

Postprint of article in The 2015 Stephen S. Yau Academic Symposium (SSYAS ’15), Proceedings of the IEEE 39th Annual

Computers, Software and Applications Conference Workshops (COMPSACW ’15), IEEE Computer Society (2015)

Slope-based Sequencing Yardstick for Analyzing

Unsatisfactory performance of multithreaded programs

An SSYAU Trend Estimation Approach to Performance Bug Localization*

W.K. Chan

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T.H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

 Shangru Wu, Y.T. Yu†

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

shangru.wu@my.cityu.edu.hk

csytyu@cityu.edu.hk

Zhenyu Zhang

State Key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences

Beijing, China

zhangzy@ios.ac.cn

Abstract—As users are increasingly concerned about energy

efficiency, they are also increasingly intolerant of performance

anomalies of programs that may cause significant energy waste.

Bug localization is a bottleneck in the development of multi-

threaded programs. Although both static and dynamic perfor-

mance bug localization techniques have been proposed, they

cannot handle performance anomalies with unforeseen patterns,

and cannot work well if the concept of performance anomaly is

fuzzy or evolves over time for the same program. We propose a

novel model-based approach to performance bug localization.

The approach is based on curve fitting and trend estimation over

program executions with performance data. We describe our

trend estimation model and illustrate it with the result of a case

study on locating three real-world performance bugs in MySQL.

Keywords—performance bug, model-based approach, multi-

threaded program, bug localization

I. INTRODUCTION

Bug localization is a difficult task in program development.
Ineffective bug localization severely affects the development
schedule. As energy efficiency is becoming a major concern in
the implementation of many programs [23], users are increas-

ingly intolerant of program performance anomalies causing
significant energy waste. This situation places heavy pressure
on developers to locate performance bugs in programs. In par-
ticular, many important real-world programs such as MySQL
[14] and Mozilla Firefox [6] are multithreaded. It is thus
imperative to develop effective techniques to locate perfor-
mance bugs in them. This paper proposes an innovative model-
based trend estimation approach known as Slope-based
Sequencing Yardstick for Analyzing Unsatisfactory program
performance (SSYAU) to address this problem.

A performance bug [18] is a defect in a program such that
its activation causes poorer performance (such as more time or
resources taken) to compute outputs than expected, irrespective
of the functional correctness of the execution.

Suppose we have a “performance-anomaly-free” version v1
of a program in mind and a performance metric such that a
higher metric value indicates better performance. We say that
an execution of the program version v2 is associated with a
performance anomaly with respect to that performance metric
if the metric value of the execution of v2 over an input is lower
than that of v1 over the same input.

The performance of a program is subject to natural varia-
tions due to inherent non-determinisms in the program or its
execution environment. A performance anomaly is not easily
revealed unless or until it manifests itself with a conspicuous
symptom, such as when an execution exhibits 10-fold slow-
down or 10-fold resources consumption. In many cases, it is
simply hard to deem a program execution to be unassociated
with any performance anomaly. But ignoring executions with-
out obvious performance anomalies may miss the opportunity
to locate detectable performance bugs. In the era of big data,
we should both (1) avoid making premature decisions to label
whether a program execution incurs a performance anomaly
and (2) explore the possibility of extracting from any execution
invaluable information that may be useful in a later stage.

* The acronym of our approach is “SSYAU” by design to celebrate Professor
Stephen S. Yau’s 80th birthday. For ease of understanding, however, we
will simply use “trend estimation” as the name of the model in the paper.

† Corresponding author.

 2015. This material is presented to ensure timely dissemination of scholarly
and technical work. Personal use of this material is permitted. Copyright
and all rights therein are retained by the authors or by other copyright
holders. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission of the
copyright holder. Permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the authors
or other copyright holders.

