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1 INTRODUCTION
So�ware testing is a mainstream approach to so�ware quality assurance and veri�cation. However,

it faces two fundamental problems: the oracle problem and the reliable test set problem. �e oracle
problem refers to situations where it is extremely di�cult, or impossible, to verify the test result

of a given test case (that is, an input selected to test the program). Normally, a�er the execution

of a test case t , a systematic mechanism called a test oracle (or simply an oracle) is required to

check the execution result. If the result does not agree with the expected outcome, we say that

t fails and refer to it as a failure-causing test case. Otherwise, we say that t succeeds and refer to

it as a successful, or non-failure-causing, test case. In many real-life situations, however, an oracle

may not exist, or it may exist but resource constraints make it infeasible to use. �e reliable test
set problem means that since it is normally not possible to exhaustively execute all possible test

cases, it is challenging to e�ectively select a subset of test cases (the reliable test set) with the

ability to determine the correctness of the program. A number of strategies have been proposed

to generate test cases for addressing the reliable test set problem, including random testing [39],

coverage testing [101], search-based testing [40], and symbolic execution [11]. Compared with

test case generation strategies, only a few techniques have been proposed to address the oracle

problem, such as assertion checking [79] and N -version programming [61]. When the oracle

problem occurs, many strategies for the reliable test set problem have limited applicability and

e�ectiveness. Regardless of how e�ective a strategy is in generating a failure-causing test case,

unless it leads to a crash of the program under test, that failure may not be recognized in the

presence of the oracle problem.

Unlike most other so�ware testing techniques, Metamorphic Testing (MT ) [15] can be used for

both test case generation and test result veri�cation — thus addressing both fundamental problems

of testing. Although it was initially proposed as a method to generate new test cases based on

successful ones, it soon became apparent that MT is also an e�ective approach for alleviating

the oracle problem. A central element of MT is a set of Metamorphic Relations (MRs), which are

necessary properties of the target function or algorithm in relation to multiple inputs and their

expected outputs. When implementing MT, some program inputs (called source inputs) are �rst

generated as source test cases, on the basis of which an MR can then be used to generate new inputs

as follow-up test cases. Unlike the traditional way of verifying the test result of each individual

test case, MT veri�es the source and follow-up test cases as well as their outputs against the

corresponding MR.

Since its �rst publication in 1998, quite a number of studies have been conducted on various

aspects of MT. In recent years especially, MT has been a�racting an increasing amount of a�ention

and has helped detect a large number of real-life faults. It was a surprise to the so�ware testing

community, for example, when MT managed to detect new faults [77, 93] in three out of seven

programs in the Siemens suite [43] even though these programs had repeatedly been studied in

major so�ware testing research projects for 20 years. In addition, Le et al. [50] detected over

one hundred faults in two popular C compilers (GCC and LLVM) based on a simple relation,

which was quickly realized to be an MR [51, 78]. In addition to its extensive use in so�ware

testing [8, 13, 14, 16, 20, 50–52, 83, 91, 99], MT has been widely applied to address the oracle

problem in the broader context of so�ware engineering [3, 27, 29, 45, 46, 57, 77, 92, 93]. It has also

been used as a technique for validation [91] and quality assessment [98], detecting real-life faults

in several popular search engines.

In recent surveys of the oracle problem [4, 68, 71, 72], a signi�cant amount of discussion was

devoted to MT, which was categorized as a mainstream and promising approach for addressing the

problem. Among the surveys speci�cally about MT [34, 42, 81], Segura et al. [81] have presented
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an extensive literature review of MT, analyzing and summarizing 119 research papers published

between 1998 and 2015, highlighting some open questions. Among all the papers on MT, we consider

some of them as the most important and in�uential studies if either they opened new and important

research directions for MT or their results have had signi�cant impact. For example, some studies

presented various approaches to systemically generate metamorphic relations [25, 47, 96, 100].

Other studies proposed the innovative application of MT to, amongst others, proving [27, 37],

debugging [29, 46], fault localization [92], fault tolerance [57], and program repair [45]. Still other

studies, as discussed above, have had the surprising and striking results of detecting real-life bugs

in, amongst others, popular compilers [50, 51] and search engines [98]. Our present article is

di�erent from traditional surveys. Rather than providing an exhaustive survey of what has been

investigated, we focus instead on the above-mentioned most important and in�uential MT studies,

the relationships among them, and their impacts. Complementary to previous surveys on the oracle

problem [4, 68, 71, 72] and MT [34, 42, 81], we a�empt to summarize and analyze results based on

related studies from a di�erent perspective, providing an in-depth discussion of what has really

been achieved and what still remains to be done. �e main contribution of this paper is threefold.

To the best of our knowledge:

• It provides by far the most thorough summary and clari�cation of the critical concepts of

MT, including improved formal notation and de�nitions as well as consolidated advantages

of MT (Section 2); and important, but frequently overlooked or misunderstood concepts in

MT (Section 3).

• It presents by far the most systematic discussions of MT’s research in the contexts of (i) tra-

ditional so�ware testing (Section 4); (ii) extension beyond testing, such as for proving MRs

and for validation (Section 5); and (iii) integration of MT with other so�ware engineering

methods to address the oracle problem in related �elds (Section 6). In each discussion, we

�rst provide a high-level review of the state of the art of MT, and then highlight the critical

challenges to be addressed.

• It unveils by far the most comprehensive list of contemporary opportunities for emerging

research related to MT (Section 7).

2 BACKGROUND
Before formally presenting the notation and de�nitions, we �rst introduce the history of how MT

was proposed, paving a way for a deeper understanding of its underlying intuitions, and facilitating

the presentation of its evolution.

2.1 Are successful test cases really useless?
As pointed out by Dijkstra [31], so�ware testing can only demonstrate the presence of faults, not

their absence. In many situations, successful (non-failure-causing) test cases had been regarded as

useless — because they do not reveal failures — and their test results were usually not passed to the

debugging team. About twenty years ago, we revisited the question: Are successful test cases really
useless? Our answer was “no”. Most test case generation strategies serve speci�c purposes, so every

generated test case should carry some useful information about the program under test [15, 21].

It has been an interesting (and challenging) task to examine how to make use of such useful, but

implicit, information to support further testing.

Our revisit of this question led to the development of metamorphic testing (MT). In MT, we �rst

identify some necessary properties of the target function or algorithm in the form of metamorphic

relations (MRs) among multiple inputs and their expected outputs. �ese MRs are then used to

transform existing (source) test cases into new (follow-up) test cases. Obviously, because the
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follow-up test cases depend on the source test cases, they should also possess some (if not all) of

the useful information embedded in them. If the actual outputs of source and follow-up test cases

violate a certain MR, then we can say that the program under test is faulty with respect to the

property associated with that MR. Although MT was initially proposed as a method for generating

new test cases based on successful ones, it soon became clear that it could be used regardless of

whether the source test cases were successful or not. In addition, it actually provided a lightweight,

but e�ective, mechanism for test result veri�cation — MT was thus recognized as a promising

approach for alleviating the oracle problem.

It should be noted that MT is not the only technique designed to make use of successful test

cases. Adaptive Random Testing (ART) [21, 26, 60] a�empts to evenly spread the test cases across

the input domain, using the location of successful test cases to guide selection of subsequent ones.

2.2 The intuition and formalization of MT
�e intuition behind using MT to alleviate the oracle problem is as follows: Even if we cannot

determine the correctness of the actual output for an individual input, it may still be possible to

use relations among the expected outputs of multiple related inputs (and the inputs themselves) to

help. Consider the following example.

Example 1. Suppose that an algorithm f computes the shortest path for an undirected graphG , and
a program P implements f. For any two vertices a and b in a large G , it may be very di�cult to verify
whether P (G,a,b) — the computed result of P given the inputsG , a, and b — is really the shortest path
between a and b. One possible way to verify the result is to generate all possible paths from a to b,
and then check against them whether P (G,a,b) is really the shortest path. However, it may not be
practically feasible to generate all possible paths from a to b as the number of possible paths grows
exponentially with the number of vertices. Although the oracle problem exists for testing the program
P , we can make use of some properties to partially verify the result. For example, an MR can be derived
from the following property: If the vertices a and b are swapped, the length of the shortest path will
remain unchanged, that is, | f (G,b,a) | = | f (G,a,b) |. Based on this MR, we need two test executions,
one with the source test case (G,a,b) and the other with the follow-up test case (G,b,a). Instead of
verifying the result of a single test execution, we verify the results of the multiple executions against
the MR — we check whether the relation |P (G,b,a) | = |P (G,a,b) | (where we simply replace f by P ) is
satis�ed or violated. If a violation is detected, we can then say that P is faulty.

�e following is a formal presentation of the MT methodology.

