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Abstract—Effective testing is essential for assuring software 
quality. While regression testing is time-consuming, the fault 
detection capability may be compromised if some test cases are 
discarded. Test case prioritization is a viable solution. To the best 
of our knowledge, the most effective test case prioritization 
approach is still the additional greedy algorithm, and existing 
search-based algorithms have been shown to be visually less 
effective than the former algorithms in previous empirical studies. 
This paper proposes a novel Proportion-Oriented Randomized 
Algorithm (PORA) for test case prioritization. PORA guides test 
case prioritization by optimizing the distance between the priori-
tized test suite and a hierarchy of distributions of test input data. 
Our experiment shows that PORA test case prioritization tech-
niques are as effective as, if not more effective than, the total 
greedy, additional greedy, and ART techniques, which use code 
coverage information. Moreover, the experiment shows that 
PORA techniques are more stable in effectiveness than the others. 
 

Index Terms—Test case prioritization, randomized algorithm, 
proportional sampling strategy, multi-objective optimization 

I. OVERVIEW 

A. Introduction 
Regression testing [17][18][19][27] is important [6] and practi-
cal [15][16] but is also time-consuming [18][32]. It uses an 
existing test suite to verify a changed program to assure that the 
latter is not adversely affected by amendments. As reported in 
[25], individual developers often use the retest-all strategy [17]
[27] that executes all the test cases, which can nonetheless be 
further optimized [18]. In continuous integration, in particular, 
the same test cases may be repeatedly applied to the program 
whenever new builds are synthesized, possibly many times a 
day. 
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To explore the optimization dimension in regression testing, 
different aspects have been scientifically studied in the litera-
ture. The techniques may include, for instance, executing only 
a proper subset of the existing test suite against the changed 
program (referred to as regression test selection [27]), removing 
some test cases from the existing test suite permanently (test 
suite reduction [13]), or assigning an execution priority to the 
test cases in a test suite (test case prioritization [6][7]). The 
effects of combinations of these aspects on regression testing 
have also been reported in empirical studies [32]. 

Test case prioritization (TCP) is an aspect of regression 
testing research. The target is to assign an execution priority to 
the given test cases. In essence, it permutes, but does not 
discard, test cases in the given test suite. As such, it does not 
compromise the fault detection ability of the given test suite. 
This makes TCP a sound aspect of regression testing. 

A simple TCP strategy is to reorder a test suite randomly [6]. 
However, the resultant test suite is often ineffective, such as 
having a low weighted Average of the Percentage of Faults 
Detected (APFD). (See [6] and Subsection III.E for more details 
of APFD.) In fact, random reordering of the test suite often 
results in a “lower bound” in previous experiments [6][17]. 
Moreover, many previous experiments (such as [6][17]) also 
show that the effectiveness of such resultant test suites in terms 
of APFD may vary significantly even when applied to the same 
programs. This result is as expected due to the random nature 
of the simple TCP strategy. 

If a nonrandom TCP technique exhibits a large variation in 
fault detection capability (in terms of APFD), that technique is 
unstable in terms of its effectiveness from the developers’ 
viewpoint. Nevertheless, the results presented in [6][17] show 
that all the studied TCP techniques suffer from this problem. 
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It is generally infeasible to know in advance whether a test 
case will reveal a failure due to a fault in a changed program. 
Accurately optimizing the ordering of the test cases so that 
failure-revealing test cases can receive higher priority (so that 
they can be executed earlier) than the other test cases in the 
same test suite is an impossible goal. The code coverage 
achieved by a test case (or a test suite) is not a substitute of the 
(unknown) failure-triggering conditions of the corresponding 
test cases. Thus, although guiding the permutation of test cases 
using code coverage has a certain merit, over-fitting the 
permutation of a test suite for such type of approximation may 
lead to a suboptimal rate of fault detection, or sometimes even 
an unexpectedly poor rate of fault detection, which further 
results in large variations in performance of the corresponding 
TCP techniques. 

Researchers have studied code-coverage based total greedy 
and additional greedy algorithms [6][19] for test case prioriti-
zation. They are popularly used to benchmark the performance 
of other techniques [6][7][17][19][32][36]. To the best of our 
knowledge, the additional greedy algorithm is widely consid-
ered as the most effective TCP approach to quickly expose faults 
from a program in terms of APFD [11]. In addition, search-
based algorithms and genetic algorithms have been proposed, 
which often permute test suites to optimize code-coverage-
based fitness functions [19][30]. Li et al. [19] has concluded, 
however, that the genetic algorithm proposed in their paper is 
not the best among all the five cases considered, and in most 
situations, the difference in effectiveness in terms of various 
rates of code coverage between their genetic algorithm and the 
additional greedy algorithm is not statistically significant. They 
do not report any results on rate of fault detection (such as 
APFD). Other empirical results [36] further show that time-
aware genetic algorithms [30] can be inferior to the additional 
greedy algorithm [6] in terms of APFD and the time to prioritize 
test cases. 

The ART algorithm [17] for test case prioritization is a kind 
of search-based algorithm. To the best of our knowledge, ART 
is the first search-based algorithm that reports results in terms 
of APFD. Nonetheless, empirical results show that the rates of 
fault detection (in terms of APFD) between the best ART 
technique [17] and the best additional greedy technique [6] are 
still not statistically significant, and that ART is visually less 
effective than the additional greedy techniques. Another 
comparison between ART and a heuristic algorithm [9] shows 
that, out of 49 cases, 29 are tie cases, 13 are ART losing cases, 
and only five are ART winning cases in terms of APFD. 
Moreover, neither the ART algorithm [17] nor the heuristic 
algorithm [9] is significantly more effective than the additional 
greedy algorithm [28] or random ordering in terms of APFD. 