Administrator
 HKU CS Tech Report TR-2015-06

Hence, we contend that it is not the best option to locate
performance bugs by either (a) investigating only the
executions explicitly labeled with performance anomalies or
(b) investigating only the executions that exhibit behavior not
following the norm. We argue that performance bug localiza-
tion approaches should be able to deal with the presence of
(large and small) natural variations in executions.

MySQL [14] and Chrome [3] are widely used software
applications whose architectures include multithreaded compo-
nents. An earlier survey [10] confirms that popular multi-
threaded programs do exhibit many performance anomalies.

An execution of such programs involves numerous threads
[7], each exercising a potentially nested sequence of functions.
These threads often interleave with one another. Any thread
may incur performance anomalies, and improper coordination
among them may introduce another layer of such anomalies.

Fig. 1 shows three examples of performance anomalies in
multithreaded programs presented in the literature [10]. Fig.
1(a) illustrates a performance bug when invoking the function
apr_stat() for the Apache http server [1]. To retrieve the status
of a file, the original function accepts an input parameter
specifying the location of the file information. After upgrading
to a new version, apr_stat() requires the calling module to
specify the file type so as to return a result more efficiently, but
also allows a caller to skip the file type for compatibility with
the previous version. Although the functional correctness of a
calling module that does not fulfill the latest interface require-
ment will not be adversely affected, retrieving the status of a
file without specifying its type will be much slower than doing
so with its type specified precisely. This performance bug is
sequential in nature, that is, it manifests itself in sequential
code execution and is not unique to multithreading. Perfor-
mance bug locators should not ignore this kind of bug.

Fig. 1(b) shows a code excerpt from MySQL that uses a
function random() to compute a random number. The use of
random() is, however, not restricted to a single thread. To make
it thread-safe, a shared lock is kept within random() to regulate
the use of the critical section of the function. In MySQL, many
threads may use random() in parallel, resulting in frequent lock
contentions among multiple threads that queue up to acquire
the shared lock. This bug is concurrent in nature, because it
manifests itself during concurrent thread executions. Moreover,
it causes some program threads to wait instead of doing
computations, unnecessarily slowing down the execution.

Fig. 1(c) illustrates a performance bug in a multithreaded
program that renders the shape of an object invisible on the
canvas. The illustrated bug repair adds a variable check so that
a short-circuited path is taken when the checking result is true.
Locating this performance bug requires a semantic understand-
ing that bypassing the short-circuited computation will improve
performance while maintaining functional correctness. Perfor-
mance bug locators should be able to deal with semantic bugs.

Both static and dynamic performance bug localization tech-
niques have been proposed [4][5][8][9][10][12][22][24]. These
techniques either use predefined access patterns (or rules) to
mine the source code or executions of a program or compare
between executions with and without performance problems to
identify program entities that correlate with performance anom-
alies. They cannot handle applications having performance
anomalies with unforeseen patterns, and cannot work well if
the concept of performance anomaly is fuzzy or evolves over
time for the same application. Unfortunately, the list of such
patterns is open, and the same pattern may prompt a bug
localization technique to report a true performance bug for one
program but a false positive for another. Also, separating the
above two types of runs can be unsystematic: runs without per-

Patch for Apache Bug 45464 What is this bug

status = apr_stat (fscontext->info,

- APR_DEFAULT);

+ APR_TYPE);

 modules/dav/fs/repos.c

An Apache-API upgrade causes apr_stat to retrieve more

information from the file system and take longer time.

Now, APR_TYPE retrieves exactly what developers originally

needed through APR_DEFAULT.

Impact: The Apache http server is 10+ times slower in retrieving the file status.

(a) A performance bug in Apache http server httpd

MySQL Bug 38941 & Patch What is this bug

int fastmutex_lock (fmutex_t *mp) {
 ...
- maxdelay += (double) random();

+ maxdelay += (double) park_rng();

 ...
} thr_mutex.c

random() is a serialized global-mutex-protected function.

Using it inside fastmutex causes 40X slowdown in users’

experiments.