Definition 1 (Metamorphic Relation (MR)). Let f be a target function or algorithm. A
metamorphic relation (MR) is a necessary property1 of f over a sequence of two or more in-
puts 〈x1, x2, . . . , xn〉, where n > 2, and their corresponding outputs 〈f (x1), f (x2), . . . , f (xn )〉.
It can be expressed as a relation R ⊆ Xn × Yn , where ⊆ denotes the subset relation, and Xn and Yn

are the Cartesian products of n input and n output spaces, respectively. Following standard informal
practice, we may simply write R

(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
to indicate that

〈x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )〉 ∈ R.

For ease of presentation, we will write “target function or algorithm” as “target algorithm” in the

remaining part of this paper.

For instance, the property from Example 1, “If the vertices a and b are swapped, the length

of the shortest path will remain unchanged”, is a necessary property of the target algorithm f .

| f (G,b,a) | = | f (G,a,b) | is the MR corresponding to this property.

1
A necessary property of an algorithm means a condition that can be logically deduced from the algorithm.
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Definition 2 (Source Input and Follow-up Input). Consider an MR
R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
. Suppose that each x j (j = k + 1,k + 2, . . . ,n)

is constructed based on 〈x1, x2, . . . , xk , f (x1), f (x2), . . . , f (xk )〉 according to R. For any
i = 1, 2, . . . ,k , we refer to xi as a source input. For any j = k + 1,k + 2, . . . ,n, we refer to x j as a
follow-up input. In other words, for a given R, if all source inputs xi (i = 1, 2, . . . ,k ) are speci�ed,
then follow-up inputs x j (j = k + 1,k + 2, . . . ,n) can be constructed based on the source inputs and, if
necessary, their corresponding outputs.

In Example 1, (G,a,b) is the source input and (G,b,a) is the follow-up input constructed by

using the same graph G and swapping the start and end nodes (a and b). Obviously, (G,a,b) and

(G,b,a) can be used as test cases for MT (and are referred to as the source and follow-up test cases,

respectively).

Definition 3 (Metamorphic Group of Inputs (MG)). Consider an MR
R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
. �e sequence of inputs 〈x1, x2, . . . , xn〉

is de�ned as a metamorphic group (MG) of inputs for the MR. More speci�cally, the MG is the
sequence of source inputs 〈x1, x2, . . . , xk 〉 and follow-up inputs 〈xk+1, xk+2, . . . , xn〉 related to R.

In Example 1, 〈(G,a,b), (G,b,a)〉 is an MG.

Definition 4 (Metamorphic Testing (MT)). Let P be an implementation of a target algorithm f .
For an MR R, suppose that we have R

(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
. Metamorphic

testing (MT ) based on this MR for P involves the following steps:
(1) De�ne R ′ by replacing f by P in R.
(2) Given a sequence of source test cases 〈x1, x2, . . . , xk 〉, execute them to obtain their

respective outputs 〈P (x1), P (x2), . . . , P (xk )〉. Construct and execute a sequence of follow-
up test cases 〈xk+1, xk+2, . . . , xn〉 according to R ′ and obtain their respective outputs
〈P (xk+1), P (xk+2), . . . , P (xn )〉.

(3) Examine the results with reference to R ′. If R ′ is not satis�ed, then this MR has revealed that P
is faulty.

If conducting MT for Example 1, f would �rst be replaced by P in the MR to give the expected

relation |P (G,b,a) | = |P (G,a,b) |. Given the MG 〈(G,a,b), (G,b,a)〉, the program would then be

executed so that we could examine whether |P (G,b,a) | = |P (G,a,b) | is satis�ed or violated.

With MT, it is not necessary to investigate whether P (xi ) = f (xi ) for any individual test case xi
— which would require a test oracle. MT therefore alleviates the oracle problem in testing.

2.3 Advantages of MT
Based on the de�nitions in the previous section, we next summarize MT’s main advantages. Note

that although these advantages are not unique to metamorphic testing, MT is one of the few

techniques that have all of them.

Advantage 1: Simplicity in concept. Both the intuition and technical content of MT are

simple and elegant. As shown in previous studies [55, 73], testers, even those without much

experience or expertise, could learn how to use MT in a few hours and then correctly apply it to

test a variety of systems.

Advantage 2: Straightforward implementation. According to De�nition 4 (Section 2.2),

implementing MT is straightforward. Both test case generation and test result veri�cation are

implemented based on MRs. Previous studies of MT, especially those related to MT applications

where a large number of MRs are identi�ed, suggest that MR identi�cation is not a very di�cult

task even though it cannot be completely automated. �e success of using a very simple MR to
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detect hundreds of real-life bugs in two popular compilers [50] is strong evidence that identi�cation

of good MRs may not be di�cult at all. It should also be straightforward for users to develop MT

tools for their own speci�c domains [84, 100].

Advantage 3: Ease of automation given the availability of MRs. Apart from the MR

identi�cation process, it should not be di�cult to automate the major steps in MT, including test

case generation, execution, and veri�cation. �e construction of individual test cases is simple.

Source test cases can be generated through existing testing methods while follow-up test cases

can be constructed through transformations according to MRs. Test case execution is normally

straightforward also, and thus may be the most easily automated process for almost all testing

methods. Test result veri�cation in MT can also be automated by creating scripts to check test

outputs against the relevant MRs. In the entire MT procedure, the only part that might not be fully

automated is MR identi�cation, but this can be improved based on the recent in�uential study

of systematic MR identi�cation [25]. Although tools already exist that implement the entire MT

process for certain application domains [84, 100], further research is still required to develop a

general framework incorporating and automating every MT step as much as possible.

Advantage 4: Low costs. Compared with traditional testing techniques, MT requires a process

of identifying MRs, and incurs marginal additional computational costs for generation and execution

of follow-up test cases, and test result veri�cation. Although MR identi�cation involves some

manual work and hence incurs some overheads, it is expectable and unavoidable. Similar manual

processes are necessary in traditional testing, such as the requirements analysis for speci�cation-

based testing, the construction of formal models for model-based testing, the identi�cation of

assertions, and the design of �tness functions for search-based testing. As explained above, follow-

up test cases are easily generated through transformations according to MRs, and usually incur very

low cost. Although test result veri�cation involves checking outputs against MRs, the associated

overhead is relatively low compared with the cost of result veri�cation when the oracle problem

exists.

Another important factor a�ecting costs is the scalability problem, by which we mean that the

required number of test cases or required testing e�orts is exponentially growing with the size of

the program under test. For example, the multiple-condition coverage criterion, widely regarded

as “one of the most popular criteria in so�ware testing practice” [101], aims to design test cases

that cover all possible combinations of condition outcomes in a decision for a given program. For

a given program, such a testing criterion requests a minimum number of test cases to satisfy its

original objective. In contrast, there exist several techniques, such as MT and random testing, that

do not have this kind of constraint on the minimum number of test cases. MT can be applied with

a test suite of any size, independent from the size and complexity of the program under test. How

large or small the test suite is does not a�ect the implementation of MT. �us, MT does not have the

scalability problem as encountered by the multiple-condition test case selection method. Some may

argue that MT may require many test cases to guarantee the detection of certain so�ware failures.

However, this issue is related to the failure rate of the program under test and fault-detection

capability rather than scalability.

3 FREQUENTLY MISUNDERSTOOD CONCEPTS IN MT
In our research, we have identi�ed the following MT concepts that were frequently overlooked

or misunderstood — they appear to be the cause of most inquiries from readers, reviewers, and

so�ware practitioners. In this section, therefore, we highlight and address each one of them,

providing a more comprehensive picture of MT and thus enabling a deeper understanding of MT’s

capabilities.
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Concept 1: Not all necessary properties are MRs. MRs are necessary properties of the

target algorithm in relation to multiple inputs and their corresponding expected outputs. Not all

necessary properties of the algorithm, therefore, are MRs. For example, although −1 ≤ sin(x ) ≤ 1

is a necessary property of the sine function, it only involves a single instance of the input and

thus cannot be considered an MR — even though, obviously, violation of this property implies

that the relevant program is faulty. It should be noted that such a property involving only one

input has been used in other techniques, such as assertion checking [79], which also addresses the

oracle problem but in a di�erent way and less e�ective than MT in detecting various faults [41, 97].

�ere are also development and testing approaches that involve multiple executions using the same

input: N -version programming [61] and di�erential testing [35], for instance, verify the test results

against the property that various versions of the same so�ware should produce the same results

given the same input. However, because such a property does not involve multiple di�erent inputs

(even though it involves multiple executions across various versions), it is not regarded as an MR.

