
1

Detecting Hidden Failures of DBMS:

A Comprehensive

Metamorphic Relation Output Patterns Approach

Matthew Siu-Hin Tang

Department of Computer Science

The Univeristy of Hong Kong

Pokulam, Hong Kong

tshcat@connect.hku.hk

T. H. Tse*

Department of Computer Science

The University of Hong Kong

Pokulam, Hong Kong

thtse@cs.hku.hk

Zhi Quan Zhou

School of Computing and IT, University of Wollongong

Wollongong NSW 2522, Australia, and
Alibaba and Ant Group, Hangzhou, China

zhiquan@uow.edu.au

Abstract—The testing of large databases faces the test oracle

problem, namely, that it is difficult to verify execution results

against expected outcomes. Rigger and Su applied metamorphic

testing through query partitioning and ternary logic partitioning

techniques to alleviate the challenge. In Part (A) of our project, we

conduct an in-depth investigation and have identified a gap

between the two techniques. We propose a disjoint partitioning

approach to address it. In Part (B), we conduct a comprehensive

investigation into the metamorphic testing of DBMS by comparing

disjoint partitioning with metamorphic relation output patterns

(MROPs) by Segura et al. We propose an exhaustive collection of

MROPs for DBMS. To the best of our knowledge, this is the first

project to integrate in-depth and comprehensive approaches to

tackle the diverse challenges in DBMS testing. In Part (C), we

conduct an empirical case study of their applications to

OceanBase, the DBMS associated with the world’s fastest online

transaction processing system. Although OceanBase has been

extensively tested and widely used in the industry, we have

detected 12 hidden failures and 8 new crashes.

Index Terms—test oracle, metamorphic testing, metamorphic

relation output pattern, DBMS, SQL, OceanBase

I. INTRODUCTION

Because of the popularity of online transaction processing
(OLTP) systems [1] in the financial sector, the correctness of the
supporting database management system (DBMS) is crucial.
However, owing to the scale of large databases, the testing of
DBMS is challenging [2]. It faces the test oracle problem, which
refers to the difficulty in verifying system execution results [3]
[4]. The metamorphic testing (MT) methodology [5][6][7] was
invented in 1998 to alleviate the problem. In 2020, Rigger and
Su [8] applied MT to address the issue in DBMS testing through
the query partitioning (QP) and ternary logic partitioning (TLP)
techniques. Empirical studies showed that they revealed 175
failures in five DBMS.

Our current project is divided into three parts. In Part (A),
we conduct an in-depth investigation on [8]. We find a gap
between QP and TLP, and introduce the concept of disjoint par-
titioning (DP) to tackle the issue. In Part (B), we conduct a com-
prehensive investigation of the adequacy of the metamorphic

relations constructed via DP, comparing them with the metamor-
phic relation output patterns (MROPs) proposed by Segura et al.
[9]. We propose a more comprehensive approach for classifying
and constructing metamorphic relations in DBMS testing. In
Part (C) of the project, we perform an empirical case study on
OceanBase [10], which has been developed by the Alibaba and
Ant Group and associated with the world’s fastest OLTP [11].
We apply both the in-depth and comprehensive approaches to
test OceanBase, and have detected 12 hidden failures and 8 new
crashes.

II. PART (A): IN-DEPTH INVESTIGATION INTO

METAMORPHIC TESTING OF DBMS

A. Motivation Example

Consider the staff table on the right.
Let us write a SELECT statement in
SQL:

SELECT * FROM staff WHERE salary < 5000;

Suppose the DBMS returns the result
on the right. It reveals a failure because
Bob also has a salary lower than 5000
and is missing from the list.

Imagine that the staff table contains 10 000 records instead
of only three. We execute the same SQL SELECT statement
against the DBMS to list all the staff with a salary lower than
5000. Suppose the DBMS returns a list of 3000 staff. This time,
we cannot easily tell whether the result of 3000 staff misses any
legitimate record or contains any superfluous record. Owing to
the large volume of data, it is difficult to detect failures.

