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ABSTRACT
Kernel density visualization, or KDV, is used to view and
understand data points in various domains, including traffic
or crime hotspot detection, ecological modeling, chemical
geology, and physical modeling. Existing solutions, which
are based on computing kernel density (KDE) functions, are
computationally expensive. Our goal is to improve the perfor-
mance of KDV, in order to support large datasets (e.g., one mil-
lion points) and high screen resolutions (e.g., 1280 × 960 pix-
els). We examine two widely-used variants of KDV, namely
approximate kernel density visualization (ϵKDV) and thresh-
olded kernel density visualization (τKDV). For these two
operations, we develop fast solution, called QUAD, by deriv-
ing quadratic bounds of KDE functions for different types
of kernel functions, including Gaussian, triangular etc. We
further adopt a progressive visualization framework for KDV,
in order to stream partial visualization results to users con-
tinuously. Extensive experiment results show that our new
KDV techniques can provide at least one-order-of-magnitude
speedup over existing methods, without degrading visual-
ization quality. We further show that QUAD can produce
the reasonable visualization results in real-time (0.5 sec) by
combining the progressive visualization framework in single
machine setting without using GPU and parallel computation.
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1 INTRODUCTION
Data visualization [8, 24, 25] is an important tool for un-
derstanding a dataset. In this paper, we study kernel-density-
estimation-based visualization [43] (termed kernel density

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD, 2020
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

visualization (KDV) here), which is one of the most com-
monly used data visualization solutions. KDV is often used
in hotspot detection (e.g., in criminology and transporta-
tion) [4, 20, 45, 49, 51] and data modeling (e.g., in ecology,
chemistry, and physics) [3, 10, 29, 30, 46]. Most of these ap-
plications restrict the dimensionality of datasets to be smaller
than 3 [4, 20, 29, 30, 45, 46, 49, 51].1 Figure 1 shows the
use of KDV in analyzing motor vehicle thefts in Arlington,
Texas in 2007. Here, each black dot is a data point, which
denotes the place where a crime has been committed. A color
map, which represents the criminal risk in different places,
is generated by KDV; for instance, a red region indicates
the highest risk of vehicle thefts in that area. As discussed
in [4, 20], color maps are often used by social scientists or
criminologists for data analysis.

Table 1 summarizes the usage of KDV in different domains.
Due to its wide applicability, KDV is often provided in data
analytics platforms, including Scikit-learn 2, ArcGIS 3, and
QGIS 4.

Table 1: KDV Applications
Type domain Usage Ref.

Hotspot Criminology Detection of crime regions [4, 20, 53]
detection Transportation Detection of traffic hotspots [45, 49, 51]

Data Ecology Visualization of polluted [21, 29, 30]
modeling regions

Chemistry Visualization of detrial [46]
age distributions

Physics Particle searching [3, 10]

To generate a color map (e.g., Figure 1), KDV determines
the color value of each pixel q on the two-dimensional com-
puter screen by a kernel density (KDE) function, denoted by
FP (q) [43]. Equation 1 shows one example of FP (q) with
Gaussian kernel, where P and dist(q, pi) are the set of two-
dimensional data points and Euclidean distance respectively.

FP (q) =
∑
pi∈P

w · exp(−γdist(q, pi)2) (1)

1For high-dimensional dataset, one approach is to first use dimension reduc-
tion techniques (e.g., [48]) to reduce the dimension to 1 or 2 and then utilize
KDV to generate color map.
2https://scikit-learn.org/
3http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/
how-kernel-density-works.htm
4https://docs.qgis.org/2.18/en/docs/user_manual/plugins/plugins_heatmap.
html
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Figure 1: A color map for motor vehicle thefts (black
dots) in Arlington, Texas in 2007 (Cropped from [20])

In this paper, we will also consider FP (q) with other kernel
functions in Section 5. As a remark, all kernel functions, that
we consider in this paper, are adopted in famous software,
e.g., Scikit-learn [35] and QGIS [40].

A higher FP (q) value indicates a higher density of data
points in the region around q. The above KDE function is com-
putationally expensive to compute. Given a data set with 1 mil-
lion 2D points, KDV involves over 2 trillion operations [36]
on a 1920×1080 screen. As pointed out in [13, 16, 52, 55, 56],
KDV cannot scale well to handle many data points and dis-
play of color maps on high-resolution screens. To address
this problem, researchers have proposed two variants of KDV,
which aim to improve its performance:
• ϵKDV: This is an approximate version of KDV. A relative
error parameter, ϵ , is used, such that for each pixel q, the
pixel color is within (1± ϵ) of FP (q). Figure 2a shows a color
map generated by the original (exact) KDV, while Figure
2b illustrates the corresponding color map for ϵKDV with
ϵ equal to 0.01. As we can see, the two color maps do not
look different. ϵKDV runs faster than exact KDV [7, 17, 54–
56], and is also supported in data analytics software (e.g.,
Scikit-learn [35]).
• τKDV: In tasks such as hotspot detection [4, 20], a data
visualization user only needs to know which spatial region
has a high density (i.e., hotspot), and not the other areas. One
such hotspot is the red region in Figure 1. A color map with
two colors are already sufficient. Figure 2c shows such a
color map. To generate this color map, the τKDV can be used,
where a threshold, τ , detemines the color of a pixel: a color
for q when FP (q) ≥ τ (to indicate high density), and another
color otherwise. This method, recently studied in [7, 13], is
shown to be faster than exact KDV.

Although ϵKDV and τKDV perform better than exact KDV,
they still require a lot of time. On a 270k-point crime dataset
[1], displaying a color map on a screen with 1280× 960 pixels
takes over an hour for most methods, including the ϵKDV so-
lution implemented in Scikit-learn. In fact, these existing

methods often cannot deliver real-time performance, which
allows color maps to be generated quickly, thereby saving the
precious waiting time of data analysts.

Our contributions. In this paper, we develop a solution,
called QUAD, in order to improve the performance of ϵKDV
and τKDV. The main idea is to derive lower and upper bounds
of the KDE function (i.e., Equation 1) in terms of quadratic
functions (cf. Section 4). These quadratic bounds are theo-
retically tighter than the existing ones (in aKDE [17], tKDC
[13], and KARL [7]), enabling faster pruning. In addition,
many KDV-based applications [11, 15, 20, 27] also utilize
other kernel functions, including triangular, cosine kernels
etc. Therefore, we extend our techniques to support other
kernel functions (cf. Section 5), which cannot be supported
by the state-of-the-art solution, KARL [7]. In our experiments
on large datasets in a single machine, QUAD is at least one-
order-of-magnitude faster than existing solutions. For ϵKDV,
QUAD takes 100-1000 sec to generate color map for each
large-scale dataset (0.17M to 7M) with 2560 × 1920 pixels,
using small relative error ϵ = 0.01. However, most of the
other methods fail to generate the color map within 2 hours
under the same setting. For τKDV, QUAD can achieve nearly
10 sec with 1280 × 960 pixels, using different thresholds.

We further adopt a progressive visualization framework for
KDV (cf. Section 6), in order to continuously output partial
visualization results (by increasing the resolution). A user can
terminate the process anytime, once the partial visualization
results are satisfactory, instead of waiting for the precise color
map to be generated. Experiment results show that we can
achieve real-time (0.5 sec) in single machine without using
GPU and parallel computation by combining this framework
with our solution QUAD.