(b) A performance bug in MySQL

Mozilla Bug 66461 and Patch What is this bug

nsImage::Draw(...){
 ...
+ if (mlsTransparent) return;

 ...
 // render the input image
} nsImageGTK.cpp

When the input is a transparent image, all the computation in

Draw is useless.

Mozilla developers did not expect that transparent images are

commonly used by web developers to help layout.

The patch conditionally skips Draw.

 (c) A performance bug in Mozilla Firefox

Figure 1. Three sample performance bugs presented in [10]. In each code listing, the line with “-” on the left is in the buggy version, the line with “+” in the

left is in the bug-fixed version that replaces the “-” line. Other lines are in both the buggy and bug-fixed versions.

formance anomaly may exercise the same code fragments that
cause performance anomalies in other runs.

We propose a novel approach to localizing performance
bugs in multithreaded programs. The base model was outlined
in Zhang et al. [25]. This paper extrapolates it to performance
bug localization. The key idea is to model execution with
performance statistics of each function using trend estimation.
Such a trend can be a line or a higher order polynomial. From
our case study on locating three real-world performance bugs
in MySQL, we observe that a performance bug tends to be
associated with a lower order polynomial with a small fitting
error than a higher order polynomial with the best fitting error.

The main contribution of this paper is twofold. First, it is
the first work that presents a trend-estimation approach to per-
formance bug localization for multithreaded programs. Second,
it presents an exploratory case study that shows the feasibility
of locating performance bugs using trend estimation.

The paper is organized as follows: We first review closely
related literature in Section II. Then, we present the trend
estimation model in Section III followed by a case study in
Section IV. Section V concludes the paper.

II. RELATED WORK

We classify related work into three board categories.
The first category consists of pattern-based techniques [5]

[10]. They mine the source code or execution of a program and
match it against a set of predefined patterns (or rules), each
indicating the possible presence of a performance anomaly.
FindBugs is a classic example with a repository of 27 perfor-
mance bug patterns [5]. We found, however, that these patterns
are rather low-level, such as “HSC: huge string constants are
duplicated across multiple class files” (which locates a constant
string copied from one class to another through sequences of
function calls). Clearing all these anomalies still fails to locate
the kinds of performance bugs (such as those illustrated in
Section I) in real-world multithreaded programs.

Jin et al. [10] defined 50 manually crafted patterns based on
a study of real-world performance bugs in multithreaded
programs. There were also attempts to apply patterns identified
from one program to locate performance bugs in another
program. Xiao et al. [20] proposed to identify code fragments
in loops (such as user interface threads) that may slow down
owing to the execution of workload-heavy tasks.

Pattern-based techniques generally rely on manual
identification and formalization of concrete patterns. Early
recognition of performance bugs are impractical unless until a
pattern has been identified or the usage profile has been
changed significantly. Moreover, pattern-based approaches in
general are well known to incur many false positives.

The second category consists of performance profiling
techniques with or without code-based analysis, such as GNU
gprof [9] and StackMine [8]. A performance trace is a time-
ordered sequence of performance details. Each performance
detail contains values of performance metrics or memory
access metrics that characterize some aspects of the program
performance. For instance, GNU gprof [9] generates such
traces, which programmers may use to spot and revise parts of
the code that are time-consuming. Unlike static pattern-based
techniques, GNU gprof uses a dynamic approach to collect, for
example, the execution count and other performance statistics.

However, it does not have any extrapolation capability. As
such, the bug in Fig. 1(b) is unlikely to be identified.

Algorithmic profiling [24] is the latest dynamic technique
that estimates an empirical cost function for a data structure
based on the performance data collected when the executions
use the instances of this data structure. A key limitation, as
pointed out by the authors [24], is that this technique has not
been generalized to handle all parts/types of the program code.
Their research group also developed a performance trace ana-
lyzer framework [4], on top of which customized analyzers
using the framework primitives can be built to locate bugs by
correlating program locations with a certain type of perfor-
mance anomaly in mind. Their work does not address the
concurrent aspect of multithreaded programs, however.

