
1

Postprint of article in Proceedings of the 2015 IEEE International Conference on Software Quality, Reliability and Security (QRS ’15),
IEEE Computer Society, pp. 131–140 (2015)

PORA: Proportion-Oriented Randomized
Algorithm for Test Case Prioritization*

Bo Jiang

School of Computer Science and
Engineering

Beihang University
Beijing, China

jiangbo@buaa.edu.cn

W.K. Chan†
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T.H. Tse
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract—Effective testing is essential for assuring software
quality. While regression testing is time-consuming, the fault
detection capability may be compromised if some test cases are
discarded. Test case prioritization is a viable solution. To the best
of our knowledge, the most effective test case prioritization
approach is still the additional greedy algorithm, and existing
search-based algorithms have been shown to be visually less
effective than the former algorithms in previous empirical studies.
This paper proposes a novel Proportion-Oriented Randomized
Algorithm (PORA) for test case prioritization. PORA guides test
case prioritization by optimizing the distance between the priori-
tized test suite and a hierarchy of distributions of test input data.
Our experiment shows that PORA test case prioritization tech-
niques are as effective as, if not more effective than, the total
greedy, additional greedy, and ART techniques, which use code
coverage information. Moreover, the experiment shows that
PORA techniques are more stable in effectiveness than the others.

Index Terms—Test case prioritization, randomized algorithm,
proportional sampling strategy, multi-objective optimization

I. OVERVIEW

A. Introduction
Regression testing [17][18][19][27] is important [6] and practi-
cal [15][16] but is also time-consuming [18][32]. It uses an
existing test suite to verify a changed program to assure that the
latter is not adversely affected by amendments. As reported in
[25], individual developers often use the retest-all strategy [17]
[27] that executes all the test cases, which can nonetheless be
further optimized [18]. In continuous integration, in particular,
the same test cases may be repeatedly applied to the program
whenever new builds are synthesized, possibly many times a
day.

* This research is supported in part by the National Natural Science Foundation

of China (project no. 61202077) and the Early Career Scheme and the
General Research Fund of the Research Grants Council of Hong Kong
(project nos. 111313, 11201114, 123512, 125113, 716612, and 717811).

† Corresponding author.
 2015. This material is presented to ensure timely dissemination of scholarly

and technical work. Personal use of this material is permitted. Copyright and

To explore the optimization dimension in regression testing,
different aspects have been scientifically studied in the litera-
ture. The techniques may include, for instance, executing only
a proper subset of the existing test suite against the changed
program (referred to as regression test selection [27]), removing
some test cases from the existing test suite permanently (test
suite reduction [13]), or assigning an execution priority to the
test cases in a test suite (test case prioritization [6][7]). The
effects of combinations of these aspects on regression testing
have also been reported in empirical studies [32].

Test case prioritization (TCP) is an aspect of regression
testing research. The target is to assign an execution priority to
the given test cases. In essence, it permutes, but does not
discard, test cases in the given test suite. As such, it does not
compromise the fault detection ability of the given test suite.
This makes TCP a sound aspect of regression testing.

A simple TCP strategy is to reorder a test suite randomly [6].
However, the resultant test suite is often ineffective, such as
having a low weighted Average of the Percentage of Faults
Detected (APFD). (See [6] and Subsection III.E for more details
of APFD.) In fact, random reordering of the test suite often
results in a “lower bound” in previous experiments [6][17].
Moreover, many previous experiments (such as [6][17]) also
show that the effectiveness of such resultant test suites in terms
of APFD may vary significantly even when applied to the same
programs. This result is as expected due to the random nature
of the simple TCP strategy.

If a nonrandom TCP technique exhibits a large variation in
fault detection capability (in terms of APFD), that technique is
unstable in terms of its effectiveness from the developers’
viewpoint. Nevertheless, the results presented in [6][17] show
that all the studied TCP techniques suffer from this problem.

all rights therein are retained by the authors or by other copyright holders.
All persons copying this information are expected to adhere to the terms and
constraints invoked by each author’s copyright. In most cases, these works
may not be reposted without the explicit permission of the copyright holder.
Permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the authors or other copyright holders.

Administrator
 HKU CS Tech Report TR-2015-07

2

It is generally infeasible to know in advance whether a test
case will reveal a failure due to a fault in a changed program.
Accurately optimizing the ordering of the test cases so that
failure-revealing test cases can receive higher priority (so that
they can be executed earlier) than the other test cases in the
same test suite is an impossible goal. The code coverage
achieved by a test case (or a test suite) is not a substitute of the
(unknown) failure-triggering conditions of the corresponding
test cases. Thus, although guiding the permutation of test cases
using code coverage has a certain merit, over-fitting the
permutation of a test suite for such type of approximation may
lead to a suboptimal rate of fault detection, or sometimes even
an unexpectedly poor rate of fault detection, which further
results in large variations in performance of the corresponding
TCP techniques.

Researchers have studied code-coverage based total greedy
and additional greedy algorithms [6][19] for test case prioriti-
zation. They are popularly used to benchmark the performance
of other techniques [6][7][17][19][32][36]. To the best of our
knowledge, the additional greedy algorithm is widely consid-
ered as the most effective TCP approach to quickly expose faults
from a program in terms of APFD [11]. In addition, search-
based algorithms and genetic algorithms have been proposed,
which often permute test suites to optimize code-coverage-
based fitness functions [19][30]. Li et al. [19] has concluded,
however, that the genetic algorithm proposed in their paper is
not the best among all the five cases considered, and in most
situations, the difference in effectiveness in terms of various
rates of code coverage between their genetic algorithm and the
additional greedy algorithm is not statistically significant. They
do not report any results on rate of fault detection (such as
APFD). Other empirical results [36] further show that time-
aware genetic algorithms [30] can be inferior to the additional
greedy algorithm [6] in terms of APFD and the time to prioritize
test cases.

The ART algorithm [17] for test case prioritization is a kind
of search-based algorithm. To the best of our knowledge, ART
is the first search-based algorithm that reports results in terms
of APFD. Nonetheless, empirical results show that the rates of
fault detection (in terms of APFD) between the best ART
technique [17] and the best additional greedy technique [6] are
still not statistically significant, and that ART is visually less
effective than the additional greedy techniques. Another
comparison between ART and a heuristic algorithm [9] shows
that, out of 49 cases, 29 are tie cases, 13 are ART losing cases,
and only five are ART winning cases in terms of APFD.
Moreover, neither the ART algorithm [17] nor the heuristic
algorithm [9] is significantly more effective than the additional
greedy algorithm [28] or random ordering in terms of APFD.