The rest of the paper is organized as follows. We first review
existing work in Section 2. We then discuss the background
in Section 3. Later, we present quadratic bound functions for
KDE in Section 4. After that, we extend our quadratic bounds
to other kernel functions in Section 5. We then discuss our
progressive visualization framework for KDV in Section 6.
Lastly, we show our results in Section 7, and conclude in
Section 8. The appendix is shown in Section 9.
2 RELATED WORK
Kernel density visualization (KDV) is widely used in many
application domains, such as: ecological modeling [29, 30],
crime [4, 20, 53] or traffic hotspot detection [45, 49, 51],
chemical geology [46] and physical modeling [10]. For each
application, they either need to compute the approximate
kernel density values with theoretical guarantee [17] (ϵKDV)
or test whether density values are above a given threshold [13]
(τKDV) in the spatial region. Due to the high computational
complexity, many existing algorithms have been developed
for efficient computation of these two variants of KDV, which
can be divided into three camps (cf. Table 2).
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(a) Exact KDV (b) εKDV, ε=0.01 (c) KDV

Figure 2: Illustrating ϵKDV and τKDV
Table 2: Existing methods in KDV

Techniques Ref. Summary Software
Function [16, 41, 50] Heuristics -

approximation
Dataset sampling[22, 54–56] Quality-preserving -

[37–39] (probabilistic guarantee)
Bound functions [7, 13, 17] Quality-preserving Scikit-learn

(deterministic guarantee) [35]

In the first camp, researchers propose function approxima-
tion methods for KDE function (cf. Equation 1). Raykar et
al. [41] and Yang et al. [50] propose using fast Gauss trans-
form to efficiently and approximately compute KDE function.
However, this type of methods normally does not provide the
theoretical guarantee between the returned value and exact
result.

In the second camp, researchers propose efficient algorithm
by sampling the original datasets. Zheng et al. [54–56] and
Phillips et al. [37–39] pre-sample the datasets into smaller
sizes and apply exact KDV for the reduced datasets. They
proved that the output result is near the exact KDE value for
each pixel in original datasets. However, their work [37, 54–
56] only aim to provide the probabilistic error guarantee (e.g.,
ϵ = 0.01 with probability 0.8). On the other hand, determin-
istic guarantee (e.g., ϵ = 0.01), used in our problem settings
[7, 13, 17], are adopted in existing software, e.g., Scikit-learn
[35]. Moreover, their algorithms still need to evaluate the
exact KDV for the reduced datasets, which can still be time-
consuming. Some other research studies [33, 34] also adopt
the sampling methods for different tasks (e.g., visualization
and query processing). Park et al. [33] propose advanced
method for sampling the datasets in the preprocessing stage,
which is possible to further reduce the sample size, and gen-
erate the visualization in the online stage. However, the large
preprocessing time is not acceptable in our setting, since the
visualized datasets are not known in advance for the scientific
applications (cf. Table 1) and software (e.g., Scikit-learn, Ar-
cGIS and QGIS). In addition, unlike the sampling methods for
KDV (e.g., [54]), since these methods [33, 34] do not discuss
how to appropriately update the weight value for each data
point in the output sample set for the new kernel aggregation
function 5, they cannot support KDV.

In the third camp, which we are interested in, researchers
propose different efficient lower and upper bound functions
5We replace P andw by output sample set andwi in Equation 1 respectively.

with index structure (e.g., kd-tree) to evaluate KDE functions
(e.g., Equation 1). Albeit there are many existing work for
developing new bound functions [7, 13, 17], there is one key
difference between our proposal QUAD and these methods.
Our proposed quadratic bound functions are tighter than all ex-
isting bound functions in previous literatures [7, 13, 17] with
only a slight overhead (O(d2) time complexity) for Gaussian
kernel, which is affordable as the dimensionality d is normally
small (d < 3) in KDV, and only in O(d) time complexity for
other kernel functions (e.g., triangular and cosine kernels).
On the other hand, some other research studies in approxi-
mation theory [9, 47] also focus on utilizing the polynomial
functions to approximate the more complicated functions,
e.g., interpolation and curve-fitting. However, these methods
cannot provide the correctness guarantee of lower and upper
bounds for kernel aggregation function (cf. Equation 1). In
addition, high-order polynomial functions cannot provide fast
evaluation in our setting (e.g., O(d2) time complexity).

Interactive visualization is a well-studied problem [12, 14,
24–26, 36, 48, 57]. Users can control the visualization quality
under different resolutions (e.g., 256 × 256 or 512 × 512) [36].
However, existing work either utilize modern hardware (e.g.,
GPU) [26, 36]/distributed algorithms (e.g., MapReduce) [36]
to support KDV in real-time or do not focus on KDV [12,
14, 24, 25, 48, 57]. In this work, we adopt a progressive
visualization framework for KDV which aims to continuously
provide coarse-to-fine partial visualization results to users.
Users can stop the process at any time once they are satisfied
with the visualization results. By using our solution QUAD
and this framework, we can achieve satisfactory visualization
quality (nearly no degradation) in real-time (0.5 sec) in single
machine setting without using GPU and parallel computation.

There are also many other studies for utilizing paral-
lel/distributed computation, e.g., MapReduce [54], and mod-
ern hardware, e.g., GPU [52] and FPGA [16], to further boost
the efficiency evaluation of exact KDV. In this work, we focus
on single machine setting with CPU and leave the combina-
tion of our method QUAD with these optimization opportuni-
ties in our future work.

In both database and visualization communities, there are
also many recent visualization tools, which are not based
on KDV [18, 19, 23, 28, 31, 32, 42, 48]. This type of work
mainly focuses on avoiding the overplotting effect (i.e., too
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many points in the spatial region) of the visualization of data
points in maps or scatter plots. Some other visualization tools
are also summarized in the book [44]. However, in some
applications, e.g., hotspot detection and data modeling (cf.
Table 1), the users mainly utilize KDV for visualizing the
density of different regions in which these work cannot be
applied in this scenario.

3 PRELIMINARIES
In this section, we first revisit the concepts [7, 13, 17] of
bound functions (cf. Section 3.1) and the indexing framework
(cf. Section 3.2). Then, we also illustrate the state-of-the-art
bound functions [7] (cf. Section 3.3), which are mostly related
to our work.

3.1 Bound Functions
In existing literatures [7, 13, 17], they develop the lower
bound LB(q) and upper bound UB(q) for FP (q) (cf. Equa-
tion 1), given the pixel q, which must fulfill the following
correctness condition:

LB(q) ≤ FP (q) ≤ UB(q)

For ϵKDV and τKDV, we can avoid evaluating the compu-
tationally expensive operation FP (q) ifUB(q) ≤ (1 + ϵ)LB(q)
for ϵKDV and LB(q) ≥ τ or UB(q) ≤ τ for τKDV [7]. There-
fore, once the bound functions are (1) tighter (near the exact
FP (q)) and (2) fast to evaluate (much faster than FP (q)), we
can achieve significant speedup compared with the exact eval-
uation of FP (q).

3.2 Indexing Framework for Bound
Functions

Existing literatures [7, 13, 17] adopt the hierarchical index
structures (e.g., kd-tree) to index the point set P (cf. Figure
3).6 We illustrate the running steps (cf. Table 3) for evaluating
the ϵKDV and τKDV in this indexing framework. In the
following, we denote the exact value, lower and upper bounds
between the pixel q and node Ri to be FRi (q), LBRi (q) and
UBRi (q) respectively, where: LBRi (q) ≤ FRi (q) ≤ UBRi (q).

R5

p1 p2 … p5 

Rroot

p6 p7 … p9 

leaf R1

p10 p11 … p13 p14 p15 … p18

leaf R3leaf R2 leaf R4

R6

Figure 3: Hierarchical index structure for different
bound functions [7, 13, 17]

6The data analytics software, Scikit-learn [35], utilizes kd-tree by default for
solving ϵKDV.

