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Abstract—The testing of large databases faces the test oracle 

problem, namely, that it is difficult to verify execution results 

against expected outcomes. Rigger and Su applied metamorphic 

testing through query partitioning and ternary logic partitioning 

techniques to alleviate the challenge. In Part (A) of our project, we 

conduct an in-depth investigation and have identified a gap 

between the two techniques. We propose a disjoint partitioning 

approach to address it. In Part (B), we conduct a comprehensive 

investigation into the metamorphic testing of DBMS by comparing 

disjoint partitioning with metamorphic relation output patterns 

(MROPs) by Segura et al. We propose an exhaustive collection of 

MROPs for DBMS. To the best of our knowledge, this is the first 

project to integrate in-depth and comprehensive approaches to 

tackle the diverse challenges in DBMS testing. In Part (C), we 

conduct an empirical case study of their applications to 

OceanBase, the DBMS associated with the world’s fastest online 

transaction processing system. Although OceanBase has been 

extensively tested and widely used in the industry, we have 

detected 12 hidden failures and 8 new crashes. 

Index Terms—test oracle, metamorphic testing, metamorphic 

relation output pattern, DBMS, SQL, OceanBase 

I. INTRODUCTION 

Because of the popularity of online transaction processing 
(OLTP) systems [1] in the financial sector, the correctness of the 
supporting database management system (DBMS) is crucial. 
However, owing to the scale of large databases, the testing of 
DBMS is challenging [2]. It faces the test oracle problem, which 
refers to the difficulty in verifying system execution results [3]
[4]. The metamorphic testing (MT) methodology [5][6][7] was 
invented in 1998 to alleviate the problem. In 2020, Rigger and 
Su [8] applied MT to address the issue in DBMS testing through 
the query partitioning (QP) and ternary logic partitioning (TLP) 
techniques. Empirical studies showed that they revealed 175 
failures in five DBMS. 

Our current project is divided into three parts. In Part (A), 
we conduct an in-depth investigation on [8]. We find a gap 
between QP and TLP, and introduce the concept of disjoint par-
titioning (DP) to tackle the issue. In Part (B), we conduct a com-
prehensive investigation of the adequacy of the metamorphic 

relations constructed via DP, comparing them with the metamor-
phic relation output patterns (MROPs) proposed by Segura et al. 
[9]. We propose a more comprehensive approach for classifying 
and constructing metamorphic relations in DBMS testing. In 
Part (C) of the project, we perform an empirical case study on 
OceanBase [10], which has been developed by the Alibaba and 
Ant Group and associated with the world’s fastest OLTP [11]. 
We apply both the in-depth and comprehensive approaches to 
test OceanBase, and have detected 12 hidden failures and 8 new 
crashes. 

II. PART (A): IN-DEPTH INVESTIGATION INTO 

METAMORPHIC TESTING OF DBMS 

A. Motivation Example 

Consider the staff table on the right. 
Let us write a SELECT statement in 
SQL: 

SELECT * FROM staff WHERE salary < 5000; 

Suppose the DBMS returns the result 
on the right. It reveals a failure because 
Bob also has a salary lower than 5000 
and is missing from the list. 

Imagine that the staff table contains 10 000 records instead 
of only three. We execute the same SQL SELECT statement 
against the DBMS to list all the staff with a salary lower than 
5000. Suppose the DBMS returns a list of 3000 staff. This time, 
we cannot easily tell whether the result of 3000 staff misses any 
legitimate record or contains any superfluous record. Owing to 
the large volume of data, it is difficult to detect failures. 

B. Metamorphic Testing 

In software testing, a test oracle is the mechanism to verify 
the execution result against the expected outcome [12]. The test 
oracle problem refers to the situation where such a mechanism 
is either missing or extremely difficult to apply [3][4]. As we 
have observed in the motivating example, it would be challeng-
ing to verify the result of a given query in large databases. 