In this paper, we do not compare our proposed approach with
evolutionary algorithms, even though it is generally believed
that the latter may have a chance to be superior to simple
heuristics. It is widely conjectured that evolutionary algorithms
suffer from the limitation of “no free lunch” [31]. The law of
“no free lunch” indicates that if a type of algorithm is more
effective than another type of algorithm for one problem, then
there is another problem for the latter type to be more effective

than the former; and by summing up all problems, these two
algorithms are the same in effectiveness. To the best of our
knowledge, however, there is still no concrete evolutionary
algorithm that is more effective than the additional greedy
algorithm for the test case prioritization problem. It remains as
an open problem whether there is any evolutionary algorithm
with the potential to outperform the additional greedy algorithm
in terms of the rate of fault detection.

B. Summary of our novel TCP algorithm
In this paper, we present the first work showing that our

search-based TCP algorithm can be as effective as, if not out-
performs, the additional greedy algorithm. Our algorithm has a
theoretical foundation, which we describe informally in this
paper. We will leave the formal presentation to future work.

In mathematics, the grouping of a set into subsets is called
partitioning. Partition testing refers to a common testing
approach in which a number of test cases are selected from each
input subdomain. In general, partition testing for test case
generation may be less effective than random testing [10] unless
a well-designed methodology to select test cases from disjoint/
overlapping subdomains is used [4]. A proven approach is to
use the proportional sampling strategy [3], which proportion-
ally selects test cases from each disjoint subdomain according
to the relative sizes of the subdomains. It is theoretically shown
to have higher probability in detecting at least one failure than
random testing even if the failure rate of the domain is unknown
(and hence modeled as a uniform distribution). However, the
cost of proportionally partitioning the input domain can be
expensive. We are inspired by the existing strategy but want to
get rid of the high cost incurred in domain partitioning.

A closer look at the theory [3][4] reveals that the mathemati-
cal definition of a domain is a set of discrete elements, which
does not need to be restricted to the input domain of a program.
For ease of presentation, we will refer to the generalized
proportional sampling concept as size-proportional allocation.

In this paper, we propose a novel Proportion-Oriented
Randomized Algorithm (PORA) for test case prioritization.
Suppose that we want to prioritize an inputted test suite with n
test cases into a sequence L of n prioritized test cases. A prefix
of the sequence L is a subsequence of L starting from the first
element of L. Thus, if L is of length n, it has n possible prefixes.
If p1 and p2 are prefixes of the same sequence L and p1 is
shorter than p2, then p1 is also a prefix of p2. For ease of
presentation, we simply write “p1 < p2”.

PORA expresses L in terms of the n prefixes. It aims to
allocate test cases proportionally to the “sizes of the sub-
domains” determined by the lengths of the prefixes. In other
words, for each prefix of length i, PORA will allocate i test
cases. An interesting point is that for perfect size-proportional
allocations, all the prefixes in L must be interconnected such
that if p1 and p2 are prefixes and p1 < p2, then all the test cases
in p1 must also appear in p2. An exact solution may not even
exist, however. Thus, in actual allocation, the subdomains
determined by p1 may or may not be related to the subdomains
determined by p2. It indicates that the size-proportional
allocation for the prefix p1 (so that it can probabilistically

3

outperform random allocation) may or may not be part of the
size-proportional allocation for the prefix p2. PORA minimizes
the overall discrepancy among all prefixes of L. Moreover, to
generate the subdomains for each prefix with i test cases (i = 1,
2, ..., n), PORA needs to divide the inputted test suite into i
clusters based on the test input data of all the test cases. The
above scheme is, nonetheless, highly inefficient (defying the
goal of finding efficient search-based algorithms) for two
reasons: (1) numerous numbers of subdomain partitioning incur
owing to numerous rounds of evolutions of L in order to
generate a good solution via a search-based approach to finding
a solution, and (2) there is a need to measure the distance
between the input data of each test case included in each prefix
of each evolved L and every cluster for the same prefix. PORA
addresses these challenges through innovative strategies
including prefix evolution and efficient approximation in test
case-cluster distance measurement.

We further refine PORA with two techniques, namely, pora-
random and pora-distance. We evaluate both techniques on four
medium-scale UNIX utility programs and compare them with
random ordering as well as nine state-of-the-art code-coverage-
based techniques based on the total greedy, additional greedy,
and ART algorithms. The empirical results show that the PORA
techniques are always as effective as, if not more effective than,
the nonPORA techniques studied. Moreover, our PORA tech-
niques are remarkably more stable in terms of the distributions
of the resultant APFD results across all benchmarks. The over-
all results show that PORA is promising.

The main contribution of this paper is twofold: (i) It proposes
PORA, a novel approach to generating effective test case
sequences for test case prioritization based on a generalized
proportional sampling strategy. (ii) It reports an empirical study
that validates the effectiveness, stability, and efficiency of
PORA.

We organize the rest of paper as follows: In Section II, we
present PORA for test case prioritization. After that, we report
an empirical study in Section III. Finally, we discuss related
work in Section IV followed by the conclusion in Section V.

II. THE PORA APPROACH

In this section, we present our PORA approach.

A. Overview of PORA
The main PORA algorithm is shown in Figure 1. It uses four

auxiliary functions f1 to f4. We will present the main algorithm
in this subsection followed by the four auxiliary functions in the
next subsections.

Suppose that the inputted test suite T contains n test cases.
By calling function f1 (in line 1) n times with different counts (i
= 1, 2, ..., n), PORA generates (in line 2) a sequence S = 〈s1, s2,
..., sn〉 of scenarios. Each scenario sr = 〈cr1, cr2, ..., crr〉 in S is a
sequence of centroids cri of clusters with i test cases from T. For
example, the first scenario s1 = 〈c11〉 in S corresponds to clusters
with one test case while the second scenario s2 = 〈c21, c22〉
corresponds to clusters of one and two test cases.