Initially, the algorithm evaluates the bound functions of root
node Rroot and then pushes back this node into the priority
queue. This priority queue manages the evaluation order of
different nodes Ri based on the decreasing order of bound
differenceUBRi (q) −LBRi (q). In each iteration, the algorithm
pops out the node with the highest priority, pushes back its
child nodes and maintain the incremental bound values l̂b and
ûb (e.g., Rroot is popped, its child nodes R5 and R6 are added
and the bounds l̂b and ûb are updated in step 2). Once the
popped node is the leaf (e.g., R1 in step 4), the exact value for
that node is evaluated.
Table 3: Running steps for each q in the indexing frame-
work

Step Priority Maintenance of lower bound l̂b Popped
queue and upper bound ûb node

1 Rroot l̂b = LBRroot (q),
ûb = UBRroot (q)

2 R5,R6 l̂b = LBR5 (q) + LBR6 (q), Rroot
ûb = UBR5 (q) +UBR6 (q)

3 R1,R6,R2 l̂b = LBR1 (q) + LBR6 (q) + LBR2 (q), R5
ûb = UBR1 (q) +UBR6 (q) +UBR2 (q)

4 R6,R2 l̂b = FR1 (q) + LBR6 (q) + LBR2 (q), R1
ûb = FR1 (q) +UBR6 (q) +UBR2 (q)

The algorithm terminates for each pixel q in (1) ϵKDV
and (2) τKDV once the incremental bounds satisfy (1) ûb ≤

(1+ϵ)l̂b and (2) l̂b ≥ τ or ûb ≤ τ respectively (cf. Section 3.1).
Since we follow the same indexing framework as [7, 13, 17],
we omit the detailed algorithm here. Interested readers can
refer to the algorithm from the supplementary notes7 of [7].
Similar technique can be also found in similarity search com-
munity [5, 6]. Even though the worst case time complexity
of this algorithm for a given pixel q is O(nB logn + nd) time
(B is the evaluation time of each LBRi (q)/UBRi (q)), which
is even higher than directly evaluating FP (q) (O(nd) time),
this algorithm is very efficient if we utilize the fast and tight
bound functions.
3.3 State-of-the-art Bound Functions
Among most of the existing bound functions, Chan et al. [7]
developed the most efficient and tightest bound functions
for Equation 1. They utilize the linear function Linm,k (x) =
mx + k to approximate the exponential function exp(−x). We
denote EL(x) = mlx + kl and EU (x) = mux + ku for the
lower and upper bounds of exp(−x) respectively, i.e., EL(x) ≤
exp(−x) ≤ EU (x), as shown in Figure 4.

Once they set x = γdist(q, pi)2, they can obtain the lin-
ear lower and upper bound functions FLP (q, Linm,k ) =∑

pi∈P w(mγdist(q, pi)2 + k) for FP (q) =
∑

pi∈P w exp(−γ ·

dist(q, pi)2), given the suitable choices of m and k. They

7https://github.com/edisonchan2013928/KARL-Fast-Kernel-Aggregation-Queries

https://github.com/edisonchan2013928/KARL-Fast-Kernel-Aggregation-Queries
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(a) Linear lower bound (b) Linear upper bound

Figure 4: Linear lower and upper bound functions for exponential function exp(−x) (from [7])

prove that these bounds are tighter than existing bound func-
tions [13, 17]. In addition, they also prove that their linear
bounds FLP (q, Linm,k ) can be computed in O(d) time [7]
(cf. Lemma 1). More details can be found from [7]7.

LEMMA 1. [7] Given two values m and k,
FLP (q, Linm,k ) =

∑
pi∈P w(mγdist(q, pi)2 + k) can be

computed in O(d) time.

The main idea of achieving these efficient bounds is based
on the fast evaluation of the sum of squared distance, which
can be achieved in O(d) time [7], given the precomputed
aP =

∑
pi∈P pi, bP =

∑
pi∈P | |pi | |2 and |P |.∑

pi∈P

dist(q, pi)2 =
∑
pi∈P

(| |q| |2 − 2q · pi + | |pi | |2)

= |P | · | |q| |2 − 2q · aP + bP

4 QUADRATIC BOUNDS
As illustrated in Section 3, if we can develop the fast and
tighter bound functions for FP (q), we can achieve significant
speedup for solving both ϵKDV and τKDV. Therefore, we ask
a question, can we develop the new bound functions, which
are fast and tighter, compared with the state-of-the-art linear
bounds [7] (i.e., FLP (q, Linm,k ))? To answer this question,
we utilize the quadratic function Q(x) = ax2 +bx +c, (a > 0),
to approximate the exponential function exp(−x). Observe
from Figure 5, quadratic function can achieve the lower and
upper bounds (QL(x) and QU (x) respectively) of exp(−x)
with the suitable choice of the parameters a, b and c, given
[xmin, xmax ] as the bounding interval of xi = γdist(q, pi)2

(white circle), i.e., xmin ≤ xi ≤ xmax , where xmin and xmax
are based on the minimum and maximum distances between q
and the bounding rectangle of pi respectively [7] (O(d) time).
In this paper, we let QL(x) and QU (x) be:

QL(x) = aℓx
2 + bℓx + cℓ

QU (x) = aux
2 + bux + cu

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
xmin xmaxx1 x2 x3

𝑄𝐿 𝑥 = 0.2𝑥2 − 0.82𝑥 + 0.97

𝑄𝑈 𝑥 = 0.1𝑥2 − 0.56𝑥 + 0.86

function value

function: exp(−𝑥)

Figure 5: Quadratic lower (red) and upper (purple)
bound functions of exp(−x) in the range [xmin, xmax ]

We define the aggregation of the quadratic function as:

FQP (q,Q) =
∑
pi∈P

w
(
a(γdist(q, pi)2)2 + bγdist(q, p)2 + c

)
(2)

With the above concept, FQP (q,QL) and FQP (q,QU ) can
serve as the lower and upper bounds respectively for FP (q),
as stated in Lemma 2. We include the formal proof of Lemma
2 in Section 9.1.

LEMMA 2. If QL(x) and QU (x) are the lower and upper
bounds for exp(−x) respectively, we have FQP (q,QL) ≤

FP (q) ≤ FQP (q,QU ).

4.1 Fast Evaluation of Quadratic Bounds
In the following lemma, we illustrate how to efficiently com-
pute the bound function FQP (q,Q) inO(d2) time in the query
stage (cf. Lemma 3). We leave the proof in Section 9.2.

LEMMA 3. Given the coefficients a, b and c of quadratic
function Q , FQP (q,Q) can be computed in O(d2) time.

Although the computation time of FQP (q,Q) is slightly
worse than [7], which is only in O(d) time, this overhead is
negligible as the dimensionality of datasets is smaller than 3
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in KDV. However, as we will show in the following sections,
our bounds are tighter than the existing bound functions [7].

4.2 Tight Quadratic Upper Bound Function
To obtain the (1) correct and (2) tighter upper bound function
compared with existing chord-based upper bound functions
[7], QU (x) remains above exp(−x) and below the linear func-
tion EU (x) for x ∈ [xmin, xmax ], as shown in Figure 6.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

xmin xmax

function value

Quadratic upper bound:

𝑄𝑈 𝑥 = 𝑎𝑢𝑥
2 + 𝑏𝑢𝑥 + 𝑐𝑢

Existing linear upper bound:
𝐸𝑈 𝑥 = 𝑚𝑢𝑥 + 𝑘𝑢

function: exp(−𝑥)

Figure 6: Correct and tighter quadratic bound QU (x) for
exp(−x) (purple curve)

Observe that QU (x) should pass through the points
(xmin, exp(−xmin)) and (xmax , exp(−xmax )). By simple alge-
braic operations, we can represent each bu and cu by au .

bu =
exp(−xmax ) − exp(−xmin)

xmax − xmin
− au (xmin + xmax )

cu =
exp(−xmin)xmax − exp(−xmax )xmin

xmax − xmin
+ auxminxmax

Therefore, the shape of the parabola is controlled by the
parameter au . Observe from Figure 7, once the parameter au
becomes larger, the curvature of the parabola is larger and as
such, it can achieve tighter upper bound function (e.g., 0.05).
However, it violates the upper bound condition once au is too
large (e.g., 0.1 and 0.15).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

function value

function: exp(−𝑥)

xmin xmax

𝑎𝑢 = 0.05

𝑎𝑢 = 0.15 𝑎𝑢 = 0.1

Figure 7: Correct upper bound (solid line)/wrong upper
bound (dashed line)

In Theorem 1, we claim that the best au can be selected
to achieve the correct and tighter upper bound function. We
leave the proof in Section 9.3.