In this paper, we do not compare our proposed approach with 
evolutionary algorithms, even though it is generally believed 
that the latter may have a chance to be superior to simple 
heuristics. It is widely conjectured that evolutionary algorithms 
suffer from the limitation of “no free lunch” [31]. The law of 
“no free lunch” indicates that if a type of algorithm is more 
effective than another type of algorithm for one problem, then 
there is another problem for the latter type to be more effective 

than the former; and by summing up all problems, these two 
algorithms are the same in effectiveness. To the best of our 
knowledge, however, there is still no concrete evolutionary 
algorithm that is more effective than the additional greedy 
algorithm for the test case prioritization problem. It remains as 
an open problem whether there is any evolutionary algorithm 
with the potential to outperform the additional greedy algorithm 
in terms of the rate of fault detection. 

B. Summary of our novel TCP algorithm 
In this paper, we present the first work showing that our 

search-based TCP algorithm can be as effective as, if not out-
performs, the additional greedy algorithm. Our algorithm has a 
theoretical foundation, which we describe informally in this 
paper. We will leave the formal presentation to future work. 

In mathematics, the grouping of a set into subsets is called 
partitioning. Partition testing refers to a common testing 
approach in which a number of test cases are selected from each 
input subdomain. In general, partition testing for test case 
generation may be less effective than random testing [10] unless 
a well-designed methodology to select test cases from disjoint/
overlapping subdomains is used [4]. A proven approach is to 
use the proportional sampling strategy [3], which proportion-
ally selects test cases from each disjoint subdomain according 
to the relative sizes of the subdomains. It is theoretically shown 
to have higher probability in detecting at least one failure than 
random testing even if the failure rate of the domain is unknown 
(and hence modeled as a uniform distribution). However, the 
cost of proportionally partitioning the input domain can be 
expensive. We are inspired by the existing strategy but want to 
get rid of the high cost incurred in domain partitioning. 

A closer look at the theory [3][4] reveals that the mathemati-
cal definition of a domain is a set of discrete elements, which 
does not need to be restricted to the input domain of a program. 
For ease of presentation, we will refer to the generalized 
proportional sampling concept as size-proportional allocation.  

In this paper, we propose a novel Proportion-Oriented 
Randomized Algorithm (PORA) for test case prioritization. 
Suppose that we want to prioritize an inputted test suite with n 
test cases into a sequence L of n prioritized test cases. A prefix 
of the sequence L is a subsequence of L starting from the first 
element of L. Thus, if L is of length n, it has n possible prefixes. 
If p1 and p2 are prefixes of the same sequence L and p1 is 
shorter than p2, then p1 is also a prefix of p2. For ease of 
presentation, we simply write “p1 < p2”. 

PORA expresses L in terms of the n prefixes. It aims to 
allocate test cases proportionally to the “sizes of the sub-
domains” determined by the lengths of the prefixes. In other 
words, for each prefix of length i, PORA will allocate i test 
cases. An interesting point is that for perfect size-proportional 
allocations, all the prefixes in L must be interconnected such 
that if p1 and p2 are prefixes and p1 < p2, then all the test cases 
in p1 must also appear in p2. An exact solution may not even 
exist, however. Thus, in actual allocation, the subdomains 
determined by p1 may or may not be related to the subdomains 
determined by p2. It indicates that the size-proportional 
allocation for the prefix p1 (so that it can probabilistically 
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outperform random allocation) may or may not be part of the 
size-proportional allocation for the prefix p2. PORA minimizes 
the overall discrepancy among all prefixes of L. Moreover, to 
generate the subdomains for each prefix with i test cases (i = 1, 
2, ..., n), PORA needs to divide the inputted test suite into i 
clusters based on the test input data of all the test cases. The 
above scheme is, nonetheless, highly inefficient (defying the 
goal of finding efficient search-based algorithms) for two 
reasons: (1) numerous numbers of subdomain partitioning incur 
owing to numerous rounds of evolutions of L in order to 
generate a good solution via a search-based approach to finding 
a solution, and (2) there is a need to measure the distance 
between the input data of each test case included in each prefix 
of each evolved L and every cluster for the same prefix. PORA 
addresses these challenges through innovative strategies 
including prefix evolution and efficient approximation in test 
case-cluster distance measurement. 

We further refine PORA with two techniques, namely, pora-
random and pora-distance. We evaluate both techniques on four 
medium-scale UNIX utility programs and compare them with 
random ordering as well as nine state-of-the-art code-coverage-
based techniques based on the total greedy, additional greedy, 
and ART algorithms. The empirical results show that the PORA 
techniques are always as effective as, if not more effective than, 
the nonPORA techniques studied. Moreover, our PORA tech-
niques are remarkably more stable in terms of the distributions 
of the resultant APFD results across all benchmarks. The over-
all results show that PORA is promising. 

The main contribution of this paper is twofold: (i) It proposes 
PORA, a novel approach to generating effective test case 
sequences for test case prioritization based on a generalized 
proportional sampling strategy. (ii) It reports an empirical study 
that validates the effectiveness, stability, and efficiency of 
PORA. 

