the development of an e�cient algorithm for

mining dense regions in a data cube�

� The EDEM Algorithm for Mining Dense Regions

A dense region is a connected set of cells each of which has a density higher than �low� In the

following� we will call this type of cells admissable cells� Among the admissable cells� those

that have density higher than �min is called dense cells� Also� any cell which is not empty is

called a valid cell� Hence� a dense region must be a connected set of admissable cells� One way

to discover dense regions is to use a multi�dimensional array to represent all the cells in the

data cube and store the number of data points of each cell in the array� Then the cube space

can be traversed along all possible directions to locate and grow dense regions� This is very

ine�cient� the array in general would be very large and could not be stored in the memory�

Also� many cells in the array are empty and contribute nothing to the mining of dense regions�

Another approach is to use a tree�like data structure to store and index all the valid cells�

This would require much less memory space� however� locating neighbouring cells in a dense

region may need to traverse many nodes on the tree� So� neither of these two approaches is an

ideal solution� We have integrated these two approaches into the much more e�cient algorithm

EDEM�

Followings are the three main steps of the EDEM � ��� A cell�based k�d tree is built to

store the valid cells in the data cube together with the number of points in each cell� We have

observed that if the leaf nodes in the tree are small enough� then every dense region must touch

some boundaries of some leaf nodes� Therefore� dense regions can be grown from the boundaries

of the leaf nodes� ��� Dense region covers are then grown inside some leaf nodes from their

boundaries� and these covers will contain all the dense regions in the nodes� Subsequent search

of the dense regions are restricted in these covers� Most importantly� the volume of these covers

will be on the order of that of the dense regions and hence is much smaller than the whole cube�

�
� The cells in each cover can then be traversed to �nd out the exact dense regions in the

cover� Note that most leaf nodes corresponding to sparse regions would not be involved in the

covers grown in step ���� This e�ectively prune away most of the sparse regions in the searching

in step �
� above� The algorithm EDEM has two important merits � �a� it can identify very

e�ciently a set of small subspaces� the covers� for �nding the dense regions� �b� the searching is

limited in each cover separately� there is no need to traverse between covers� In the following�

we will explain the techniques in EDEM in details�

Build a K�d tree to store the valid cells

We build a k�d tree to store the valid cells in the data cube S� For every point in the set

of data point D� the cell which it belongs to will be inserted on the tree� Besides the cell

coordinates� the tree also keep track of the number of points in each cell� K�d tree is very

�

suitable for our dense region mining problem� because every node splitting is done along one

dimension� Hence� the resulted nodes are in fact rectangular regions in the cube space such

that the union of all the leaf nodes covers the whole space� The following theorem de�nes the

splitting criteria on our k�d tree�

Theorem � Let Vmin be the minimum volume of a dense region� and Vcl be the volume of a

cell� Let R be a rectangular subspace in the data cube S� If the number of admissable cells in R

is less than Vmin�Vcl� than no dense region can be completely contained in R�

Proof� Since the volume of a dense region must be larger than Vmin� it must contain at least

Vmin�Vcl admissable cells� Hence no dense region can be completely contained in R� �

Following Theorem �� we split a leaf node in the k�d tree whenever it has more than Vmin�Vcl

admissable cells� By doing that� we can guarantee that a dense region will always touch some

boundary of some leaf node� i�e�� it can never be contained in a single node without touching

any boundary� Figure � shows the case that a dense region is split across four nodes on a k�d

tree�

Y

Xx1

y1

x2

n1

n3 n4

n2

X:x2X:x1

Y:y1

n1 n2 n3 n3

Figure �� Dense regions split across boundary

Grow dense region covers from boundary

LetR be the region associated with a leaf node of the k�d tree which has been built previously

to store the valid cells� Let A be the set of admissable cells in R� �In the following� when we

say dense region in R� we mean the part of a dense region that falls in R�� If the minimum

bounding box MBR�A� of A does not touch any boundary of R� then according to Theorem ��

R cannot contain any dense region� and hence can be ignored in the mining of dense regions�

On the other hand� if this is not the case� then we will grow covers from the boundary to contain

the dense regions in R�

Suppose MBR�A� does interest with some boundary of R� Let k be a boundary �a d � �

dimension hyperplane� of R� Let B 	 A be the set of admissable cells touching k� Let P be

the projection of MBR�B� on k� It is straight forward to see that the projection on k of any

�	

dense region in R which touches k will be contained in P � Let X be the axis perpendicular

to k� �Note that X has been divided into intervals by the cell partition�� Let F � fI j I is

an interval on X �
 a cell c � A � B such that the projection of c on X is Ig� Let T be the

maximal connected set of intervals in F which touches the boundary k� �The existence of T is

guaranteed by B since it touches k�� The region P � T is called the dense region cover grown

from k in R�

Theorem � Let C be a dense region cover grown from a boundary k in a region R� If r is a

dense region in R which touches k� then r � R 	 C�

Proof� Follows directly from the de�nition of dense region cover� �

Figure
 is an example of �nding dense region cover in a leaf node� The �lled cells are the

admissable cells in the node� Assume the boundary �X� x�� is the boundary from which the

cover will be grown� P is the projection on the boundary� and T is the maximal connected set

of intervals touching the boundary� P � T is the cover from the boundary �X� x��� Note that

the cover contains all dense regions which touch the boundary �X� x���

X

Y

P

T

x0 x1
y0

y1

a

b

c

d

Figure
� Finding dense region cover in the leaf node

Figure � is the procedure GrowDenseRegCover used to compute the dense region covers in

a leaf node of the k�d tree� In step ��� of GrowDenseRegCover� the procedure CellOnBoundary

returns the admissable cells in A that touch the boundary k and stores then in B� If B is

not empty� then a dense region cover will be grown from k in step ��	� with the procedure