Informally, the goal of PORA is to find a permutation L of T
such that the first test case of L is “close to” the only centroid

Main PORA Algorithm
Inputs: T: a set of test cases {t1, t2, ..., tn}
 M: the maximum number of trials
Output: P: a sequence of prioritized test cases 〈p1, p2, ..., pn〉
1 for r = 1, 2, ..., n

 sr = f1(T, r) // Each iteration generates a scenario sr, which is a sequence of r centroids
2 S = 〈s1, s2, ..., sn〉
3 Randomly generate a permutation P = 〈p1, p2, ..., pn〉 of the test suite
4 Randomly select a test case T0. from P
5 trial = 0, MinD = MAXVALUE
6 while (trial < M) { // For up to M trials
 Randomly select two test cases t1 and t2 from P such that t1 ≠ T0 and t2 ≠ T0
7 T1 = f2(t1, t2, T0) // Select t1 or t2 as T1, to be swapped with T0

 according to the specific strategy pora-random or pora-distance
8 Swap the positions of T0 and T1 in P to produce P'
9 D = f3(P', S) // Calculate the distance D between P' and S
10 if (D < MinD) {
11 MinD = D // Update the minimum distance MinD found so far
12 P = P' // Update the best permutation P found so far
13 trial = 0 // Reset trial
14 } else
15 trial++ // Continue to look for a better permutation
16 T0 = f4(P, S) // Find another test case T0. with maximum distance
17 } // End of while
18 return P

Figure 1. PORA Test Case Prioritization Algorithm

4

in the clusters corresponding to the first scenario s1 = 〈c11〉, the
first two test cases of L are “close to” the two centroids of the
clusters corresponding to the second scenario s2 = 〈c21, c22〉, and
so on. To do so, after the creation of S, PORA randomly
produces a candidate permutation P of the inputted test suite T
and randomly selects one test case T0 from P (lines 3 to 4). As
we are going to explain, we use this test case as the seed of
modifying the latest P.

The algorithm then iteratively performs the following
activities (lines 6 to 18): It uses the function f2 to select from P
one of two random test case t1 or t2 (which should be different
from T0) and denotes the selected test case by T1. The purpose
of f2 is to define different test case selection strategies that
results in different test case prioritization techniques. The
current version of PORA limits the number of test cases to two
(which can be further generalized) because this number is the
minimal size that a test case selection strategy may produce
non-unique results. PORA then copies P to P’ and swaps the
positions of T0 and T1 in P’ (line 8). It further calculates a
distance D between P’ and S using the function f3 (line 9). If the
distance D of the newly generated permutation is smaller than
the previously recorded minimum distance MinD (which is
initialized as the maximum positive value in line 5), the
algorithm updates MinD to D and copies P’ back to P (lines
10−12). Otherwise, PORA considers that this iteration results
in a failed attempt to optimize P and increments the counter
trial by 1 (line 14). Finally, within each iteration, PORA uses f4

to select a test case from P’ and assigns it to T0 to facilitate the
next iteration. If the number of failed attempts reaches the given
bound M (line 6), the algorithm exits from the loop and returns
the latest permutation P, which produces the resultant priori-
tized sequence to approximate L.

In the next five subsections, we describe how PORA
computes the distance between test inputs and present functions
f1 to f4 in turn. Moreover, there are two strategies in function f2.
By using one of them, PORA can be refined into a TCP
technique. We refer to the two refined techniques as pora-
random and pora-distance, which correspond to the use of the
random and distance-based strategies, respectively.

B. Measuring the Distance of Test Cases Based on Input
Data

PORA defines the distance between two test cases based on
input data. To faciliate input distance calculation, PORA uses
feature extraction techniques to map the input data of each test
case to a high-dimensional numerical vector and normalize it
within the range of [0, 1].

PORA considers each test input data as a string and uses the
linear-time textual analysis technique [8] to break it up into
words. For instance, the string “grep –i grep < file1” is
broken up into five words, namely, “grep”, “–i”, “grep”, “<”,
and “file1”. It further treats each input string as a bag of
words (that is, a multiset in which any element may appear more
than once) to form a high-dimensional vector such that it maps

1 In this paper, we use k-mean++ for the purpose of demonstrating PORA.

This can be replaced by other clustering algorithms.

an input string to a high-dimensional numerical vector of values
(using the occurrence frequency). In the above string, for
instance, the word “grep” occurs twice and the other three
words occur once. It forms a four-dimensional vector. The order
of words in the vector is unimportant as long as the numerical
vector of values is mapped correctly. PORA processes all the
inputs in the given test suite T in the same way. Thus, PORA
knows the number of occurrences of each word in the entire test
suite. It further normalizes the high-dimensional vector of each
test case by dividing the number of occurrences of each word
in the test case by the corresponding total number of occur-
rences of the same word in the entire test suite. For instance, if
the word “file1” has occurred 10 times in all the test cases
and a test case only has one occurrence of this word, then the
normalized number of occurrences of the word in this particular
test case is 1 ÷ 10 = 0.1. The purpose of normalization is to
allow a fair comparison among test inputs.

Having known the entire test suite, if we are given an input
string u, it is not difficult to expand the corresponding vector of
u to contain all the distinct words that have occurred in the given
test suite T. If a word is not originally in u, we assign 0 as the
normalized number of occurrence of the word. We use the
vector O(u) (which we call the occurrence frequency vector of
u) to represent the normalized number of occurrences of each
word 〈o1, o2, ..., om〉 of u, where m is the number of distinct
words in T. For ease of presentation, we assume that the vector
entries are sorted in descending order of the alphabet of words.

The distance between two test cases t1 and t2 is defined as the
Euclidean distance between O(t1) and O(t2):

Distance(t1, t2) = Euclidean(O(t1), O(t2))

C. Generating Scenarios by Clustering (Function f1)
As shown in Figure 2, function f1 generates scenarios, which

are sequences of centroids as explained below. The function
accepts two parameters: a test suite T and a specified number of
clusters r. It first performs k-means++ clustering [2] with the
number of clusters k equal to the parameter r. It clusters the test
suite T based on the set of occurrence frequency vectors (see
Section B above). By the property of the k-means++ clustering
algorithm1, the within-cluster variances among test cases are
minimized. The function then collects the whole set of test cases
within each cluster and takes the arithmetic mean of the cor-
responding occurrence frequency vectors of these test cases. It
produces an occurrence frequency vector by the arithmetic
mean to denote the centroid of the cluster. PORA aims to gen-
erate a hierarchy of clusters of different sizes so that it can also
use hierarchical agglomerative clustering, which can naturally
generate the set of clusters in one round to make it efficient.

Next, the function stores the centroids of all the i clusters into
a tuple s and stores the number of test cases within each cluster
into a tuple N. After that, it sorts s in descending number of test
cases in each cluster. In other words, a centroid is ranked higher
if it is the centroid of a larger cluster. Tie cases are resolved
arbitrarily.