Some research work adds various criteria to identify perfor-
mance bugs. One way is to integrate with the mining approach
or specific patterns (say, those obtained by techniques in the
first category). For instance, StackMine [8] has been applied to
diagnose performance traces of the Microsoft Windows 7 pro-
duction system. StackMine mines the call stacks over a set of
performance traces to find patterns that may adversely correlate
with the performance anomalies in the majority of the traces. It
shows the feasibility of trace comparisons to locate bugs in
multithreaded programs.

MacePC [12] first uses the executions with performance
anomalies to extract performance anomaly patterns. It then
applies model checking to explore the execution space similar
to the former executions but without such patterns. It looks for
the point in the earliest abstract state in the model checker that
diverges into executions with and without the patterns.

Yan et al. [22] statically analyze a codebase to identify
statements that unnecessarily manipulate the data structures by
tracking how object references are passed through functions.
TODDLER [15] monitors whether the code fragment of a loop
may perform computations with repetitive or partially similar
memory-access patterns across its iterations to spot perfor-
mance anomalies.

The third category consists of statistical correlation
techniques. Using various suspiciousness formulas, these tech-
niques aim to locate faults in program entities by analyzing the
distributions of passed and failed executions that exercise
individual program entities (such as statements). One major
class of techniques in this category is spectrum-based fault
localization (SBFL). Well-known examples include Tarantula
[11], Ochiai, CBI, CP [26], and SOBER. Theoretical analysis
[21] has been performed to explain why one subclass of SBFL
techniques can be more effective than another. SBFL is under
active research to locate semantic and functional bugs in
sequential programs, and has lately been adapted to locate
concurrency functional bugs (such as Falcon [16] and Racon
[13]). For example, Tarantula counts the proportions of failing
executions (denoted by x) and passed executions (denoted by y)
that exercise the same program statement. Then, it rates the
statement associated with the largest value of x/(x+y) as the
most suspicious to be faulty. It is clear from the formula x/(x+y)
that Tarantula is blind to multiple bugs in a program (possibly
exposed by the executions already). Moreover, most SBFL
techniques require the availability of passed executions (or
fragments of executions) to be effective [25]. Furthermore, the
issue of coincidental correctness [19] (which means that a

passed execution may go through a buggy statement) severely
limits the accuracy of SBFL techniques. Our experiment [19]
on functional bugs reveals that SBFL techniques may become
less effective than a random guess in some coincidental
correctness scenarios.

Performance bug localization research is emerging. Intui-
tively speaking, for the three performance bugs illustrated in
Fig. 1, an SBFL technique may count the number of times that
certain statements within apr_stat() in Fig. 1(a) and within
Draw() in Fig. 1(c) are executed, and the number of threads
queuing to acquire the shared lock within random() in Fig. 1(b).
These numbers are counted for both executions with and
without performance anomalies and then correlated with the
dissimilarity in the time taken to complete the executions.

Furthermore, the criteria to deem a particular execution to
be suffering from performance anomaly may be fuzzy and are
likely to vary across different applications. Jin et al. [10]
pointed out that a piece of code may perform well until the
usage of an application gradually changes over the years. For
example, a transparent bitmap image is more extensively used
in recent years to serve as the space separator to beautify the
layout of a webpage when compared with 10 years ago.

III. OUR MODEL

A. Basic Idea

The basic idea of our trend estimation model rests with the
following bug hypothesis (H1) as a starting point: The more
times that the execution of a multithreaded program invokes a
suspicious program entity1, the more likely is the execution
related to performance anomalies.