In 1998, T. Y. Chen invented the metamorphic testing (MT) 
methodology [5][6][7], which supports test case generation and 
alleviates the test oracle problem. He defines metamorphic * Corresponding author. 

id name salary 

1 Alice 5000 

2 Charlie 2000 

3 Bob 3000 
 

id name salary 

2 Charlie 2000 
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relations (MRs) as necessary properties of the target function or 
program in relation to multiple inputs and their expected out-
puts. To conduct MT, some program inputs are first constructed 
as original test cases (called source test cases). On the basis of a 
target MR, new inputs are constructed as follow-up test cases. 
Contrary to traditional testing, which verifies the correctness of 
each individual test result, MT verifies the relation among the 
source and follow-up inputs and outputs with respect to the MR. 

About 500 papers on MT have been published. However, 
research work on the application of MT to DBMS has been very 
limited [8][13][14]. 

When applying MT to DBMS testing, a source test case may 
be an initial query whereas a follow-up test case may be a subse-
quent query constructed according to a target MR. Then, the 
relationship between their outputs (resultant lists returned by the 
DBMS) can be verified with reference to the MR. In the case of 
the staff table example, we may specify an MR such that “if we 
add one more condition to the query, the DBMS should return 
fewer records.” For instance, we may refine our query to ask for 
all the staff with salary < 5000 AND name = 'Alice'. On execu-
tion, if the DBMS returns 4000 staff, which is more than the 
previous result, we say that there is a violation of the MR. It 
indicates a failure of the DBMS. In this way, failures are 
revealed using MT without the need for a test oracle. 

C. Revisit of QP and TLP by Rigger and Su 

Rigger and Su [8] proposed query partitioning (QP) and 
ternary logic partitioning (TLP) for metamorphic testing of 
DBMS. QP is a general strategic concept that describes an MR 
among DBMS queries. Outputs of the follow-up queries are 
non-overlapping sublists of the output of the source query. The 
MR specifies that the concatenation of the outputs of the follow-
up queries must be the same as the output of the source query. 
A violation of the MR indicates a failure. 

TLP is a special case of QP. An original query is transformed 
into three partitioning queries, which are three predicate variants 
derived from a randomly generated predicate. Let us consider 
the staff table again, with a source query to return all the staff. 
We generate a random predicate name = 'Alice'. We derive three 
partitioning queries with three predicate variants: name = 'Alice', 
NOT (name = 'Alice'), and name = 'Alice' IS NULL. Since SQL is 
based on ternary Boolean logic [14], we know that name = 'Alice' 
can be TRUE, FALSE, or NULL, falling into the resultant lists of 
the three partitioning queries. Hence, following the MR stated in 
QP, by concatenating the three resultant lists, we should obtain 
the result of the original query, namely, all the staff in the table. 
TLP has revealed 175 failures in five DBMS, including SQLite, 
MySQL, CockroachDB, TiDB, and DuckDB. 

D. Extension of QP and TLP to Disjoint Partitioning1 

Our thorough investigation reveals that the high-level QP is 
too general for practical MR construction, while the low-level 
TLP is too specific. We propose an innovative technique called 
disjoint partitioning (DP) to fill the gap. The core idea is that 
resultant lists returned by the DBMS can be divided into 
exhaustive and mutually exclusive partitions using, for 

instance, the SQL keywords LIMIT and OFFSET. For example, 
given a staff table with 100 rows, we can write two queries 

(Q0.1) SELECT * FROM staff LIMIT 50 OFFSET 0; 

(Q0.2) SELECT * FROM staff LIMIT 50 OFFSET 50; 

to return two resultant sublists, each containing the first and last 
50 staff in the table, respectively. 

Consider the entry_exit table below, recording the id, name, 
and entry_exit_count of 10 000 staff in a large corporation: 

id name entry_exit_count 

1 Alice 4 

... ... ... 

10000 Dave 3 

By examining the entry_exit_count for each staff, we can 
determine that those with odd values are inside the building, 
whereas those with even values are outside. 

We can use the SQL bitwise and (&) operator with a constant 
operand 1 to determine whether an entry_exit_count is odd or 
even. An odd number & 1 returns an integer 1, and an even 
number & 1 returns an integer 0. 