We organize the rest of paper as follows: In Section II, we 
present PORA for test case prioritization. After that, we report 
an empirical study in Section III. Finally, we discuss related 
work in Section IV followed by the conclusion in Section V. 

II. THE PORA APPROACH 

In this section, we present our PORA approach. 

A. Overview of PORA 
The main PORA algorithm is shown in Figure 1. It uses four 

auxiliary functions f1 to f4. We will present the main algorithm 
in this subsection followed by the four auxiliary functions in the 
next subsections. 

Suppose that the inputted test suite T contains n test cases. 
By calling function f1 (in line 1) n times with different counts (i 
= 1, 2, ..., n), PORA generates (in line 2) a sequence S = 〈s1, s2, 
..., sn〉 of scenarios. Each scenario sr = 〈cr1, cr2, ..., crr〉 in S is a 
sequence of centroids cri of clusters with i test cases from T. For 
example, the first scenario s1 = 〈c11〉 in S corresponds to clusters 
with one test case while the second scenario s2 = 〈c21, c22〉 
corresponds to clusters of one and two test cases. 

Informally, the goal of PORA is to find a permutation L of T 
such that the first test case of L is “close to” the only centroid 

Main PORA Algorithm 
Inputs: T: a set of test cases {t1, t2, ..., tn} 
 M: the maximum number of trials 
Output: P: a sequence of prioritized test cases 〈p1, p2, ..., pn〉 
1 for r = 1, 2, ..., n 

    sr = f1(T, r)  // Each iteration generates a scenario sr, which is a sequence of r centroids 
2 S = 〈s1, s2, ..., sn〉 
3 Randomly generate a permutation P = 〈p1, p2, ..., pn〉 of the test suite 
4 Randomly select a test case T0. from P 
5 trial = 0, MinD = MAXVALUE 
6 while (trial < M) {  // For up to M trials 
     Randomly select two test cases t1 and t2 from P such that t1 ≠ T0 and t2 ≠ T0 
7     T1 = f2(t1, t2, T0)  // Select t1 or t2 as T1, to be swapped with T0 

  according to the specific strategy pora-random or pora-distance 
8     Swap the positions of T0 and T1 in P to produce P' 
9     D = f3(P', S)  // Calculate the distance D between P' and S 
10     if (D < MinD) { 
11         MinD = D  // Update the minimum distance MinD found so far 
12         P = P'  // Update the best permutation P found so far 
13         trial = 0  // Reset trial 
14     } else  
15         trial++  // Continue to look for a better permutation 
16     T0 = f4(P, S)  // Find another test case T0. with maximum distance 
17 }  // End of while 
18 return P 

Figure 1. PORA Test Case Prioritization Algorithm 
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in the clusters corresponding to the first scenario s1 = 〈c11〉, the 
first two test cases of L are “close to” the two centroids of the 
clusters corresponding to the second scenario s2 = 〈c21, c22〉, and 
so on. To do so, after the creation of S, PORA randomly 
produces a candidate permutation P of the inputted test suite T 
and randomly selects one test case T0 from P (lines 3 to 4). As 
we are going to explain, we use this test case as the seed of 
modifying the latest P. 

The algorithm then iteratively performs the following 
activities (lines 6 to 18): It uses the function f2 to select from P 
one of two random test case t1 or t2  (which should be different 
from T0) and denotes the selected test case by T1. The purpose 
of f2 is to define different test case selection strategies that 
results in different test case prioritization techniques. The 
current version of PORA limits the number of test cases to two 
(which can be further generalized) because this number is the 
minimal size that a test case selection strategy may produce 
non-unique results. PORA then copies P to P’ and swaps the 
positions of T0 and T1 in P’ (line 8). It further calculates a 
distance D between P’ and S using the function f3 (line 9). If the 
distance D of the newly generated permutation is smaller than 
the previously recorded minimum distance MinD (which is 
initialized as the maximum positive value in line 5), the 
algorithm updates MinD to D and copies P’ back to P (lines 
10−12). Otherwise, PORA considers that this iteration results 
in a failed attempt to optimize P and increments the counter 
trial by 1 (line 14). Finally, within each iteration, PORA uses f4 

to select a test case from P’ and assigns it to T0 to facilitate the 
next iteration. If the number of failed attempts reaches the given 
bound M (line 6), the algorithm exits from the loop and returns 
the latest permutation P, which produces the resultant priori-
tized sequence to approximate L. 

In the next five subsections, we describe how PORA 
computes the distance between test inputs and present functions 
f1 to f4 in turn. Moreover, there are two strategies in function f2. 
By using one of them, PORA can be refined into a TCP 
technique. We refer to the two refined techniques as pora-
random and pora-distance, which correspond to the use of the 
random and distance-based strategies, respectively. 

B. Measuring the Distance of Test Cases Based on Input 
Data 

PORA defines the distance between two test cases based on 
input data. To faciliate input distance calculation, PORA uses 
feature extraction techniques to map the input data of each test 
case to a high-dimensional numerical vector and normalize it 
within the range of [0, 1]. 