5

Function f1(T, r) to Generate Scenario
Inputs: T: a set of test cases {t1, t2, ..., tn}
 r: number of clusters required
Output: s: scenario (which is a sequence of r centroids)
1 Use k-means++ to produce r clusters
2 s = 〈c1, c2, ..., cr〉, where each ci is the centroid of the

i-th cluster (i = 1, 2, ..., r)
3 N = 〈n1, n2,, nr〉, where each ni is the number of

test cases in the i-th cluster (i = 1, 2, ..., r)
4 Sort s in descending order of ni (i = 1, 2, ..., r)
5 return s

Figure 2. Generating a Scenario

D. Selecting Candidate Test Cases for Position Exchange
(Function f2)

In this section, we propose two strategies to decide which test
case to be used to exchange with T0 in the main PORA algo-
rithm in Figure 1. The first strategy is to exchange with a test
case picked randomly from the two given test cases. We recall
that PORA aims to reduce the overall distances between the
scenarios and the resultant ordered test suite. This strategy
intentionally does not use any distance information. Intuitively,
it serves as a lower bound of PORA. The second strategy is to
select the test case further away from T0. In case of a tie, the
strategy resolves it randomly. This strategy minics a typical
strategy in randomized algorithms to select a local minimium/
maximum for permutations. The two stratgies are represented
by the function f2 (t1, t2 , T0).

Function f2(t1, t2, T0)
f2(t1, t2, T0) =

⎩
⎪⎪
⎨

⎪⎪
⎧

return 𝑡𝑡1 or 𝑡𝑡2 randomly

�
𝑡𝑡1 if Distance(𝑡𝑡1,𝑇𝑇0) > Distance(𝑡𝑡2,𝑇𝑇0)
𝑡𝑡2 if Distance(𝑡𝑡2,𝑇𝑇0) > Distance(𝑡𝑡1,𝑇𝑇0)
return 𝑡𝑡1 or 𝑡𝑡2 randomly otherwise

(1)

(2)

where case (1) represents the random strategy to select one
test case randomly and case (2) represents the distance
strategy to select the test case further away from the chosen
test case 𝑇𝑇0.

E. Measuring the Distance between P and S (Function f3)
We recall that PORA aims to select among test cases from T

so that the (final) permutation P and S are “close to” each
another. To find out whether P and S are close to each other, we
measure the distance between each prefix of P and the
corresponding prefix of S, and then take the harmonic mean. To
compute the distance between a prefix of P and a prefix of S,
we measure the distances between their respective elements
using the distance function defined in Section 3.2 and then take
the arithmetic mean.

We use the harmonic mean to compute the distances between
prefixes because in mathematics, the harmonic mean is less
affected by extreme values and is proven to be smaller than or
equal to the arithmetic mean, thus giving more stable results.

Moreover, we want to improve the rate of fault detection. In
mathematics, harmonic mean is the most appropriate way to
compute the average of rates. We use the arithmetic mean to
compute the average distances between test cases and centroids
corresponding to the same prefix because there is no sense of
“rate” in mind.

Formally, let P = 〈p1, p2, ..., pn〉 be a sequence of test cases
and S = 〈s1, s2, ..., sn〉 be a sequence of scenarios produced by
the function f1. Let sr = 〈cr1, cr2,…, crr〉, where r = 1, 2, ..., n and
each cri is the centroid in the corresponding cluster (i = 1, 2, ...,
r). The distance between P and S is defined by the following
function:

Function f3(P, S)
𝑓𝑓3 (𝑃𝑃, 𝑆𝑆) =

𝑛𝑛

∑ 1
∑ Distance(𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑝𝑝𝑖𝑖)/𝑟𝑟𝑟𝑟
𝑖𝑖=1

𝑛𝑛
𝑟𝑟=1

where Distance(𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑝𝑝𝑖𝑖) is the same as the distance function
between two test cases as defined in Subsection II.B.

F. Finding a Test Case with Maximum Distance (Function f4)
At the end of an iteration in the main algorithm in Figure 1,

PORA needs to pick a new candidate for T0 to prepare for the
next iteration. It finds the sequence of scenarios (i.e., a prefix of
S) that is the least matched with the current permutation P, and
returns the last element of the corresponding prefix p of P. We
choose the last element of this particular prefix p as the
candidate rather than other elements of p because any other
prefix of P shorter than p should be no worse than p.

Let P = 〈p1, p2, ..., pn〉 be the current permutation of test cases
and S = 〈s1, s2, ..., sn〉 be the sequence of scenarios sr returned
by the function f1(T, r) for r = 1, 2, ..., n. We use the following
function 𝑓𝑓4(𝑃𝑃, 𝑆𝑆) to find the last element 𝑝𝑝𝑟𝑟 of the prefix that is
least matched with P:

Function f4(P, S)
f4(P, S) = pr such that

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑟𝑟 , 〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑟𝑟〉)

= max𝑖𝑖=1.,2,….,𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑖𝑖 , 〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑖𝑖〉)

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑖𝑖 , 〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑖𝑖〉) =
∑ Distance𝑖𝑖
𝑗𝑗=1 (𝑠𝑠𝑖𝑖𝑖𝑖, 𝑝𝑝𝑗𝑗)

In case of a tie, the function returns the smallest pr in the tie
set. Note that PORA will not be trapped easily at a local
maximum because of the random selection of candidate test
cases in line 7 of the main algorithm.

III. EMPIRICAL STUDY
In this section, we perform an empirical study to evaluate the

effectiveness, stability, and efficiency of PORA.

A. Research Questions
We aim to find the answers to the following research

questions:

RQ1. Is PORA effective and stable in improving the rate
of fault detection?

6

To know whether PORA is effective, we compare it with
some of the best code-coverage-based techniques in terms of
APFD.

RQ2. Is PORA efficient in prioritizing test cases in
practice?

PORA requires many distance measurements. We want to
find out whether PORA is sufficiently efficient. Hence, we
compare the time taken to permute test cases by PORA and that
taken by some of the best code-coverage-based techniques.
Because code coverage profiling can be costly and depends on
the kind of tools to retrieve the statistics, we do not include the
cost of obtaining code coverage information when computing
the time needed for prioritizing test cases for code-coverage-
based techniques.