Concept 2: Not all MRs separate into input-only and output-only sub-relations. Many

previously studied MRs consist of two separate or independent components: one sub-relation

involving only the inputs and the other one involving only the outputs. Consider the shortest path

program P (G,a,b) in Example 1 (Section 2.2), where G is an undirected graph, a is the start node,

b is the end node, and the output is a shortest path from a to b. �e given MR, “If the vertices a
and b are swapped, the length of the shortest path will remain unchanged”, which we denote as

MR1, can be decomposed into two separate sub-relations: Rin (a relation only involving the inputs:

“the start and end nodes, a and b, are swapped”) and Rout (a relation only involving the outputs:

“|P (G,b,a) | = |P (G,a,b) |”). Although this type of MR is o�en identi�ed, it should be noted that

there are other types that cannot be decomposed into input-only and output-only sub-relations.

Consider a second MR, denoted as MR2: |P (G,a, c ) | + |P (G, c,b) | = |P (G,a,b) | where c is a node

appearing in the shortest path from a to b in graph G . In MR2, the follow-up test cases (G,a, c ) and

(G, c,b) depend on the output of the source test case (G,a,b). Although MR2 is di�erent from MR1,

which is in the form of Rin and Rout, MR2 does still comply with De�nition 1.

Concept 3: Not all MRs are equality relations. Although many of the MRs studied to date

have involved equality relations, this is not a requirement in the original MR de�nition (De�nition

1). Consider the following example.

Example 2. Suppose that a database query command q extracts data from the database using the
condition c1∨c2∨ . . .∨cn . One possible MR for q is: If any ci (1 ≤ i ≤ n) is removed, the new extracted
data should be a subset of the original extracted data, that is, q(c1 ∨ c2 ∨ . . .∨ ci−1 ∨ ci+1 ∨ . . .∨ cn ) ⊆
q(c1 ∨ c2 ∨ . . . ∨ cn ).

Unlike the MR de�ned in Example 1, which involves an equality relation, the MR in Example 2

involves a relation that is not an equality. Furthermore, some studies have considered the use of

nondeterministic or probabilistic relations as a kind of extension to MT [38, 66]. In fact, the MR

de�nition was never constrained to speci�c relation types. Although other techniques (such as the

data diversity approach for fault tolerance [2]) speci�cally involve the use of equality relations,

MRs may include but are not limited to equality relations. �is makes MT intrinsically di�erent

from other techniques. Interested readers who wish to further explore the di�erences between MT

and these other techniques may consult our previous studies [29, 55].

Concept 4: MT can be applied with or without an oracle. Although MT has been exten-

sively applied to the testing of programs with the oracle problem, it can also be applied when

a usable oracle is available — something that has been overlooked or misunderstood by many

researchers. In fact, MT has revealed real-life faults that had remained undetected for years in

some small-sized and extensively-tested programs — such as the famous Siemens programs [77, 93],
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which will be discussed in Section 4.2. �is means that MT can be used as a test case generation

strategy regardless of whether or not a usable test oracle exists. As will be shown in Section 5.1,

MT with semi-proving can reveal conditions of inputs that lead to violations of an MR (if such

violations exist). �ese conditions are useful for debugging, regardless of whether the test oracle

exists or not. In summary, MT is a useful and e�ective method even when a test oracle exists.

4 MT IN TESTING
4.1 MT as an approach to alleviating the oracle problem
State of the art. Although it has widely been acknowledged that MT can e�ectively alleviate

the oracle problem in testing, one can never completely solve it. MRs are necessary properties of

the target algorithm in relation to multiple inputs and their expected outputs, but because there

are usually a huge number of these properties, it is almost impossible to obtain a complete set

of MRs representing all of them. Even if it were possible to obtain such a complete set of MRs,

they might still not be equivalent to a test oracle due to the necessary (but not su�cient) nature of

the properties. Nevertheless, a recent empirical study [55] has delivered very encouraging results,

demonstrating how a small number of diverse MRs appear to be very close to the test oracle in

terms of so�ware fault-detection ability. For each of the six subject programs in the study, MT only

required an average of three to six diverse MRs to reveal at least 90% of the faults that could be

detected by an oracle.

�e e�ectiveness of MT in alleviating the oracle problem has been shown repeatedly in numerous

studies, covering many di�erent domains, including bioinformatics [16, 75, 76, 80]; web services [14,

84]; embedded systems [13, 44, 49]; components [8, 59]; compilers [50, 86]; databases [52]; machine

learning classi�ers [65, 67, 91]; online search functions and search engines [98, 99]; so�ware

product lines [82, 83]; and security [20]. In particular, MT has detected real-life faults in some

frequently used programs with the oracle problem. For example, when testing a program analyzing

gene regulatory networks, Chen et al. [16] identi�ed some MRs involving simply altering the

basic network structure (through deletion of a node, or addition of an edge, for instance). It was

surprising to observe that a fault was revealed by a very simple MR that added a zero-weight edge.

Other examples of MT detecting real-life faults include its application in embedded systems [49], in

three famous Siemens programs [77, 93], and with two popular C compilers [50, 86]. Readers can

refer to the recent survey [81] for the details on how MT has addressed the oracle problems in these

di�erent application domains. We will not repeat the detailed discussions in this paper. Instead, we

will now summarize the similarity among these studies. Most studies have used random testing

(RT) as the benchmark for evaluating the fault-detection e�ectiveness of MT, either explicitly

or implicitly. Usually, faults are seeded into a base program (automatically and/or manually) to

generate a set of faulty versions called mutants. �e base program can then be used as the oracle.

RT with the oracle provides the upper bound of the fault-detection e�ectiveness. RT without the

oracle provides the lower bound — in which case we can only detect faults related to program

crashes, such as segmentation faults. It is usually reported that MT always detects more faults than

RT without the oracle. Obviously, any program crash will lead to the violation of MRs, whereas

some faults do not necessarily trigger crashes but may result in MR violations. On the other hand,

the more MRs used, the closer will be the number of faults detected by MT to that for RT with

the oracle. Furthermore, if a su�cient number of diverse MRs are used, then the fault-detection

e�ectiveness of MT is found to approach that of the oracle [55].

In addition to RT, MT has also been compared with another technique for addressing the oracle

problem, assertion checking [41, 97]. Although incurring a slightly higher computational cost,

MT has been observed to detect more faults than assertion checking. MT was also found to be
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complementary to error trapping, a commonly used spreadsheet testing technique [74]. Because

MT and error trapping �nd di�erent types of faults, it has been proposed that they should both be

used when testing spreadsheets.

Challenge 1: Comprehensive empirical studies for a unified understanding of MT. �e

increasing number of real-world programs tested using MT is indicative of its wide acceptance [81],

but a thorough evaluation of MT’s overall e�ectiveness is still lacking. Many experimental stud-

ies [12, 55] have used mutation analysis to evaluate the fault-detection e�ectiveness of MT —

evaluating how well MT, or more speci�cally a set of MRs, can alleviate the oracle problem based on

how many mutants can be killed. However, most of these studies either focused on one particular

application domain, or were based on a set of small or medium-sized subject programs. In addi-

tion to the appropriate e�ectiveness measurement (such as the mutation-based metrics), further

empirical studies involving large and complex subject programs, from a variety of application

domains, will be needed to develop a full picture of MT’s fault-detection e�ectiveness. Such projects

are labor-intensive and time-consuming, and should be conducted through collaborations across

di�erent research groups with complementary strengths. Furthermore, some previous MT experi-

ments have yielded contradictory results. As discussed in a previous survey [81], for instance, the

e�ectiveness of MRs (such as those in [17, 62]) has not been conclusively determined. It is therefore

critical that all these experiments be summarized and analyzed. Based on these analyses, more

comprehensive and thorough empirical studies should be designed and conducted. It is hoped that

such comprehensive studies will lead to a more uni�ed understanding of MT, enabling provision of

clearer directions and guidelines for further MT research.

Challenge 2: Systematic MR identification and selection. E�ective MRs are the key to MT

alleviating the oracle problem. Although many MRs have been identi�ed for various application

domains (as mentioned in Section 2.3), and were reportedly not di�cult to identify, most of these

identi�cations were conducted in an ad hoc and arbitrary way. Several studies have been conducted

examining how to systematically identify MRs [25, 56] and how to select “good” MRs [12, 17, 55, 62]

(the results of these studies have been summarized by Segura et al. [81]). However, both systematic

identi�cation and selection of appropriate MRs still face several critical challenges.

Research into MR identi�cation is important, but still at a preliminary stage, with most techniques

proposed so far having limited applicability. Currently, MR identi�cation strategies can be classi�ed

as either ad hoc or systematic, with most previous MT studies requiring testers to identify MRs

in an ad hoc manner, without any systematic mechanism. Recently, however, research has been

emerging on systematic methods for MR identi�cation. Zhang et al. [96], for example, proposed

identifying MRs from multiple executions of the program under test. On the one hand, MRs based

on program executions may be erroneous if the implementation is faulty. �e la�er is exactly what

we set out to test. On the other hand, even though these MRs may not be valid, they provide users

with clues and inspirations for identifying appropriate MRs.