B. Metamorphic Testing

In software testing, a test oracle is the mechanism to verify
the execution result against the expected outcome [12]. The test
oracle problem refers to the situation where such a mechanism
is either missing or extremely difficult to apply [3][4]. As we
have observed in the motivating example, it would be challeng-
ing to verify the result of a given query in large databases.

In 1998, T. Y. Chen invented the metamorphic testing (MT)
methodology [5][6][7], which supports test case generation and
alleviates the test oracle problem. He defines metamorphic * Corresponding author.

id name salary

1 Alice 5000

2 Charlie 2000

3 Bob 3000

id name salary

2 Charlie 2000

Postprint of paper in Proceedings of the IEEE 47th Annual International Computers, Software, and

Applications Conference Workshops (COMPSACW ’23), IEEE, Piscataway, NJ, USA (2023)

Administrator
 HKU CS Tech Report TR-2023-01

2

relations (MRs) as necessary properties of the target function or
program in relation to multiple inputs and their expected out-
puts. To conduct MT, some program inputs are first constructed
as original test cases (called source test cases). On the basis of a
target MR, new inputs are constructed as follow-up test cases.
Contrary to traditional testing, which verifies the correctness of
each individual test result, MT verifies the relation among the
source and follow-up inputs and outputs with respect to the MR.

About 500 papers on MT have been published. However,
research work on the application of MT to DBMS has been very
limited [8][13][14].

When applying MT to DBMS testing, a source test case may
be an initial query whereas a follow-up test case may be a subse-
quent query constructed according to a target MR. Then, the
relationship between their outputs (resultant lists returned by the
DBMS) can be verified with reference to the MR. In the case of
the staff table example, we may specify an MR such that “if we
add one more condition to the query, the DBMS should return
fewer records.” For instance, we may refine our query to ask for
all the staff with salary < 5000 AND name = 'Alice'. On execu-
tion, if the DBMS returns 4000 staff, which is more than the
previous result, we say that there is a violation of the MR. It
indicates a failure of the DBMS. In this way, failures are
revealed using MT without the need for a test oracle.

C. Revisit of QP and TLP by Rigger and Su

Rigger and Su [8] proposed query partitioning (QP) and
ternary logic partitioning (TLP) for metamorphic testing of
DBMS. QP is a general strategic concept that describes an MR
among DBMS queries. Outputs of the follow-up queries are
non-overlapping sublists of the output of the source query. The
MR specifies that the concatenation of the outputs of the follow-
up queries must be the same as the output of the source query.
A violation of the MR indicates a failure.

TLP is a special case of QP. An original query is transformed
into three partitioning queries, which are three predicate variants
derived from a randomly generated predicate. Let us consider
the staff table again, with a source query to return all the staff.
We generate a random predicate name = 'Alice'. We derive three
partitioning queries with three predicate variants: name = 'Alice',
NOT (name = 'Alice'), and name = 'Alice' IS NULL. Since SQL is
based on ternary Boolean logic [14], we know that name = 'Alice'
can be TRUE, FALSE, or NULL, falling into the resultant lists of
the three partitioning queries. Hence, following the MR stated in
QP, by concatenating the three resultant lists, we should obtain
the result of the original query, namely, all the staff in the table.
TLP has revealed 175 failures in five DBMS, including SQLite,
MySQL, CockroachDB, TiDB, and DuckDB.

D. Extension of QP and TLP to Disjoint Partitioning1

Our thorough investigation reveals that the high-level QP is
too general for practical MR construction, while the low-level
TLP is too specific. We propose an innovative technique called
disjoint partitioning (DP) to fill the gap. The core idea is that
resultant lists returned by the DBMS can be divided into
exhaustive and mutually exclusive partitions using, for

instance, the SQL keywords LIMIT and OFFSET. For example,
given a staff table with 100 rows, we can write two queries

(Q0.1) SELECT * FROM staff LIMIT 50 OFFSET 0;

(Q0.2) SELECT * FROM staff LIMIT 50 OFFSET 50;

to return two resultant sublists, each containing the first and last
50 staff in the table, respectively.