B. Techniques for Comparison
We compare PORA with random ordering and nine existing

effective code-coverage-based prioritization techniques [6]
[17]. These peer techniques include three total greedy tech-
niques (total-st, total-br, and total-fn) and three additional greedy
techniques (addtl-st, addtl-br, and addtl-fn) proposed in [6]. As
mentioned in Section I, these techniques are popularly used to
benchmark other techniques. The peer techniques also include
three ART techniques (ART-st-maxmin, ART-fn-maxmin, and ART-
br-maxmin). Note that ART-**-maxmin techniques are chosen
because they are the best ART techniques reported in [17]. We
do not include techniques based on genetic algorithms in our
experiment because we are not aware of published work show-
ing that genetic algorithms outperform the total greedy and
additional greedy algorithms.

Table 1 summarizes these 12 techniques. As shown in the
table, only the two PORA techniques use test input data to
permute test cases. All the total greedy, additional greedy, and
ART techniques use code coverage data. Random ordering uses
neither of them. To facilitate comparisons, we have imple-
mented a test infrastructure in C++ to support all the above

techniques. We set the maximum number of trials of the main
PORA algorithm to 50. We will leave further generalization to
future work.

C. Subject Programs and Test Pools

We use four real-life UNIX utility programs with real faults
as subject programs. They are obtained from SIR [5] at
http://sir.unl.edu. Table 2 shows their descriptive statistics.

We use the UNIX tool gcov to collect code coverage data of
each test case to support the prioritization process of the code-
coverage-based techniques. Following [6][17], we exclude the
versions with faults that cannot be revealed by any test case as
well as the versions with faults that can be detected by more
than 20% of the test cases. In addition, we also exclude those
versions that cannot be supported by our platforms.

Table 2. Subject Programs

Subject
Program Description

No. of
Faulty

Versions

Executable
Source LOC

Size
of

Test
Pool

flex Lexical Analyzer 21 8571–10124 567
grep Text Searcher 17 8053–9089 809
gzip File Compressor 55 4081–5159 217
sed Stream Editor 17 4756–9289 370

D. Test Suites

For each UNIX program, we generate 1000 test suites itera-
tively from the test pool. In each iteration, we randomly select
a test case and add it to the suite as long as the test case can
increase the coverage of the suite. The process stops when we
have covered all the statements/functions/branches or when the
new test case can no longer improve the coverage. This proce-
dure is also used in [17].

Table 1. Prioritization Techniques used in our Empirical Study

Algorithm Technique Brief Description Code Coverage
Granularity Used

 random Randomly select test cases one by one –

Total
Greedy

total-st Sort test cases in descending order of the total number
of program constructs covered

statement
total-fn function
total-br branch

Additional
Greedy

addtl-st Sort test cases in descending order of the coverage of
program constructs not yet covered by the selected test
cases with reset capability.

statement
addtl-fn function
addtl-br branch

ART

ART-st-
maxmin Iteratively select test cases that a lower priority test case

maximizes its distance with the higher priority test
cases

statement

ART-fn-
maxmin function

ART-br-
maxmin branch

PORA pora-random Our Proposed Techniques −
pora-distance −

7

E. Metrics

We adopt APFD [6] to measure the rate of fault detection.
APFD is the weighted Average of the Percentage of Faults
Detected over the life of the suite. Although there are weak-
nesses in APFD (see, for example, the discussions in [19][30]
[36]), this metric is widely used in numerous experiments to
compare the fault detections rates among techniques.

APFD is defined as follows: Let T be a test suite containing
n test cases and let F be a set of m faults revealed by T. Let TFv
be the first test case in the prioritized test suite T’ of T that
reveals fault v. The APFD value for T’ is given by the equation

APFD = 1 – 𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+⋯+𝑇𝑇𝑇𝑇𝑚𝑚𝑛𝑛𝑛𝑛 + 12𝑛𝑛

Time is the next dimension that we compare the techniques.
We measure the time (in seconds) taken by a test case
prioritization technique from accepting an inputted test suite to
producing a permutation of the test suite.

F. Empirical Study Environment

We perform the empirical study on a Dell PowerEdge 1950
server running a Solaris UNIX. The server has two Xeon 5355
(2.66GHz, quad-core) processors with 8GB physical memory.

G. Empirical Study Procedure

We run each faulty version over its test pool so that we know
which test case fails. For every test suite, we run each technique
to generate a prioritized test suite. Random ordering as well as
ART and PORA techniques are based on random selection. We
repeat each of them 50 times for every test suite to obtain

averages that can portray typical performance. We then
compute the APFD of each prioritized test suite and the time
taken by the technique to produce the test suite. The whole
experimental procedure is adapted from our previous work on
test case prioritization [17].

H. Results and Analyses

1) Answering RQ1

For every technique, we compute the APFD results across all
the faulty versions and draw box-and-whisker plots for each
UNIX program, as shown in Figure 3.

Encouragingly, we find from Figure 3 that both PORA
techniques perform outstandingly. In every case, we observe
that each PORA technique is significantly more effective than
random ordering, all the three total greedy techniques, and all
the three ART techniques. Moreover, except for the case of
pora-random on gzip, we find the median APFD of each PORA
technique is visually more effective than every additional
greedy algorithm technique on each subject program. In
particular, on sed, every PORA technique has a higher median
value than each additional greedy technique as indicated by
their non-overlapping notches. In fact, we are not aware of
existing techniques from the literature that can be visually more
effective than all these peer techniques on the benchmark
subjects.

We further conduct one-way analyses of variances
(ANOVA) to verify whether the means of the APFD distribu-
tions for different techniques differ significantly. For the alpha
adjustment procedure, we use Tukey’s honestly significance
difference (HSD), which is more conservative than the least