Some MR identi�cation techniques can only be applied in speci�c application domains [47, 96,

100], or may require the existence of initial MRs [33, 56]. Other recent work, however, has yielded

much higher applicability and MR identi�cation without a need for existing MRs: METRIC [25],

for instance, is based on the concepts of category and choice [24] from the so�ware speci�cations.

Categories refer to input parameters or environmental conditions that a�ect the execution of

the so�ware under test, while choices are disjoint partitions of each category that cover sets of

possible values for the category. Technically speaking, MRs are part of the speci�cations, and hence,

intuitively, should be identi�able from them — an intuition that motivated the technique on which

METRIC is based. However, in spite of its systematic approach, METRIC still relies somewhat on

the testers’ expertise and experience in identifying MRs. Consider the following example.
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Example 3. For the sine function, its speci�cation is usually given by the equation

sin(x ) = x −
x3

3!

+
x5

5!

− · · · (1)

With this speci�cation, it may not be di�cult to identify the MR “sin(−x ) = − sin(x )”. However, it is
not trivial to derive some other MRs from Equation (1), such as “sin(π −x ) = sin(x )” or “sin(x + 2π ) =
sin(x )”, because the �nal cancellation of all π ’s a�er replacing x by (π −x ) or (x + 2π ) in the equation
involves di�cult mathematical operations.

On the other hand, if the sine function is de�ned to be the ratio of the opposite side to the hypotenuse
in a right-angled triangle, then the MRs “sin(π − x ) = sin(x )” and “sin(x + 2π ) = sin(x )” should be
easily identi�able — because they follow directly from the de�nition or speci�cation.

Current practices in speci�cations engineering aim mainly to help developers understand the

required functionality of the so�ware to be developed, with a view to delivering a system that

satis�es user needs. It will therefore be a challenge to investigate new speci�cation practices that

would support the identi�cation of MRs. �is research direction may bring a new perspective to

speci�cations engineering.

Although work has been conducted into providing guidelines for “good” MR selection [12, 17,

55, 62], these guidelines remain rather qualitative and their implementation is still a relatively

subjective process. More work is needed to produce the formal, objective, and measurable criteria

that can be used to guide selection of appropriate MRs to e�ectively alleviate the oracle problem.

Potential criteria include the code coverage of MRs, the di�erences in execution pro�les (such

as branch hits and branch counts) of source and follow-up test cases for an MR [12], the logical

hierarchy of MRs, and so on.

A promising direction for future research will be to integrate the selection of “good” MRs with

the systematic identi�cation of MRs. �e resultant is an advanced technique achieving both MR

identi�cation and selection. It would not only identify MRs without the need for existing ones,

but could also systematically select a set of MRs that would be most e�ective in detecting various

faults.

4.2 MT as a new test case generation strategy
State of the art. As already discussed, MT was proposed as a test case generation strategy that

could be used regardless of whether or not the oracle problem exists. Previous studies have shown

that in addition to alleviating the oracle problem, MT is e�ective at revealing real-life faults, even

for widely-used programs, such as the famous Siemens programs [77, 93], C compilers [50, 86],

bioinformatics so�ware [16], and wireless embedded systems [49]. Segura et al. [81] reported that

MT had detected about 295 real-life faults, emphasizing the e�ectiveness of the technique. Among

these detected faults, two results are worth highlighting for further analysis: the detection of three

faults in the Siemens suite and the detection of over 100 faults in two popular C compilers (GCC

and LLVM).

MT detected three real-life faults in three out of seven programs [77, 93] in the Siemens suite [43].

�e Siemens suite had been extensively used as a benchmark for evaluating many test case selection

strategies for the previous two decades. Furthermore, the programs are of relatively small size.

It was therefore particularly surprising that such faults had remained undetected for so long in

spite of the small program sizes and the thorough testing by a large number of test case selection

strategies. �is clearly demonstrates that MT complements existing test case selection strategies.

�e success in revealing these previously undetected faults is due to MT’s innovative approach

to generating test cases based on a perspective di�erent from those used before. In MT, testers
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need to consider the necessary properties of the target algorithm — not the implementation. Even

without a complete speci�cation, testers can still identify MRs that describe particular properties,

and thus can generate test cases that may reveal faults violating these properties. �is situation

emphasizes the importance of the concept of test case diversity. Programmers may make a variety

of errors, including unexpected ones. Correspondingly, test cases should be designed from di�erent

perspectives such that they can trigger as many distinct kinds of execution behaviors as possible.

Interested readers may consult our work on the role of diversity in e�ective test cases [21, 22].

Recently, Le et al. [50] developed a technique to test compilers and detected over 100 faults in

the popular GCC and LLVM C compilers. �e same technique was also applied to detect over 50

new bugs in OpenCL (Open Computing Language) compilers [51]. �e technique is basically MT,

as observed by di�erent researchers [51, 78], with a speci�c instance of the following MR: If source

programs SP and SP ′ are equivalent for input I , then their object programsOP andOP ′, respectively,

are also equivalent on I . �eir method constructs SP ′ from SP by removing the statements in SP
that are not executed with input I . Compared with the Siemens test suite, the two compilers are

extremely large. Although we do not know the testing history of the two compilers, it is very

likely that they were tested with fewer testing methods than the Siemens suite — because the

la�er has been extensively used as a benchmark for evaluating the e�ectiveness of testing methods.

However, since these two compilers are popular, they must have been used extensively, and thus,

it is a surprise that so many faults have been detected. �is again demonstrates the e�ectiveness

of MT in revealing real-life faults. In fact, Le et al. are not the �rst researchers to use MT to test

compilers. Tao et al. [86] had previously also used MT, but had only found one fault in the GCC

compiler and one in the UCC compiler. �is dramatic di�erence in the number of detected faults

also emphasizes the signi�cant impact MR choice has on the fault-detection e�ectiveness of MT.

Compared with other testing strategies, the main MT overheads relate to the identi�cation of

MRs, as well as the generation and execution of follow-up test cases. However, a major advantage of

MT is that it does not have the scalability problem that has rendered many other testing techniques

unusable on large so�ware, as discussed in Section 2.3. Furthermore, the MR that Le et al. [50] used

to test the two compilers is remarkably simple, in spite of the technical complexity of compilers,

and can be de�ned without referring to such complex technical content. In fact, the used MR is

applicable to compilers for other programming languages, not restricted to the C compilers.

Challenge 3: E�ective test case generation. �e e�ectiveness of MT depends on the MRs

and MGs used, while follow-up test cases depend on source test cases and the relevant MR. �us,

the e�ectiveness of MT actually depends on both the MRs and the source test cases. Nevertheless,

research has mainly focused on the impact of MRs (as discussed in Section 4.1), with the impact of

source test cases on MT’s fault-detection e�ectiveness having somehow been neglected. Previous

studies have focused mainly on the identi�cation of “good” MRs, o�en overlooking the issue of

generating “good” test cases — in terms of fault-detection e�ectiveness. In most previous studies,

source test cases were either randomly generated [7, 55], or were special values [19], or both [16].

As observed by Segura et al. [81], 57% of source test cases in previous studies were randomly

generated and 34% were from existing test suites. In other words, investigation of the impact of

source test cases on MR (and MT) e�ectiveness is an area yet to be explored. Some initial work

in this area has begun, including a�empts to generate source test cases using more advanced

techniques, such as fault-based testing [28] and ART [5, 7]. �e studies so far conducted are still at

relatively initial stages, and it is quite challenging to assess and guarantee the e�ectiveness of test

cases generated for MT, which depends on a variety of factors. It will be worthwhile to more deeply

investigate how to generate e�ective source test cases and consequently follow-up test cases that

maximize fault detection.
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5 EXTENSION OF MT BEYOND TESTING
�is section examines how MT has been extended beyond the context of testing, into MR prov-

ing (Section 5.1) and as a uni�ed framework for veri�cation, validation, and quality assessment

(Section 5.2).

5.1 Proving MRs
State of the art. In MT, MRs are tested and not proven, which means that, even if there is no MR

violation, it still cannot be concluded that the program satis�es the relevant MRs for all inputs. A

natural line of investigation, therefore, will be to examine how to prove that a program satis�es MRs

for the entire input domain — abbreviated as proving MRs, herea�er. To the best of our knowledge,

very few investigations in this direction have so far been conducted: one by Chen et al. [27, 29]

and one by Gotlieb and Botella [37].

Chen et al. [27, 29] developed a semi-proving method that uses symbolic analysis techniques

to prove MRs. In addition to providing a general framework for proving, they showed that semi-

proving can be combined with testing and debugging, as illustrated by the following example.

Example 4. Consider a program P implementing a function f (x ) that has the following MR:
f (k × x ) = k × f (x ) (denoted by MRo), where k is a non-zero integer. Suppose semi-proving has
successfully proven that the program P satis�es MRo on the entire input domain. Now, test P using a
concrete test case, such as x = 2, and suppose that the output is correct. �en, based on this result and
the proven MR, it can be concluded that P (4), P (6), P (8), . . . must all be correct — even though the
program P has never been tested using these concrete test cases.