THEOREM 1. The correct and tighter upper bound is
achieved (mux + ku ≥ QU (x) ≥ exp(−x)) when au = a∗u :

a∗u =
(xmax − xmin + 1) exp(−xmax ) − exp(−xmin)

(xmax − xmin)2

Based on Lemma 2 and Theorem 1, we can conclude that
our upper bound FQP (q,QU ) is correct and tighter than the
state-of-the-art, i.e.,

FP (q) ≤ FQP (q,QU ) ≤ FL(q, Linmu ,ku )

4.3 Tight Quadratic Lower Bound Function
Compared with tangent-based linear lower bound func-
tion to exp(−x), there exist another tighter quadratic lower
bound function, i.e., exp(−x) ≤ QL(x) ≤ mlx + kl ,
which passes through the tangent point (t, exp(−t)) and also
(xmax , exp(−xmax )), as shown in Figure 8.
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Figure 8: The tighter quadratic lower bound function for
exp(−x)

By simple differentiation and algebraic operations, we can
obtain:

al =
exp(−xmax ) + (xmax − 1 − t) exp(−t)

(xmax − t)2

bl = − exp(−t) −
2t(exp(−xmax ) + (xmax − 1 − t) exp(−t))

(xmax − t)2

cl = (1 + t) exp(−t) +
t2(exp(−xmax ) + (xmax − 1 − t) exp(−t))

(xmax − t)2

We omit the correctness and tightness proof of exp(−x) ≥
QL(x) ≥ mlx + kl , as it can be easily proved based on the
proof of Theorem 1 for left part and the convex property for
right part. By Lemma 2 and the above inequality, we have:

FP (q) ≥ FQP (q,QL) ≥ FL(q, Linml ,kl )

Now, we proceed to choose the parameter t (xmin ≤ t ≤

xmax ) for quadratic function. However, unlike [7], finding the
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best t is very tedious, which does not have close form solution.
We therefore follow [7] and choose t to be t∗, where:

t∗ =
γ

|P |

∑
pi∈P

dist(q, pi)2 (3)

5 OTHER KERNEL FUNCTIONS
In previous sections, we mainly focus on the Gaussian kernel
function. However, many existing literatures [11, 15, 20, 27]
also use other kernel functions, e.g., triangular kernel, cosine
kernel, for hotspot detection or ecological modeling. There-
fore, different types of existing software, including QGIS,
ArcGIS and Scikit-learn, also support different kernel func-
tions. In this section, we study the problems ϵKDV and τKDV
with the following kernel aggregation function.

FP (q) =
∑
pi∈P

w · K(q, p) (4)

where different K(q, p) functions are defined in Table 4.

Table 4: Types of kernel functions
Kernel function Equation (K(q, p)) Used in

Triangular max(1 − γ · dist(q, p), 0) [15, 20]

Cosine

{
cos(γdist(q, p)) if dist(q, pi) ≤ π

2γ
0 otherwise

[11, 20, 27]

Exponential exp(−γ · dist(q, p)) [20]

We first illustrate the weakness of existing methods [7, 13,
17] in Section 5.1 and explore how to extend our quadratic
bounds for these kernel functions in Section 5.2.

5.1 Weakness of Existing Methods
Recall from Lemma 1 (cf. Section 3.3), the state-of-the-art
linear bound functions [7] can be efficiently evaluated (in
O(d) time) with Gaussian kernel function due to the efficient
evaluation of the term

∑
pi∈P dist(q, pi)

2. However, observe
from Table 4, all these kernel functions only depend on the
term dist(q, p) rather than dist(q, p)2. Therefore, the linear
bound function [7] for Equation 4 with these kernel functions
can be derived as (by setting xi = γdist(q, pi)):

FLP (q, Linm,c ) =
∑
pi∈P

w(m · γdist(q, pi) + k)

Since
∑

pi∈P dist(q, pi) cannot be efficiently evaluated, the
state-of-the-art lower and upper bound functions [7] cannot
achieve O(d) time for these kernel functions. Therefore, we
can only choose other approach [13, 17], which utilizes xmin
and xmax , to efficiently evaluate the bound functions for Equa-
tion 4 in O(d) time, where xmin and xmax are based on the
minimum and maximum distances between q and the mini-
mum bounding rectangle of all pi respectively. Using triangu-
lar kernel function as an example, the lower and upper bound
functions for FP (q) are:

LBR (q) = w |P |max(1 − xmax , 0) (5)
UBR (q) = w |P |max(1 − xmin, 0) (6)

However, these bound functions are not tight. Therefore,
one natural question is whether we can develop the efficient
and tighter quadratic bounds (e.g., O(d) time) for these kernel
functions.
5.2 Quadratic Bounds for Other Kernel

Functions
In this section, we mainly focus on the triangular kernel
function, but our techniques can also be extended to other
kernel functions in Table 4 (cf. Section 5.2.3). To avoid
the term

∑
pi∈P dist(q, pi), we utilize the quadratic function

Q(x) = ax2 + c (a < 0), which sets the coefficient b to 0, to
approximate the function max(1 − x, 0), as shown in Figure 9.
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Figure 9: Quadratic lower (red) and upper (blue) bound
functions of max(1 − x, 0) in the range [xmin, xmax ]

With xi = γdist(q, pi), we redefine the aggregation of qua-
dratic function as:

FQP (q,Q) =
∑
pi∈P

w(a(γdist(q, pi))2 + c) (7)

Observe that this bound function only depends on∑
pi∈P dist(q, pi)

2, therefore, it can be evaluated in O(d) time
(cf. Section 3.3), as stated in Lemma 4.

LEMMA 4. The bound function FQP (q,Q) (cf. Equation
7) can be computed in O(d) time.

5.2.1 Tighter quadratic upper bound function. To en-
sure QU (x) to be the correct and tight upper bound of
max(1− x, 0), the quadratic function should pass through two
points (xmin,max(1−xmin, 0)) and (xmax ,max(1−xmax , 0)),
as shown in Figure 10.

Therefore, we can obtain the parameters au and cu by some
algebraic operations:

au =
max(1 − xmax , 0) −max(1 − xmin, 0)

x2max − x2min

cu =
x2max max(1 − xmin, 0) − x2min max(1 − xmax , 0)

x2max − x2min
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Figure 10: Correct and tight quadratic upper bound func-
tion (Green line represents the upper bound UBR (q) (cf.
Equation 6))

Observe from Figure 10, our quadratic upper bound func-
tion FQP (q,QU ) can be tighter than existing bound function
UBR (q) (cf. Lemma 5).

LEMMA 5. Given the above au and cu , our qua-
dratic upper bound function is tighter than UBR (q), i.e.,
FQP (q,QU ) ≤ UBR (q).

5.2.2 Tighter quadratic lower bound function. We pro-
ceed to develop the quadratic lower bound function QL(x) =
alx

2+cl for max(1−x, 0). To simplify the discussion, we first
let all xi = γdist(q, pi) ≤ 1, i.e., all points are in the linear
line 1 − x region, but not the zero region (cf. Figure 9). To
achieve the better lower bound in this case, we can shift the
quadratic curve until it touches the function 1 − x , as shown
in Figure 11.
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Figure 11: Correct and tight quadratic lower bound func-
tion (Green line represents the lower bound LBR (q) (cf.
Equation 5))

Therefore, there is only one root in the following equation.

alx
2 + cl = 1 − x =⇒ alx

2 + x + cl − 1 = 0
which also implies:

cl = 1 +
1
4al

(8)

Based on the concave property of QL(x), we immediately
have 1 − x ≥ QL(x), which can further achieve the correct
lower bound property FP (q) ≥ FQP (q,QL).

Observe from Equation 8, al can still be varied which can
affect the lower bound value FQP (q,QL). In Theorem 2, we
claim that we can obtain the tightest lower bound by setting
al = a∗l (with O(d) time). We leave the proof in Section 9.4.