Consider the entry_exit table below, recording the id, name,
and entry_exit_count of 10 000 staff in a large corporation:

id name entry_exit_count

1 Alice 4

...

10000 Dave 3

By examining the entry_exit_count for each staff, we can
determine that those with odd values are inside the building,
whereas those with even values are outside.

We can use the SQL bitwise and (&) operator with a constant
operand 1 to determine whether an entry_exit_count is odd or
even. An odd number & 1 returns an integer 1, and an even
number & 1 returns an integer 0.

Hence, we can write the following statement in OceanBase
DBMS to find all the staff (whose entry_exit_count is an odd
number) inside the building:

(Q1.1) SELECT * FROM entry_exit
WHERE entry_exit_count & 1;

OceanBase returns a list with 3000 staff. However, we do not
know whether the list of 3000 records is correct, because we do
not have a test oracle.

In DP, we propose follow-up queries such that they partition
list of rows in the original table into disjoint portions and apply
the same WHERE condition. We write the two follow-up queries
as follows:

(Q1.2) SELECT * FROM (SELECT * FROM entry_exit
LIMIT 5000 OFFSET 0) AS offset1
WHERE entry_exit_count & 1;

(Q1.3) SELECT * FROM (SELECT * FROM entry_exit
LIMIT 5000 OFFSET 5000) AS offset2
WHERE entry_exit_count & 1;

Query (Q1.2) retrieves the staff with an odd entry_exit_count
in rows 1 to 5000, whereas query (Q1.3) retrieves those in rows
5001 to 10 000. OceanBase returns 1500 and 1501 staff, respec-
tively.

The MR states that simple concatenation of the outputs of
follow-up queries (Q1.2) and (Q1.3) should produce the same
result as the original query (Q1.1). The MR is therefore violated
because there are more rows in the concatenated output from
(Q1.2) and (Q1.3). Thus, we have revealed a hidden failure.

III. PART (B): COMPREHENSIVE INVESTIGATION INTO

METAMORPHIC TESTING OF DBMS

Although our previous extension [16] of Rigger and Su’s
work to DP reveals failures, it only tests for one kind of MR. In
order to identify more MRs in DBMS, we draw our inspiration
from existing MR frameworks from the literature. 1 This part of the project was published in [16].

3

A. Revisit of MROPs

Metamorphic relation output patterns (MROPs) are a frame-
work proposed by Segura et al. with the aim to capture the shape
of typical MRs [9]. They identified six MROPs:

1) Equivalence: Relations where the source and follow-
up outputs include the same items, not necessarily in the same
order.

2) Equality: Relations where the source and follow-up
outputs contain the same items in the same order.

3) Subset: Relations where follow-up outputs are subsets
of the source output.

4) Disjoint: Relations where the source and follow-up
outputs have no elements in common.

5) Complete: Relations where the union of the follow-up
outputs should contain the same items as the source output.

6) Difference: Relations where the source and follow-up
outputs should differ in a specific set of items.

B. Extension of MROPs to Comprehensive Metamorphic

Testing of DBMS

Let us review whether the MROP framework in [9] is suffi-
ciently comprehensive for DBMS testing. We have identified
four output attributes of DBMS: ordered, partitioned, complete,
and disjoint. These output attributes are not mutually exclusive,
and are achieved via DBMS queries as follows:

1) Ordered results are obtained by explicitly specifying
an ORDER BY clause with respect to specific column(s). Un-
ordered results are achieved by not specifying any ORDER BY
clause.

2) Partitioned results are obtained by specifying a con-
straint such that only specific rows of the table are returned. A
non-partitioned result is obtained by not specifying any con-
straint that restricts the records returned.

3) Complete results are obtained by specifying a query or
multiple queries such that their results exhaustively cover all
possible rows of the database table. Non-complete results do
not exhaustively cover the database table.