Hence, we can write the following statement in OceanBase 
DBMS to find all the staff (whose entry_exit_count is an odd 
number) inside the building: 

(Q1.1) SELECT * FROM entry_exit 
WHERE entry_exit_count & 1; 

OceanBase returns a list with 3000 staff. However, we do not 
know whether the list of 3000 records is correct, because we do 
not have a test oracle. 

In DP, we propose follow-up queries such that they partition 
list of rows in the original table into disjoint portions and apply 
the same WHERE condition. We write the two follow-up queries 
as follows: 

(Q1.2) SELECT * FROM (SELECT * FROM entry_exit 
LIMIT 5000 OFFSET 0) AS offset1 
WHERE entry_exit_count & 1; 

(Q1.3) SELECT * FROM (SELECT * FROM entry_exit 
LIMIT 5000 OFFSET 5000) AS offset2 
WHERE entry_exit_count & 1; 

Query (Q1.2) retrieves the staff with an odd entry_exit_count 
in rows 1 to 5000, whereas query (Q1.3) retrieves those in rows 
5001 to 10 000. OceanBase returns 1500 and 1501 staff, respec-
tively. 

The MR states that simple concatenation of the outputs of 
follow-up queries (Q1.2) and (Q1.3) should produce the same 
result as the original query (Q1.1). The MR is therefore violated 
because there are more rows in the concatenated output from 
(Q1.2) and (Q1.3). Thus, we have revealed a hidden failure. 

III. PART (B): COMPREHENSIVE INVESTIGATION INTO 

METAMORPHIC TESTING OF DBMS 

Although our previous extension [16] of Rigger and Su’s 
work to DP reveals failures, it only tests for one kind of MR. In 
order to identify more MRs in DBMS, we draw our inspiration 
from existing MR frameworks from the literature. 1 This part of the project was published in [16].  



3 

A. Revisit of MROPs 

Metamorphic relation output patterns (MROPs) are a frame-
work proposed by Segura et al. with the aim to capture the shape 
of typical MRs [9]. They identified six MROPs: 

1) Equivalence: Relations where the source and follow-
up outputs include the same items, not necessarily in the same 
order. 

2) Equality: Relations where the source and follow-up 
outputs contain the same items in the same order. 

3) Subset: Relations where follow-up outputs are subsets 
of the source output. 

4) Disjoint: Relations where the source and follow-up 
outputs have no elements in common. 

5) Complete: Relations where the union of the follow-up 
outputs should contain the same items as the source output. 

6) Difference: Relations where the source and follow-up 
outputs should differ in a specific set of items. 

B. Extension of MROPs to Comprehensive Metamorphic 

Testing of DBMS 

Let us review whether the MROP framework in [9] is suffi-
ciently comprehensive for DBMS testing. We have identified 
four output attributes of DBMS: ordered, partitioned, complete, 
and disjoint. These output attributes are not mutually exclusive, 
and are achieved via DBMS queries as follows: 

1) Ordered results are obtained by explicitly specifying 
an ORDER BY clause with respect to specific column(s). Un-
ordered results are achieved by not specifying any ORDER BY 
clause. 

2) Partitioned results are obtained by specifying a con-
straint such that only specific rows of the table are returned. A 
non-partitioned result is obtained by not specifying any con-
straint that restricts the records returned. 

3) Complete results are obtained by specifying a query or 
multiple queries such that their results exhaustively cover all 
possible rows of the database table. Non-complete results do 
not exhaustively cover the database table. 

4) Disjoint results are obtained by specifying multiple 
queries such that their results do not overlap with one another. 
Note that disjoint results are not necessarily complete, and com-
plete results are not necessarily disjoint. 

We have studied the correlation between the original MROP 
framework and the four output attributes, as summarized in 
Table 1. We find that the former is not sufficiently compre-
hensive to cover all possible output attributes of DBMS. 

We also find that, using sets and subsets to categorize output 
patterns in DBMS, we may overlook hidden failures because 
repeated elements are not considered. Consider the output list 

Alice, Charlie, Bob from a source query. Suppose we restrict 

the follow-up query to male staff, and obtain Charlie, Charlie, 

Bob. This is obviously erroneous for DBMS queries, yet the 

two outputs satisfy the subset relation {Charlie, Charlie, Bob}  
{Alice, Charlie, Bob}. While repeated elements are insignificant 
for YouTube video searches in Segura et al.’s work, it makes a 
huge difference in output lists from DBMS queries. 