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AP

FD

ra
nd

om

to
tal

-st

to
tal

-fn

to
tal

-b
r

ad
dt

l-s
t

ad
dt

l-f
n

ad
dt

l-b
r

AR
T-s

t-m
ax

mi
n

AR
T-f

n-
ma

xm
in

AR
T-b

r-m
ax

mi
n

po
ra

-ra
nd

om

po
ra

-d
ist

an
ce

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AP
FD

ran
do

m

tot
al-

st

tot
al-

fn

tot
al-

br

ad
dtl

-st

ad
dtl

-fn

ad
dtl

-br

AR
T-s

t-m
ax

mi
n

AR
T-f

n-m
ax

mi
n

AR
T-b

r-m
ax

mi
n

po
ra-

ran
do

m

po
ra-

dis
tan

ce

gzip sed

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
nd

om

tot
al-

st

tot
al-

fn

tot
al-

br

ad
dtl

-st

ad
dtl

-fn

ad
dtl

-br

AR
T-s

t-m
ax

mi
n

AR
T-f

n-m
ax

mi
n

AR
T-b

r-m
ax

mi
n

po
ra

-ra
nd

om

po
ra

-di
sta

nc
e

AP
FD

0.4

0.5

0.6

0.7

0.8

0.9

1

AP
FD

ran
do

m

tot
al-

st

tot
al-

fn

tot
al-

br

ad
dtl

-st

ad
dtl

-fn

ad
dtl

-br

AR
T-s

t-m
ax

mi
n

AR
T-f

n-m
ax

mi
n

AR
T-b

r-m
ax

mi
n

po
ra-

ran
do

m

po
ra-

dis
tan

ce

flex grep

Figure 3. APFD Distributions for Individual UNIX Programs

8

significance difference (LSD) [19] and is also the default option
used by MATLAB for multiple comparisons. The ANOVAs
return a p-value much less than 0.001, which successfully
rejects the null hypothesis at a significance level of 5%.

We select the most effective technique (in terms of mean
APFD) from random ordering and every peer algorithm to
compare with each PORA technique in turn. The peer tech-
niques chosen are random, total-br, addtl-br, and ART-br-maxmin.
For ease of reference, we refer to random ordering or a total
greedy, additional greedy, or ART technique as a nonPORA
technique in this paper.

The results are shown in Table 3. There is a column for pora-
random (and pora-distance) that shows the results of performing
multiple comparisons between pora-random and the four
nonPORA techniques selected. There are two subcolumns
within this column. The subcolumn entitled “Single Best
Technique” shows the name of the technique that is
significantly more effective than any other techniques. The
subcolumn entitled “Multiple Best Techniques” shows that the
techniques that are comparable to each other in terms of
effectiveness and are significantly more effective than any other
techniques in the empirical study.

Table 3. Multiple Comparisons between PORA and other

Test Case Prioritization Techniques

 pora-random pora-distance

Subject
Program

Single Best
Technique

Multiple
Best

Techniques

Single Best
Technique

Multiple
Best

Technique

gzip
Addtl-br,
Addtl-st,
pora-random

Addtl-br,
Addtl-st,
pora-
distance

sed pora-
random pora-

distance

flex Addtl-br,
pora-random

Addtl-br,
pora-
distance

grep Addtl-br,
pora-random

Addtl-br,
pora-
distance

The results in Table 3 confirms that both pora-distance and

pora-random are either more effective than or as effective as
nonPORA techniques.

Furthermore, across the four plots, compared to other tech-
niques, both PORA techniques consistently have small bars.
We further compare the standard deviation of the APFD results
achieved by these techniques on each subject program. As
shown in Table 4, pora-random and pora-distance consistently
achieve the smallest standard deviations in terms APFD values
for each subject. Moreover, before the introduction of PORA,
there was no technique consistently performing best across all
the subjects. These results show clearly that our PORA
techniques are much more stable than existing techniques in
generating effective prioritized test suites across all subject
programs.

Table 4. Comparisons of Standard Deviations
of APFD Results among Different Techniques

Technique (down)
Subject (right) gzip sed flex grep

random 0.090 0.027 0.035 0.052
addtl-br 0.016 0.032 0.109 0.048
addtl-fn 0.094 0.033 0.100 0.053
addtl-st 0.018 0.034 0.110 0.040
total-br 0.066 0.027 0.017 0.036
total-fn 0.317 0.036 0.027 0.042
total-st 0.068 0.020 0.015 0.025
ART-br-maxmin 0.062 0.021 0.036 0.040
ART-st-maxmin 0.262 0.059 0.040 0.122
ART-fn-maxmin 0.077 0.024 0.040 0.024
pora-random 0.015 0.014 0.011 0.010
pora-distance 0.012 0.010 0.011 0.007

Mean 0.091 0.028 0.046 0.042

Combining the results above, our empirical study on the
subject programs indicates that PORA techniques can be both
highly effective and highly stable in generating prioritized test
suites and can be competitive candidates in real-world regres-
sion testing practice.

2) Answering RQ2

In this section, we further analyze the time cost of PORA
prioritization techniques and compare them with other tech-
niques to help guide practical use. The results are shown in
Table 5. We observe that the additional greedy techniques incur
much more time cost than the mean prioritization time.

The statement-level ART prioritization technique has a time
cost comparable with the mean of all techniques in the last row
of the table. The PORA techniques, branch-level ART tech-
niques, greedy technique, and random ordering always use
much less time than the mean time cost of all techniques.

Table 5. Time Comparisons of Different Techniques (seconds)

Technique (down)
Subject (right) gzip sed flex grep

random 0.01 0.01 0.01 0.01
addtl-br 13.91 1.39 6.71 7.54
addtl-fn 19.79 1.78 6.49 6.97
addtl-st 43.28 2.79 22.87 21.72
total-br 0.71 0.12 0.48 0.69
total-fn 0.03 0.00 0.03 0.03
total-st 2.44 0.31 1.88 1.84
ART-br-maxmin 1.15 0.12 0.61 0.89
ART-st-maxmin 2.78 0.31 1.88 2.02
ART-fn-maxmin 0.51 0.06 0.29 0.23
pora-random 0.50 0.05 0.25 0.20
pora-distance 0.52 0.07 0.31 0.28

Mean 7.14 0.58 3.48 3.54

9

In general, the PORA techniques are only slightly slower
than random ordering and some greedy techniques, but are
much more efficient than existing code-coverage-based
additional greedy techniques, branch-level techniques, and
statement-level ART techniques. As a result, we conclude that
PORA can be efficient in prioritizing test cases in practice.

3) Threats to Validity

To conduct the empirical study, we used many tools, which
could have added variability to our results and increase the
threats to internal validity. We used several procedures to
control these sources of variation. We carefully verified and
tested our regression testing tools, which are the same set of
tools used in [17]. We used C++ to implement our tools for
instrumentation, test suite prioritization, and results analysis. To
minimize errors, we have carefully tested our tools to assure
correctness.

We only chose C programs in our empirical study because
they were still widely used in many real-life applications such
as Web servers, UNIX tools, and database servers. A further
investigation on subject programs written in other programming
languages may help generalize our findings. We used APFD to
measure the effectiveness of the studied test case prioritization
techniques. Using other metrics may provide different results.