4) Disjoint results are obtained by specifying multiple
queries such that their results do not overlap with one another.
Note that disjoint results are not necessarily complete, and com-
plete results are not necessarily disjoint.

We have studied the correlation between the original MROP
framework and the four output attributes, as summarized in
Table 1. We find that the former is not sufficiently compre-
hensive to cover all possible output attributes of DBMS.

We also find that, using sets and subsets to categorize output
patterns in DBMS, we may overlook hidden failures because
repeated elements are not considered. Consider the output list

Alice, Charlie, Bob from a source query. Suppose we restrict

the follow-up query to male staff, and obtain Charlie, Charlie,

Bob. This is obviously erroneous for DBMS queries, yet the

two outputs satisfy the subset relation {Charlie, Charlie, Bob} 
{Alice, Charlie, Bob}. While repeated elements are insignificant
for YouTube video searches in Segura et al.’s work, it makes a
huge difference in output lists from DBMS queries.

These concerns motivate us for further investigation. We
propose a more comprehensive and precise list of eight MROPs
for DBMS testing. Their correlation with DBMS output attrib-
utes is shown in Table 2. In particular, we find that QP and TLP
[8] as well as our proposed DP cover only two MROPs, namely
list equality and bag equality of complete disjoint partitioning
(as explained in Subsection II.D). Details of the other six
MROPs will be explained in the following subsections.

We will use the staff table on the
right for illustrating our proposed
MROPs throughout the remainder of
Section III.

C. List equality without partitioning

For the MROP covering list equality without partitioning,
we may construct source queries and follow-up queries such that
their output lists are exactly identical, and no partitioning is
involved. Consider, for instance the source query

SELECT name FROM staff ORDER BY name;

It produces Alice, Bob, Charlie, Charlie because the default
name sequence is ASC for ascending. To verify list equality
without partitioning, the follow-up query must contain all the
original ORDER BY clauses as per the source query. In addition,
we may put in other ORDER BY parameters after them provided
that the parameters are not part of the SELECT output. In our
example, we may have

SELECT name FROM staff ORDER BY name, salary;

It will generate the same result Alice, Bob, Charlie, Charlie.

The output sequence in list equality is important. In other
words, all the elements in the source and follow-up outputs must
match in terms of both values and positions.

id name salary

1 Alice 5000

2 Charlie 2000

3 Bob 3000

4 Charlie 4000
x

TABLE 1. CORRELATION BETWEEN SEGURA ET AL. FRAMEWORK AND

OUTPUT ATTRIBUTES OF DBMS

 Partitioned Complete Ordered Disjoint

Equivalence - - N -

Equality - - Y -

Subset Y N N -

Disjoint Y - - Y

Complete Y Y - -

Difference - - - -

TABLE 2. COMPREHENSIVE LIST OF MROPS WITH REFERENCE TO

OUTPUT ATTRIBUTES OF DBMS

 Parti-

tioned

Com

plete
Ordered

Dis-

joint

List equality without

partitioning
N - Y -

Bag equality without

partitioning
N - N -

Sublist equality Y N Y -

Subbag equality Y N N -

List equality of complete

disjoint partitioning
Y Y Y Y

Bag equality of complete

disjoint partitioning
Y Y N Y

List equality of complete non-

disjoint partitioning
Y Y Y N

Bag equality of complete non-

disjoint partitioning
Y Y N N

4

D. Bag equality without Partitioning

In addition to the MROP for list equality, we may construct
source and follow-up queries such that they satisfy a bag equal-
ity relation. Consider, for instance, a source query

(Q2.1) SELECT name FROM staff ORDER BY name;

which produces the list Alice, Bob, Charlie, Charlie. We may
then construct a follow-up query by substituting ORDER BY

name with ORDER BY salary:

(Q2.2) SELECT name FROM staff ORDER BY salary;

which returns Charlie, Bob, Charlie, Alice. Obviously, the two
lists are not expected to be identical, but can be considered as
consistent if the values agree while the positions are not relevant.
This is formally described as bag equality in data structures,
such that [Alice, Bob, Charlie, Charlie] = [Charlie, Bob, Charlie,
Alice]. Note that we may also add any ORDER BY predicate(s)
to either the source or the follow-up query, and the MR will still
be preserved.