A clear difference between our model and other SBFL
techniques for functional bugs is that we do not distinguish
between passed and failed runs, as our interest is in perfor-
mance bugs. The model is based on the general statistical
method of the same name for time series analysis. A widely
adopted approach is to identify the best fit regression line using
least-squares fitting, showing the tendency of the samples
under study. Likewise, based on samples of the numbers of
times that different executions exercise the same program
entity, our base model identifies a best fit regression line. It
then calculates the signal-to-noise ratio [17] from the slope of
the regression line and the value of the fitting error. This ratio
is used to estimate the relevance of the program entity to a
performance bug.

Our approach generalizes individual performance data
samples for a program entity into an intuitively neat function,
which opens up a brand new direction for theoretical analysis.
We note that algorithmic profiling [24] produces an empirical
cost function but such a function does not have a clear trend.

B. Modeling

Consider a program modeled by a list of program entities
such as statements and functions. Suppose we are given a set of
overall performance metric values of the program executions
(such as the processing time of each execution). Given any
program entity, our trend estimation model divides the set of
program executions into disjoint partitions such that each

1
 Such as a function to retrieve the status of a file using apr_stat() in Fig. 1(a),

a lock acquisition call within random() in Fig. 1(b), and a call to render an

image using Draw() in Fig. 1(c).

execution in the same partition invokes the program entity
exactly the same number of times (say, c times). For the
theoretical development of our model, we further presume a
certain value of the anomaly rate , that is, the proportion
of executions with performance anomalies in each partition.
Interestingly, the need for this presumed value in our model
will be eliminated at the end.

It is important to clarify that in the context of performance
bug localization, the term “anomaly rate” is related to execu-
tions with performance anomalies rather than the exhibition of
output incorrectness, unlike the term “failure rate” in the testing
of functional properties or the localization of functional faults.

Note also that one of our targets is to establish a means of
locating performance bugs without having to determine the
anomaly rate. In the present phase, we discuss the problem
from a theoretical perspective to formulate the key notions and
model the program entities involved, assuming that the
anomaly rate is known. In a later phase of our model (see
Section III.E), we will present how to eliminate the need.

C. Recalibration

Given a program entity s, denotes the anomaly rate of
the partition in which all the executions in the partition never
invoke s. Conceptually, if none of the executions ever invokes
s, the latter should not be related to any performance anomaly
exhibited by the executions in question. Hence, if for s is
nonzero, it should be reset to zero. Similarly, other partitions
for the same s may have also overestimated their anomaly rates
by the amount . To compensate for this systematic error,
our trend estimation model calculates a recalibrated anomaly
rate , which gives a more realistic
estimate of the probability that the program entity exhibits
performance anomalies when exercised exactly c times.

Intuitively, if the program entity in question is within the
performance bug region and yet is nonzero, it may
indicate the existence of at least one other performance bug that
our trend estimation model can be iteratively applied to locate.
We will leave the reporting of the iterative strategy for locating
multiple performance bugs to future work.

D. Trend Fitting

In the fitting phase, our model estimates the trend for each
program entity to exhibit performance anomalies according to
the recalibrated anomaly rates. Given any program entity, when
 is defined, we may model as a point in two-
dimensional space. Following the bug hypothesis H1, for a
problematic program entity, should intuitively possess the
characteristics of a discrete monotonically increasing function.
Our base model estimates the relevance of a program entity to a
performance bug using a best fit regression line in two-
dimensional space.

To establish the base model, we consider the probability
that invoking s exactly c times does not lead to a performance
anomaly. This probability is given by , where p is the
probability that invoking s only once results in a performance
anomaly. The same probability can also be computed directly
as . (Note that we have not lifted the theoretical
assumption on the identification of non-problematic executions
with respect to the performance anomalies.) Equating these two
probabilities, we obtain .

Under suitable mathematical conditions, a function
may be represented by an infinite Maclaurin series2

where is the ith derivative of at the point .
In the base model, we use a linear function for trend estimation.
Thus, the recalibrated anomaly rate can be approximated by

 or simply as

 where is a constant. In this
way, the recalibrated anomaly rate can be fitted by a regression
line passing through with slope .