In our empirical study, we compared PORA with existing
code-coverage-based techniques. For all the subject programs,
the input data of the test suites provided less differentiable
values than the code coverage achieved by these test suites. We
tend to believe that our comparisons in terms of APFD do not
provide PORA with unfair advantage. To validate this assump-
tion, we have run adapted versions of the total greedy, addi-
tional greedy, and ART techniques using the input data as the
data source. Our preliminary finding is that the comparison
results reported in Table 3 are still valid in that the two PORA
techniques are more effective than the adapted techniques and
random ordering for some subject programs and as effective as
the adapted techniques and random ordering for the remaining
subject programs. We do not find PORA beaten by the adapted
techniques for any subject program. Regarding the time spent
on prioritization, we observe that the adapted additional greedy
techniques still run significantly slower than the two PORA
techniques. However, the ART techniques and the total greedy
techniques run faster than PORA (and yet they are less effective
than PORA significantly). Owing to the many dimensions in
data analyses, we will leave the reporting of the detailed results
to future work.

IV. RELATED WORK

Researchers have proposed many test case prioritization
techniques in previous work. In this section, we review related
work not discussed in the Introduction section. Integrating
multiple aspects to improve regression testing is still a trend.

Wong et al. [32] proposed an approach to combining test
suite minimization and prioritization to select cases based on
the cost per additional coverage. Walcott et al. [30] proposed a

time-aware prioritization technique based on a genetic algo-
rithm to reorder test cases under time constraints. Furthermore,
Zhang et al. [36] proposed a set of time-aware test case
prioritization techniques using integer linear programming. All
the above were code-coverage-based techniques that took the
cost and time constraints into consideration. Qu et al. [26]
proposed a black-box test cases prioritization technique that
grouped the test cases based on their failure exposing history
and adjusted their priority dynamically during execution. How-
ever, their technique required execution history information
that may not be available in practice. We will also study the
impact of time constraint on black-box test case prioritization
techniques in the future.

Li et al. [19] proposed various search algorithms for test case
prioritization based on code coverage information. However,
since they were focusing only on the goal of maximizing the
code coverage rate while we are focusing on increasing the rate
of fault detection, their techniques are not directly comparable
to ours. We will also study the effectiveness of adopting genetic
algorithms as well as other AI-search strategies for black-box
test case prioritization in future work. Jiang et al. [17] proposed
a family of coverage-based adaptive random testing techniques
to evenly spread the test cases across the code coverage domain.
Their study showed that ART techniques can be as effective as
additional greedy techniques while involving much lower cost.
Our techniques are similar to theirs in the sense that all the
techniques make use of randomized algorithms. The major
difference lies in that our techniques are driven by the size-
proportional allocation strategy. Hao et al. [12] proposed a test
case prioritization technique guided by dynamic test case
execution outputs. In this way, the coverage information of the
unselected test cases on the modified program can be more
precise. In [11][35], Hao and her collaborators further proposed
a unified test case prioritization approach that encompasses
both the total and additional strategies. Mei et al. [21] proposed
a static approach to guiding the prioritization of JUnit test cases.
You et al. [34] performed an empirical study on time-aware test
case prioritization techniques. Taneja et al. [29] proposed to use
dynamic symbolic execution technique to explore those path
affected by code change for generating regression test suite.
Yoo and Harman [33] performed a systematic survey on regres-
sion testing minimization, selection, and prioritization. Huang
et al. [14] proposed a cost-cognizant test case prioritization
technique based on historical information. Arafeen and Do [1]
proposed a new test case prioritization technique by incorporat-
ing the information on both requirement clustering and tradi-
tional code analysis information. Industrial case studies on test
case prioritization in continuous integration scenarios have also
been reported [20].

Researchers also studied the problem of regression testing of
service-oriented applications. Mei et al. [22] proposed a hier-
archy of prioritization techniques for the regression testing of
service-oriented business applications by modeling business
process, XPath, and WSDL information. In [24], they also
studied the problem of black-box test case prioritization of
service-oriented applications based on the coverage infor-

10

mation of WSDL tags. In [23], they further proposed a preemp-
tive regression testing technique to address the service
evolution problem during regression testing.

V. CONCLUSION

In this paper, we propose Proportion-Oriented Randomized
Algorithm (PORA) for test case prioritization. The PORA
techniques search for a highly effective permutation of the test
suite by minimizing its distance against a hierarchy of
sequences of centroids. Our experiment shows that PORA
techniques are always as effective as, if not more effective than,
some of the well accepted nonPORA techniques in the litera-
ture, including the total greedy, additional greedy, and ART
techniques using code coverage information. Furthermore, the
results show that the PORA techniques are consistent more
stable than nonPORA techniques evaluated in the empirical
study. Finally, the PORA techniques are also efficient, which
makes it a good choice for practical use. In future work, we will
further investigate how to extend the idea of PORA beyond test
case prioritization. In particular, the concept of partition testing
based on while-box data is well studied in previous work. It will
be interesting to extend the idea of PORA to guide the test case
prioritization with code coverage information. We will also
generalize PORA and further evaluate it on more benchmarks
using both input data and code coverage.

REFERENCES
[1] M.J. Arafeen and H. Do, “Test case prioritization using requirements-

based clustering,” Proceedings of the IEEE 6th International Conference
on Software Testing, Verification and Validation (ICST ’13), IEEE
Computer Society, 2013, pp. 312–321.

[2] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’07), Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[3] F.T. Chan, T.Y. Chen, I.K. Mak, and Y.T. Yu, “Proportional sampling
strategy: guidelines for software testing practitioners,” Information and
Software Technology, vol. 38, no. 12, 1996, pp. 775–782.

[4] T.Y. Chen and Y.T. Yu, “On the expected number of failures detected by
subdomain testing and random testing,” IEEE Transactions on Software
Engineering, vol. 22, no. 2, 1996, pp. 109–119.

[5] H. Do, S.G. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: an infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, 2005, pp. 405–
435.

[6] S.G. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test case prioriti-
zation: A family of empirical studies,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, 2002, pp. 159–182.

[7] S.G. Elbaum, G. Rothermel, S. Kanduri, and A.G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,” Software
Quality Control, vol. 12, no. 3, 2004, pp. 185–210.

[8] G. Forman and E. Kirshenbaum, “Extremely fast text feature extraction
for classification and indexing,” Proceedings of the 17th ACM Conference
on Information and Knowledge Management (CIKM ’08), ACM, 2008,
pp. 1221–1230.

