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Abstract—Model inversion (MI) attacks aim to infer and
reconstruct the input data from the output of a neural network,
which poses a severe threat to the privacy of input data. Inspired
by adversarial examples, we propose defending against MI
attacks by adding adversarial noise to the output. The critical
challenge is finding a noise vector that maximizes the inversion
error and introduces negligible utility loss to the target model.
We propose an algorithm to craft such noise vectors, which also
incorporates utility-loss constraints. Specifically, our algorithm
takes advantage of the gradient of an inversion model we train
to mimic the adversary and compute a noise vector to turn
the output into an adversarial example that can maximize the
reconstruction error of the inversion model. Then we apply
a label modifier that keeps the label unchanged to achieve
zero accuracy loss of the target model. Our defense does not
tamper with the training process or need the private training
dataset. Thus it can be easily applied to any current neural
networks or APIs. We evaluate our method under both standard
and adaptive attack settings. Our empirical results show our
approach is effective against state-of-the-art MI attacks due to the
transferability of adversarial examples and outperforms existing
defenses. Furthermore, it causes more reconstruction errors while
introducing zero accuracy loss and less distortion than existing
defenses.

I. INTRODUCTION

Deep neural networks (DNNs) have been widely adopted
in various applications, including computer vision, speech
recognition, and healthcare. Thus the security issues of DNN
systems are becoming increasingly critical. On the one hand,
researchers discovered DNNs are vulnerable to adversarial
examples[1]: an imperceptible noise can be added to an
input that alters the prediction. The application of DNNs
to domains, on the other hand, involves processing sensitive
and proprietary datasets, which raised significant concerns
about data privacy. In addition, recent research has shown that
DNN models may unintentionally disclose private training data
through their outputs or parameters.

In this paper, we are interested in Model Inversion (MI)
attacks, which try to reconstruct the input from the model
prediction. The first MI attack [2] showed adversaries could
infer private genomic information in the training dataset by
accessing a linear regression model. Recent studies extended
MI attacks to different settings. Yang et al. [3] proposed a
black-box MI attack in which the attacker leverages auxiliary
information to build an inversion model that can generate the
original input sample with high similarity. Zhang et al.[4]

propose generative MI attacks that can recover photos of any
person from a face recognition model.

Defending against MI attacks is an urgent research problem.
However, there are few viable defense methods. The potential
reason why MI attacks succeed is that the output of DNN
models contains the confidence scores and unexpected redun-
dant knowledge. Our work proposes defending against MI
attacks by adding adversarial noise to the output to disrupt
the data used to infer the input. Given the output of the
target network, our defense seeks the noise vector achieving
two goals: 1) maximize the reconstruction error of a potential
attacker who wants to use the output to reconstruct the input;
2) introduce bounded distortion to the output without changing
the predicted label. Moreover, the distortion can be bounded
with a distortion budget provided by the model provider.
Achieving the above two objectives can be formulated into
an optimization problem. However, solving the optimization
problem is computationally challenging due to the large noise
space and complex constraints. Inspired by the adversarial ex-
amples, we proposed an algorithm to generate the noise vector
to approximately solve the optimization problem. Specifically,
we first train our inversion model, which mimics MI attacks
to minimize the reconstruction error. The noise vector is then
computed based on the gradient of the inversion model so
that it can maximize the reconstruction error to achieve the
defense goal. To achieve zero accuracy loss, we propose to
apply a label modifier that retains the original predicted label.

We evaluate our defense method against the state-of-the-art
black-box MI attack [3] and compare it to existing defense
methods [5], [6] on real-world datasets. Our experimental
results show that our strategy can effectively defend against
MI attacks with small confidence vector distortion and zero
accuracy loss. In particular, our defense can disrupt the re-
construction images, whereas the existing defenses blur the
faces for facial datasets. Furthermore, our defense remains
successful under an adaptive setting where attackers are aware
of our defense and attempt to evade it through adversarial
training [7]. In summary, we make the following contribution:

• We present an effective defense against black-box MI
attacks by adding a bounded adversarial noise vector to
the output, which can prevent attackers from generating
accurate input data.