These concerns motivate us for further investigation. We 
propose a more comprehensive and precise list of eight MROPs 
for DBMS testing. Their correlation with DBMS output attrib-
utes is shown in Table 2. In particular, we find that QP and TLP 
[8] as well as our proposed DP cover only two MROPs, namely 
list equality and bag equality of complete disjoint partitioning 
(as explained in Subsection II.D). Details of the other six 
MROPs will be explained in the following subsections. 

We will use the staff table on the 
right for illustrating our proposed 
MROPs throughout the remainder of 
Section III. 

C. List equality without partitioning 

For the MROP covering list equality without partitioning, 
we may construct source queries and follow-up queries such that 
their output lists are exactly identical, and no partitioning is 
involved. Consider, for instance the source query 

SELECT name FROM staff ORDER BY name; 

It produces Alice, Bob, Charlie, Charlie because the default 
name sequence is ASC for ascending. To verify list equality 
without partitioning, the follow-up query must contain all the 
original ORDER BY clauses as per the source query. In addition, 
we may put in other ORDER BY parameters after them provided 
that the parameters are not part of the SELECT output. In our 
example, we may have 

SELECT name FROM staff ORDER BY name, salary; 

It will generate the same result Alice, Bob, Charlie, Charlie. 

The output sequence in list equality is important. In other 
words, all the elements in the source and follow-up outputs must 
match in terms of both values and positions. 

id name salary 

1 Alice 5000 

2 Charlie 2000 

3 Bob 3000 

4 Charlie 4000 
x 

TABLE 1.  CORRELATION BETWEEN SEGURA ET AL. FRAMEWORK AND 

OUTPUT ATTRIBUTES OF DBMS 

 Partitioned Complete Ordered Disjoint 

Equivalence - - N - 

Equality - - Y - 

Subset Y N N - 

Disjoint Y - - Y 

Complete Y Y - - 

Difference - - - - 
 

TABLE 2.  COMPREHENSIVE LIST OF MROPS WITH REFERENCE TO 

OUTPUT ATTRIBUTES OF DBMS 

 Parti-

tioned 

Com

plete 
Ordered 

Dis-

joint 

List equality without 

partitioning 
N - Y - 

Bag equality without 

partitioning 
N - N - 

Sublist equality Y N Y - 

Subbag equality Y N N - 

List equality of complete 

disjoint partitioning 
Y Y Y Y 

Bag equality of complete 

disjoint partitioning 
Y Y N Y 

List equality of complete non-

disjoint partitioning 
Y Y Y N 

Bag equality of complete non-

disjoint partitioning 
Y Y N N 
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D. Bag equality without Partitioning 

In addition to the MROP for list equality, we may construct 
source and follow-up queries such that they satisfy a bag equal-
ity relation. Consider, for instance, a source query 

(Q2.1) SELECT name FROM staff ORDER BY name; 

which produces the list Alice, Bob, Charlie, Charlie. We may 
then construct a follow-up query by substituting ORDER BY 

name with ORDER BY salary: 

(Q2.2) SELECT name FROM staff ORDER BY salary; 

which returns Charlie, Bob, Charlie, Alice. Obviously, the two 
lists are not expected to be identical, but can be considered as 
consistent if the values agree while the positions are not relevant. 
This is formally described as bag equality in data structures, 
such that [Alice, Bob, Charlie, Charlie] = [Charlie, Bob, Charlie, 
Alice]. Note that we may also add any ORDER BY predicate(s) 
to either the source or the follow-up query, and the MR will still 
be preserved. 

E. Sublist equality 

Consider the following source query for the staff table: 

(Q3.1) SELECT name FROM staff ORDER BY name; 

We obtain Alice, Bob, Charlie, Charlie. 