PORA considers each test input data as a string and uses the 
linear-time textual analysis technique [8] to break it up into 
words. For instance, the string “grep –i grep < file1” is 
broken up into five words, namely, “grep”, “–i”, “grep”, “<”, 
and “file1”. It further treats each input string as a bag of 
words (that is, a multiset in which any element may appear more 
than once) to form a high-dimensional vector such that it maps 

 
1 In this paper, we use k-mean++ for the purpose of demonstrating PORA. 

This can be replaced by other clustering algorithms. 

an input string to a high-dimensional numerical vector of values 
(using the occurrence frequency). In the above string, for 
instance, the word “grep” occurs twice and the other three 
words occur once. It forms a four-dimensional vector. The order 
of words in the vector is unimportant as long as the numerical 
vector of values is mapped correctly. PORA processes all the 
inputs in the given test suite T in the same way. Thus, PORA 
knows the number of occurrences of each word in the entire test 
suite. It further normalizes the high-dimensional vector of each 
test case by dividing the number of occurrences of each word 
in the test case by the corresponding total number of occur-
rences of the same word in the entire test suite. For instance, if 
the word “file1” has occurred 10 times in all the test cases 
and a test case only has one occurrence of this word, then the 
normalized number of occurrences of the word in this particular 
test case is 1 ÷ 10 = 0.1. The purpose of normalization is to 
allow a fair comparison among test inputs. 

Having known the entire test suite, if we are given an input 
string u, it is not difficult to expand the corresponding vector of 
u to contain all the distinct words that have occurred in the given 
test suite T. If a word is not originally in u, we assign 0 as the 
normalized number of occurrence of the word. We use the 
vector O(u) (which we call the occurrence frequency vector of 
u) to represent the normalized number of occurrences of each 
word 〈o1, o2, ..., om〉 of u, where m is the number of distinct 
words in T. For ease of presentation, we assume that the vector 
entries are sorted in descending order of the alphabet of words. 

The distance between two test cases t1 and t2 is defined as the 
Euclidean distance between O(t1) and O(t2): 

Distance(t1, t2) = Euclidean(O(t1), O(t2)) 

C. Generating Scenarios by Clustering (Function f1) 
As shown in Figure 2, function f1 generates scenarios, which 

are sequences of centroids as explained below. The function 
accepts two parameters: a test suite T and a specified number of 
clusters r. It first performs k-means++ clustering [2] with the 
number of clusters k equal to the parameter r. It clusters the test 
suite T based on the set of occurrence frequency vectors (see 
Section B above). By the property of the k-means++ clustering 
algorithm1, the within-cluster variances among test cases are 
minimized. The function then collects the whole set of test cases 
within each cluster and takes the arithmetic mean of the cor-
responding occurrence frequency vectors of these test cases. It 
produces an occurrence frequency vector by the arithmetic 
mean to denote the centroid of the cluster. PORA aims to gen-
erate a hierarchy of clusters of different sizes so that it can also 
use hierarchical agglomerative clustering, which can naturally 
generate the set of clusters in one round to make it efficient. 

Next, the function stores the centroids of all the i clusters into 
a tuple s and stores the number of test cases within each cluster 
into a tuple N. After that, it sorts s in descending number of test 
cases in each cluster. In other words, a centroid is ranked higher 
if it is the centroid of a larger cluster. Tie cases are resolved 
arbitrarily. 
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Function f1(T, r) to Generate Scenario 
Inputs: T: a set of test cases {t1, t2, ..., tn} 
 r: number of clusters required 
Output: s: scenario (which is a sequence of r centroids) 
1 Use k-means++ to produce r clusters 
2 s  = 〈c1, c2, ..., cr〉, where each ci is the centroid of the 

i-th cluster (i = 1, 2, ..., r) 
3 N = 〈n1, n2, ...., nr〉, where each ni is the number of 

test cases in the i-th cluster (i = 1, 2, ..., r) 
4 Sort s in descending order of ni (i = 1, 2, ..., r) 
5 return s 

Figure 2. Generating a Scenario 

D. Selecting Candidate Test Cases for Position Exchange 
(Function f2) 

In this section, we propose two strategies to decide which test 
case to be used to exchange with T0 in the main PORA algo-
rithm in Figure 1. The first strategy is to exchange with a test 
case picked randomly from the two given test cases. We recall 
that PORA aims to reduce the overall distances between the 
scenarios and the resultant ordered test suite. This strategy 
intentionally does not use any distance information. Intuitively, 
it serves as a lower bound of PORA. The second strategy is to 
select the test case further away from T0. In case of a tie, the 
strategy resolves it randomly. This strategy minics a typical 
strategy in randomized algorithms to select a local minimium/
maximum for permutations. The two stratgies are represented 
by the function f2 (t1, t2 , T0). 

Function f2(t1, t2, T0) 
f2(t1, t2, T0) = 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

return  𝑡𝑡1 or 𝑡𝑡2 randomly                                  

�
𝑡𝑡1       if Distance(𝑡𝑡1,𝑇𝑇0) > Distance(𝑡𝑡2,𝑇𝑇0)
𝑡𝑡2       if Distance(𝑡𝑡2,𝑇𝑇0) > Distance(𝑡𝑡1,𝑇𝑇0)
return 𝑡𝑡1 or 𝑡𝑡2 randomly              otherwise     

                                

 

(1) 
 
 

(2) 

where case (1) represents the random strategy to select one 
test case randomly and case (2) represents the distance 
strategy to select the test case further away from the chosen 
test case 𝑇𝑇0. 