• To the best of our knowledge, no existing defense can
achieve zero accuracy loss. Our defense can achieve zero
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accuracy loss by applying a label modifier, which is
independent of our algorithm and can be used to improve
other defenses.

• We evaluate our method under standard and adaptive
attack settings. Our empirical results show our approach
is practical and outperforms previous defenses as it causes
more reconstruction errors while introducing less distor-
tion than existing defenses.

II. RELATED WORK AND BACKGROUND

A. Deep neural networks

A deep neural network used for classification could be
regarded as a general hypothesis function y = C(x), which
takes an input x from a data distribution X and makes
prediction over possible classes. Typically, the output y is a
probability distribution vector in a k-dimensional space Y ,
where each dimension represents the possibility that the input
falls into each class. In most cases, the softmax function
normalizes the aforementioned unbounded confidence score
vector, also known as logit, into a vector of real values ranging
from 0 to 1 and sum to 1. So they can be interpreted as
probabilities. Thus, most neural network can be represented as
y = C(x) = σ(l), where l is logit predicted by the network,
and σ is a normalization function. The training process is to
minimize the loss between the prediction y and the ground
truth classification ŷ: minf Ex∼X [L(C(x), ŷ)] (e.g., cross-
entropy loss for classification).

B. Model inversion attacks

Model inversion attacks attempt to infer the input data from
the corresponding output or other information leaked by the
target model. Fredrikson et al. [2] proposed the first algorithm
to recover the training data associated with an arbitrary model
output given the linear regression model as well as other non-
sensitive features of the input. Afterward, they [8] applied MI
attacks to more complex models such as decision trees and
shallow neural networks in the context of face recognition.
The algorithm formulated the MI attack as an optimization
problem, intending to find the representative with the highest
likelihood or posterior probability for a given class. These
optimization-based MI attacks can generate face images with
identification accuracy much higher than random guessing.
However, the recovered blurry faces do not resemble natural
images, especially for complex model architectures.

Unlike developing optimization algorithms to perform inver-
sion tasks, recent MI attacks leverage another neural network
to invert the model. Zhang et al.[4] presented a generative
model that distills generic knowledge from public datasets
and uses it to reconstruct realistic images for deep neural net-
works. Yang et al.[3] proposed training an additional inversion
model that swaps the input and output of the target network.
Specifically, their inversion model is as follows: x̄ = A(C(x))
which takes the logit of a target model as the input and aim
to generate the corresponding input. Their experimental results
showed significant improvement of the inversion accuracy and
recovered image quality over previous works.

C. Existing defense methods

There are very few defenses or countermeasures against
current MI attacks. Wang et al. [5] introduced the Mutual In-
formation Regularization based Defense (MID) against privacy
attacks. The main idea is to minimize the dependence between
inputs and predictions by incorporate their mutual information
I(X,Y ) as a regularizer into the training objective. Therefore
the adversary is less capable of inferring the input data
from the model prediction. However, the model needs to
be retrained with mutual information loss, which introduces
massive amount of overhead for complicated network archi-
tectures. Moreover, MID is designed for better protection of
privacy rather than preventing MI attacks specifically.

Prediction Purification Framework (PPF) [6] was proposed
to purify output with the goal of removing redundant in-
formation, which could be used to infer the input by the
adversary. Specifically, an autoencoder is trained as a purifier:
ỹ = P (ŷ), which takes the logit of the target model as input
and regenerate it. In addition, an inversion model is trained to
minimize the reconstruction error as an adversary. The purifier
and the adversary are alternatively trained to find the best
result, respectively.

D. Adversarial examples

Adversarial attacks [1] transform input into adversarial
examples by adding a small amount of deliberately crafted
noise that could mislead the DNN models. Various algorithms
[9], [10], [11] have been developed to create adversarial
examples that deceive both humans and models. Madry et al.
[7] further formalized adversarial attacks as a saddle point
problem, which can be solved by first-order methods (i.e.,
the gradient information of the network), thereby motivate
projected gradient descent (PGD) as a universal first-order
adversarial attack.

III. PROBLEM FORMULATION

A. Threat model

In our scenario, we have three parties: model provider, at-
tacker, and defender. The model provider trains a classification
model F on the proprietary training dataset. Then the well-
trained model is released as a black box, e.g., as a cloud
service, and returns probability distribution vectors f(x) to
users for their query data x. This model is called the target
model for convenience.

With access to the target model F , the attacker can query
F with any data x to obtain its probability distribution
vector F (x). Also, the attacker knows some public auxiliary
information I such as a similar dataset as the target model used
for training. In this paper, we focus on a state-of-the-art black-
box MI attack [3] that intends to train another inversion model
A on the auxiliary dataset. Then, the inversion model is used
to reconstruct the input data from its probability distribution
vector.



B. Defender

The defender could be the model provider or a third party
who has the same access to the target model and the public
auxiliary information as the attacker. The target model predicts
the output for any query from users or attackers. Then we add
defensive noise to it before releasing it. Formally, we have
y′ = y+e, where e is the noise vector added by the defender
that meets the following goals:

1) Defense goal: the noise vector should maximize the
reconstruction error R(x, A(y′

x)) thereby prevents attackers
from inferring the private input x.

2) Utility goal: the modified output should still be a
probability distribution vector with the same predicted label.
Formally, each value in it should range from 0 to 1 and sum to
1 in all. Since the confidence score vector provides additional
information beyond the predicted label to users, the noise
itself should introduce minor distortion. It is bounded by a
distortion budget ε that means the maximum distortion the
model provider can tolerate.

C. Mathematic formulation

We formulated the defense against MI attacks as an opti-
mization problem, where y is the output of the target model
for input x, and the objective is to maximize the reconstruction
error of the original input and the reconstructed input as
following:

max R(x,A(y + e))
subject to : e ≤ ε

argmax(y + e) = argmaxy
0 ≤ (yi + ei) ≤ 1,

∑
(yi + ei) = 1

(1)

The first constraint is the distortion budget that the model
provider can tolerate. The second constraint means the noise
added will not change the predicted label of the input. Finally,
the vector with noise is still a probability distribution vector,
as the last constraint implies.

IV. OUR DEFENSIVE METHOD

Our approach is designed to defend against black-box MI
attacks where adversaries exploit the output of the target model
to infer the input. Instead of tampering with the training
process of the target model (e.g., MID [5]), our defense
adds carefully crafted perturbation to the output predicted
by the target network with utility-loss guarantees. Thus, our
defense could be deployed to an existing network or an API
of commercial models without retraining it.

Due to the large noise space, it is computationally chal-
lenging to solve this optimization problem directly. Noted that
the optimization objective we want to maximize is the same
loss function that the inversion model tends to minimize, ap-
proximately solving this optimization problem can be viewed
as finding an untargeted adversarial example to mislead the
inversion model. Specifically, we consider y as the benign
example, and y + e is the adversarial example we want to
find. However, previous adversarial algorithms are insufficient

for our problem because of the unique utility-loss constraints
in our defensive setting. Therefore, we present a new algorithm
exploiting the concept of adversarial examples to craft the
specific noise vector for our problem after eliminating the
constraints one by one.

A. Eliminating the constraints

In Equations 1, the last constraint where the vector with
noise is still a probability distribution seems complex. It can
be eliminated by a change of variables. As the target network
is a neural network with a softmax normalization layer, which
takes an unbounded confidence score vector c = F (x) as
input, where F is the part of the target network without the
softmax layer, we can add noise to the confidence score vector
instead of to the probability distribution vector. Formally, we
have y+ e = σ(c+n), where σ is the softmax function, and
n is the new variable that we are looking for. For any value of
n, the noisy output is still a probability distribution. Thereby
the constraint is satisfied automatically. Then we obtain our
new optimization objective maxR(x,A(σ(c+ n))), and the
noise vector: e = σ(c+n)−y. However, there is no need to
calculate the noise vector for the probability distribution. To
simplify our problem, we directly manipulate the confidence
score vector and calculate the noise probability distribution
vector based on it.

The second constraint intends to fix the true label of the
output after adding the noise vector. Let l = argmaxy
be the lable that the target network predicts. Therefore, we
can enforce the the confidence value for entry l to be the
maximum. Specifically, we create a label modifier for the entry
of predicted label:

ml = ReLU(max(c+ n)− (cl + nl)) (2)

where ReLU(x) = max (0, x) is a common-used activation
function and cl and nl is lth entry of the vector. By adding
this modifier, the output can satisfy the second constraint.

B. Generating the noise vector

After eliminating part of the constraints, we can begin
to tackle the maximization problem, which can be viewed
as finding an adversarial example to mislead the inversion
model. Since the reconstruction error we want to maximize
is the loss function used to train the inversion model A, we
can exploit the gradient of inversion model to calculate the
optimal noise vector so that this adversarial gradient signal
can maximally deviates from the original gradient. Basically,
motivated by simple one step adversarial attack FGSM [1], we
develop an algorithm shown in Algorithm 1 to find the noise
vector, which can achieve the defense goal as well as satisfy
all the constraints. Given an input x and its corresponding
confidence score vector c = F (x) from the target model, in
each step, we calculate the optimal noise vector as follows:
n = η · sign[∇Rct(x, A(σ(c)))] + ml, where η is the step
size, and mlt is the label modifier. If the distortion exceeds the
distortion budget, we normalize the distortion under the given
norm and multiply it by ε to ensure the distortion budget.



Algorithm 1: Calculating the noise vector
Input: original logit c0, current logit ct, corresponding

gradient grad, step size η, distortion budget ε
Output: The adversarial noise vector n

1 Function getNoise(c0, ct, grad, η, ε):
2 c← ct + η ∗ sign(grad);
3 l← argmax(c0);
4 m← ReLU(max(c)− c[l]);
5 c[l]← c[l] +m;
6 n← c− c0;
7 if ||n||p > ε then
8 n = ε ∗ n/||n||p
9 end

10 return n

C. Our defense

In our preliminary experiments, we observed that repeatedly
perturbing the confidence score vector can improve the defense
strength. Therefore, our defense algorithm can be extended
into a multi-step version by iteratively finding new noise
vectors for current results:

c0 = F (x)
nt = ηsign[∇Rct(x, A(σ(ct)))] +mlt

ct+1 = ct + ε · nt/||nt||p
(3)

Algorithm 2: Our defense algorithm
Input: Input data x, Target network F , Inversion

model A, iterationi, step size η, distortion
budget ε

Output: The adversarial output y
1 c0 ← F (x);
2 c← F (x);
3 for i← 1 to i do
4 recon← A(σ(c)); loss← R(x, recon);
5 loss.backpropagation();
6 grad← c.getGradient();
7 c← c0 + getNoise( c0, ct, grad, η, ε) ;
8 end
9 return σ(c)

Algorithm 2 shows our iterative defense based on the noise
vector found in algorithm 1. First of all, we keep the original
confidence score vector as c0 for controlling the distortion
budget. In each iteration, we feed the current input x into
the target model and reconstruct the input with the inversion
model. Next, we calculate the loss between the current input
and the corresponding reconstructed input by the inversion
model and obtain the gradient using backpropagation. Then
the algorithm 1 returns the optimal noise vector for the current
iteration. Finally, by adding the bounded noise vector to the
original confidence score vector, we obtain the new result. The

process will end when the maximum number of iterations is
reached.

V. EVALUATION

A. Experimental setup

This section evaluates our defense against MI attacks under
different settings and compares it with existing defense meth-
ods. We implement our defense, attacks, and existing defenses
using PyTorch.

1) Dataset: We use four datasets, which are widely adopted
in previous works on model inversion attacks. MNIST [12]
contains handwritten digit images in 10 classes. As MNIST is
used to train the target network, we use the extended version
QMNIST [13] as the public dataset for our defense. Similarly,
for the face recognition task, we use FaceScrub530 [14] as the
private training set. There are 45,897 downloadable images
of 530 individuals. The face was processed according to the
official bounding box and resized to 64 × 64. As for public
face information, we use CelebA [15] which contains 202,599
images of 10,177 celebrities.

2) Target models: For both tasks, we use the same CNN
architecture and training strategy as in [3] to train the target
model. The FaceScrub classifier and MNIST classifier achieve
85.7% and 99.6% accuracy on their test set, respectively,
which are comparable to the state-of-the-art classification
performance.

3) Model inversion attacks: In our experiments, we con-
sider the recent state-of-the-art black-box adversarial model
inversion attack [3], where the attacker trains an inversion
model to reconstruct the input with high fidelity. We use the
same model architecture and attack setting as in [3] to train the
inversion model. The inversion model was trained on QMNIST
and CelebA, respectively. Noted that the architecture of the
testing inversion model is different from the model we used
in our defense, our defense remove two hidden layers to see
if our defense can transfer from our inversion model to the
attacker’s inversion model.

4) Existing defenses: We compare the performance of our
defense with MID [5] and PPF[6], which are the most effective
ones presented in the literature thus far. We implemented MID
by retraining the target network with the additional mutual
information loss, which was estimated using the information
bottleneck [16]. As for PPF, we train an additional autoencoder
to purify the confidence score vector according to the paper.
Since neither of these two papers provided detailed parameters
nor published their implementation, we tried our best to
reproduce MID and PPF. For our defense, the step size is
0.1 for MNIST and 0.4 for Facescrub, and the iteration is 10.

B. Evaluation Metrics

The following metrics are used to measure the defense
performance, and utility of a defense method.

1) Target model accuracy: we measure the target model
accuracy on the testing set before and after the defense
method is applied. It reflects whether the defense method will
substantially reduce the accuracy of the target model.



Fig. 1. The reconstruction results by MI attack when different defense methods are deployed.

2) Confidence score distortion: Unlike the accuracy loss,
the confidence score distortion may be large while keeping
the predicted label unchanged. To measure the confidence
score distortion introduced by a defense method, we adopt
the commonly used L1-norm of the noise vector, which is the
sum of the absolute value of each entry in the vector. Then
the loss is averaged for each entry.

3) Reconstruction error: We measure the reconstruction
error by computing the mean squared error (MSE) between
the original input and the reconstructed input for each pixel.
A higher MSE indicates a more effective defense mechanism.

C. Experimental results

Table I demonstrates the comparison of existing defense
methods and our defense from the utility for normal users and
defense performance against MI attack perspectives. When
a normal user queries the target model with defenses, our
method achieves zero model accuracy loss for both tasks,
while PPF and MID introduce significant utility loss. This is
because we add the label modifier that achieves zero model
accuracy loss. Technically the label modifier is an independent
component of our defense. So PPF and MID can also apply
our label modifier to achieve zero model accuracy loss. On the
other hand, when an attacker performs MI attacks on the target
model, our approach outperforms all the other defense methods
with the largest reconstruction error. Especially for facescrub,
our defense introduces a minor confidence distortion and
significantly increased the reconstruction error by a factor of
almost 20 compared to the baseline without defense. This is
because our noise vector is elaborately crafted to maximize
the reconstruction error. Overall, our approach outperforms
existing defense methods against MI attacks in terms of utility
and defense performance.

Figure 1 presents the reconstruction results on both datasets
with and without defense. For digit images, the performance of
MI attacks and defense methods vary significantly for different
numbers. For instance, the attacker can generate clear images
of 7 and 0 even when defense methods are deployed. However,
for numbers 1, 2, and 4, our defense successfully misleads the
inversion model, which generates 0 instead. This difference

TABLE I
COMPREHENSIVE RESULTS OF EVALUATED DEFENSE METHODS.

Dataset Defense Model Acc. Conf. Dist. Recon. Err.

MNIST

None 98.96% 0 0.0096
PPF 96.67% 0.4156 0.0544
MID 75.83% 1.8206 0.0604
Ours 98.96% 0.4762 0.0663

FaceScrub

None 81.52% 0 0.0126
PPF 69.71% 3.106 0.1256
MID 55.62% 4.716 0.0446
Ours 81.52% 2.2352 0.2453

may come from the tiny feature space of digit images. The
inversion model learns to generate specific images (e.g., 0 and
7) without using too much information from the confidence
vector. As for face image, when no defense is applied, MI
attacks can generate a very similar face image with clear facial
features. When PPF is applied, the reconstruction images are
more like average faces but still keep some prominent facial
features that can be used to identify a specific individual.
Similarly, with MID deployed, attackers still can generate
accurate facial images which only have minimal distortion
comparing with the reconstruction results without any defense.
This is not a surprise since MID is not explicitly designed for
MI attacks. The last row shows the results after applying our
defense. The reconstruction of the inversion is successfully
disrupted. The results also match the quantified reconstruction
error in Table I. The results show that our approach can
effectively prevent the model inversion attack with zero utility
loss.

D. Adaptive attack with adversarial learning

So far, we have demonstrated the effectiveness of our
defense method against MI attacks. We now consider a more
realistic scenario where the powerful attackers also know
the existence of our defense and seek means to evade our
defense. Since we leverage adversarial examples in our defense
to mislead the inversion model, adversaries may improve
their inversion model to be more robust against adversarial
examples in an adaptive setting. Although various defensive



strategies [17], [18], [19] have been explored to defend against
adversarial examples, designing such robust classifiers is still
considered an open challenge. Nevertheless, we will consider
attackers exploit adversarial training to bypass our defense,
as adversarial training [7] was considered to be the most
empirically robust defense method.

TABLE II
RESULTS OF OUR DEFENSE IN ADAPTIVE SETTING.

None Our defense Adv defense High dist.
Conf. dist. 0 2.2352 2.738 3.888
Recon. err. 0.0126 0.0271 0.1657 0.0562

Figure 2 and Table II shows the result in an adaptive attack
setting. The first row is the ground truth image. The second
row demonstrates the reconstructed image of an adversarial
training inversion model. Attackers can generate more realistic
face images using adversarial training with knowledge of our
defense and related parameters. The reconstruction error of our
defense is still larger than the baseline. Therefore our defense
can prevent attackers from generating accurate face images
even when attackers know the mechanism and parameters of
our defense.

Fig. 2. The reconstruction results of an adaptive attack with our basic defense
(the second row) and improved defense (the last two rows).

Furthermore, our methods can be improved by update our
inversion model into an adversarial training version The third
row in Figure 2 presents the result of our improved defense,
and the average reconstruction error is 0.1657. We could
see that the recovered images are more blurry. Moreover,
we propose to increase the step size in our primary defense
and introduce more distortion to the confidence score vector
to counter strong attackers. The last row shows the results
of this defense strategy. By increasing the step size to 1,
the reconstruction images have low fidelity and noticeable
distortion with a slightly higher confidence distortion.

Although in an adaptive attack setting, the performance of
our defense drops a little. It is still effective and can be further
improved by two different strategies mentioned above.

VI. CONCLUSION

We propose a defense method against black-box MI attacks
by turning the output of the target model into an adversar-
ial example that can mislead the attacker. Furthermore, our
method is the first defense method that achieves a utility-loss
guarantee and zero accuracy loss for the target model. We

perform experiments to compare the defense performance and
utility-privacy tradeoff on different datasets and models. Our
empirical evaluation results show that our defense can achieve
extraordinary performance to protect the target model against
the state-of-the-art MI attack. We believe it is valuable future
work to extend the idea of adversarial examples to defend
against other machine learning-based inference attacks such as
model stealing attacks [20], and membership inference attacks
[21], [22].
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