As shown above, semi-proving enables extrapolation from the correctness of a program for

tested inputs to the correctness for related but untested inputs, thus combining testing and proving.

It was also observed that proving the correctness of a program could sometimes be achieved by

proving a set of MRs [27, 29]. In this way, semi-proving provides a new and automated way to do

proving. For complex programs where symbolic analysis cannot be applied globally, semi-proving

can be performed on a �nite set of selected paths, making it a symbolic testing technique. When

semi-proving �nds that an MR is not satis�ed by the program, it provides a constraint on the

inputs for which the relevant MR is violated. For example, suppose that the program has two input

parameters, a and b, and that the constraint is a = (2 × b) + 5. Whenever the input parameters

satisfy the constraint, the MR will be violated. Obviously, such a constraint is more informative

than a concrete test case (such as a = 11 and b = 3) for revealing the nature of the defect.

Gotlieb and Botella [37] used constraint logic programming to generate test cases that cause

violations of given MRs. �eir testing framework �rst translates the program under test into

an Equivalent Constraint Logic Program over Finite Domains (eclp ( f d )), and then generates the

negation of the given MR, expressed as a goal to solve with the eclp ( f d ). Because a contradiction

of the constraint system means that the MR is satis�ed, their technique can prove the satisfaction

of MRs for certain programs.

Challenge 4: Metamorphic proving. Geller [36] proposed using test cases to prove program

correctness by �rst testing the program using a sample test case, showing that the output is correct,

and then proving that the program’s output and the speci�ed target function “are perturbed in the

same fashion” as the input values change. In this way, one can generalize from the given test case

to a larger domain. Although metamorphic relations are obvious candidates for the generalization,

how to make use of them for program proving or disproving, in combination with testing, is a

challenge. In particular, extensive research is required to balance the fault-detection e�ectiveness

of the MRs (their proving power) with the di�culty level of the proofs.
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To elaborate this point, consider again program P in Example 4, which implements the function

f (x ) that has the MRo : f (k × x ) = k × f (x ), where k is a non-zero integer. We have shown that

proving MRo can be very useful because it enables extrapolation from the program’s correctness

for a single test case to the program’s correctness with in�nitely many untested inputs. In practice,

however, the veri�er might �nd that MRo is too di�cult to prove for P . In this situation, the

veri�er should look for other MRs that are easier to prove, such as MRn : f (−x ) = −f (x ). Although

MRn is weaker than MRo , proving MRn for P could be more practical, and a successful proof of

P (−x ) = −P (x ) will still be very useful as it will double the e�ectiveness of concrete test cases.

Many di�erent proving techniques exist, each with advantages and limitations. For the existing

MT-based proving techniques [27, 29, 37], their applicability and scalability rely on their related

support tools. Further research is needed to identify the usefulness, advantages, and limitations of

MR proving techniques beyond symbolic evaluation and constraint logic programming.

5.2 A framework for verification, validation, and quality assessment
State of the art. So�ware veri�cation checks whether the products of a given development phase

(such as design documents or program code) satisfy the speci�ed requirements. So�ware validation,

on the other hand, checks whether these products meet the user’s actual needs. Boehm [9] famously

explained the di�erence as questions of “building the product right” (veri�cation) and “building the

right product” (validation).

Although MT was originally proposed as a veri�cation technique, it was later also found to be

useful for validation. In a study of testing machine learning classi�er so�ware [91], it was observed

that implementations of two classi�ers, k-Nearest Neighbor (kNN) and Naive Bayes, violated some

of the identi�ed MRs. Careful investigation later revealed that some of the violated MRs were not

actually necessary properties of the target algorithms — but they were properties expected by the

users. For example, although users reported expecting that the order of the class labels would not

a�ect the �nal classi�cation, the kNN algorithm did not have this property, which resulted in MR

violations when the implemented program was tested. �is observation led to the understanding

that MT could also be used as a validation technique — if the MRs are identi�ed based on actual

user expectations rather than on the target algorithm.

While veri�cation and validation focus on the functionality and correctness of so�ware, so�ware
quality assessment, as an activity, covers a much broader range of characteristics than just functional

correctness [98]. MT has, for the �rst time, been formally introduced as a uni�ed framework for

so�ware veri�cation, validation, and quality assessment with large scale empirical studies of

major search engines (including Google, Bing, and Baidu) [98]. �e investigated so�ware quality

(sub)characteristics included functional correctness, capacity, operability, user error protection,

maturity, e�ectiveness, and context completeness. As an example, it was found that the search

engines under study had performance degradation when searching large domains, which means

that MT is useful for assessing so�ware scalability. �e main di�erence is the source of MRs: in

veri�cation, they are derived from the speci�cations; in validation, they are derived from the user

expectations; and in quality assessment, they can be de�ned by various stakeholders.

Consider again the case of search engines [98], which, due to the lack of a tangible test oracle, can

be di�cult to test or assess. Because knowledge of the algorithms, or detailed system speci�cations

of these search engines (which could be commercial secrets), was not available, a user-oriented

approach was adopted to perform MT — MRs were identi�ed from the users’ perspective. �ese

MRs re�ected what users actually care about and were not based on the algorithms or designs

chosen by the search engine developers. On the one hand, they allowed users to validate the search

engines and assess their various quality characteristics. On the other hand, the test results were
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helpful for the developers to reveal defects and weaknesses in the search engines and, hence, to

improve the quality of service. �e search engine developers could repeat some of the reported MR

violations and con�rm that they were indeed caused by so�ware faults or design �aws. �is means

that the user-oriented MRs were also useful for developers conducting veri�cation.

In summary, MRs have evolved from being just the necessary properties of the target algorithm

in relation to multiple inputs and their expected outputs (De�nition 1), to additionally including

the properties expected by users.

Challenge 5: A unified and comprehensive framework. Research into so�ware validation

and quality assessment using MT is still at an initial stage, but the ultimate goal should be the

development of a comprehensive MT framework supporting veri�cation, validation, and quality

assessment. A major task is to formulate MRs not only from the perspective of the target algorithm,

but also from various stakeholders’ perspectives, including those of developers, user groups, and

independent testers. �e identi�cation and formalism of MRs can be quite di�erent for various

purposes (including veri�cation, validation, and quality assessment), which are associated with

requirements in distinct speci�cation paradigms. Hence, it is challenging to develop a uni�ed

framework that can capture and express MRs for di�erent purposes and application domains. In

particular, it is a very challenging job to propose a speci�cation language that not only supports

the uni�ed expression of MRs by di�erent stakeholders for various purposes, but also facilitates

the transformation of individual MRs to a set of automated procedures for constructing MT test

cases, bearing in mind that the follow-up test cases may depend not only on the source test cases

but also their outputs.

Another major task is to involve a variety of quality characteristics and their associated metrics in

the framework. Zhou et al. [98] identi�ed �ve MRs for search engines and showed how they could

be used to evaluate some standard quality (sub)characteristics [85], such as functional correctness,

operability, and maturity. Although the majority of MT research has focused on the functional

correctness of the so�ware under test, it will be necessary to extend further into the broader context

of so�ware quality, addressing such aspects as reliability [70], performance [18], and security [20].

�e development of MRs to evaluate the di�erent quality characteristics of various so�ware types

will be an important job. �e characteristics of di�erent so�ware, combined with the multiple

aspects of veri�cation and validation activities, will mean that the integration of all these things

into a single comprehensive (MT) framework will be both rewarding and challenging.

6 INTEGRATIONWITH OTHER TECHNIQUES
State of the art. In addition to alleviating the oracle problem in the context of testing, MT has

also been widely applied to address similar problems in other so�ware engineering areas. Because

other techniques, such as debugging, analysis, fault tolerance, and program repair, may normally

assume the presence of an oracle, integration with MT should extend their applicability, especially

when the oracle does not exist. Other than the small constraint of involving at least two inputs,

MT is quite straightforward and should easily achieve integration [3, 45, 46, 57, 92, 93]. In fact, the

integration process can be facilitated by the following two-component framework:

• �e correspondence between a single test case and an MG (which involves multiple test

cases); and

• �e correspondence between the pass/fail outcome of a test case and the satisfac-

tion/violation of an MR for the relevant MG.

Using this integration framework, the technique under study can be extended through the

application of the two mappings with any appropriate modi�cations to the original technique.
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For example, consider the technique of debugging with slicing [46, 93], which conventionally

works as follows: “If the program is tested with an input that reveals a failure, then we �nd the

relevant slice, called the execution slice, for this failure-causing input, and debug it.” �e rationale is

that the execution slice must contain the relevant faulty statement. Using the integration framework,

we can modify the debugging with slicing technique as follows: “If the program is tested with

an MG that reveals the violation of an MR, we �nd the relevant slice for this MR-violating MG
and debug it.” A possible way of modi�cation is to replace the execution slice used in the original

technique with the union of execution slices for all the test cases (both source and follow-up) in the

MG. �e rationale is that the faulty statement must be in the union of the MG-related execution

slices, thus giving rise to the MR violation. With this modi�cation, the technique can then be

extended to application domains without a test oracle.