We may propose a follow-up query by adding a WHERE 
predicate 

(Q3.2) SELECT name FROM staff WHERE salary < 5000 
ORDER BY name; 

Here, we put in an additional condition that the DBMS only 
returns the staff with salary less than 5000. Note that the ORDER 

BY clause is identical to that of the source query, thus preserving 
the order of the output list. 

The expected result would be Bob, Charlie, Charlie. Each 
element in the follow-up output can be found in the source 
output. Moreover, the positions of these elements agree with 
those of the corresponding elements in the source output. 

F. Subbag equality 

This MROP is similar to sublist equality, except that the 
order of elements in the outputs are immaterial. Consider the 
source query 

(Q4.1) SELECT name FROM staff ORDER BY name; 

which results in Alice, Bob, Charlie, Charlie. Consider a follow-
up query with an additional WHERE predicate and a different 
ORDER BY clause: 

(Q4.2) SELECT name FROM staff WHERE salary < 5000 
ORDER BY salary; 

which results in Charlie, Bob, Charlie. All elements in the 
follow-up output are included in the source output, but not in the 
same order. We say that the follow-up and the source outputs 
satisfy subbag equality, but not sublist equality. That is, [Charlie, 

Bob, Charlie]  [Alice, Bob, Charlie, Charlie], but Charlie, Bob, 

Charlie ⊈ Alice, Bob, Charlie, Charlie. 

G. List equality of complete non-disjoint partitioning 

Consider the source query 

(Q5.1) SELECT name FROM staff ORDER BY salary; 

whose resultant output will be Charlie, Bob, Charlie, Alice. 

Let us partition the original table into two subtables part1 
and part2 using LIMIT and OFFSET clauses and the same 
ORDER BY clause as (Q5.1): 

CREATE TABLE part1 AS 
SELECT id, name, salary FROM staff ORDER BY salary 
LIMIT 3 OFFSET 0; 

CREATE TABLE part2 AS 
SELECT id, name, salary FROM staff ORDER BY salary 
LIMIT 3 OFFSET 1; 

Each subtable consists of consecutive elements in staff, sorted in 
name sequence as follows: 

part1: id name salary part2: id name salary 

 2 Charlie 2000  3 Bob 3000 

 3 Bob 3000  4 Charlie 4000 

 4 Charlie 4000  1 Alice 5000 

We then construct a follow-up query to concatenate the two 
subtables using UNION ALL, and select the name from 
DISTINCT elements: 

(Q5.2) SELECT name FROM (SELECT DISTINCT * 
FROM (SELECT * FROM part1 
UNION ALL 
SELECT * FROM part2) AS union_all) 
AS distinct_union_all; 

The resultant output will be Charlie, Bob, Charlie, Alice, which 
is identical to the source output from (Q5.1) in terms of both 
values and positions. Any violation would indicate a failure in 
the DBMS under test. 

H. Bag equality of complete non-disjoint partitioning 

This MROP is similar to list equality of complete non-
disjoint partitioning, except that the order of elements in the 
outputs are immaterial. 

Consider again the source query 

(Q6.1) SELECT name FROM staff ORDER BY salary; 

whose resultant output is Charlie, Bob, Charlie, Alice. 

This time, let us partition the original table into two subtables 
part1 and part2 using LIMIT and OFFSET clauses, but having an 
ORDER BY clause different from (Q6.1): 

CREATE TABLE part1 AS 
SELECT id, name, salary FROM staff ORDER BY name 
LIMIT 3 OFFSET 0; 

CREATE TABLE part2 AS 
SELECT id, name, salary FROM staff ORDER BY name 
LIMIT 3 OFFSET 1; 

Each subtable will consist of consecutive elements in staff, 
sorted in name sequence as follows: 
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part1: id name salary part2: id name salary 

 1 Alice 5000  3 Bob 3000 

 3 Bob 3000  2 Charlie 2000 

 2 Charlie 2000  4 Charlie 4000 

We then construct a follow-up query to concatenate the two 
subtables using UNION ALL, and select the name from 
DISTINCT elements: 

(Q6.2) SELECT name FROM (SELECT DISTINCT * 
FROM (SELECT * FROM part1 
UNION ALL 
SELECT * FROM part2) AS union_all) 
AS distinct_union_all; 

The resultant output will be Alice, Bob, Charlie, Charlie, which 
is consistent with the source output from (Q6.1) in terms of 
values but not positions. This is bag equality in standard data 
structures, such that [Charlie, Bob, Charlie, Alice] = [Alice, Bob, 
Charlie, Charlie]. Any violation would indicate a failure in the 
DBMS under test. 