E. Measuring the Distance between P and S (Function f3) 
We recall that PORA aims to select among test cases from T 

so that the (final) permutation P and S are “close to” each 
another. To find out whether P and S are close to each other, we 
measure the distance between each prefix of P and the 
corresponding prefix of S, and then take the harmonic mean. To 
compute the distance between a prefix of P and a prefix of S, 
we measure the distances between their respective elements 
using the distance function defined in Section 3.2 and then take 
the arithmetic mean. 

We use the harmonic mean to compute the distances between 
prefixes because in mathematics, the harmonic mean is less 
affected by extreme values and is proven to be smaller than or 
equal to the arithmetic mean, thus giving more stable results. 

Moreover, we want to improve the rate of fault detection. In 
mathematics, harmonic mean is the most appropriate way to 
compute the average of rates. We use the arithmetic mean to 
compute the average distances between test cases and centroids 
corresponding to the same prefix because there is no sense of 
“rate” in mind. 

Formally, let P = 〈p1, p2, ..., pn〉 be a sequence of test cases 
and S = 〈s1, s2, ..., sn〉 be a sequence of scenarios produced by 
the function f1. Let sr = 〈cr1, cr2,…, crr〉, where r = 1, 2, ..., n and 
each cri is the centroid in the corresponding cluster (i = 1, 2, ..., 
r). The distance between P and S is defined by the following 
function: 

Function f3(P, S) 
𝑓𝑓3 (𝑃𝑃, 𝑆𝑆) =

𝑛𝑛

∑ 1
∑ Distance(𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑝𝑝𝑖𝑖)/𝑟𝑟𝑟𝑟
𝑖𝑖=1

𝑛𝑛
𝑟𝑟=1

 

where Distance(𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑝𝑝𝑖𝑖)  is the same as the distance function 
between two test cases as defined in Subsection II.B. 

F. Finding a Test Case with Maximum Distance (Function f4) 
At the end of an iteration in the main algorithm in Figure 1, 

PORA needs to pick a new candidate for T0  to prepare for the 
next iteration. It finds the sequence of scenarios (i.e., a prefix of 
S) that is the least matched with the current permutation P, and 
returns the last element of the corresponding prefix p of P. We 
choose the last element of this particular prefix p as the 
candidate rather than other elements of p because any other 
prefix of P shorter than p should be no worse than p. 

Let P = 〈p1, p2, ..., pn〉 be the current permutation of test cases 
and S = 〈s1, s2, ..., sn〉 be the sequence of scenarios sr returned 
by the function f1(T, r) for r = 1, 2, ..., n. We use the following 
function 𝑓𝑓4(𝑃𝑃, 𝑆𝑆) to find the last element 𝑝𝑝𝑟𝑟 of the prefix that is 
least matched with P: 

Function f4(P, S) 
f4(P, S) = pr such that 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑟𝑟 , 〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑟𝑟〉) 

= max𝑖𝑖=1.,2,….,𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑖𝑖 , 〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑖𝑖〉) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑖𝑖 , 〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑖𝑖〉) =
∑ Distance𝑖𝑖
𝑗𝑗=1 (𝑠𝑠𝑖𝑖𝑖𝑖, 𝑝𝑝𝑗𝑗) 

In case of a tie, the function returns the smallest pr in the tie 
set. Note that PORA will not be trapped easily at a local 
maximum because of the random selection of candidate test 
cases in line 7 of the main algorithm. 

III. EMPIRICAL STUDY 
In this section, we perform an empirical study to evaluate the 

effectiveness, stability, and efficiency of PORA. 

A. Research Questions 
We aim to find the answers to the following research 

questions: 

RQ1. Is PORA effective and stable in improving the rate 
of fault detection? 
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To know whether PORA is effective, we compare it with 
some of the best code-coverage-based techniques in terms of 
APFD.  

RQ2. Is PORA efficient in prioritizing test cases in 
practice? 

PORA requires many distance measurements. We want to 
find out whether PORA is sufficiently efficient. Hence, we 
compare the time taken to permute test cases by PORA and that 
taken by some of the best code-coverage-based techniques. 
Because code coverage profiling can be costly and depends on 
the kind of tools to retrieve the statistics, we do not include the 
cost of obtaining code coverage information when computing 
the time needed for prioritizing test cases for code-coverage-
based techniques. 

B. Techniques for Comparison 
We compare PORA with random ordering and nine existing 

effective code-coverage-based prioritization techniques [6]
[17]. These peer techniques include three total greedy tech-
niques (total-st, total-br, and total-fn) and three additional greedy 
techniques (addtl-st, addtl-br, and addtl-fn) proposed in [6]. As 
mentioned in Section I, these techniques are popularly used to 
benchmark other techniques. The peer techniques also include 
three ART techniques (ART-st-maxmin, ART-fn-maxmin, and ART-
br-maxmin). Note that ART-**-maxmin techniques are chosen 
because they are the best ART techniques reported in [17]. We 
do not include techniques based on genetic algorithms in our 
experiment because we are not aware of published work show-
ing that genetic algorithms outperform the total greedy and 
additional greedy algorithms. 

Table 1 summarizes these 12 techniques. As shown in the 
table, only the two PORA techniques use test input data to 
permute test cases. All the total greedy, additional greedy, and 
ART techniques use code coverage data. Random ordering uses 
neither of them. To facilitate comparisons, we have imple-
mented a test infrastructure in C++ to support all the above 

techniques. We set the maximum number of trials of the main 
PORA algorithm to 50. We will leave further generalization to 
future work. 