In general, the function may be a higher order poly-
nomial. Indeed, our preliminary case study to be presented in
Section IV shows that when performance anomalies are
present, the corresponding curve may be nonlinear.

For the moment, let us continue to take the linear form of
the polynomial function to present this part of trend estimation.
Our model applies least-squares analysis to minimize the error
in regression line fitting. For a given program entity, the mean

slope and standard deviation  are given by

where D is the set of possible numbers of times that any
program execution may invoke the given program entity.

However, the number of times that an execution invokes a
program entity is only a relative concept and may be weighted
differently among various program entities. Hence, the mean

slope for each specific program entity s should be normalized
by a factor before comparison, where is the largest

possible number of times that any execution may invoke s.
Inspired by the notion of the signal-to-noise ratio [17], for

each program entity, our base model determines ranking score
R as the ratio of the mean to the standard deviation, thus:

The ranking score estimates the relevance of each program
entity to performance bugs when executions with and without
performance anomalies can be distinguished. The higher the
value of R, the more suspicious will be the program entity s.

The range of the ranking score R is [−∞, +∞]. In other
words, both −∞ and +∞ are valid ranking scores. If a program
entity s comes with no sample point, it means that none of the
executions with performance anomalies has invoked s before
resulting in a performance problem. Hence, R is assigned a
value of −∞, meaning that s is the least suspicious with respect
to any performance anomalies demonstrated by the executions.
If a program entity comes with only one sample point, the slope

 is undefined, and we tentatively assign a value of 0 to R
because the program entity has not yet been demonstrated to
exhibit performance anomalies in more than one execution. We
will investigate whether this assumption holds and rectify the
value assignment accordingly. If the standard deviation is zero,
we have two sub-cases: (1) If s comes with one sample point, R

2
 A Taylor series represents by an infinite series in terms of the ith

derivative of at the point for some constant a. A Maclaurin

series is a special case of a Taylor series such that .

is tentatively assigned a value of 0 just as before. (2) If s comes
with more than one sample point, R is computed by taking the
limit, resulting in a value of +∞.

We will leave the formulation of the ranking score for
higher order polynomial functions to future work.

E. Eliminating the Dependency on Anomaly Rate

In this section, we would like to eliminate the need to find
the number of executions without performance anomalies as
presented in last section. Again, we illustrate the process using
the best fit regression line model.

For any program entity s, let be the number of
program executions such that each execution invokes s exactly
c times. We first determine the mean number of executions
irrespective of the value of c. We then replace every N(c) by

in the calculation of R to obtain an estimator as follows:

where is the number of runs with performance anomalies
such that each run invokes s exactly c times.

 only depends on executions with performance anomalies.
As we have mentioned in Section I, it is not practical enough to
deem which execution may incur a performance issue before
applying a performance bug localization technique. To tackle
this issue, we will further explore the technique design space.
For instance, one may fit the points by a polynomial
function h(x) with a monotonically increasing trend. Then, each

 in is replaced by h(c).
The elimination phase is optional if the set of executions

without performance anomalies can be clearly identified. Note
that this phase depends on the calculation of R using the signal-
to-noise ratio concept as presented in the last section, which is
only a linear approximation in our base model.

IV. EXPLORATORY CASE STUDY

We have conducted an exploratory case study on the appli-
cation of our trend estimation model to bug localization. The
aim of our case study is to explore the possible setting in the
design and solution spaces rather than verifying the proposed
model. The empirical results are summarized in this section.

The first phase of the case study [25] is on functional bugs.
It shows that, in most cases, the use of only failed executions to
locate functional bugs is as effective as existing SBFL
techniques that use both passed and failed executions. A clear
message is that if there is indeed valuable information in the
passed runs, current SBFL techniques have not been fully
successful in utilizing it.