THEOREM 2. Let FQP (q,QL) be the function of al with
cl = 1+ 1

4al (cf. Equation 8). We can obtain the tightest lower
bound when al = a∗l , where:

a∗l = −

√
|P |

4γ 2 ∑
pi∈P dist(q, pi)

2 (9)

Apparently, our new bound function is tighter compared
with existing LBR (q) (cf. green line in Figure 11). In Lemma
6, we claim it is always true and leave the proof in Section
9.5.

LEMMA 6. If xi = γdist(q, pi) ≤ 1 for all pi ∈ P and
QL(x) = a∗l x + c∗l (where c∗l = 1 + 1

4a∗l
), our bound func-

tion FQP (q,QL) is tighter than LBR (q), i.e., FQP (q,QL) ≥

LBR (q).

In above discussion, we have the assumption that xi =
γdist(q, pi ) ≤ 1. In fact, our bound function can be even
negative when xi > 1. However, since FP (q) must be non-
negative, we can directly set the bound value to be 0, the same
as LBR (q), when xi > 1. This explains why we can always
get the tighter lower bound compared with LBR (q).
5.2.3 Cosine and exponential kernels. We can utilize
the similar techniques to develop the lower and upper bounds
for the kernel aggregation function FP (q) (cf. Equation 4)
with cosine and exponential kernel functions (cf. Table 4).
By finding the suitable coefficients of QL(x) = alx

2 + cl and
QU (x) = aux

2 + cu (cf. Figure 12), we can obtain the tighter
lower and upper bounds FQP (q,Q) (cf. Equation 7), in O(d)
time, for FP (q). More details can be found in Section 9.6.
6 PROGRESSIVE VISUALIZATION

FRAMEWORK FOR KDV
Even though KDV has been extensively studied in the lit-
erature [7, 13, 17, 54–56] and adopted in different types of
software, e.g. Scikit-learn, QGIS and ArcGIS, they only focus
on developing the fast algorithms for evaluating the kernel
aggregation functions and all pixels are evaluated in order to
generate the color map. However, it can be time consuming
to evalaute all pixels, especially for high-resolution screen
(e.g., 2560×1920). Instead of waiting for a long time to obtain
ϵKDV or τKDV, users (e.g., scientists) want to continuously
visualize some partial/coarse results [36] for exploring dif-
ferent pairs of attributes and they can terminate the process
at any time t once the visualization results are satisfactory
or not useful. Even though existing work in KDV [26, 36]
also support this type of interactive visualization, they only
focus on using the GPU [26, 36] and distributed algorithm
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Figure 12: Quadratic bounds for cosine and exponential kernel functions

[36] to achieve real-time performance. In this section, we
show that, by considering the proper pixel evaluation order,
the progressive visualization framework can achieve high vi-
sualization quality in single machine setting without using
GPU and parallel computation, even though the time t is very
small.

To simplify the discussion, we assume the resolution for
the visualized region is 2r × 2r , where r is the positive integer.
However, our method can also handle all other resolutions.
Instead of using row/column-major order to evaluate density
value of each pixel in the visualized region, we adopt the
quad-tree like order [12] to perform the evaluation since two
close spatial coordinates normally have similar KDE value (cf.
Figure 1). Initially, our algorithm evaluates the approximate
KDE value (e.g., ϵ = 0.01) in the central pixel (cf. (1) in
Figure 13) as an approximation in the whole region. Then, it
iteratively evaluates more density values ((2), (3), (4), (5)... in
Figure 13) when more time is provided. Our algorithm stops
once the user terminates the process or all density values
(pixels) are evaluated.

…

1 1 2 2 4 4

(1)

(2) (3)

(4) (5)

Figure 13: A progressive approach to evaluate the density
value of each pixel (blue) in the visualized region (with or-
der (1), (2),...), each density value of blue pixels represents
the density value in the corresponding sub-region, except
for red pixels, in which the density values have been eval-
uated.

7 EXPERIMENTAL EVALUATION
We first introduce the experimental setting in Section 7.1.
Later, we demonstrate the efficiency performance in different
methods for ϵKDV and τKDV in Section 7.2. After that, we

compare the tightness of the state-of-the-art bound functions
KARL and our proposal QUAD in Section 7.3. Next, we pro-
vide the quality comparison with QUAD and other methods in
Section 7.4. Then, we demonstrate the quality performance of
progressive visualization framework with different methods
in Section 7.5. After that, we test the efficiency performance
for other kernel functions (e.g., triangular and cosine kernel
functions) in Section 7.6. Lastly, we further test whether our
solution QUAD can still be efficient, compared with other
methods, for general kernel density estimation, with higher
dimensions in Section 7.7.
7.1 Experimental Setting
We use four large-scale real datasets (up to 7M) for conduct-
ing the experiments, as shown in Table 5. In the following
experiments, we choose two attributes for each dataset for
visualization. We adopt the Scott’s rule [7, 13] to obtain the
parameter γ and the weighting parameter w . By default, we
set the resolution to be 1280 × 960. In addition, we focus on
Gaussian kernel function in Sections 7.2-7.5, 7.7 and other
kernel functions in Section 7.6.

Table 5: Datasets
Name n Selected attributes (2d)

El nino [2] 178080 sea surface temperature (depth=0/500)
crime [1] 270688 latitude/longitude
home [2] 919438 temperature/humidity
hep [2] 7000000 1st /2nd dimensions

In our experimental study, we compare different state-of-
the-art methods with our solution, as shown in Table 6. EX-
ACT is the sequential scan method, which does not adopt any
efficient algorithm. Scikit-learn (abbrev. Scikit) [35] is the
machine learning software which can also support ϵKDV. Z-
order [54, 55] is the state-of-the-art dataset sampling method
which provides probabilistic error guarantee for ϵKDV. tKDC
[13] and aKDE [17] are indexing-based methods for τKDV
and ϵKDV respectively. In the offline stage, they pre-build
one index, e.g., kd-tree, on the dataset. Each index node stores
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the information, e.g., bounding rectangles, for the bound func-
tions. This approach facilitates the bound evaluations in the
online stage. Both KARL [7] and this paper also follow this
approach and utilize the indexing structure to provide speedup
for bound evaluations. The main difference between our work
QUAD and existing work aKDE, tKDC and KARL is the
newly developed tighter bound functions. We implemented
all methods in C++ (except for Scikit, which is originally
implemented in Python) and conducted experiments on an
Intel i7 3.4GHz PC using Ubuntu. In this paper, we use the
response time (sec) to measure the efficiency of all methods
and only report the response time which is smaller than 7200
sec (i.e., 2 hours).

Table 6: Existing methods for two variants of KDV
Type EXACT Scikit Z-Order aKDE tKDC KARL QUAD

[35] [54, 55] [17] [13] [7] (ours)
ϵKDV X X X X × X X
τKDV X × × × X X X

7.2 Efficiency for ϵKDV and τKDV
In this section, we investigate the following four research
questions of efficiency issues for ϵKDV and τKDV.

(1) How does the relative error ϵ affect the efficiency per-
formance of all methods in ϵKDV?

(2) How does the threshold τ affect the efficiency perfor-
mance of all methods in τKDV?

(3) How scalable can QUAD achieve in different resolu-
tions compared with all other existing methods?

(4) How scalable can QUAD achieve in different dataset
sizes compared with all other existing methods?