C. Subject Programs and Test Pools 

We use four real-life UNIX utility programs with real faults 
as subject programs. They are obtained from SIR [5] at 
http://sir.unl.edu. Table 2 shows their descriptive statistics. 

We use the UNIX tool gcov to collect code coverage data of 
each test case to support the prioritization process of the code-
coverage-based techniques. Following [6][17], we exclude the 
versions with faults that cannot be revealed by any test case as 
well as the versions with faults that can be detected by more 
than 20% of the test cases. In addition, we also exclude those 
versions that cannot be supported by our platforms. 

 
Table 2. Subject Programs 

Subject 
Program Description 

No. of 
Faulty 

Versions 

Executable 
Source LOC 

Size 
of 

Test 
Pool  

flex Lexical Analyzer 21 8571–10124 567 
grep Text Searcher 17 8053–9089 809 
gzip File Compressor 55 4081–5159 217 
sed Stream Editor 17 4756–9289 370 

 

D. Test Suites 

For each UNIX program, we generate 1000 test suites itera-
tively from the test pool. In each iteration, we randomly select 
a test case and add it to the suite as long as the test case can 
increase the coverage of the suite. The process stops when we 
have covered all the statements/functions/branches or when the 
new test case can no longer improve the coverage. This proce-
dure is also used in [17]. 

Table 1.  Prioritization Techniques used in our Empirical Study 

Algorithm Technique  Brief Description Code Coverage 
Granularity Used 

 random Randomly select test cases one by one  – 

Total 
Greedy 

total-st Sort test cases in descending order of the total number 
of program constructs covered 

statement 
total-fn function 
total-br branch 

Additional 
Greedy 

addtl-st Sort test cases in descending order of the coverage of 
program constructs not yet covered by the selected test 
cases with reset capability. 

statement 
addtl-fn function 
addtl-br branch 

ART 

ART-st-
maxmin Iteratively select test cases that a lower priority test case 

maximizes its distance with the higher priority test 
cases 

statement 

ART-fn-
maxmin function 

ART-br-
maxmin branch 

PORA pora-random Our Proposed Techniques − 
pora-distance − 

 



 

7 

E. Metrics 

We adopt APFD [6] to measure the rate of fault detection. 
APFD is the weighted Average of the Percentage of Faults 
Detected over the life of the suite. Although there are weak-
nesses in APFD (see, for example, the discussions in [19][30]
[36]), this metric is widely used in numerous experiments to 
compare the fault detections rates among techniques. 

APFD is defined as follows: Let T be a test suite containing 
n test cases and let F be a set of m faults revealed by T. Let TFv 
be the first test case in the prioritized test suite T’ of T that 
reveals fault v. The APFD value for T’ is given by the equation 

APFD = 1 – 𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+⋯+𝑇𝑇𝑇𝑇𝑚𝑚𝑛𝑛𝑛𝑛  + 12𝑛𝑛 

Time is the next dimension that we compare the techniques. 
We measure the time (in seconds) taken by a test case 
prioritization technique from accepting an inputted test suite to 
producing a permutation of the test suite. 

F. Empirical Study Environment 

We perform the empirical study on a Dell PowerEdge 1950 
server running a Solaris UNIX. The server has two Xeon 5355 
(2.66GHz, quad-core) processors with 8GB physical memory. 

G. Empirical Study Procedure 

We run each faulty version over its test pool so that we know 
which test case fails. For every test suite, we run each technique 
to generate a prioritized test suite. Random ordering as well as 
ART and PORA techniques are based on random selection. We 
repeat each of them 50 times for every test suite to obtain 

averages that can portray typical performance. We then 
compute the APFD of each prioritized test suite and the time 
taken by the technique to produce the test suite. The whole 
experimental procedure is adapted from our previous work on 
test case prioritization [17]. 

H. Results and Analyses 

1) Answering RQ1 

For every technique, we compute the APFD results across all 
the faulty versions and draw box-and-whisker plots for each 
UNIX program, as shown in Figure 3. 

Encouragingly, we find from Figure 3 that both PORA 
techniques perform outstandingly. In every case, we observe 
that each PORA technique is significantly more effective than 
random ordering, all the three total greedy techniques, and all 
the three ART techniques. Moreover, except for the case of 
pora-random on gzip, we find the median APFD of each PORA 
technique is visually more effective than every additional 
greedy algorithm technique on each subject program. In 
particular, on sed, every PORA technique has a higher median 
value than each additional greedy technique as indicated by 
their non-overlapping notches. In fact, we are not aware of 
existing techniques from the literature that can be visually more 
effective than all these peer techniques on the benchmark 
subjects. 

We further conduct one-way analyses of variances 
(ANOVA) to verify whether the means of the APFD distribu-
tions for different techniques differ significantly. For the alpha 
adjustment procedure, we use Tukey’s honestly significance 
difference (HSD), which is more conservative than the least 
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Figure 3. APFD Distributions for Individual UNIX Programs 
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significance difference (LSD) [19] and is also the default option 
used by MATLAB for multiple comparisons. The ANOVAs 
return a p-value much less than 0.001, which successfully 
rejects the null hypothesis at a significance level of 5%. 

We select the most effective technique (in terms of mean 
APFD) from random ordering and every peer algorithm to 
compare with each PORA technique in turn. The peer tech-
niques chosen are random, total-br, addtl-br, and ART-br-maxmin. 
For ease of reference, we refer to random ordering or a total 
greedy, additional greedy, or ART technique as a nonPORA 
technique in this paper. 