Consider Spectrum-Based Fault Localization (SBFL) [92] as another example. Given a test suite

that contains at least one failure-causing test case, SBFL statistically estimates the likelihood that a

program entity (such as a statement) is faulty. SBFL involves examining each statement to determine

how many failure-causing and non-failure-causing test cases have executed it as well as how many

have not, thereby generating four measures for each statement. �e four measures are then used

to calculate a risk value, which can be used to prioritize statements for debugging. �e reasoning

behind SBFL is that (1) a statement executed by more failure-causing test cases is more likely to be

faulty and (2) a statement executed by more non-failure-causing test cases is less likely to be faulty.

Using the integration framework, the original SBFL method can be extended in the following

three steps. First, “a given test suite with at least one failure-causing test case” becomes “a given

set of MGs with at least one MR-violating MG”. Secondly, “a statement executed by a test case”

corresponds to “a statement executed by an MG”. Finally, “a statement not executed by any test

case” corresponds to “a statement not executed by any test case in any MG”.

�e new SBFL process then determines how many MR-violating and non-MR-violating MGs

have executed each statement as well as how many have not, thereby generating four new measures

for each statement. �ese four new measures are then used instead of the respective original ones

to calculate the risk values, which in turn can be used to prioritize the statements for debugging.

�e reasoning behind the new technique integrating SBFL and MT is that (1) a statement executed

by more MR-violating MGs is more likely to be faulty and (2) a statement executed by more non-

MR-violating MGs is less likely to be faulty. In this way, SBFL can be extended to those application

domains that face the oracle problem.

Of course, it may not be universally possible to use MT to enhance every relevant method

to render it applicable to programs with the oracle problem. Nevertheless, the simplicity of the

integration framework makes it generally applicable in the vast majority of cases.

Challenge 6: Development of new concepts. �e integration of MT with other so�ware

engineering techniques can lead to the development of new concepts, such as metamorphic slicing,

which was proposed in recent work on debugging [93]. Slicing is an important concept in program

analysis, testing, and debugging. Many slice types have been developed, such as static slices,

dynamic slices, execution slices, and conditioned slices [94]. Nevertheless, the slice de�nitions

to date are basically data-oriented or data-driven. Metamorphic slicing has been introduced to

integrate MT with debugging and fault localization techniques [92, 93]. A new family of slices

has been proposed, including static metamorphic slices, dynamic metamorphic slices, execution

metamorphic slices, and conditioned metamorphic slices. Unlike their conventional counterparts,

metamorphic slices are not only data-oriented but also property-oriented because they are related

to MRs. �is has opened a new research area in slicing.
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Although many studies integrating MT with other techniques have already been conducted [3,

45, 46, 57, 92, 93], few new concepts have so far been formally developed. Finding a technique to

which MT can be applied is the �rst challenge, a�er which it may be possible to develop a new

concept. Obviously, even when a technique can be integrated with MT, it does not necessarily mean

that new concepts will then be developed. Furthermore, the development of new concepts may not

be straightforward. Refer to the example of metamorphic slicing. Although Xie et al. [92, 93] only

described one execution metamorphic slice construction (through the set union of execution slices

of the related MG), there are many possible ways to group the execution slices to form execution

metamorphic slices. Generally speaking, the intended application of the metamorphic slices will

in�uence their de�nition in terms of conventional slices. Clearly, integration of MT with other

techniques and the related development of new concepts will be challenging.

Challenge 7: Development of new techniques. Since its �rst appearance in the literature in

1998, MT has been integrated with many other techniques, resulting in a family of new methods in

various areas, including debugging [93], fault localization [3, 92], fault tolerance [57], and program

repair [45]. However, some integration a�empts face challenging problems.

�ere are parallels between the use of MT in testing and its use in other so�ware engineering

techniques. In the context of testing, for instance, a single test case and its corresponding pass/fail

outcome in test result veri�cation relate to an MG and the corresponding MR satisfaction/violation.

However, there are some challenging di�erences when MT is applied in other contexts. A main

aim of so�ware testing is to reveal a fault, which, in MT, can be indicated by the violation of an MR.

Once an MR is violated, the major task of testing has been ful�lled — it does not ma�er too much

which test cases in the MG are actually related to the fault. In contrast, failure detection is only the

starting point in some so�ware engineering areas such as debugging. Precise knowledge of which

test cases are failure-causing may be necessary to be able to proceed, such as with debugging [93],

fault localization [3, 92], fault tolerance [57], and program repair [45]. �is is not a problem for

conventional techniques that use single test cases for veri�cation — the pass/fail outcomes simply

correspond to the non-failure-causing/failure-causing test cases, respectively. However, with an

MR violation, it is only possible to say that at least one test case in the MR-violating MG is related

to the fault, unless we do have a test oracle. It is not clear precisely which test case is related. Such

a precision problem is an intrinsic characteristic of MT, and is therefore an unavoidable cost when

MT is used to address the oracle problem for other so�ware engineering techniques. Consider,

for example, fault tolerance techniques. Traditionally, because of the assumption of an oracle’s

existence, once an input causes an incorrect output, a fault tolerance mechanism is applied to

provide an alternative correct output. To address the oracle problem in fault tolerance, one simple

strategy of metamorphic fault tolerance [57] works as follows: Multiple inputs are �rst constructed

according to some equality MRs, and then executed simultaneously. Next, the associated outputs

are veri�ed against the MRs to decide whether or not the original input (source input in the MT

context) results in a “trustworthy” output (in terms of its correctness). If the original output is

regarded as untrustworthy, the most trustworthy output is selected from all the outputs associated

with the follow-up inputs. A naive mechanism for metamorphic fault tolerance is shown in the

following example.

Example 5. Suppose t1 is the original input of a system S , for which three equality MRs, namely
MRi , MRii , and MRiii , have been identi�ed. Suppose further that another three inputs are constructed
as follows: t2 is constructed as the follow-up input based on t1 as the source input, using MRi ; t3 is
constructed as the follow-up input based on t2 as the source input, using MRii ; and t4 is constructed
as the follow-up input based on t1 as the source input, using MRiii . In other words, the MGs for MRi ,
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MRii , and MRiii are 〈t1, t2〉, 〈t2, t3〉, and 〈t1, t4〉, respectively. (Note that t1 does not need to be source
input for all MRs.)

Consider the following two di�erent scenarios:

• MRi and MRiii are satis�ed by their corresponding MGs, while MRii is violated. In such a
scenario, since t1 is not involved in any MR violation, it can be regarded as trustworthy, and
its corresponding output (that is, the output of the original input) can be used.

• MRi and MRii are satis�ed by their corresponding MGs, while MRiii is violated. In such a
scenario, since t1 is involved in one MR violation while t2 is not involved in any MR violation,
t2 can be regarded as more trustworthy than t1, and its corresponding output should be used.

However, such a mechanism may result in both false negatives and false positives. On the one

hand, a non-failure-causing input involved in an MR-violating MG may be mistakenly judged as

untrustworthy and hence discarded — thus a false negative occurs. On the other hand, it is possible

to select a failure-causing input as the most trustworthy one and thereby give an incorrect output

— thus a false positive occurs. Such an imprecision brings in new challenges, for example, in the

accurate evaluation of trustworthiness among multiple inputs and outputs.

In spite of the test case precision challenges, MT has demonstrated its applicability and e�ec-

tiveness in other so�ware engineering areas [3, 45, 46, 57, 92, 93]. Furthermore, there is great

potential to develop new methods to further improve the precision, and thus further enhance the

e�ectiveness. A ranking mechanism, for instance, could be introduced a�er MT veri�cation. In such

a mechanism, individual test cases could be ranked according to their probability of being related

to faults (provided that there are statistically su�cient data on the relationships among test cases,

MRs, MGs, and the satisfaction/violation outcomes). �e ranking results could in turn be used with

other so�ware engineering techniques. For example, the test cases most likely related to faults

would be the �rst ones used in the next steps of debugging, fault localization, or program repair.

Any resultant methods would no longer be the simple combination of MT and other techniques,

but rather new methods, speci�cally developed and used to be more precise and accurate.

7 MORE RESEARCH OPPORTUNITIES
In addition to the research challenges highlighted in Sections 4 to 6, we next describe seven further

opportunities for MT research. �is list of opportunities is not exhaustive, but focuses on those

research areas we consider most promising. Areas that have already been deeply studied in previous

work, such as MT in ubiquitous computing [58, 90], will not be discussed here.