E. Sublist equality

Consider the following source query for the staff table:

(Q3.1) SELECT name FROM staff ORDER BY name;

We obtain Alice, Bob, Charlie, Charlie.

We may propose a follow-up query by adding a WHERE
predicate

(Q3.2) SELECT name FROM staff WHERE salary < 5000
ORDER BY name;

Here, we put in an additional condition that the DBMS only
returns the staff with salary less than 5000. Note that the ORDER

BY clause is identical to that of the source query, thus preserving
the order of the output list.

The expected result would be Bob, Charlie, Charlie. Each
element in the follow-up output can be found in the source
output. Moreover, the positions of these elements agree with
those of the corresponding elements in the source output.

F. Subbag equality

This MROP is similar to sublist equality, except that the
order of elements in the outputs are immaterial. Consider the
source query

(Q4.1) SELECT name FROM staff ORDER BY name;

which results in Alice, Bob, Charlie, Charlie. Consider a follow-
up query with an additional WHERE predicate and a different
ORDER BY clause:

(Q4.2) SELECT name FROM staff WHERE salary < 5000
ORDER BY salary;

which results in Charlie, Bob, Charlie. All elements in the
follow-up output are included in the source output, but not in the
same order. We say that the follow-up and the source outputs
satisfy subbag equality, but not sublist equality. That is, [Charlie,

Bob, Charlie]  [Alice, Bob, Charlie, Charlie], but Charlie, Bob,

Charlie ⊈ Alice, Bob, Charlie, Charlie.

G. List equality of complete non-disjoint partitioning

Consider the source query

(Q5.1) SELECT name FROM staff ORDER BY salary;

whose resultant output will be Charlie, Bob, Charlie, Alice.

Let us partition the original table into two subtables part1
and part2 using LIMIT and OFFSET clauses and the same
ORDER BY clause as (Q5.1):

CREATE TABLE part1 AS
SELECT id, name, salary FROM staff ORDER BY salary
LIMIT 3 OFFSET 0;

CREATE TABLE part2 AS
SELECT id, name, salary FROM staff ORDER BY salary
LIMIT 3 OFFSET 1;

Each subtable consists of consecutive elements in staff, sorted in
name sequence as follows:

part1: id name salary part2: id name salary

 2 Charlie 2000 3 Bob 3000

 3 Bob 3000 4 Charlie 4000

 4 Charlie 4000 1 Alice 5000

We then construct a follow-up query to concatenate the two
subtables using UNION ALL, and select the name from
DISTINCT elements:

(Q5.2) SELECT name FROM (SELECT DISTINCT *
FROM (SELECT * FROM part1
UNION ALL
SELECT * FROM part2) AS union_all)
AS distinct_union_all;

The resultant output will be Charlie, Bob, Charlie, Alice, which
is identical to the source output from (Q5.1) in terms of both
values and positions. Any violation would indicate a failure in
the DBMS under test.

H. Bag equality of complete non-disjoint partitioning

This MROP is similar to list equality of complete non-
disjoint partitioning, except that the order of elements in the
outputs are immaterial.

Consider again the source query

(Q6.1) SELECT name FROM staff ORDER BY salary;

whose resultant output is Charlie, Bob, Charlie, Alice.

This time, let us partition the original table into two subtables
part1 and part2 using LIMIT and OFFSET clauses, but having an
ORDER BY clause different from (Q6.1):

CREATE TABLE part1 AS
SELECT id, name, salary FROM staff ORDER BY name
LIMIT 3 OFFSET 0;

CREATE TABLE part2 AS
SELECT id, name, salary FROM staff ORDER BY name
LIMIT 3 OFFSET 1;

Each subtable will consist of consecutive elements in staff,
sorted in name sequence as follows:

5

part1: id name salary part2: id name salary

 1 Alice 5000 3 Bob 3000

 3 Bob 3000 2 Charlie 2000

 2 Charlie 2000 4 Charlie 4000

We then construct a follow-up query to concatenate the two
subtables using UNION ALL, and select the name from
DISTINCT elements:

(Q6.2) SELECT name FROM (SELECT DISTINCT *
FROM (SELECT * FROM part1
UNION ALL
SELECT * FROM part2) AS union_all)
AS distinct_union_all;

The resultant output will be Alice, Bob, Charlie, Charlie, which
is consistent with the source output from (Q6.1) in terms of
values but not positions. This is bag equality in standard data
structures, such that [Charlie, Bob, Charlie, Alice] = [Alice, Bob,
Charlie, Charlie]. Any violation would indicate a failure in the
DBMS under test.

IV. PART (C): HIDDEN FAILURES AND NEW CRASHES

DETECTED IN EMPIRICAL CASE STUDY

By extending Rigger’s open-source application SQLancer,
we have implemented all our proposed MROPs for testing
OceanBase Community Edition version 3.1.0. Specifically, we
adapted SQLancer to be compatible with OceanBase, and devel-
oped separate modules for running metamorphic test cases for
the proposed MROPs. Using randomly generated variables, our
tool automatically constructs source and follow-up queries to
verify target metamorphic relations in each MROP. These ran-
domly generated variables include the number of partitions, the
number of records in each partition, and the columns used in
query phrases. Our tool also logs the results from source and
follow-up queries. More importantly, it automatically verifies
their consistencies with reference to the specified MRs, such as

the number of records and the ordering of the records. Despite
potential combinatorial challenges, failures were revealed
shortly after executing the tool for about 100 iterations in our
actual experimentation.

We have successfully revealed 12 hidden failures and 8 new
crashes. Table 3 summarizes the respective failures under vari-
ous MROPs. Table 4 summarizes the respective crashes. Among
them, two have been fixed in a subsequent release version 3.1.1
by the OceanBase QA team of the Ant Group. Others are being
investigated or scheduled to be fixed in future releases. Our test
data, including the tables and queries, are available at https://
github.com/tangsiuhin/matobas4CX.

A. Sample Failure

Consider the following transaction table, which records the
transactions for an online shop.

id date time amount

1 2023-01-01 15:20:00 100

2 2023-01-01 16:30:00 300

3 2023-01-02 11:00:00 null

4 2023-01-02 12:10:00 600

...

520 2023-02-11 09:40:00 400

521 2023-02-11 10:50:00 500

...

We would like to list all the transactions on each date, sorted in
descending order of amount, using the following source query:

(Q7.1) SELECT id, amount FROM transaction
ORDER BY date ASC, amount DESC;

OceanBase returned a resultant list of 10 000 entries.

Suppose there are incomplete transactions with missing
amount values denoted by null. In the
resultant list, the incomplete transactions are
also included. They are sorted to the end of
all the transactions for any particular date, as
shown on the right:

TABLE 3. SUMMARY OF FAILURES DETECTED IN OCEANBASE

COMMUNITY EDITION VERSION 3.1.0.

MROP Failures

List equality without

partitioning

-

Bag equality without

partitioning

-

Sublist equality (1) Incorrect ordering when using WHERE

column IS TRUE

(2) Incorrect ordering when using LIKE

Subbag equality (3) Incorrect row retrieved when using

ORDER BY and LIMIT

(4) Incorrect zero value when using

COALESCE() and IFNULL()

List equality of

complete disjoint

partitioning

(5) Missing row when using BIT_COUNT()
(6) Missing row when using bitwise “or” (|)

operator

Bag equality of

complete disjoint

partitioning

(7) Missing row when using LEAST() and

bitwise “and” (&) operator

(8) Missing row when using NOT and NOT

IN(NULL)

List equality of

complete non-

disjoint partitioning

(9) Missing row when using NOT and not

equal (<>) operator

(10) Missing row when using bitwise “and”

(&) and INT

Bag equality of

complete non-

disjoint partitioning

(11) Missing row when using bitwise XOR (^)

operator

(12) Missing row when using 0 IN(NULL)

TABLE 4. SUMMARY OF CRASHES DETECTED IN OCEANBASE

COMMUNITY EDITION VERSION 3.1.0.