The second case study is on performance bugs. We used the
keyword “performance” to search the MySQL bug repository
and picked three closed bug reports, each describing a bug-fix.

We executed MySQL 5.5 and MySQL 5.0, respectively,
over 10 randomly selected test cases taken from the MySQL
repository. Our experiment was conducted on Ubuntu Linux
10.04 configured on a 3.16GHz Intel Core 2 Duo processor
with 3.25GB physical memory. Following [2], we measured
the times needed to execute the test cases using the time
command of the Linux system. We plotted the execution times
against the numbers of invocations of the functions described
in the bug reports. The results are shown in Fig. 2.

The two functions in Figs. 2(a)(b) are buggy whereas the
function in Fig. 2(c) is non-buggy but simply mentioned in the
bug report. In each case, we make a best-fit polynomial. We

observe that the buggy functions in Figs. 2(a)(b) closely
resemble a polynomial of lower order than the curve in Fig.
2(c). Moreover, the curve in Fig. 2(c) also disagrees with our
base model that hypothesizes that a fitted curve resembles a
monotonically increasing function.

By the nature of curve fitting, it is possible to fit the data

points in Figs. 2(a)(b) by a polynomial of much higher order.
We did make such exploratory attempts but found that the
fitted curves would not monotonically increase. Moreover, the
corresponding curve fitting errors were not further reduced by
any significant amount (and certainly not by an order of
magnitude). By contrast, when we attempted to fit the data
points in Fig. 2(c) by a polynomial of much lower order, the
curve fitting error increased by at least an order of magnitude.

From the case study, it appears feasible to use polynomial
fitting and relative polynomial orders to assess whether a
program entity can be more relevant to performance anomalies.

V. CONCLUSION

We have presented a trend estimation approach to perfor-
mance bug localization. We have outlined an exploratory case
study on three real-world performance bugs that were present
in MySQL. As ongoing and further work, we will continue to
enhance the effectiveness and applicability of our approach.

ACKNOWLEDGMENT

This research is supported in part by the General Research
Fund of the Research Grants Council of Hong Kong (project
nos. 11201114, 125113, 716612, and 717811) and the National
Natural Science Foundation of China (project no. 61379045).

REFERENCES

[1] Apache HTTP Server Project, http://httpd.apache.org/.

[2] Y. Cai and W.K. Chan, “MagicFuzzer: Scalable deadlock detection for
large-scale applications,” Proceedings of the 34th ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE ’12), IEEE Computer
Society, 2012, pp. 606–616.

[3] Chromium, http://www.google.com/chrome.

[4] A. Diwan, M. Hauswirth, T. Mytkowicz, and P.F. Sweeney,
“TraceAnalyzer: A system for processing performance traces,” Software:
Practice and Experience, vol. 41, no. 3, 2011, pp. 267–282.

[5] FindBugs Bug Descriptions, University of Maryland, http://findbugs.
sourceforge.net/bugDescriptions.html.

[6] Firefox, Mozilla, http://www.mozilla.org/firefox/.

[7] C. Flanagan and S.N. Freund, “FastTrack: Efficient and precise dynamic
race detection,” Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09), ACM,
2009, pp. 121–133.

[8] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance debugging
in the large via mining millions of stack traces,” Proceedings of the 34th
International Conference on Software Engineering (ICSE ’12), IEEE
Computer Society, 2012, pp. 145–155.

[9] M. Honeyford, Speed your code with the GNU profiler, IEEE
DeveloperWorks Linux Technical Library, 2006, http://www.ibm.com/
developerworks/library/l-gnuprof.html.

[10] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’12), ACM, 2012, pp. 77–88.

[11] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” Proceedings of the 24th International Con-
ference on Software Engineering (ICSE ’02), ACM, 2002, pp. 467–477.