Opportunity 1: Theory ofMT.Although extensive studies have been conducted demonstrating

the applicability and e�ectiveness of MT in addressing the oracle problem for so�ware testing and

many other so�ware engineering areas, there is a lack of comprehensive work on the fundamental

theory of MT. Liu et al. [55], for instance, recommended that a small number of diverse MRs be

su�cient by themselves to achieve a fault-detection capability similar to the oracle, and thus to

e�ectively alleviate the oracle problem. However, the concept of diversity was not formally de�ned,

and testers were asked to use their own intuitions to judge the diversity and similarity among

MRs. It is therefore not surprising to observe that various testers have di�erent interpretations of

diversity, and thus have distinct schemes for classifying MRs — the lack of uni�ed and formulated

de�nitions for diversity has resulted in the ad hoc and arbitrary manner of MR identi�cation and

selection.

One possible solution is based on the concepts of category and choice used in METRIC [25],

which have been used to create a measure to gauge the dissimilarities among test cases [6]. �is

metric assesses how di�erent two test cases are based on how many distinct categories and choices

they are associated with. In the METRIC framework [25], each MR is associated with a set of
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categories and choices, so it should be feasible to convert the concept of dissimilarity among test

cases into a new metric to assess the diversity among MRs. Such a diversity metric will signi�cantly

assist MT research in a number of ways, including helping testers to systematically select a set of

diverse MRs that could alleviate the oracle problem e�ectively [55]. It could also help detect and

remove “redundant” MRs — in a group of MRs showing zero diversity with one another, only one

such MR would be needed in testing. �e diversity metric will also facilitate measurement of the

e�ectiveness of a group of MRs — it is intuitively expected that the more diverse the MRs are, the

more e�ective they will be in alleviating the oracle problem.

In addition to the diversity metric, a lot of work can be done regarding a fundamental theory of

MT. Such work will involve investigating the systematic identi�cation of MRs; determining the

characteristics of e�ective MRs; examining how likely a group of MRs mimic a test oracle (if it

exists); determining the overall fault-detection e�ectiveness of MT; exploring the impact of the

choice of source test cases on the fault-detection e�ectiveness of MT; and prioritizing MRs. �is

theoretical research into MT will enable breakthroughs not only in so�ware testing, but also in the

broader area of so�ware engineering, including debugging, proving, speci�cations engineering,

and quality assurance.

Opportunity 2: Teaching and training. As MT has been increasing in popularity, how to

teach it to students, professional so�ware engineers and testers, and end users has become an

issue of the utmost importance. Teaching experiences by MT researchers [54, 63, 64] indicate that

university-level computer science students accept MT and can apply it easily. Reports [87, 88] of

how MT, in particular MR identi�cation, has prompted a higher level of student engagement in

so�ware testing indicate MT’s potential use to encourage student creativity. On the other hand,

students have encountered challenges related to the availability of appropriate learning materials

and activities. Further work will be required to design the best training materials and methods.

Although various experiences from di�erent universities have shown the ease of teaching and

learning MT’s basic concepts, which are arguably simple to grasp, a more challenging job will be

to improve the learners’ ability to derive good and e�ective MRs, something that will involve a

certain degree of art and cra�smanship. Practice and apprenticeship shall play an important role in

in-depth teaching and learning of how to e�ectively conduct MT.

Opportunity 3: New metrics for coverage and confidence. Similar to how the statement

coverage criterion enables us to design a set of test cases that execute each reachable statement at

least once, an MR coverage criterion may guide us to design a set of MGs that verify every MR in

question at least once. More speci�cally, at least one MG should be generated for each MR. MRs

are normally identi�ed from speci�cations, thus, MR coverage can be considered as an additional

black-box test adequacy criterion. Furthermore, the MR coverage and white-box coverage criteria

are complementary and thus can work together. For example, a set of test cases satisfying the

statement coverage can be used as source test cases to construct follow-up test cases based on a set

of MRs. Obviously, the resultant set of MGs shall satisfy both the black-box (MR) and white-box

(statement) coverage criteria. Unlike statement or branch coverage criteria, however, development

of the MR coverage criterion will require that several additional issues be addressed. For example,

di�erent people may derive di�erent sets of MRs for the same program — something that is not a

problem for the application of statement or branch coverage criteria. �e quality and e�ectiveness

of MRs should therefore be considered when applying any MR coverage criterion. One possible

way to ensure the quality of MRs used for a coverage criterion is to construct a set of very diverse

MRs that achieves a good coverage of the functionalities of the so�ware under test. In other words,

the theory of MT in Opportunity 1 may help us improve the e�ectiveness of the MR coverage

criterion.
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MRs can also be used as a quality measure for open source so�ware (OSS). Given an OSS

project, sets of MRs can be posted for its validation and veri�cation. When examining programs

that implement the relevant functionality, users can be guided by information regarding which

programs have been veri�ed and validated through which MRs — selecting the programs whose

MRs are most relevant, as illustrated in the following example.

Example 6. Consider an OSS project that implements the sine function. Suppose that two MRs are
identi�ed for the function, namely, MRa : sin(−x ) = − sin(x ) and MRb : sin(x + 2π ) = sin(x ). Suppose
also that a program S-A in the project has only been tested with MRa (not MRb ) and another program
S-B has only been tested with MRb (not MRa ). If the users are land surveyors, they normally deal with
positive (anti-clockwise) and negative (clockwise) angles and are not interested in angles larger than
2π . As a result, MRa is more meaningful and program S-A is preferred to S-B. On the other hand,
if the users are electrical engineers, they are very likely to use the periodical properties of the sine
function. As a result, MRb is more meaningful and program S-B is preferred to S-A.

Obviously, information about the extent to which an OSS program has been tested is a key guide

when choosing which programs to use. From the perspective of program selection, intuitively,

users may prefer to know which properties (re�ected in the MRs) have been tested and satis�ed,

rather than how extensively the source code has been executed (as measured, perhaps, by the

percentage coverage achieved). For users, satisfying a property may deliver a higher con�dence on

the so�ware than covering a certain percentage of the code.

�ese new MR-based metrics also provide a new perspective on how to make use of test oracle and

any technique addressing the oracle problem. Traditionally, the test oracle and related techniques

have only been used for test result veri�cation, but the MR-based metrics may inspire a new

research area for measuring the adequacy of a test suite.

Opportunity 4: End-user testing. With the advances in development platforms (such as

spreadsheets, MATLAB, and Labview) and human interfaces for advanced systems, end-user

programming has been growing at a very fast rate. An increasing number of programs are actually

developed by non-IT domain experts rather than professional so�ware engineers. Some of these

end-user developed programs are even used in safety-critical systems [48]. However, because

end-user programmers do not o�en have formal so�ware engineering training, it is not reasonable

to expect such so�ware to exhibit the same level of quality as that developed by professionals. As a

result, end-user so�ware engineering [48] has become a major research area aiming at guaranteeing

and improving the quality of end-user developed so�ware.

So�ware testing is a systematic approach towards so�ware quality, but it is challenging to

develop speci�c testing techniques for end-user programmers. Most testing methods involve a

substantial amount of technical so�ware testing knowledge, as well as a general understanding

of so�ware engineering. However, because end-user programmers normally have no formal

training in so�ware testing or so�ware engineering, it is di�cult for them to fully understand the

limitations and technical issues of these testing methods. Even if they were able to understand the

technical details, it would still be quite challenging for them to implement the methods, which o�en

involve large-scale and highly complex programming, and thus should be done by professional

programmers. Furthermore, end-user programmers may not be able to access relevant automated

testing tools, even if they are available, because such tools may be quite expensive and not ordinarily

a�ordable. Some of these automated testing tools or methods require quite sophisticated parameter

se�ings in order to ensure cost-e�ective usage. It may be a very challenging task for end-user

programmers to properly set such parameters.

In view of the above problems and constraints, an appropriate testing method should have the

following characteristics. First, it must be simple, easily understood, and easy to learn. Secondly,
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its implementation must be simple. �irdly, it must be easily automated, or automated tools must

be available. Finally, it must be easy for the end users to provide domain-speci�c information

to enhance its e�ectiveness. As previously explained [23], because MT possesses all four of the

characteristics above, it may be the most appropriate testing technique for end-user programmers.

�e concept of MT is very simple and can easily be learned in a few hours. �e MT testing process

can simply be managed by non-professional end-user programmers, who can also prepare test scripts

to automate the process. MRs are necessary properties of the target algorithm in relation to multiple

inputs and their expected outputs, o�en identi�ed from the domain knowledge of the system under

test. In many cases, therefore, end-users may be even more appropriate or knowledgeable than

developers for de�ning good MRs [55, 98]. In other words, end-user programmers should o�en be

able to e�ectively use MT without much di�culty. A recent systematic investigation [73] of how

to apply MT in end-user testing of spreadsheet systems looked at how a team of non-professionals

identi�ed MRs for a set of �ve spreadsheets with real-life faults. Even though the MRs were

identi�ed in an ad hoc way, they were able to detect all the faults, demonstrating the e�ectiveness

of MT as an end-user testing method for such systems. In the future, more research projects should

investigate the performance of MT for di�erent development platforms and in various end-user

development domains.

Opportunity 5: Cloud and crowd. Orso and Rothermel [69] have advocated the use of cloud

computing and crowdsourcing for testing, where it would be natural to embed MT, with the

aim of improving the e�ectiveness and e�ciency of MT’s implementation. Cloud computing

provides new opportunities to enhance the e�ciency of testing tasks, including those for MT. In any

case, a preliminary project [89] was recently conducted to show the usefulness of cloud-enabled

technologies for MT implementation. Much more studies are required to develop a uni�ed cloud-

based framework for MT and to investigate its feasibility, applicability, e�ciency, and e�ectiveness.

�e cloud resources are obtained and allocated through virtual machines (VMs) [10], which are

created and destroyed on demand, and only exist for the duration of the testing. When conducting

MT in the cloud, di�erent MRs can be used in parallel, thus improving the overall e�ciency of MT.

Each MR is by itself a standalone entity, so it will be feasible to allocate one VM to each MR for the

corresponding test case generation, execution, veri�cation, and test result reporting. It will also

be possible to assign a VM speci�cally for generating source test cases that can then be used by

multiple MRs, executing these test cases, and storing their execution results for comparison with

those of the follow-up test cases generated in other VMs. �e decomposition of a task into sub-tasks

for multiple VMs is natural and straightforward in MT. Furthermore, because many cloud-enabled

platforms can �exibly allocate computing resources (such as VM locations, time, and types), it

is possible to automatically adjust VMs for speci�c tasks, depending on the resource usage [95].

Since various MRs may require di�erent resources, the �exibility of the cloud-enabled computing

platforms will result in optimal resource allocation for MT and ultimately enable a highly e�cient

MT implementation.

Crowdsourcing is an innovative way of obtaining contributions from many di�erent people,

especially through online communities. In MT, the most challenging task is the identi�cation

and selection of appropriate MRs, a task that cannot be fully automated, as it requires human

intelligence, domain knowledge, and relevant experience. Previous studies [55] have shown that

the MRs identi�ed by di�erent individuals naturally contain a degree of diversity, which is strongly

correlated with high e�ectiveness in fault detection. It is thus intuitively appealing to make use of

crowdsourcing to brainstorm and decide MRs for a particular system. A variety of personnel can be

employed in a crowdsourcing environment, including users, developers, and testers, all of whom

can provide various perspectives of domain knowledge for identifying diverse MRs. Since people
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from di�erent backgrounds need to work together, a major challenge is the need for a formalized

framework to support the uni�ed identi�cation and description of MRs. �e recent study of MR

identi�cation [25] should provide insights in this area.

Opportunity 6: Big data. Big data is popularly de�ned as data with the 3Vs: high volume,

velocity, and variety [70]. It is normally so large and complex that traditional so�ware testing

techniques may no longer su�ce. Its huge size and various types and formats mean that the oracle

problem is prevalent, making testing a major challenge. MT has been recommended as an e�ective

approach for testing big data analytics so�ware [32, 70]. Although Otero and Peter [70] proposed a

set of possible MRs related to synonyms, antonyms, and negations, more complicated relations

should also be explored, such as those related to subset, intersection, and union. Due to the wide

distribution and fast growth of the data, it is di�cult to test big data systems at run-time. Se�ing

up sample data is an essential part of the big data testing process. A�empts have been made to

construct data samples that re�ect the characteristics of the actual data. Alexandrov et al. [1], for

example, proposed generation of synthetic data sets based on the actual big data using the data

schema, constraints, and other statistical information. When testing big data so�ware, MRs not

only cover necessary properties of the system under test, but may also cover properties of the data

itself. Similar to the program-related properties, these data-related properties can help produce

additional follow-up data to form the sample data, and to verify the test results, especially when the

oracle problem exists (which is not rare in big data so�ware). It will be interesting to investigate

the extent to which the source and follow-up data, according to various MRs, can together re�ect

the characteristics of the actual data sets. In addition to the production of sample data, since MRs

can relate to the properties of the big data itself, they can help verify, validate, or even prove

whether the big data so�ware satisfy properties related to 3Vs, just like what has been done for

other so�ware systems[91, 98].

Otero and Peter [70] suggested that MT can be applied beyond testing to other areas of big data

so�ware engineering. For example, MRs could be used to create “monitors capable of detecting

misbehavior,” thus helping assure the reliability of big data so�ware. We believe that MT can

be applied to many other aspects of big data. It was recently used to test security so�ware [20],

and could therefore naturally be extended into strengthening the protection of big data so�ware

from security a�acks. Big data analytics involves a variety of learning algorithms, some of which

are mathematically complex and not easily understood by programmers or users. �e degree to

which these algorithms actually meet the users’ needs is, therefore, not easily veri�ed. Because

MRs are a clear, explicit, and easily understood representation of the necessary properties of the

algorithm or user’s expectation — with a demonstrated e�ectiveness in verifying and validating

machine learning so�ware [65, 91] — it is natural to expect MT to be applicable in big data so�ware

veri�cation and validation.

Opportunity 7: Agile development. Agile development has become one of the most popular

paradigms for developing so�ware systems. It normally involves rapid, incremental development,

frequent releases of working so�ware, evolutionary requirements improvements, and close col-

laboration and communication among developers and clients [30]. Although some work has been

conducted using MRs in the agile testing of databases [52, 53], the advantages of MT (Section 2.3)

suggest that it can easily be applied throughout the entire agile development process.

�e most obvious application of MT will be to test so�ware released in every iteration of

development, ensuring that each version of the so�ware satis�es the identi�ed MRs. Due to the

evolutionary nature of the requirements, the MRs would also require regular updating and �ne-

tuning. Such updating would not only mean changes to speci�c MRs, but also the adoption of

new MRs and the removal of obsolete ones. Nevertheless, given the close collaboration among
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stakeholders in agile development, such changes would not represent a di�cult task. Furthermore,

MRs can provide a simple yet e�ective way of facilitating the communications between customers

and developers — they are the necessary properties that are of the most relevance and interest

to the customers, and are clear, non-technical expressions of what must be considered as the

so�ware is developed. Moreover, the rapid development and release of successive versions make

e�cient regression testing critical. If MRs are extensively involved in agile development, then new

regression testing techniques involving minimization, prioritization, and augmentation of MRs and

MGs will need to be developed and applied. Another potential research direction relates to exploring

how to balance the bene�ts of applying MT in agile development against the cost of maintaining

MRs for rapidly changing requirements (especially when an oracle is available). It should be noted

that because an MR re�ects a speci�c property, incremental changes in requirements may only

cause the updating of a small number of MRs — in other words, the maintenance of MRs in agile

development should only incur a small overhead.

8 CONCLUSION
Metamorphic testing (MT) �rst appeared in 1998 as a methodology for generating follow-up test

cases based on successful test cases, guided by some necessary properties of the system under test,

called metamorphic relations (MRs). Since then, MT has mainly been used as a simple, but e�ective,

approach to alleviating the oracle problem, with MRs as test result veri�cation mechanisms. MT has

successfully detected various faults in a variety of application domains, and advanced techniques

have been developed by integrating it with other so�ware engineering methods, o�en addressing

the oracle problem in those other areas. MT has also been applied outside of testing, including in

validation, quality assessment, debugging, fault localization, fault tolerance, program repair, and

proving.

In this paper, we have reviewed a variety of research topics related to MT, highlighted challenges

that need to be addressed, and unveiled some of the most promising opportunities for future MT

research. In contrast to — and complementary to — a traditional literature review [81], we have

focused on the most important and in�uential MT studies, providing a more in-depth discussion

(including a formal and comprehensive description of MT and a clari�cation of the major and

common misunderstandings of MT) and o�ering a higher-level vision of MT research and application

(including a framework to support integration of MT with other techniques). Our investigation

also showed many opportunities to further improve the existing MT research areas, including

MR identi�cation, source test case generation, and the application of MT in new domains such

as end-user so�ware engineering and big data so�ware. We have also highlighted MT’s promise

as a novel approach to bolstering other related areas, including measurements for coverage and

con�dence, cloud-based quality assurance, and agile so�ware development.

MT has evolved from originally de�ning MRs as necessary properties of the target algorithm

in relation to multiple inputs and their expected outputs, to additionally including the properties

expected by users. �is evolution, of both MT and MRs, is expected to continue.

�e concluding statement of this paper is a recommendation to researchers who may be de-

veloping new so�ware engineering methods that somehow assume or require a test oracle. It is

advisable to consider MT in the development, which may alleviate the oracle requirement, extend

the method’s scope and applicability, and even facilitate the development of a more comprehensive

method.
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