GrowCover according to the de�nition of dense region cover� After a cover has been grown�

all admissable cells in the cover will be removed from the set of admissable cell A� Before

the procedure is repeated on another boundary� the minimum bounding box of the remaining

admissable cells not covered yet will be tested against all boundaries in step �
�� If it does not

touch any boundary� then no more cover is needed� and the procedure returns the found covers�

This is also illustrated in Figure
 � once the cover P �T is removed� the MBR of the remaining

admissable cells� �cells a� b� c�� would not touch any boundary� hence� no more cover is needed�

��

�� PROCEDURE � GrowDenseRegCover ��

�� Input � N � a leaf node of k�d tree� with a set of valid cells ��

�� Output� Dc� the set of dense region covers in N ��

�� A 	 f admissable cells in N g

�� let R be the region associated with N

�� � 	 set the boundaries of R

� Dc � �

�� for each boundary k � � � do f

�� if MBR�A� does not touch any boundary in � then

�� return Dc
 �� all dense region covers have been found ��

�� B 	 CellsOnBoundary�A� k�
 �� B contains all cells in A that touch k ��

�� if �B
� �� then f

��� D 	 GrowCover�A�B�R� k�
 �� grow cover from k ��

��� Dc � Dc � fDg
 �� insert the cover found into Dc ��

��� A � A� fc j c � Dg
 �� remove cells in D from A ��

��� if �A � �� then return Dc

�
� g

��� g

Figure �� The procedure GrowDenseRegCover

Merge dense region covers

Since the k�d tree may split a dense region across several nodes� the dense region covers of

the leaf nodes need to be merged at the split boundary� For example� in Figure �� the dense

region has been separated into � pieces at the split positions of the k�d tree� After the dense

region covers in n� and n� have been found� they will be merged along the split position at

X � x�� The result of merging will be attached to the non�leaf nodes �X � x��� Subsequently�

it will be merged further with the covers from n� and n�� and the resulted cover of the whole

dense region will be attached to the node at �Y � y���

When merging covers from two sibling nodes on the k�d tree� each node may have more than

one covers touching the same boundary as a result of previous merging� In that case� we will

merge any two from the two nodes which touch each other on the boundary and the cover will

be extended to their minimum bounding box� This merging will be performed recursively until

no more merging can be done between the two nodes� This merging procedure will guarantee

that a dense region will not be divided up into di�erent covers�

��

��� The EDEM algorithm

We have described the �rst two steps of EDEM above� In Figure �� we presented the whole

algorithm�

�� Input� S� Data cube
 D� data points
 CP� cell based partition

�min� �low� Vmin� thresholds

O�D�

�
� D�

�
� � � � � D�

d�� dimension order�

�� Output� dense regions in S� ��

�� step �� build the k�d tree ��

�� Tr 	 Initialize the k�d tree

�� for each point p � D do f

�� if the cell c containing p has not been inserted on Tr� then insert c in Tr

� increase the count of c by �

�� leaf nodes of Tr are splitted according to the criterion de�ned in Theorem �
 ��

g

�� step �� grow dense region covers on the k�d tree ��

�� for every leaf node of N of Tr do

�� GrowDenseRegCover�N�

�� grow dense region covers in N ��

�� for every non�leaf node of Tr� merge the dense region covers of its children

�� assign the resulted dense region covers to DC

�� step �� search dense regions in the dense covers in DC ��

�� Dr � �

��� for each dense region cover dc � DC do f

��� dr 	 FindDenseRegion�dc� O�
 �� �nd dense region in dc� O is the dimension order ��

��� Dr � Dr � dr

��� g

�
� return Dr

Figure �� Algorithm EDEM

EDEM has three main steps� The �rst step ����� is to read data points from D and build

the k�d tree to store all valid cells� The second step ����� is to grow the dense region covers from

the nodes on the tree� In general� we can assume that all the valid cells can be counted in the

memory� because the number of cells is much smaller than the number of data points� We will

have to use chunking to handle the cells if the memory is not enough� This will be discussed

in Section
�
� In the third step ������� we search for dense regions within each cover found�

We use an array to store all the cells in a cover and use a greedy procedure FindDenseRegion

to scan the cover and grow dense regions from the array� Since the covers have volumes on the

�

same order as the dense regions they contain� it is much smaller than the volume of the data

cube� Hence� in general� we can assume that the array storing the cells in a cover can be built

in the memory� Again� we discuss how to handle the case of not enough memory in Section
�
�

What remains to be discussed is the procedure FindDenseRegion�

Procedure FindDenseRegion

Suppose C is a dense region cover� We store all the cells in C� �including cells with no

data point�� in a multi�dimensional array so that we can scan the cells in C to search for

dense regions� The order of scanning in C is determined by a pre�selected dimension order

O�D�

�
� D�

�
� � � � � D�

d�� i�e�� �rst on dimension D�

�
� then on D�

�
� etc� During the scanning� Find�

DenseRegion �rst locates a seed cell� which is a dense cell� then uses the seed to grow a maximal

dense region along the dimension order� After a dense region is found� FindDenseRegion re�

peats the searching in the reminding cells of C until all cells have been scanned� Figure � is the

procedure FindDenseRegion�

In step � of FindDenseRegion� the procedure GrowRegion is called to grow a dense region

from a seed� It grows the region in the same order as the scan order� �rst in the positive direction

of D�

�
� then in the negative direction of D�

�
� then in the positive direction of D�

�
� etc�� until all

dimensions and directions are examined� It iterates this growing process on all directions until

no expansion can be found on any dimension� In the �rst dimension� GrowRegion grows a

dense region by adding cells to the seed� Once after the �rst dimension� it grows by adding

trunks of cells to the seed� We call the trunk of cells added to the dense region in each step

an increment� If a dense region r � ��a�� a�� � � � � ad�� �b�� b�� � � � � bd�� grows into the positive

direction of dimension k� we denote the increment by ��r� k� ��� Similiary� the increment of r

on the negative direction of dimension k is denoted by ��r� k����� GrowRegion determines the

increment ��r� k� dir� of r on dimension k as the trunk ��ud� � � � � u�� u��� �vd� � � � � v�� v���� where����
���

ui � ai� vi � bi� if � � i � d� i
� k�

uk � vk � bk � �� if dir � ��

uk � vk � ak � �� if dir � ���

In step ��� of GrowRegion� the increment �rst grows into the positive direction� then the

negative direction �step ���� It repeats this on all dimensions until r cannot grows anymore

�step ���� Note that the growing is limited in the region de�ned by the cover� Since the covers

are much smaller comparing with the whole data cube� FindDenseRegion is much more e�cient

comparing with scanning the whole data cube for dense regions� Note that di�erent dimension

order used in FindDenseRegion may result in di�erent dense region con�guration� However�

the total volumes resulted should be very close�

��� Complexity of EDEM

In this section� we will analyse the complexity of EDEM� Let N be the number of data points�

and Nc be the number of valid cells� Also� let the number of leaf node on the k�d tree Tr be Nd�

��

�� Procedure � FindDenseRegion ��

�� Input� C� a dense region cover

O� selected dimension order O�D�

�
� D�

�
� ���� D�

d� ��

�� Output� DR � set of dense regions in C ��

�� build an array A to store all the cells in C

�� DR � �

�� for each cell c in A scanned in the order O� dof

� if �c is not inside any dense region in DR and �cl � �min� then f

�� r 	 GrowRegion�c�
 �� grow dense region r from the seed c ��

�� if V �r� � Vmin then

�� DR � DR � frg

�� g

�� g

��� return DR

�� Procedure � GrowRegion ��

�� Input� c� a seed
 O�D�

�
� D�

�
� ���� D�

d�� dimension order

�� Output� r � a dense region in C ��

�� r �� c

�� repeatf

�� for k from D�

�
to D�

d dof �� k is the dimension index ��

� dir �	 �
 �� �rst grow on the positive direction ��

�� repeatf

�� repeatf

�� � �� ��r� k� dir�
 �� get the increment ��

�� if �all cells in � are admissable and ��r � �� � �min �

�� then r � r � �
 �� add the increment to the dense region ��

��� g until �r cannot be expanded anymore�

��� dir �	 dir � �
 �� grow on the negative direction �dir 	 ��� ��

��� guntil dir � ��

�
� g �� for loop end ��

��� guntil �r does not change�

��� return r

Figure �� Procedure FindDenseRegion

��

and Cp be the average number of valid cells in a leaf node� According to the splitting criterion

and Theorem �� Cp � Vmin�Vcl�

The complexity of inserting a point into the k�d tree consists of two parts � ��� the time to

locate a leaf node is log�Nx�� where Nx is the number of leaf nodes� ��� the time to insert the

point in the node is on the order of d� log�Cp�� where d is the number of dimensions� Hence

the complexity of building the k�d tree is on the order of N � �log�N�Cp� � d� log�Cp��� Since

Cp is bounded by Vmin�Vcl� O�N � logN� is an upper bound on the time complexity to build

the k�d tree�

The complexity of computing the dense region covers in a leaf node is determined by the

number of admissable cells in the node which is bounded by Cp� The cost of �nding touching

admissable cells for a boundary� minimum bounding box for a set of admissable cells� and

computing a cover from a boundary� are all linear to the number of admissable cells� Therefore

the time of computing all the dense region covers is O�Nd � d � Cp�� which is bounded by