[12] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J.W. Anderson, and R. Jhala,
“Finding latent performance bugs in systems implementations,” Proceed-
ings of the 18th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE ’10), ACM, 2010, pp. 17–26.

[13] B. Lucia, B.P. Wood, and L. Ceze, “Isolating and understanding concur-
rency errors using reconstructed execution fragments,” Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’11), ACM, 2011, pp. 378–388.

[14] MySQL, http://www.mysql.com/.

[15] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting perfor-
mance problems via similar memory-access patterns,” Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13),
IEEE Computer Society, 2013, pp. 562–571.

[16] S. Park, R.W. Vuduc, and M.J. Harrold, “Falcon: Fault localization in
concurrent programs,” Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE ’10), vol. 1, ACM, 2010, pp.
245–254.

[17] E. Säckinger, Broadband Circuits for Optical Fiber Communication, John
Wiley, 2005.

[18] L. Song and S. Lu, “Statistical debugging for real-world performance
problems,” Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages and Applications
(OOPSLA ’14), ACM, 2014, pp. 561–578.

[19] X. Wang, S.C. Cheung, W.K. Chan, and Z. Zhang, “Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization,” Proceedings of the 31st International Conference on Soft-
ware Engineering (ICSE ’09), IEEE Computer Society, 2009, pp. 45–55.

[20] X. Xiao, S. Han, D. Zhang, and T. Xie, “Context-sensitive delta
inference for identifying workload-dependent performance bottlenecks,”
Proceedings of the 2013 International Symposium on Software Testing
and Analysis (ISSTA ’13), ACM, 2013, pp. 90–100.

[21] X. Xie, T.Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization,” ACM

(a) (b) (c)

Figure 2. Performance versus execution count graphs for functions in three real-world MySQL bug reports. Both subfigures (a) and (b) show the buggy

functions that have been fixed in bug reports 60025 and 11604 while subfigure (c) shows the non-buggy function mentioned in bug report 29921.

0

10

20

30

40

50

0 50000 100000

E
x
ec

u
ti

o
n

 t
im

e
(s

)

No. of invocations for buggy function

agg_item_set_convert()

Result of MySQL 5.5 Bug Report 60025

0

2

4

6

8

0 2000000 4000000

E
x
ec

u
ti

o
n

 t
im

e
(s

)

No. of invocations for buggy

function do_div_mod()

Result of MySQL 5.0 Bug Report 11604

0

10

20

30

31000 31200 31400 31600

E
x
ec

u
ti

o
n

 t
im

e
(s

)

No. of inocations for non-buggy

function MySQLparse()

Result of MySQL 5.0 Bug Report 29921

Transactions on Software Engineering and Methodology, vol. 22, no. 4,
2013, pp. 31:1–31:40.

[22] D. Yan, G. Xu, and A. Rountev, “Uncovering performance problems in
Java applications with reference propagation profiling,” Proceedings of
the 34th International Conference on Software Engineering (ICSE ’12),
IEEE Computer Society, 2012, pp. 134–144.

[23] C. Yang, C. Jia, W.K. Chan, and Y.T. Yu, “On accuracy-performance
tradeoff frameworks for energy saving: Models and review,” Interna-
tional Workshop on Software Quality and Management (SQAM ’12),
Proceedings of the 19th Asia-Pacific Software Engineering Conference
(APSEC ’12), vol. 2, IEEE Computer Society, 2012, pp. 58–65.

[24] D. Zaparanuks and M. Hauswirth, “Algorithmic Profiling,” Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12), ACM, 2012, pp. 67–76.

[25] Z. Zhang, W.K. Chan, and T.H. Tse, “Fault localization based only on
failed runs,” IEEE Computer, vol. 45, no. 6, 2012, pp. 64–71.

[26] Z. Zhang, W.K. Chan, T.H. Tse, B. Jiang, and X. Wang, “Capturing
propagation of infected program states,” Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (ESEC ’09/FSE-17), ACM, 2009, pp. 43–52.