The results are shown in Table 3. There is a column for pora-
random (and pora-distance) that shows the results of performing 
multiple comparisons between pora-random and the four 
nonPORA techniques selected. There are two subcolumns 
within this column. The subcolumn entitled “Single Best 
Technique” shows the name of the technique that is 
significantly more effective than any other techniques. The 
subcolumn entitled “Multiple Best Techniques” shows that the 
techniques that are comparable to each other in terms of 
effectiveness and are significantly more effective than any other 
techniques in the empirical study. 

 
Table 3. Multiple Comparisons between PORA and other 

Test Case Prioritization Techniques 

 pora-random pora-distance 

Subject 
Program 

Single Best 
Technique 

Multiple 
Best 

Techniques 

Single Best 
Technique 

Multiple 
Best 

Technique 

gzip  
Addtl-br, 
Addtl-st, 
pora-random 

 
Addtl-br, 
Addtl-st, 
pora-
distance 

sed pora-
random  pora-

distance  

flex  Addtl-br, 
pora-random  

Addtl-br, 
pora-
distance 

grep  Addtl-br, 
pora-random  

Addtl-br, 
pora-
distance 

 
The results in Table 3 confirms that both pora-distance and 

pora-random are either more effective than or as effective as 
nonPORA techniques. 

Furthermore, across the four plots, compared to other tech-
niques, both PORA techniques consistently have small bars. 
We further compare the standard deviation of the APFD results 
achieved by these techniques on each subject program. As 
shown in Table 4, pora-random and pora-distance consistently 
achieve the smallest standard deviations in terms APFD values 
for each subject. Moreover, before the introduction of PORA, 
there was no technique consistently performing best across all 
the subjects. These results show clearly that our PORA 
techniques are much more stable than existing techniques in 
generating effective prioritized test suites across all subject 
programs. 

Table 4. Comparisons of Standard Deviations 
of APFD Results among Different Techniques 

Technique (down) 
Subject (right) gzip sed flex grep 

random 0.090 0.027 0.035 0.052 
addtl-br 0.016 0.032 0.109 0.048 
addtl-fn 0.094 0.033 0.100 0.053 
addtl-st 0.018 0.034 0.110 0.040 
total-br 0.066 0.027 0.017 0.036 
total-fn 0.317 0.036 0.027 0.042 
total-st 0.068 0.020 0.015 0.025 
ART-br-maxmin 0.062 0.021 0.036 0.040 
ART-st-maxmin 0.262 0.059 0.040 0.122 
ART-fn-maxmin 0.077 0.024 0.040 0.024 
pora-random 0.015 0.014 0.011 0.010 
pora-distance 0.012 0.010 0.011 0.007 

Mean 0.091 0.028 0.046 0.042 
 

Combining the results above, our empirical study on the 
subject programs indicates that PORA techniques can be both 
highly effective and highly stable in generating prioritized test 
suites and can be competitive candidates in real-world regres-
sion testing practice. 

2) Answering RQ2 

In this section, we further analyze the time cost of PORA 
prioritization techniques and compare them with other tech-
niques to help guide practical use. The results are shown in 
Table 5. We observe that the additional greedy techniques incur 
much more time cost than the mean prioritization time. 

The statement-level ART prioritization technique has a time 
cost comparable with the mean of all techniques in the last row 
of the table. The PORA techniques, branch-level ART tech-
niques, greedy technique, and random ordering always use 
much less time than the mean time cost of all techniques. 

Table 5. Time Comparisons of Different Techniques (seconds) 

Technique (down) 
Subject (right) gzip sed flex grep 

random 0.01 0.01 0.01 0.01 
addtl-br 13.91 1.39 6.71 7.54 
addtl-fn 19.79 1.78 6.49 6.97 
addtl-st 43.28 2.79 22.87 21.72 
total-br 0.71 0.12 0.48 0.69 
total-fn 0.03 0.00 0.03 0.03 
total-st 2.44 0.31 1.88 1.84 
ART-br-maxmin 1.15 0.12 0.61 0.89 
ART-st-maxmin 2.78 0.31 1.88 2.02 
ART-fn-maxmin 0.51 0.06 0.29 0.23 
pora-random 0.50 0.05 0.25 0.20 
pora-distance 0.52 0.07 0.31 0.28 

Mean 7.14 0.58 3.48 3.54 
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In general, the PORA techniques are only slightly slower 
than random ordering and some greedy techniques, but are 
much more efficient than existing code-coverage-based 
additional greedy techniques, branch-level techniques, and 
statement-level ART techniques. As a result, we conclude that 
PORA can be efficient in prioritizing test cases in practice. 

3) Threats to Validity 

To conduct the empirical study, we used many tools, which 
could have added variability to our results and increase the 
threats to internal validity. We used several procedures to 
control these sources of variation. We carefully verified and 
tested our regression testing tools, which are the same set of 
tools used in [17]. We used C++ to implement our tools for 
instrumentation, test suite prioritization, and results analysis. To 
minimize errors, we have carefully tested our tools to assure 
correctness. 

We only chose C programs in our empirical study because 
they were still widely used in many real-life applications such 
as Web servers, UNIX tools, and database servers. A further 
investigation on subject programs written in other programming 
languages may help generalize our findings. We used APFD to 
measure the effectiveness of the studied test case prioritization 
techniques. Using other metrics may provide different results. 

In our empirical study, we compared PORA with existing 
code-coverage-based techniques. For all the subject programs, 
the input data of the test suites provided less differentiable 
values than the code coverage achieved by these test suites. We 
tend to believe that our comparisons in terms of APFD do not 
provide PORA with unfair advantage. To validate this assump-
tion, we have run adapted versions of the total greedy, addi-
tional greedy, and ART techniques using the input data as the 
data source. Our preliminary finding is that the comparison 
results reported in Table 3 are still valid in that the two PORA 
techniques are more effective than the adapted techniques and 
random ordering for some subject programs and as effective as 
the adapted techniques and random ordering for the remaining 
subject programs. We do not find PORA beaten by the adapted 
techniques for any subject program. Regarding the time spent 
on prioritization, we observe that the adapted additional greedy 
techniques still run significantly slower than the two PORA 
techniques. However, the ART techniques and the total greedy 
techniques run faster than PORA (and yet they are less effective 
than PORA significantly). Owing to the many dimensions in 
data analyses, we will leave the reporting of the detailed results 
to future work. 

IV. RELATED WORK 

Researchers have proposed many test case prioritization 
techniques in previous work. In this section, we review related 
work not discussed in the Introduction section. Integrating 
multiple aspects to improve regression testing is still a trend. 

Wong et al. [32] proposed an approach to combining test 
suite minimization and prioritization to select cases based on 
the cost per additional coverage. Walcott et al. [30] proposed a 

time-aware prioritization technique based on a genetic algo-
rithm to reorder test cases under time constraints. Furthermore, 
Zhang et al. [36] proposed a set of time-aware test case 
prioritization techniques using integer linear programming. All 
the above were code-coverage-based techniques that took the 
cost and time constraints into consideration. Qu et al. [26] 
proposed a black-box test cases prioritization technique that 
grouped the test cases based on their failure exposing history 
and adjusted their priority dynamically during execution. How-
ever, their technique required execution history information 
that may not be available in practice. We will also study the 
impact of time constraint on black-box test case prioritization 
techniques in the future. 

Li et al. [19] proposed various search algorithms for test case 
prioritization based on code coverage information. However, 
since they were focusing only on the goal of maximizing the 
code coverage rate while we are focusing on increasing the rate 
of fault detection, their techniques are not directly comparable 
to ours. We will also study the effectiveness of adopting genetic 
algorithms as well as other AI-search strategies for black-box 
test case prioritization in future work. Jiang et al. [17] proposed 
a family of coverage-based adaptive random testing techniques 
to evenly spread the test cases across the code coverage domain. 
Their study showed that ART techniques can be as effective as 
additional greedy techniques while involving much lower cost. 
Our techniques are similar to theirs in the sense that all the 
techniques make use of randomized algorithms. The major 
difference lies in that our techniques are driven by the size-
proportional allocation strategy. Hao et al. [12] proposed a test 
case prioritization technique guided by dynamic test case 
execution outputs. In this way, the coverage information of the 
unselected test cases on the modified program can be more 
precise. In [11][35], Hao and her collaborators further proposed 
a unified test case prioritization approach that encompasses 
both the total and additional strategies. Mei et al. [21] proposed 
a static approach to guiding the prioritization of JUnit test cases. 
You et al. [34] performed an empirical study on time-aware test 
case prioritization techniques. Taneja et al. [29] proposed to use 
dynamic symbolic execution technique to explore those path 
affected by code change for generating regression test suite. 
Yoo and Harman [33] performed a systematic survey on regres-
sion testing minimization, selection, and prioritization. Huang 
et al. [14] proposed a cost-cognizant test case prioritization 
technique based on historical information. Arafeen and Do [1] 
proposed a new test case prioritization technique by incorporat-
ing the information on both requirement clustering and tradi-
tional code analysis information. Industrial case studies on test 
case prioritization in continuous integration scenarios have also 
been reported [20]. 

Researchers also studied the problem of regression testing of 
service-oriented applications. Mei et al. [22] proposed a hier-
archy of prioritization techniques for the regression testing of 
service-oriented business applications by modeling business 
process, XPath, and WSDL information. In [24], they also 
studied the problem of black-box test case prioritization of 
service-oriented applications based on the coverage infor-
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mation of WSDL tags. In [23], they further proposed a preemp-
tive regression testing technique to address the service 
evolution problem during regression testing. 

V. CONCLUSION 

In this paper, we propose Proportion-Oriented Randomized 
Algorithm (PORA) for test case prioritization. The PORA 
techniques search for a highly effective permutation of the test 
suite by minimizing its distance against a hierarchy of 
sequences of centroids. Our experiment shows that PORA 
techniques are always as effective as, if not more effective than, 
some of the well accepted nonPORA techniques in the litera-
ture, including the total greedy, additional greedy, and ART 
techniques using code coverage information. Furthermore, the 
results show that the PORA techniques are consistent more 
stable than nonPORA techniques evaluated in the empirical 
study. Finally, the PORA techniques are also efficient, which 
makes it a good choice for practical use. In future work, we will 
further investigate how to extend the idea of PORA beyond test 
case prioritization. In particular, the concept of partition testing 
based on while-box data is well studied in previous work. It will 
be interesting to extend the idea of PORA to guide the test case 
prioritization with code coverage information. We will also 
generalize PORA and further evaluate it on more benchmarks 
using both input data and code coverage. 
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