O�d�N��

Since the k�d tree is a binary tree� the number of nodes that require to perform dense�region�

cover merging is at mostNd��� The complexity of the merge in each node is O�d�Nxlog�Nx���

where Nx is the number of covers involved in each merge� In general� Nx is very small� and is

bounded in the worst case by the number of dense regions� a small number in itself� Therefore�

the complexity of the merging is bounded by O�d�N��

The procedure FindDenseRegion needs to scan all the admissable cells once in every cover�

For each admissable cell� it will at most check all of its neighbouring �d cells� Hence the

complexity of �nding the dense regions in a cover is O�d�Nc�� where Nc is the number of cells

in the cover� Since the volume of the covers is on the same order as that of the dense regions�

the time to �nd all dense regions is bounded by d�N �

In summary� the complexity for the second and third steps of EDEM is linear to N and d�

The dominating cost is in the building of the k�d tree� which is bounded by O�N � log�N�C���

This shows that EDEM is a very e�cient algorithm�

��� Memory Limitation

In general� because we only record cell information not the data points on the k�d tree� the

memory space required to store the tree should not be too big� This also depends on the cell

size� However� if there is not enough memory� the tree can be stored on disk� and the computing

of dense region covers can be performed separately on di�erent branches� Covers from di�erent

branches can be merged afterward�

In the last step of �nding dense regions from their covers� since dense regions have high

density and their covers have same order of capacity� the array built from a cover in general

should not be too big to �t in the memory� However� if it happens that a cover cannot be

fully contained in the available memory� then chunking can be used to partition the cover�

�

Dense regions can be computed in each chunk separately ����� At the end� an additional step

of merging the dense regions found from the chunks is required�

� Performance Studies

We have carried out extensive performance studies on a Sun Sparc � workstation running

Solaris ��
 with
�M main memory� Our �rst goal is to study the space e�ciency and query

performance of the DROLAP system by comparing it with both the MOLAP and ROLAP� The

second goal is to study the speed and e�ectiveness of the EDEM algorithm�

��� System implementation and data generation

We implemented a MOLAP system using chunking� The data cube is partitioned into equal�

size chunks� The chunk size is selected to utilize as much the available memory as possible

to achieved a good query performance� Sparse Chunks are compressed using the chunk�o�set

technique� and the other chunks are stored as arrays� In our experiments� any chunk whose

density is less than �	 is treated as a sparse chunk� Note that even a very sparse chunk needs

at least one page to store it� Therefore� in a sparse data cube� there could be many low density

pages� In the processing of a range query� chunks overlapping with the range are retrieved into

the memory to answer the query�

For the ROLAP system � we store all the data points in a table randomly and build disk�

based B� tree index on each dimension� To answer a range query� search will be performed on

the index of every dimension separately� Intersection on the results of the searching will then

be performed to compute the answers of the query�

In the DROLAP system� we use an in�memory R�tree index to manage the dense regions�

Each dense region is stored as an array on disk� and the sparse points are organized and accessed

in the same manner as the tables in the ROLAP system� A query is processed on both the

R�tree and the ROLAP table�

In the performance studies� we use synthetic databases to do the comparison� Parameters

for data generation are listed in Table �� The generation procedure gives the user !exible

control on all these parameters� The detail procedure is in Appendix A�

The queries in our experiments are range queries generated randomly� Each query is corre�

sponding to a rectangular region in the cube� Since we assume that the distribution of the dense

regions in the cube re!ects the distribution of the data� substantial percentage of the queries

can be answered by a single dense region� To simulate this query distribution� we generate two

types of queries � those that fall randomly into one dense region� those that appear randomly

anywhere in the cube space� We call the �rst type of queries� region query� and the second type

of queries� space query�

��

parameter

d number of dimensions of the data cube

Li length of i�th dimension of the data cube

Ndr number of dense regions

li average dimension length of potentially dense regions in the i�th dimension

�dr average density of the potentially dense regions

�s sparse region density

Table �� Data generation parameters

��� Performance results of DROLAP

We have compared the space e�cicency and query performance of the DROLAP system with

those of the MOLAP and ROLAP system in several situations� Query performance is measured

by total response time and number of pages accessed� In each experiment� we took the mea�

surement over the execution of �		 range queries� Space e�ciency is measured by the expansion

ratio of each OLAP system� which is is the storage required divided by the size of original data

set�

E�ect of the percentage of sparse points

In this experiments� we examine the impact of sparse points in the performance of DROLAP�

We generated a database with � million data points in a
�dimensional data cube which has

a volume of � � �	��� We varied the percentage of sparse points from � to
	 � and the

percentage of region queries is �	 � Figure �	 shows the result�

0

50

100

200

400

600

800

1 2 3 4 5 7 10 15 20 30

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
.)