IV. PART (C): HIDDEN FAILURES AND NEW CRASHES 

DETECTED IN EMPIRICAL CASE STUDY 

By extending Rigger’s open-source application SQLancer, 
we have implemented all our proposed MROPs for testing 
OceanBase Community Edition version 3.1.0. Specifically, we 
adapted SQLancer to be compatible with OceanBase, and devel-
oped separate modules for running metamorphic test cases for 
the proposed MROPs. Using randomly generated variables, our 
tool automatically constructs source and follow-up queries to 
verify target metamorphic relations in each MROP. These ran-
domly generated variables include the number of partitions, the 
number of records in each partition, and the columns used in 
query phrases. Our tool also logs the results from source and 
follow-up queries. More importantly, it automatically verifies 
their consistencies with reference to the specified MRs, such as 

the number of records and the ordering of the records. Despite 
potential combinatorial challenges, failures were revealed 
shortly after executing the tool for about 100 iterations in our 
actual experimentation. 

We have successfully revealed 12 hidden failures and 8 new 
crashes. Table 3 summarizes the respective failures under vari-
ous MROPs. Table 4 summarizes the respective crashes. Among 
them, two have been fixed in a subsequent release version 3.1.1 
by the OceanBase QA team of the Ant Group. Others are being 
investigated or scheduled to be fixed in future releases. Our test 
data, including the tables and queries, are available at https://
github.com/tangsiuhin/matobas4CX. 

A. Sample Failure 

Consider the following transaction table, which records the 
transactions for an online shop. 

id date time amount 

1 2023-01-01 15:20:00 100 

2 2023-01-01 16:30:00 300 

3 2023-01-02 11:00:00 null 

4 2023-01-02 12:10:00 600 

... ... ... ... 

520 2023-02-11 09:40:00 400 

521 2023-02-11 10:50:00 500 

... ... ... ... 

We would like to list all the transactions on each date, sorted in 
descending order of amount, using the following source query: 

(Q7.1) SELECT id, amount FROM transaction 
ORDER BY date ASC, amount DESC; 

OceanBase returned a resultant list of 10 000 entries. 

Suppose there are incomplete transactions with missing 
amount values denoted by null. In the 
resultant list, the incomplete transactions are 
also included. They are sorted to the end of 
all the transactions for any particular date, as 
shown on the right: 

TABLE 3.  SUMMARY OF FAILURES DETECTED IN OCEANBASE 

COMMUNITY EDITION VERSION 3.1.0. 

MROP Failures  

List equality without 

partitioning 

- 

Bag equality without 

partitioning 

- 

Sublist equality (1) Incorrect ordering when using WHERE 

column IS TRUE 

(2) Incorrect ordering when using LIKE 

Subbag equality (3) Incorrect row retrieved when using 

ORDER BY and LIMIT 

(4) Incorrect zero value when using 

COALESCE() and IFNULL() 

List equality of 

complete disjoint 

partitioning 

(5) Missing row when using BIT_COUNT() 
(6) Missing row when using bitwise “or” (|) 

operator 

Bag equality of 

complete disjoint 

partitioning 

(7) Missing row when using LEAST() and 

bitwise “and” (&) operator 

(8) Missing row when using NOT and NOT 

IN(NULL) 

List equality of 

complete non-

disjoint partitioning 

(9) Missing row when using NOT and not 

equal (<>) operator 

(10) Missing row when using bitwise “and” 

(&) and INT 

Bag equality of 

complete non-

disjoint partitioning 

(11) Missing row when using bitwise XOR (^) 

operator 

(12) Missing row when using 0 IN(NULL) 
 

TABLE 4.  SUMMARY OF CRASHES DETECTED IN OCEANBASE 

COMMUNITY EDITION VERSION 3.1.0. 

MROP Crashes  

List equality without 

partitioning 

(1)  Error in “type conversion in expression 

evaluation” when using DELETE FROM 

Bag equality without 

partitioning 

- 

Sublist equality (2)  “Result value was out of range” when 

using CAST(varchar AS SIGNED) 

Subbag equality (3)  “Invalid argument” when using IS TRUE 

List equality of 

complete disjoint 

partitioning 

(4)  Internal error when using !GREATEST(), 
IN(), ORDER BY, and LIMIT 

(5)  Internal error when using (NULL =), IN(), 
ORDER BY, and LIMIT 

Bag equality of 

complete disjoint 

partitioning 

(6)  Timeout when using UNION ALL for 

multiple SELECT statements 

(7)  Internal error when using (NULL =), IN(), 
LEAST(), ORDER BY, and LIMIT 

List equality of 

complete non-

disjoint partitioning 

(8)  Internal error when using EXISTS(), 
ORDER BY, and LIMIT 

Bag equality of 

complete non-

disjoint partitioning 

- 

 

id amount 

... ... 

4 600 

  

3 null 

... ... 
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Based on the concept of sublist equality, we propose the 
follow-up query below, with the WHERE keyword followed by 
amount IS TRUE, to capture all the completed transactions, that 
is, those not having a null amount. We continue to use the same 
ORDER BY clause as in the source query. 

(Q7.2) SELECT id, amount FROM transaction 
WHERE amount IS TRUE 
ORDER BY date ASC, amount DESC; 

OceanBase returned a resultant list containing 9900 entries. 

We need to verify whether the resultant list from (Q7.2) is a 
sublist of that from (Q7.1). In our empirical case study, this was 
conducted in three steps: (a) We checked that the number of 
entries in the follow-up output was less than or equal to that in 
the source output. (b) We checked that all the transactions in the 
follow-up output were also in the source output. (c) We removed 
those transactions in the source output that did not appear in 
follow-up output, and checked that the modified source output 
was exactly the same as the follow-up output. 

We found from step (c) that the modified source output was 
not identical to the follow-up output. Although both lists contain 
the same transactions, the ordering was different. Transaction 
521 appeared before 520 in the source output, but after 520 in 
the follow-up output. Hence, a failure was detected. 

B. Crashes 

In addition to the failures, we have also identified eight 
crashes during the execution of either source test cases or 
follow-up test cases. OceanBase terminated itself with messages 
such as internal error, timeout error, or other unexpected errors. 

V. CONCLUSION 

To the best of our knowledge, this is the first project that 
integrates an in-depth approach and a comprehensive approach 
to construct metamorphic relations for DBMS testing. We have 
conducted our project in three parts. 

Part (A) focuses on an in-depth investigation into existing 
MT techniques in DBMS testing. We have identified a gap 
between query partitioning and ternary logic partitioning in [8]. 
We tackle the issue using a new concept of disjoint partitioning. 

Part (B) focuses on the comprehensiveness of existing MR 
output patterns for DBMS testing. We have reviewed the MROP 
framework in [9] against the diverse challenges in DBMS 
testing. We propose a comprehensive MROP framework for 
DBMS. In particular, we find that disjoint partitioning in Part 
(A) only covers two of the eight output patterns. Thorough 
investigations have been conducted for the remaining patterns. 

Part (C) applies the orthogonal (in-depth and comprehen-
sive) approaches to OceanBase. Even though OceanBase has 
been tested extensively and applied widely in the DBMS com-
munity, we have revealed 12 failures and 8 crashes. We find that 
both orthogonal approaches are necessary for constructing 
useful MRs in DBMS testing. When compared with existing MT 
techniques, our framework enables a more systematic and 
exhaustive exploration of potential output patterns, thereby in-
creasing the likelihood of uncovering hidden failures in DBMS. 

More recently, Segura et al. [17][18] proposed metamorphic 
relation input patterns (MRIPs) for testing query-based systems. 
As future work, we would also like to study MRIPs for the meta-
morphic testing of DBMS. 
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