[9] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. van Gemund, “A
diagnostic approach to test prioritization,” Technical Report TUD-SERG-
2010-007, Software Engineering Research Group, Delft University of
Technology, 2010.

[10] D. Hamlet and R.N. Taylor, “Partition testing does not inspire
confidence,” IEEE Transactions on Software Engineering, vol. 16, no. 12,
1990, pp. 1402–1411.

[11] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test
case prioritization approach,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 24, no. 2, 2014, pp. 10:1–10:31.

[12] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case prioritization guided
by output inspection,” Proceedings of the IEEE 37th Annual Computer
Software and Applications Conference (COMPSAC ’13), IEEE Computer
Society, 2013, pp. 169–179.

[13] M.J. Harrold, R. Gupta, and M.L. Soffa, “A methodology for controlling
the size of a test suite,” ACM Transactions on Software Engineering and
Methodology, vol. 2, no. 3, 1993, pp. 270–285.

[14] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-
cognizant test case prioritization technique in regression testing,” Journal
of Systems and Software, vol. 85, no. 3, 2012, pp. 626–637.

[15] B. Jiang, T.H. Tse, W. Grieskamp, N. Kicillof, Y. Cao, and X. Li,
“Regression testing process improvement for specification evolution of
real-world protocol software,” Proceedings of the 10th International
Conference on Quality Software (QSIC ’10), IEEE Computer Society,
2010, pp. 62–71.

[16] B. Jiang, T.H. Tse, W. Grieskamp, N. Kicillof, Y. Cao, X. Li, and W.K.
Chan, “Assuring the model evolution of protocol software specifications
by regression testing process improvement,” Software: Practice and
Experience, vol. 41, no. 10, 2011, pp. 1073–1103.

[17] B. Jiang, Z. Zhang, W.K. Chan, and T.H. Tse, “Adaptive random test case
prioritization,” Proceedings of the 24th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’09), IEEE Computer
Society, 2009, pp. 233–244.

[18] H.K.N. Leung and L.J. White, “Insights into regression testing,” Proceed-
ings of the IEEE International Conference on Software Maintenance
(ICSM ’89), IEEE Computer Society, 1989, pp. 60–69.

[19] Z. Li, M. Harman, and R.M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering, vol.
33, no. 4, 2007, pp. 225–237.

[20] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for continu-
ous regression testing: An industrial case study,” Proceedings of the 2013
IEEE International Conference on Software Maintenance (ICSM ’13),
IEEE Computer Society, 2013, pp. 540–543.

[21] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A static
approach to prioritizing JUnit test cases,” IEEE Transactions on Software
Engineering, vol. 38, no. 6, 2012, pp. 1258–1275.

[22] L. Mei, Y. Cai, C. Jia, B. Jiang, W.K. Chan, Z. Zhang, and T.H. Tse, “A
subsumption hierarchy of test case prioritization for composite services,”
IEEE Transactions on Services Computing, 2014, doi: 10.1109/TSC.
2014.2331683.

[23] L. Mei, W.K. Chan, T.H. Tse, B. Jiang, and K. Zhai, “Preemptive
regression testing of workflow-based web services,” IEEE Transactions
on Services Computing, 2014, doi: 10.1109/TSC.2014.2322621.

[24] L. Mei, W.K. Chan, T.H. Tse, and R.G. Merkel, “Tag-based techniques
for black-box test case prioritization for service testing,” Proceedings of
the 9th International Conference on Quality Software (QSIC ’09), IEEE
Computer Society, 2009, pp. 21–30.

[25] A.K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma, “Regression
testing in an industrial environment,” Communications of the ACM, vol.
41, no. 5, 1998, pp. 81–86.

[26] B. Qu, C. Nie, B. Xu, and X. Zhang, “Test case prioritization for black
box testing,” Proceedings of the 31st Annual International Computer
Software and Applications Conference (COMPSAC ’07), vol. 1, IEEE
Computer Society, 2007, pp. 465–474.

[27] G. Rothermel and M.J. Harrold, “A safe, efficient regression test selection
technique,” ACM Transactions on Software Engineering and Methodol-
ogy, vol. 6, no. 2, 1997, pp. 173–210.

[28] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Prioritizing test
cases for regression testing,” IEEE Transactions on Software Engi-
neering, vol. 27, no. 10, 2001, pp. 929–948.

11

[29] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “eXpress: Guided path
exploration for efficient regression test generation,” Proceedings of the
2011 International Symposium on Software Testing and Analysis (ISSTA
’11), ACM, 2011, pp. 1–11.

[30] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer, and R.S. Roos,
“TimeAware test suite prioritization,” Proceedings of the 2006 ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’06), ACM, 2006, pp. 1–12.

[31] D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
1997, pp. 67–82.

[32] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A study of
effective regression testing in practice,” Proceedings of the 8th Interna-
tional Symposium on Software Reliability Engineering (ISSRE ’97), IEEE
Computer Society, 1997, pp. 264–274.

[33] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, 2012, pp. 67–120.

[34] D. You, Z. Chen, B. Xu, B. Luo, and C. Zhang, “An empirical study on
the effectiveness of time-aware test case prioritization techniques,” Pro-
ceedings of the 2011 ACM Symposium on Applied Computing (SAC ’11),
ACM, 2011.

[35] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the gap
between the total and additional test-case prioritization strategies,” Pro-
ceedings of the 2013 International Conference on Software Engineering
(ICSE ’13), IEEE, 2013, pp. 192–201.

[36] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming,” Proceedings of the 18th
ACM SIGSOFT International Symposium on Software Testing and Analy-
sis (ISSTA ’09), ACM, 2009, pp. 213–224.

	I. Overview
	A. Introduction
	B. Summary of our novel TCP algorithm

	II. The PORA Approach
	A. Overview of PORA
	B. Measuring the Distance of Test Cases Based on Input Data
	C. Generating Scenarios by Clustering (Function f1)
	D. Selecting Candidate Test Cases for Position Exchange (Function f2)
	E. Measuring the Distance between P and S (Function f3)
	F. Finding a Test Case with Maximum Distance (Function f4)

	III. Empirical Study
	A. Research Questions
	B. Techniques for Comparison
	C. Subject Programs and Test Pools
	D. Test Suites
	E. Metrics
	F. Empirical Study Environment
	G. Empirical Study Procedure
	H. Results and Analyses
	1) Answering RQ1
	2) Answering RQ2
	3) Threats to Validity

	IV. Related Work
	V. Conclusion
	References