Percentage of sparse points(%)

Speed

DROLAP
MOLAP
ROLAP

0

50000

100000

150000

200000

250000

1 2 3 4 5 7 10 15 20 30

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
d
 p

a
g
e

Percentage of sparse points(%)

Disk I/O

DROLAP
MOLAP
ROLAP

0
1
2

5

10

15

20

25

1 2 3 4 5 7 10 15 20 30

E
x
p
a
n
d
in

g
 f
a
c
to

r

Percentage of sparse Points(%)

Database size

DROLAP
MOLAP
ROLAP

Figure �	� E�ect of percentage of sparse points

The �rst �gure is the total reponse times of �		 range queries� The second is the number

of I�O pages� DROLAP is clearly superior than MOLAP or ROLAP� DROLAP�s response

time and disk I�O are linear to the percentage of sparse points� and increase very slowly� The

increase in response time in DROLAP is attributed mainly to the processing on the sparse

points table �the ROLAP table��

The reponse time of ROLAP is about �	 � �	 times higher than DROLAP� and its I�O is

��

about
 � � times that of DROLAP� The result shows that ROLAP demands more computation

in processing queries on its indices� It is interesting to note that the rate of increase in the

response time on the ROLAP curve is very close to that on the DROLAP curve� This again

shows that the increase in DROLAP response time is largely due to its ROLAP part�

The response time and I�O of MOLAP increase rapidly when the percentage of sparse points

increases� When the percentage approaches to
	 � the increases start to slow down� When

the percentage of sparse points increases initially� more data points are scattered around into

the sparse region� which leads to fewer empty chunks� Hence� more I�O would be required

for query processing� However� when the percentage reaches a critical value� the number of

non�empty chuncks increases very little and the I�O becomes stable� Hence� the response time

starts to level o��

The results overall show that MOLAP has an intrinsic problem of low storage e�ciency and

needs more I�O� If the storage system has a slow I�O� MOLAP will the least favorable� As

for ROLAP� its e�ciency is a�ected by the processing on the indices� The results convincingly

demonstrated the merits of DROLAP� DROLAP has limited the shortcoming in ROLAP by

building indices on a much smaller table containing only the sparse points� On the other hand�

array access is built only on the dense regions which drastically reduces the storage requirement

comparing with MOLAP� Also� the results show that DROLAP maintains a strong edge even

when the percentage of sparse points is rather high�

The third graph in Figure �	 is the database expansion ratio of the three OLAP systems�

DROLAP has the smallest storage space overhead� Its storage size is smaller than that of the

original database because only the measure attributes are stored in the dense region arrays�

The ratio for ROLAP is about ����� The extra �� is due mainly to the indices� MOLAP has

the highest ratio� this again is due to the large overhead in the chunking� For example� when

the spare points percentage is �	 � MOLAP needs �� times more storage than DROLAP�

E�ect of the database size

We have studied the e�ect of the size of the input data on the performance� We varied

the number of data points from 	��� to ��� million� �� of sparse point in each case�� in a
�

dimensional data cube� Figure �� is the result� DROLAP is consistently better than MOLAP

and ROLAP� and ROLAP�s performance deteriorates much faster than MOLAP� Even though

the response time in MOLAP increases as the input size increases� the rate of increase does

slow down after the size has reached a critical value� The reason is that the number of chunks

required for a query does not change much once the database size has surpassed the critical

value� On the other hand� once the data size becomes rather big� processing queries on the

indices become very slow for ROLAP� Therefore� MOLAP is more e�cient than ROLAP if the

data cube has a very high data density� Overall� DROLAP is consistently the winner with very

e�cient performance� On the other hand� we anticipate that the performance of DROLAP and

MOLAP would converge if the density of the whole cube is extremely high�

E�ect of higher number of dimensions

��

0

50

100

200

400

600

800

1000

0 0.5 1 1.5 2 2.5 3

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
.)

Number of data points(million)

Speed

DROLAP
MOLAP
ROLAP

0

50000

100000

150000

200000

0 0.5 1 1.5 2 2.5 3

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
d
 p

a
g
e

Number of data points(million)

Disk I/O

DROLAP
MOLAP
ROLAP

0

1

2

5

10

15

0 0.5 1 1.5 2 2.5 3

E
x
p
a
n
d
in

g
 f
a
c
to

r

Number of data points(million)

Database size

DROLAP
MOLAP
ROLAP

Figure ��� E�ect of the database size

In this experiment� we �xed the size of the data cube and increased the number of dimensions

from � to
� To be fair� we also have �xed the total volume of dense regions involved in the

queries� The I�O of MOLAP increases rapidly� because the number of chunks that a range

query may need to retrieve increases with the dimension� On the other hand� ROLAP needs

to perform searches on more indices in case the number of dimensions has increased� In total�

ROLAP is faster than MOLAP in lower dimension� but MOLAP surpasses ROLAP in the

higher dimension case� In all cases� DROLAP performs much better than both of them�

0

100

300

500

1000

1500

2000

2 3 4 5 6

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
.)