MROP Crashes

List equality without

partitioning

(1) Error in “type conversion in expression

evaluation” when using DELETE FROM

Bag equality without

partitioning

-

Sublist equality (2) “Result value was out of range” when

using CAST(varchar AS SIGNED)

Subbag equality (3) “Invalid argument” when using IS TRUE

List equality of

complete disjoint

partitioning

(4) Internal error when using !GREATEST(),
IN(), ORDER BY, and LIMIT

(5) Internal error when using (NULL =), IN(),
ORDER BY, and LIMIT

Bag equality of

complete disjoint

partitioning

(6) Timeout when using UNION ALL for

multiple SELECT statements

(7) Internal error when using (NULL =), IN(),
LEAST(), ORDER BY, and LIMIT

List equality of

complete non-

disjoint partitioning

(8) Internal error when using EXISTS(),
ORDER BY, and LIMIT

Bag equality of

complete non-

disjoint partitioning

-

id amount

... ...

4 600

3 null

... ...

6

Based on the concept of sublist equality, we propose the
follow-up query below, with the WHERE keyword followed by
amount IS TRUE, to capture all the completed transactions, that
is, those not having a null amount. We continue to use the same
ORDER BY clause as in the source query.

(Q7.2) SELECT id, amount FROM transaction
WHERE amount IS TRUE
ORDER BY date ASC, amount DESC;

OceanBase returned a resultant list containing 9900 entries.

We need to verify whether the resultant list from (Q7.2) is a
sublist of that from (Q7.1). In our empirical case study, this was
conducted in three steps: (a) We checked that the number of
entries in the follow-up output was less than or equal to that in
the source output. (b) We checked that all the transactions in the
follow-up output were also in the source output. (c) We removed
those transactions in the source output that did not appear in
follow-up output, and checked that the modified source output
was exactly the same as the follow-up output.

We found from step (c) that the modified source output was
not identical to the follow-up output. Although both lists contain
the same transactions, the ordering was different. Transaction
521 appeared before 520 in the source output, but after 520 in
the follow-up output. Hence, a failure was detected.

B. Crashes

In addition to the failures, we have also identified eight
crashes during the execution of either source test cases or
follow-up test cases. OceanBase terminated itself with messages
such as internal error, timeout error, or other unexpected errors.

V. CONCLUSION

To the best of our knowledge, this is the first project that
integrates an in-depth approach and a comprehensive approach
to construct metamorphic relations for DBMS testing. We have
conducted our project in three parts.

Part (A) focuses on an in-depth investigation into existing
MT techniques in DBMS testing. We have identified a gap
between query partitioning and ternary logic partitioning in [8].
We tackle the issue using a new concept of disjoint partitioning.

Part (B) focuses on the comprehensiveness of existing MR
output patterns for DBMS testing. We have reviewed the MROP
framework in [9] against the diverse challenges in DBMS
testing. We propose a comprehensive MROP framework for
DBMS. In particular, we find that disjoint partitioning in Part
(A) only covers two of the eight output patterns. Thorough
investigations have been conducted for the remaining patterns.

Part (C) applies the orthogonal (in-depth and comprehen-
sive) approaches to OceanBase. Even though OceanBase has
been tested extensively and applied widely in the DBMS com-
munity, we have revealed 12 failures and 8 crashes. We find that
both orthogonal approaches are necessary for constructing
useful MRs in DBMS testing. When compared with existing MT
techniques, our framework enables a more systematic and
exhaustive exploration of potential output patterns, thereby in-
creasing the likelihood of uncovering hidden failures in DBMS.

More recently, Segura et al. [17][18] proposed metamorphic
relation input patterns (MRIPs) for testing query-based systems.
As future work, we would also like to study MRIPs for the meta-
morphic testing of DBMS.

ACKNOWLEDGMENTS

This project was supported in part by an internship of the
first author at Alibaba and Ant Group, China. We would also
like to thank their QA team for confirming our failure reports.

REFERENCES

[1] What is OLTP?, Oracle Corporation, 2022. [Online]. Available:
https://www.oracle.com/database/what-is-oltp/

[2] A. Alsharif, “Automated software testing of relational database schemas,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. Sheffield, Sheffield, U.K.,
2020.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Trans. Softw. Eng., vol. 41,
no. 5, pp. 507–525, 2015.

[4] K. Patel and R. M. Hierons, “A mapping study on testing non-testable
systems,” Softw. Quality J., vol. 26, no. 4, pp. 1373–1413, 2018.

[5] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z.
Q. Zhou, “Metamorphic testing: A review of challenges and opportuni-
ties,” ACM Comput. Surv., vol. 51, no. 1, pp. 4:1–4:27, 2019.

[6] T. Y. Chen and T. H. Tse, “New visions on metamorphic testing after a
quarter of a century of inception,” in Ideas, Visions and Reflections Track,
Proc. ACM Joint Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC
/FSE ’21), New York, NY, USA: ACM, 2021, pp. 1487–1490.

[7] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A survey on
metamorphic testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–
824, 2016.

[8] M. Rigger and Z. Su, “Finding bugs in database systems via query
partitioning,” Proc. ACM Program. Lang., vol. 4, issue OOPSLA, pp.
211:1–211:30, 2020.

[9] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortes, “Metamorphic
testing of RESTful web APIs,” IEEE Trans. Softw. Eng., vol. 44, no. 11,
pp. 1083–1099, 2018.

[10] OceanBase, 2021. [Online]. Available: https://www.oceanbase.com/en

[11] TPC-C, Wikipedia. Accessed: January 3, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/TPC-C

[12] W. E. Howden, “Theoretical and empirical studies of program testing,”
IEEE Trans. Softw. Eng., vol. 4, no. 4, pp. 293–298, 1978.

[13] M. Lindvall, D. Ganesan, R. Ardal, and R. E. Wiegand, “Metamorphic
model-based testing applied on NASA DAT: An experience report,” in
Proc. 2015 IEEE/ACM 37th Int. Conf. Softw. Eng. (ICSE ’15), Pisca-
taway, NJ, USA: IEEE, 2015, pp. 129–138.

[14] M. Rigger and Z. Su, “Detecting optimization bugs in database engines
via non-optimizing reference engine construction,” in Proc. 28th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC
/FSE ’20), New York, NY, USA: ACM, 2020, pp. 1140–1152.

[15] Three-valued Logic, Wikipedia. Accessed: January 3, 2023. [Online].
Available: https://en.wikipedia.org/wiki/Three-valued_logic

[16] M. S.-H. Tang, T. H. Tse, and Z. Q. Zhou, “A disjoint-partitioning
approach to enhancing metamorphic testing of DBMS,” in Proc. 2022
IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW ’22), Piscataway,
NJ, USA: IEEE, 2022, pp. 130–131.

[17] S. Segura, A. Duran, J. Troya, and A. Ruiz-Cortes, “Metamorphic relation
patterns for query-based systems,” in Proc. 2019 IEEE/ACM 4th Int.
Workshop Metamorphic Testing (MET ’19), Piscataway, NJ, USA: IEEE,
2019, pp. 24–31.

[18] S. Segura, J. C. Alonso, A. Martin-Lopez, A. Duran, J. Troya, and A.
Ruiz-Cortes, “Automated generation of metamorphic relations for query-
based systems,” in Proc. 2022 IEEE/ACM 7th Int. Workshop Metamor-
phic Testing (MET ’22), Piscataway, NJ, USA: IEEE, 2022, pp. 48–55.

https://www.oracle.com/database/what-is-oltp/
https://www.oceanbase.com/en
https://en.wikipedia.org/wiki/TPC-C
https://en.wikipedia.org/wiki/Three-valued_logic