As a remark, both EXACT and Scikit always run out of
time (> 7200 sec). Therefore, these two curves are not shown
in most of the following experimental figures.
Varying ϵ for ϵKDV:

We vary the relative error ϵ for ϵKDV from 0.01 to 0.05.
Figure 14 shows the response time of all methods. Even
though Z-Order method downsamples the original dataset
to the small scale dataset, they still need to evaluate the ex-
act KDE (EXACT) in this reduced dataset for each pixel.
Therefore, the evaluation time is still long compared with
our method QUAD. On the other hand, due to the superior
tightness for our bounds compared with the state-of-the-art
bound functions (cf. Sections 4.2 and 4.3), QUAD can pro-
vide another one order of magnitude speedup compared with
KARL. Even though we choose the relative error ϵ to be 0.01,
which is very small, QUAD can achieve 100-400 sec for each
large-scale dataset in a single machine.
Varying τ for τKDV:

In order to test the efficiency performance for τKDV, we
select seven thresholds (µ−0.3σ , µ−0.2σ , µ−0.1σ , µ, µ+0.1σ ,
µ + 0.2σ , µ + 0.3σ ) for each dataset, where:

µ =

∑
q∈Q FP (q)

|Q |
and σ =

√∑
q∈Q (FP (q) − µ)2

|Q |

Figure 15 shows the time performance for all seven thresh-
olds. We can observe that our method QUAD can provide at
least one-order of magnitude speedup compared with existing
methods tKDC and KARL regardless of the chosen threshold.
Our method can attain at most 10 sec for τKDV.
Varying the resolution:

We investigate the scalability issue for different resolutions.
Four resolutions, 320× 240, 640× 480, 1280× 960 and 2560×
1920, are chosen in this experiment. With higher resolution,
the larger the response time. We conduct this experiment in
ϵKDV with fixed relative error ϵ = 0.01, as shown in Figure
16. No matter which resolution we choose, our method QUAD
can provide significant speedup compared with all existing
methods.
Varying the dataset size:

We proceed to test how the dataset size affects the effi-
ciency performance of both ϵKDV and τKDV. We choose
the largest dataset hep (in Table 5) and vary the size of the
datasets via sampling, the sample sizes are 1M, 3M, 5M and
7M. We fix ϵ and τ to be 0.01 and µ respectively in this experi-
ment. Figure 17 shows the response time. Our method QUAD
outperforms the existing methods by one order of magnitude
speedup in ϵKDV and τKDV in different dataset sizes.
7.3 Tightness Analysis for Bound Functions
Recall from Section 4, we have already shown that our devel-
oped bound functions LBQUAD and UBQUAD are tighter than
the state-of-the-art bound functions LBKARL and UBKARL .
In this section, we provide the case study to see how tight
our bound functions can achieve using the existing index-
ing framework with kd-tree (cf. Section 3.2) in ϵKDV, with
ϵ = 0.01. We sample one pixel with the highest KDE value
in home dataset. We test the changes of the bound value by
varying different iterations. Observe from Figure 18, QUAD
can stop significantly earlier than previous method KARL
which also justifies why QUAD can perform significantly
faster than KARL in previous experiments.
7.4 Quality of Different KDV Methods
We proceed to compare the visualization quality between
different methods in ϵKDV. Since all methods aKDE, Z-order,
KARL and QUAD provide the error guarantee between the
returned density value and the exact result, all these methods
do not degrade the quality of visualization for very small
relative error, e.g., ϵ = 0.01, as shown in Figure 19.
7.5 Progressive Visualization Framework
In this section, we test the progressive visualization frame-
work (cf. Section 6) with different existing methods, includ-
ing EXACT, aKDE, KARL, Z-Order and our method QUAD.
First, we test the quality with five different timestamps (0.01
sec, 0.05 sec, 0.25 sec, 1.25 sec and 6.25 sec) in all datasets,
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Figure 14: Response time for ϵKDV with resolution 1280 × 960, varying the relative error ϵ
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Figure 15: Response time for τKDV with resolution 1280 × 960, varying the threshold τ
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Figure 16: Response time for ϵKDV with fixed relative error ϵ = 0.01, varying the resolution
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Figure 18: Bound values of KARL and QUAD v.s. the
number of iterations in ϵKDV, ϵ = 0.01, in home dataset

as shown in Figure 20. We use the average relative error
1
|Q |

∑
q∈Q

|R(q)−FP (q) |
FP (q)

for the quality measure, where R(q) is
the returned result of pixel q. For each approximation method,
we select the relative error parameter ϵ = 0.01. In this exper-
iment, we fix the resolution to be 1280 × 960. Since QUAD
is faster than all other methods, it can evaluate more pixels
under the same time limit t . Therefore, it explains why the
average relative error is smaller than other methods with the
same t .

Figure 21 shows five visualization figures, which corre-
spond to five timestamps (0.02 sec, 0.05 sec, 0.2 sec, 0.5 sec
and 2 sec), in home dataset with our best method QUAD. We
can notice that once the time t is set to be 0.5 sec, QUAD can
already be able to produce the reasonable visualization result.

7.6 Efficiency for Other Kernel Functions
In this section, we conduct the efficiency experiments for
other kernel functions, as stated in Table 4. Recall from Sec-
tion 5.1, KARL [7] cannot provide the efficient linear bounds
for these kernel functions. Therefore, we omit the comparison
of this method in this section. We only report the results for
triangular and cosine kernel functions in this section. Some
additional experiment results are reported in Section 9.7.
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Exact KARLaKDE QUAD Z-Order

Figure 19: ϵKDV for home dataset with ϵ = 0.01
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Figure 20: Average relative error for different methods under progressive visualization framework, varying five times-
tamps t

t = 0.02 sec t = 0.05 sec t = 0.2 sec t = 0.5 sec t = 2 sec

Figure 21: QUAD-based progressive visualization in home dataset, varying five timestamps t

In the first experiment, we vary different ϵ (from 0.01 to
0.05) and test the efficiency performance of different methods,
including EXACT, aKDE, Z-Order and QUAD, in different
kernel functions. Figure 22 reports the results for ϵKDV in
crime and hep datasets with triangular and cosine kernels.
Observe that the response time of our method QUAD can still
outperform aKDE by at least one-order-of-magnitude faster
since our quadratic lower and upper bounds are theoretically
tighter than these bound functions used in aKDE but the time
complexity still remains the same, i.e., O(d) time. On the
other hand, QUAD is also faster than the state-of-the-art data
sampling method Z-Order, especially for small ϵ (e.g., 0.01).
Even though Z-Order can significantly reduce the dataset
size, it still needs to run the method EXACT for the reduced
dataset, which can still be slow once the relative error ϵ is
small.

In the second experiment, we test the response time for
τKDV in different methods, including tKDC and QUAD. We
vary different thresholds τ (from µ − 0.2σ to µ + 0.2σ ) in
this experiment. Observe from Figure 23, our method QUAD
can outperform the state-of-the-art method tKDC by at least
one-order-of-magnitude.

7.7 Efficiency for Kernel Density Estimation
In this section, we proceed to test whether our method QUAD
can be efficiently applied in kernel density estimation with
higher dimensions in ϵKDV. We choose the home and hep

datasets [2] (cf. Table 5), and follow the existing work [7, 13]
to vary the dimensionality of these datasets via PCA dimen-
sionality reduction method and use throughput (queries/sec)
to measure the efficiency. Observe from Figure 24, once the
dimensionality of the datasets increases, the response through-
put of bound-based methods aKDE, KARL and QUAD de-
creases. However, our method QUAD can still outperform
other methods for both large-scale datasets (million-scale)
with 10 dimensions in single machine setting. As a remark,
we omit Z-Order [54] in this experiment, as this method
only focuses on one to two-dimensional setting. Even though
QUAD may not scale well with respect to the dimension-
ality, KDE is normally applied for low-dimensional setting
(e.g., d ≤ 6 [16]) in real applications [13] due to the curse of
dimensionality issue [16, 43].

8 CONCLUSION
In this paper, we study the kernel density visualization (KDV)
problem with two widely-used variants of KDV, namely ap-
proximate kernel density visualization (ϵKDV) and thresh-
olded kernel density visualization (τKDV). The contribution
of our work is to develop QUAD which consists of the tightest
lower and upper bound functions compared with the existing
bound functions [7, 13, 17] with evaluation time complexity
O(d2) for Gaussian kernel, which is negligible for KDV appli-
cations, and O(d) for other kernels (e.g., triangular and cosine



QUAD: Quadratic-Bound-based Kernel Density Visualization SIGMOD, 2020

 1

 10

 100

 1000

 10000

0.01 0.02 0.03 0.04 0.05

Ti
m

e 
(s

ec
)

ε

aKDE
QUAD

Z-order
 1

 10

 100

 1000

 10000

0.01 0.02 0.03 0.04 0.05

Ti
m

e 
(s

ec
)

ε

 1

 10

 100

 1000

 10000

0.01 0.02 0.03 0.04 0.05

Ti
m

e 
(s

ec
)

ε

 1

 10

 100

 1000

 10000

0.01 0.02 0.03 0.04 0.05

Ti
m

e 
(s

ec
)

ε

(a) crime (triangular) (b) hep (triangular) (c) crime (cosine) (d) hep (cosine)

Figure 22: Response time for different methods in crime and hep datasets, varying the relative error ϵ and using trian-
gular and cosine kernel functions
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Figure 23: Response time for different methods in crime and hep datasets, varying the threshold τ and using triangular
and cosine kernel functions
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Figure 24: Response throughput (queries/sec) for differ-
ent methods in home and hep datasets (with Gaussian
kernel and ϵ = 0.01), varying the dimensionality

kernels). Our method QUAD can provide at least one-order-of-
magnitude speedup compared with different state-of-the-art
methods under small relative error ϵ and different thresholds
τ . The combination of QUAD and progressive visualization
framework can further provide reasonable visualization re-
sults with real-time performance (0.5 sec) in single machine
setting without using GPU and parallel computation.

In the future, we will further apply QUAD to other kernel-
based machine learning models, e.g., kernel regression, kernel
SVM and kernel clustering. Moreover, we will explore the
oppontunity to utilize the parallel/distributed computation
[54] and modern hardware [16, 52] to further speed up our
solution.

9 APPENDIX
9.1 Proof of Lemma 2

PROOF. We only prove the upper bound FP (q) ≤

FQP (q,QU ) but it can be extended to lower bound in a

straightforward way. We first substitute x = γdist(q, pi)2 in
the following inequality, exp(−x) ≤ QU (x) = aux

2+bux +cu .
Then, we have:

exp(−γdist(q, pi)2) ≤ au (γdist(q, pi)2)2+buγdist(q, pi)2+cu

By taking the summation in both sides with respect to each
pi ∈ P and then multiplying both sides with the constant w ,
we can prove FP (q) ≤ FQP (q,QU ). �

9.2 Proof of Lemma 3
PROOF. From Equation 2, we have:

FQP (q,Q) = waγ
2
∑
pi∈P

dist(q, pi)4 +wbγ
∑
pi∈P

dist(q, pi)2 + cw |P |

Recall from Section 3.3,
∑

pi∈P dist(q, pi)
2 can be com-

puted in O(d) time. We proceed to show
∑

pi∈P dist(q, pi)
4

can be computed in O(d2) time.∑
pi∈P

dist(q, pi)4

= |P | | |q| |4 − 4| |q| |2qT aP − 4qT vP + 2| |q| |2bP + hP + 4
∑
pi∈P

(qT pi)2

where aP =
∑

pi∈P pi, vP =
∑

pi∈P | |pi | |2pi, bP =
∑

pi∈P | |pi | |2

and hP =
∑

pi∈P | |pi | |4. All of these terms only depend on
P and can be computed once and stored when we build the
indexing structure (cf. Figure 3). As such, the first five terms
can be computed in O(d) time in the query stage. We now
show that the last term can be computed in O(d2) time.∑
pi∈P

(qT pi)2 =
∑
pi∈P

(qT pi)(piT q) = qT
( ∑
pi∈P

pipiT
)
q = qTCq
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where C is the matrix which depends on P and can be com-
puted when we build the indexing structure.

In the query stage, the computation time of qTCq is
in O(d2) time. Hence, the time complexity for evaluating
FQP (q,Q) is O(d2). �

9.3 Proof of Theorem 1
PROOF. We first investigate the slope (1st derivative)

curves of both exp(−x) and QU (x) = aux
2 + bux + cu which

are − exp(−x) and 2aux +bu respectively, as shown in Figure
25.
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= 2𝑎𝑢𝑥 + 𝑏𝑢

Region I Region II Region III

Figure 25: The slope curves of both QU (x) and exp(−x)
In general, 2aux + bu may not intersect with − exp(−x) by

two points. However, it is impossible here. Once the slope of
QU (x) is always larger than the slope of exp(−x), QU (x) and
exp(−x) can only intersect with at most one point. However,
QU (x) must intersect with exp(−x) by (xmin, exp(−xmin)) and
(xmax, exp(−xmax)), which leads to contradiction. As such,
2aux + bu must intersect with − exp(−x) by two points.

Observe from Figure 25, the slope of one curve is always
larger than another one in each region. Therefore, once they
have the intersection point in this region, they must not have
another intersection point again in this region as one curve
always move “faster” than another one.

LEMMA 7. For each region in Figure 25, there is at most
one intersection point in exp(−x) and QU (x).

Once we have Lemma 7, we can use it to prove this theorem
(correctness and tightness).

Correct upper bound for our chosen a∗u : Observe from Fig-
ure 7, we have two conditions for the correct upper bound
function.

• The slope of quadratic function dQU (x )
dx at the point

(xmax, exp(−xmax)) must be more negative than the
slope of exp(−x).

• There is no other intersection point, except
(xmin, exp(−xmin)) and (xmax, exp(−xmax)), for
the functions exp(−x) and QU (x) in the interval
[xmin, xmax].

Based on the first condition, xmax must be in region II in
Figure 25. By Lemma 7, xmin can only be in region I and

there is no other intersection point between xmin and xmax,
which fulfills the second condition. Therefore, we conclude:

LEMMA 8. IfQU (x) is the proper upper bound of exp(−x),
xmax must be in region II.

Since xmax must be in region II, we have:
dQU (x)

dx

���
x=xmax

≤ − exp(−xmax)

2auxmax + bu ≤ − exp(−xmax)

By substituting bu in terms of the function of au (cf. Section
4.2), we have au ≤ a∗u . Therefore, our selected a∗u is within
this region and hence it achieves correct upper bound function.

The tighter upper bound for our chosen au = a∗u : To prove
this part, we substitute bu and cu with respect to au into
QU (x) = aux

2 + bux + cu . Then, we have:

QU (x) = au (x − xmin)(x − xmax) +mux + ku

where mu and ku are the slope and intercept, respec-
tively, of the linear line (chord) which passes through
(xmin, exp(−xmin)) and (xmax, exp(−xmax)).

Note that only the first term in QU (x) depends on au and
the term (x − xmin)(x − xmax) < 0 for every x in the range
[xmin, xmax]. Since au > 0, QU (x) is smaller once au is larger,
and thus the upper bound is tighter. However, as stated in
the correctness proof, the largest possible au should be a∗u .
Hence, we can achieve the tighter bound once au = a∗u , since
the linear function mux + ku is in fact the special case of
QU (x) with au = 0 ≤ a∗u . �

9.4 Proof of Theorem 2
PROOF. Let H (al ) = FQP (q,QL), we have:

H (al ) =
∑
pi∈P

w
(
al (γdist(q, pi))

2 +
(
1 +

1
4al

))
dH (al )

dal
= wγ 2

∑
pi∈P

dist(q, pi)2 −
w |P |

4a2l

By setting dH (al )
dal

= 0, we can obtain:

al = a∗l = −

√
|P |

4γ 2
∑
pi∈P dist(q, pi)

2

Based on the basic differentiation theory, we conclude that
al = a∗l can achieve the maximum for FQP (q,QL). �

9.5 Proof of Lemma 6
PROOF. By substituting a∗l (cf. Equation 9) and c∗l (cf.

Equation 8) in FQP (q,QL) (cf. Equation 7), we can obtain:

FQP (q,QL) = w |P | −w

√
|P |

∑
pi∈P

(γdist(q, pi))2

≥ w |P |(1 − xmax) = LBR (q)

The last equality is based on the assumption xi =
γdist(q, pi) ≤ 1. �
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9.6 Correct and Tight Quadratic Bounds for
Cosine and Exponential Kernel Functions

Recall from Section 5.2.3, we can obtain the correct and tight
lower and upper bound functions for FP (q) (cf. Equation
4), if we can find the suitable parameters al , cl and au , cu
respectively. In this section, we illustrate how to obtain these
parameters in order to achieve the correct and tight quadratic
bounds.

9.6.1 Quadratic upper bound for cosine kernel. Ob-
serve from Figure 12a, once QU (x) (blue curve) passes
through two points (xmin, cos(xmin)) and (xmax, cos(xmax)), it
is possible for this curve to act as the upper bound function for
cos(x). Therefore, by simple algebraic operations, we have:

au =
cos(xmax) − cos(xmin)

x2max − x2min
(10)

cu =
x2max cos(xmin) − x2min cos(xmax)

x2max − x2min
(11)

In Lemma 9, we formally show that QU (x) can act as the
correct upper bound for cos(x), using the above au and cu .

LEMMA 9. If we set au and cu to be Equations 10 and 11
respectively, we have QU (x) ≥ cos(x), where 0 ≤ x ≤ π

2 .

PROOF. We let H (x) = aux
2 + cu − cos(x). Since we set

au and cu to be Equations 10 and 11, it implies:

H (xmin) = 0 and H (xmax) = 0

To prove the correctness of this lemma, we need to ensure
H (x) ≥ 0 if 0 ≤ x ≤ π

2 . We first compute the derivation of
H (x):

dH (x)

dx
= 2aux + sin(x) = x

(
2au +

sin(x)
x

)
Then, we set dH (x )

dx

���
x=x ∗

= 0 in order to achieve local opti-
mal for H (x), i.e.

sin(x∗)
x∗

= −2au

We plot the sin(x )
x function and its possible local optimal

point in Figure 26. Observe that this function is monotonic
decreasing function for 0 ≤ x ≤ π . There are three possible
cases for the positions of xmin and xmax.

Case 1 (xmax ≤ x∗): Observe from Figure 26, we notice
that sin(x )

x > −2au since x ≤ xmax ≤ x∗. Therefore, we have
dH (x )
dx > 0, i.e. H (x) is monotonic increasing function. We

can conclude H (x) ≥ H (xmin) = 0.
Case 2 (xmin ≥ x∗): Using the similar technique as Case 1,

we conclude sin(x )
x < −2au . As such H (x) is the monotonic

decreasing function. Therefore, H (x) ≥ H (xmax) = 0.
Case 3 (xmin ≤ x ≤ xmax): Observe from Figure 26,

sin(x )
x ≥ −2au when x ≤ x∗ and sin(x )

x ≤ −2au when x ≥ x∗,
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Figure 26: The function sin(x )
x

we conclude that x∗ is the local maximum, the global mini-
mum point can be achieved in the extreme points, i.e. xmin
and xmax. Therefore, H (x) ≥ min(H (xmin),H (xmax)) = 0. We
conclude QU (x) = aux + cu ≥ cos(x). �

Since QU (x) is the monotonic decreasing function and
QU (xmin) = cos(xmin), we can also show that QU (x) ≤

cos(xmin), given xmin ≤ x ≤ xmax, i.e., QU (x) is always
tighter than the state-of-the-art bound function cos(xmin) (cf.
Figure 12a).

9.6.2 Quadratic lower bound for cosine kernel. To
achieve the correct lower bound for cosine kernel, we restrict
the quadratic curve to pass though the point (xmax, cos(xmax))
in which the slope of two curves are the same at this point
(cf. Figure 12a). Therefore, by simple algebraic and calculus
operations, we obtain:

al =
− sin(xmax)

2xmax
(12)

cl = cos(xmax) +
xmax sin(xmax)

2
(13)

Now, we claim that the quadratic function can achieve the
correct lower bound functions by using the above al and cl
(cf. Lemma 10).

LEMMA 10. If we set al and cl to be Equations 12 and 13
respectively, we have QL(x) ≤ cos(x), where 0 ≤ x ≤ π

2 .

PROOF. We let H (x) = ax2 + c − cos(x). Recall from Fig-
ure 26, the maximum point, for 0 ≤ x ≤ π

2 is x∗, where
dH (x )
dx

���
x=x ∗

= 0. However, we notice that:

dQL(x)

dx

���
x=xmax

= − sin(xmax) ⇐⇒
dH (x)

dx

���
x=x ∗

= 0

Therefore, we have x∗ = xmax. As such, H (x) ≤ H (xmax) = 0
which implies QL(x) ≤ cos(x). �
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Since QL(x) is the monotonic decreasing function and
QL(xmax) = cos(xmax), we have QL(x) ≥ cos(xmax), given
xmin ≤ x ≤ xmax. Therefore, we show that QL(x) is tighter
than the state-of-the-art bound function cos(xmax).

9.6.3 Quadratic upper bound for exponential kernel.
Observe from Figure 12b, once the quadratic function QU (x)
(blue curve) passes through two points (xmin, exp(−xmin)) and
(xmax, exp(−xmax)), it is possible for QU (x) to act as the cor-
rect upper bound for exp(−x), given xmin ≤ x ≤ xmax. There-
fore, by simple algebraic operations, we can obtain:

au =
exp(−xmax) − exp(−xmin)

x2max − x2min
(14)

cu =
x2max exp(−xmin) − x2min exp(−xmax)

x2max − x2min
(15)

In Lemma 11, we further show that this QU (x) can achieve
the correct upper bound function, using the above parameters
au and cu .

LEMMA 11. If au and cu are set to Equations 14 and 15
respectively, QU (x) ≥ exp(−x).

PROOF. Note that the linear line which passes though
(xmin, exp(−xmin)) and (xmax, exp(−xmax)) also acts as the up-
per bound of exp(−x). Moreover, QU (x) = aux

2 + cu is the
concave function which acts as the upper bound of this linear
line. Therefore, we conclude QU (x) ≥ exp(−x). �

For the tightness of the quadratic upper bound, we ob-
serve that QU (x) is the monotonic decreasing function and
QU (xmin) = exp(−xmin). Therefore, we can show that QU (x)
is always tighter than the state-of-the-art upper bound func-
tion exp(−xmin).

9.6.4 Quadratic lower bound for exponential kernel.
Observe from Figure 12b, the quadratic function QL(x) =
alx

2 + cl (red curve) can act as the lower bound of exp(−x)
once this curve passes through the tangent point (t, exp(−t)).
Therefore, we have:

al =
− exp(−t)

2t
(16)

cl =
1
2
(t + 2) exp(−t) (17)

In Lemma 12, we show that QL(x) can act as the correct
lower bound if we choose the above parameters al and cl .

LEMMA 12. If al and cl are set to Equations 16 and 17
respectively, QL(x) ≤ exp(−x).

PROOF. Since the linear line which passes through the
tangent point (t, exp(−t)) also acts as the lower bound of
exp(−x) and QL(x) is the lower bound of this linear line (due
to the concave property), we can conclude QL(x) ≤ exp(−x).

�

In Equations 16 and 17, both al and cl still depend on
the tangent parameter t . We observe that once we choose
t = xmax, we can show that this QL(x) can achieve the tighter
lower bound compared with the state-of-the-art lower bound
function exp(−xmax), due to the monotonic decreasing prop-
erty ofQL(x) andQL(xmax) = exp(−xmax). In order to achieve
the tightest lower bound, we choose the best t = t∗ (cf. Equa-
tion 18):

t∗ =

√
γ 2

∑
pi∈P dist(q, pi)

2

|P |
(18)

We omit the proof for the best t = t∗ as this is similar with
the proof in Theorem 2.

9.7 Additional experiments for exponential
kernel function

In this section, we test the efficiency performance for both
ϵKDV and τKDV for exponential kernel function, which is
omitted in Section 7.6. As shown in Figure 27, our method
can at least provide one-order-of-magnitude speedup com-
pared with existing methods. In Figure 27d, the state-of-the-
art method tKDC is still slower than 7200 sec for all thresh-
olds and thus, we do not report the response time in this
figure.
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Figure 27: Response time for different methods in crime
and hep datasets for ϵKDV (a and b) and τKDV (c and
d), using exponential kernel function
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