Number of dimensions

Speed

DROLAP
MOLAP
ROLAP

0

50000

100000

200000

300000

500000

700000

2 3 4 5 6

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
d
 p

a
g
e

Number of dimensions

Disk I/O

DROLAP
MOLAP
ROLAP

0

1

2

5

10

15

2 3 4 5 6

E
x
p
a
n
d
in

g
 f
a
c
to

r

Number of dimensions

Database size

DROLAP
MOLAP
ROLAP

Figure ��� E�ect of higher number of dimensions

E�ect of di�erent query ratios

In a �xed
�dimensional data cube with � million data points� �� sparse points�� we varied

the percentage of space query from 	 to �		 � In Figure �
� the reponse time of DROLAP

is linear to the percentage of space query� The result shows that the performance advantage

in DROLAP is una�ected by the increased percentages of queries not directly addressed into

dense regions� In this experiment� we found that DROLAP is consistently faster than MOLAP

and ROLAP �
 times and �	 times respectively in almost all cases�

In conclusion� we found out that DROLAP performs much better than the other two OLAP

systems in both space e�ciency and query performance� In particular� it is superior in the case

that the dimension is high� the data set is large and there is certain level of sparsity�

�	

0
50

100

200

400

600

800

1000

1200

1500

1800

0 10 20 30 40 50 60 70 80 90 100

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
.)

Percentage of whole space query(%)

Speed

DROLAP
MOLAP
ROLAP

0

100000

200000

300000

400000

500000

600000

700000

800000

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
d
 p

a
g
e

Percentage of whole space query(%)

Disk I/O

DROLAP
MOLAP
ROLAP

Figure �
� E�ect of the percentage of whole space query

��� Performance of EDEM

In the following� we present the results of the performance studies on the EDEM algorithm�

The main purpose is to study the speed and e�ectiveness of EDEM in mining dense regions�

Speed is measured by response time� starting from the building of the k�d tree�

0

50

100

150

2 3 4 5 6

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
.)

Number of dimensions

Speed

0

50

100

150

200

250

4 8 12 16

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
.)

Number of data points(million)

Speed

80

90

100

110

120

5 10 20 40 60 80 100

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
.)

Number of dense degions

Speed

Figure ��� Performance studies of algorithm EDEM

In our experiments with EDEM� we have set �min � �	 � �low � �	 � and Vmin � �	���

We �rst examine the behavior of EDEM in cubes with di�erent number of dimensions� We �xed

the size of the data cube and increased the number of dimensions from � to
� The total number

of data points are close to � millions with �	 dense regions� and � of the data points are in

the sparse regions� The �rst graph in Figure �� is the result of running EDEM on these data

sets� It shows that the response time is almost linear to the number of dimension as predicted

in our complexity analysis�

In the second experiment� we studied the e�ect of increasing the size of input database on

the performance� We varied the the size of the database from 	�� to � million data points� ��

of sparse point in each case�� in a
�dimensional data cube� The second graph in Figure �� is

the result� It shows that the response time is linear to the data size� which again is compatible

to our analysis�

In the third experiment� we examine the e�ect on EDEM if the number of dense regions

��

increases� We varied this number from � to �		 in a
�dimensional data cube� while the total

volume and number of data points of the dense regions do not change� The result shows that the

performance of EDEM is not a�ected by the number of dense regions� In fact� as the number

increases� the volume of each dense region is decreased� This reduces the amount of splitting of

the dense regions across the k�d tree nodes� Hence� the response time of mining were improved

slightly�

In terms of e�ectiveness� all of the dense regions in the data set were found in the output

of EDEM� Something worthy to mention � the dense region covers found in the second step of

EDEM in most cases are very close to the dense regions found at the end� It shows that the

algorithm is very e�ective in reducing the search domains for dense regions�

� Discussion and Conclusion

Many data cubes have data distribution which contains some dense regions and a small per�

centage of sparse points� DROLAP is a much more e�cient approach for building an OLAP

system in these cubes comparing with other approaches�

In this paper� we have made the following contributions� ��� Proposed the DROLAP ap�

proach and a data structure to support the processing of queries on a DROLAP system� ���

De�ned the problem of mining dense regions� �
� Shown that conventional clustering technique

is not suitable for �nding dense regions� ��� Proposed a cell�based algorithm EDEM to compute

dense regions� ��� Performed an in�depth performance study which shows that DROLAP is in

fact superior than both MOLAP and ROLAP�

EDEM �rst scans the data base to build up a k�d tree to store the valid cells in the cube� It

then uses a bottom up approach to compute the dense regions from the tree� The complexity

of �nding the dense regions is linear to both the database size and the number of dimensions�

which gives the algorithm good scalability�

In computing dense regions� EDEM wisely avoids the traversal of the whole data cube� It

keeps an upper bound on the size of the leaf nodes of the k�d tree so that each dense region

must touch the boundary of some node� It then grows covers to contain all the dense regions

with a linear algorithm� Since the volume of the cover is on the order of the volume of the dense

regions� this signi�cantly reduces the search space for dense regions� In fact� EDEM combines

the top�down� bottom�up� and greedy approaches in one algorithm� It builds up the k�d tree

top down from the database� then uses a bottom�up approach to grow the dense region covers�

�nally� it uses a greedy algorithm to compute the dense regions in each cover�

The performance studies have demonstrated that DROLAP is superior than both ROLAP

and MOLAP if the data distribution has the assumed characteristics� We also have shown

that EDEM has good scalability� As for future works� we observe that the dense region mining

problem is highly related to data mining� Its technique may have important applications in the

mining of multidimensional data�

��

References

��� S� Agrawal� R� Agrawal� P�M� Deshpande� A� Gupta� J�F� Naughton� R� Ramakrishnan�

and S� Sarawagi� On the computation of multidimensional aggregates� In Proceedings of

the International Conference on Very Large Databases� pages �	
����� Bombay� India�

September ���
�

��� R� Agrawal� J� Gehrke� and D� Gunopulos� Automatic Subspace Clustering of High Dimen�

sional Data for Data Mining Applications� In Proceedings of the ACM SIGMOD Conference

on Management of Data� Seattle� Washington� May �����

�
� M� Berger and I� Regoutsos� An algorithm for point clustering and grid generation� IEEE

transactions on systems� man and cybernetics� ��������������
� �����

��� G� Colliat� OLAP� relational� and multidimensional database systems� SIGMOD Record�

pages
��
�� Vol���� No�
� September ���
�

��� M� Ester� H� Kriegel� J� Sander� and X� Xu� A Density�Based Algorithm for Discover�

ing Clusters in Large Spatial Databases with Noise� In Proceedings of �nd International

Conference on Knowledge Discovery and Data Mining� pages ��
��
�� Portland� Oregon�

August ���
�

�
� J� Gray� A� Bosworth� A� Layman� and H� Piramish� Data cube� A relational aggregation

operator generalizing group�by� cross�tab� and sub�total� In Proceeding of the ��th Intl�

Conference on Data Engineering� pages �������� New Orleans� February ���
�

��� S� Guha� R� Ratogi� and K� Shim� CURE� An E�cient Clustering Algorithm for Large

Databases� In Proceedings of the ACM SIGMOD Conference on Management of Data�

Seattle� Washington� May �����

��� H� Gupta� V� Harinarayan� A� Rajaraman� and J� Ullman� Index selection for OLAP� In

Proceedings of the ��th Intl� Conference on Data Engineering� pages �	������ Burmingham�

UK� April �����

��� C�T� Ho� R� Agrawal� N� Megiddo and R� Srikant� Range Queries in OLAP Data Cubes�

In Proceedings of the ACM SIGMOD Conference on Management of Data� pages �
����

Tucson� Arizona� May �����

��	� V� Harinarayan� A� Rajaraman� and J� D� Ullman� Implementing data cubes e�ciently�

In Proceedings of the ACM SIGMOD Conference on Management of Data� pages �	����
�

Montreal� Quebec� June ���
�

���� L� Kaufman� and P�J� Rousseeuw� Finding Groups in Data � An Introduction to Cluster

Analysis� ���	� John Wiley " Sons�

�

���� R�T� Ng� and J� Han� E�cient and E�ective Clustering Methods for Spatial Data Mining�

In Proc� of the ��th Int�l Conference on Very Large Databases� pages �������� Santiago�

Chile� �����

��
� N� Roussopoulos� Y� Kotidis� and M� Roussopoulos� Cubetree� organization of and bulk

incremental updates on the data cube� In Proceedings of the ACM SIGMOD Conference

on Management of Data� pages ������ Tucso� Arizona� May �����

���� K�A� Ross and D� Srivastava� Fast computation of sparse datacube� In Proc� of the ��nd

Int�l Conference on Very Large Databases� pages ��
����� Athens� Greece� August �����

���� S� Sarawagi� Indexing OLAP data�Bulletin of the technical committee on Data Engineering�

IEEE computer society� Vol� �	� No� �� March �����

��
� J� Shafer� R� Agrawal� and M� Mehta� SPRINT� A scalable parallel classi�er for data

mining� In Proc� of the ��nd Int�l Conference on Very Large Databases� pages ��������

Bombay� India� September ���
�

���� T� Zhang� R� Ramakrishnan� and M� Livny� BIRCH � An E�cient Data Clustering Method

for Very Large Databases In Proceedings of the ACM SIGMOD Conference on Management

of Data� pages �	
����� Montreal� Quebec� June ���
�

���� Y�H� Zhao� P�M� Deshpande� and J�F� Naughton� An array�based algorithm for simulta�

neous multidimensional aggregates� In Proceedings of the ACM SIGMOD Conference on

Management of Data� pages ������	� Tucson� Arizona� May �����

���� Y�H� Zhao� K� Tufte� and J�F� Naughton� On the Performance of an Array�Based ADT

for OLAP Workloads� Technical Report CS�TR��
��
�
� University of Wisconsin�Madison�

CS Department� May ���
�

APPENDIX

A Details of the Data Generation Procedure

As mentioned in Section ���� the databases that we used for the experiments are generated

synthetically� The data are generated by a ��step procedure� The procedure is governed by

several parameters� which give the user control over the the structure and distribution of the

generated data tuples� These parameters are listed in Table
� In the �rst step of the procedure�

a number of non�overlapping potentially dense regions are generated� In the second step� points

are generated within each potentially dense region� as well as the remaining space� For each

generated point� a number of data tuples corresponding to that point are generated�

The data for the experiments are generated by a ��step procedure� The user �rst speci�es

the number of dimensions �d� and the length �Li� of each dimension of the multidimensional

��

space in which data points and dense regions are generated� In the �rst step� a number �Ndr�

of non�overlapping hyper�rectangular regions� called �potentially dense regions�� are generated�

The lengths of the regions in each dimension are carefully controlled so that they follow a

normal distribution with the mean �li� and variance given by the user�

In the second step� data points are generated in the potentially dense regions as well as the

whole space� according to the density parameters ��dr� �s� speci�ed by the user� Within each

potentially dense region� the generated data points are distributed uniformly� Each data point

is next used to generate a number of tuples� which are inserted to an initially empty database�

The average number of tuples per space point is speci�ed by the user�

This procedure gives the user !exible control on the number of dimensions� the lengths of

the whole space as well as the dense regions� the number of dense regions� the density of the

whole space as well as the dense regions� and the size of the �nal database�

Step �� generation of potentially dense regions

This step takes several parameters as shown in Table
� The �rst few parameters determine

the shape of the multidimensional space containing the data� The parameter d speci�es the

number of dimensions of the space� while the values Li �i � 	� �� �� � � � � d� �� specify the length

of the space in each dimension� Valid coordinate values for dimension i are �	� Li�� Thus� the

total volume of the cube space VDCS is given by

VDCS �
d��Y
i��

Li �A���

The parameter �s is the average density of the sparse region� which is the parts of the cube

space not occupied by any dense regions� Density is de�ned as the number of distinct points

divided by the total hyper�volume� On average� each point corresponds to m tuples in the

�nal database� This parameter is called the �multiplicity� of the whole space� Therefore� the

parameter meaning

d no� of dimensions

Li length of dimension i

�s density of the sparse region

m average multiplicity for the whole space

Ndr no� of dense regions

li average length of dense regions in dimension i

�i standard deviation of the length of d�r� in dimension i

�dr average density of dense regions

mdr average multiplicity for the dense regions

Table
� Input parameters for data generation

��

number of data tuples generated� Nt� will be

Nt � m �Np �A���

where Np is the total number of distinct points in the data cube�

The next parameter Ndr speci�es the total number of potentially dense regions to be gen�

erated� The potentially dense regions are generated in such a way that overlapping is avoided�

The length of each region in dimension i is a Gaussian random variable with mean li and

standard deviation �i� Thus� the average volume of each potentially dense region is

Vdr �
d��Y
i��

li �A�
�

The position of the region is a uniformly distributed variable� so that the region will �t within the

whole multidimensional space� If the region so generated overlaps with other already generated

regions� then the current region is shrunk to avoid overlapping� The amount of shrinking is

recorded� so that the next generated region can have its size adjusted suitably� This is to

maintain the mean lengths of the dense regions to be li� If a region cannot be shrunk to

avoid overlapping� it is abandoned and another region generated instead� If too many attempts

have been made without successfully generating a new region which does not overlap with the

existing ones even after shrinking� the procedure aborts� The most probable cause for this is

that the whole space is too small to accommodate so many non�overlapping potentially dense

regions of such large sizes�

To each potentially dense region are assigned two numbers�the density and the average

multiplicity� The density of each potentially dense region is generated so that it follows a

Gaussian random variable with mean �dr and standard deviation �dr��	� This means that on

average� each potentially dense region will have �dr � Vdr points generated in it� The average

multiplicity of the region is a Poisson random variable with mean mdr� These two assigned

values are used in the next step of the data generation procedure�

Step �� generation of points and tuples

The next step takes in the potentially dense regions generated in step � as parameter� and

generates points in the potentially dense regions as well as the whole space� Tuples are then

generated from these generated points according to the multiplicity values�

To generate the data� a random point in the whole space is picked� The position of the

point is determined by uniform distribution� The point is then checked to see if it falls into one

of the potentially dense regions� If so� it is added to that region� Otherwise� it is added to the

list of �sparse points�� This procedure is repeated until the number of points accumulated in

the sparse point list has reached the desired value �s�VDCS �Ndr � Vdr�

Next� each potentially dense region is examined� If it has accumulated too many points�

the extra points are dropped� Otherwise� uniformly distributed points are repeatedly generated

�

within that potentially dense region until enough points �i�e� �dr � Vdr� have been generated�

After this� all the points in the multidimensional space have been generated according to the

required parameters as speci�ed by the user� The total number of points generated is the sum

of the number of points generated in the sparse region as well as the dense regions� Thus�

Np � �s�VDCS �Ndr � Vdr� � �dr � Vdr

� �s � VDCS �Ndr � Vdr � ��dr � �s�
�A���

Finally data tuples are generated from the generated points� For each point in a potentially

dense region� a number of tuples occupying that point is generated� This number is determined

by an exponentially distributed variable with mean equal to the value assigned as �multiplicity�

for that region in the previous step� For each point in the sparse list� we also generate a number

of tuples� But this time� the number of tuples is determined by an exponentially distributed

variable with a mean which achieves an overall multiplicity of m for the whole space� so that

equation A�� is satis�ed� From equations A��� A��� A�
 and A��� we get

Nt � m �

�
�s �

d��Y
i��

Li �Ndr � ��dr � �s� �
d��Y
i��

li

�
�A���

So� the total number of tuples �Nt� generated can be controlled by adjusting the parameters�

Thus� the size of the database can be easily controlled�

��

