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Abstract—As users are increasingly concerned about energy 

efficiency, they are also increasingly intolerant of performance 

anomalies of programs that may cause significant energy waste. 

Bug localization is a bottleneck in the development of multi-

threaded programs. Although both static and dynamic perfor-

mance bug localization techniques have been proposed, they 

cannot handle performance anomalies with unforeseen patterns, 

and cannot work well if the concept of performance anomaly is 

fuzzy or evolves over time for the same program. We propose a 

novel model-based approach to performance bug localization. 

The approach is based on curve fitting and trend estimation over 

program executions with performance data. We describe our 

trend estimation model and illustrate it with the result of a case 

study on locating three real-world performance bugs in MySQL. 

Keywords—performance bug, model-based approach, multi-

threaded program, bug localization 

I. INTRODUCTION 

Bug localization is a difficult task in program development. 
Ineffective bug localization severely affects the development 
schedule. As energy efficiency is becoming a major concern in 
the implementation of many programs [23], users are increas-

ingly intolerant of program performance anomalies causing 
significant energy waste. This situation places heavy pressure 
on developers to locate performance bugs in programs. In par-
ticular, many important real-world programs such as MySQL 
[14] and Mozilla Firefox [6] are multithreaded. It is thus 
imperative to develop effective techniques to locate perfor-
mance bugs in them. This paper proposes an innovative model-
based trend estimation approach known as Slope-based 
Sequencing Yardstick for Analyzing Unsatisfactory program 
performance (SSYAU) to address this problem. 

A performance bug [18] is a defect in a program such that 
its activation causes poorer performance (such as more time or 
resources taken) to compute outputs than expected, irrespective 
of the functional correctness of the execution. 

Suppose we have a “performance-anomaly-free” version v1 
of a program in mind and a performance metric such that a 
higher metric value indicates better performance. We say that 
an execution of the program version v2 is associated with a 
performance anomaly with respect to that performance metric 
if the metric value of the execution of v2 over an input is lower 
than that of v1 over the same input. 

The performance of a program is subject to natural varia-
tions due to inherent non-determinisms in the program or its 
execution environment. A performance anomaly is not easily 
revealed unless or until it manifests itself with a conspicuous 
symptom, such as when an execution exhibits 10-fold slow-
down or 10-fold resources consumption. In many cases, it is 
simply hard to deem a program execution to be unassociated 
with any performance anomaly. But ignoring executions with-
out obvious performance anomalies may miss the opportunity 
to locate detectable performance bugs. In the era of big data, 
we should both (1) avoid making premature decisions to label 
whether a program execution incurs a performance anomaly 
and (2) explore the possibility of extracting from any execution 
invaluable information that may be useful in a later stage.  

* The acronym of our approach is “SSYAU” by design to celebrate Professor 
Stephen S. Yau’s 80th birthday. For ease of understanding, however, we 
will simply use “trend estimation” as the name of the model in the paper. 

† Corresponding author. 

 2015. This material is presented to ensure timely dissemination of scholarly 
and technical work. Personal use of this material is permitted. Copyright 
and all rights therein are retained by the authors or by other copyright 
holders. All persons copying this information are expected to adhere to the 
terms and constraints invoked by each author’s copyright. In most cases, 
these works may not be reposted without the explicit permission of the 
copyright holder. Permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works 
for resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the authors 
or other copyright holders. 

Administrator
  HKU CS Tech Report TR-2015-06



 

 

Hence, we contend that it is not the best option to locate 
performance bugs by either (a) investigating only the 
executions explicitly labeled with performance anomalies or 
(b) investigating only the executions that exhibit behavior not 
following the norm. We argue that performance bug localiza-
tion approaches should be able to deal with the presence of 
(large and small) natural variations in executions. 

MySQL [14] and Chrome [3] are widely used software 
applications whose architectures include multithreaded compo-
nents. An earlier survey [10] confirms that popular multi-
threaded programs do exhibit many performance anomalies.  

An execution of such programs involves numerous threads 
[7], each exercising a potentially nested sequence of functions. 
These threads often interleave with one another. Any thread 
may incur performance anomalies, and improper coordination 
among them may introduce another layer of such anomalies.  

Fig. 1 shows three examples of performance anomalies in 
multithreaded programs presented in the literature [10]. Fig. 
1(a) illustrates a performance bug when invoking the function 
apr_stat() for the Apache http server [1]. To retrieve the status 
of a file, the original function accepts an input parameter 
specifying the location of the file information. After upgrading 
to a new version, apr_stat() requires the calling module to 
specify the file type so as to return a result more efficiently, but 
also allows a caller to skip the file type for compatibility with 
the previous version. Although the functional correctness of a 
calling module that does not fulfill the latest interface require-
ment will not be adversely affected, retrieving the status of a 
file without specifying its type will be much slower than doing 
so with its type specified precisely. This performance bug is 
sequential in nature, that is, it manifests itself in sequential 
code execution and is not unique to multithreading. Perfor-
mance bug locators should not ignore this kind of bug. 

Fig. 1(b) shows a code excerpt from MySQL that uses a 
function random() to compute a random number. The use of 
random() is, however, not restricted to a single thread. To make 
it thread-safe, a shared lock is kept within random() to regulate 
the use of the critical section of the function. In MySQL, many 
threads may use random() in parallel, resulting in frequent lock 
contentions among multiple threads that queue up to acquire 
the shared lock. This bug is concurrent in nature, because it 
manifests itself during concurrent thread executions. Moreover, 
it causes some program threads to wait instead of doing 
computations, unnecessarily slowing down the execution. 

Fig. 1(c) illustrates a performance bug in a multithreaded 
program that renders the shape of an object invisible on the 
canvas. The illustrated bug repair adds a variable check so that 
a short-circuited path is taken when the checking result is true. 
Locating this performance bug requires a semantic understand-
ing that bypassing the short-circuited computation will improve 
performance while maintaining functional correctness. Perfor-
mance bug locators should be able to deal with semantic bugs. 

Both static and dynamic performance bug localization tech-
niques have been proposed [4][5][8][9][10][12][22][24]. These 
techniques either use predefined access patterns (or rules) to 
mine the source code or executions of a program or compare 
between executions with and without performance problems to 
identify program entities that correlate with performance anom-
alies. They cannot handle applications having performance 
anomalies with unforeseen patterns, and cannot work well if 
the concept of performance anomaly is fuzzy or evolves over 
time for the same application. Unfortunately, the list of such 
patterns is open, and the same pattern may prompt a bug 
localization technique to report a true performance bug for one 
program but a false positive for another. Also, separating the 
above two types of runs can be unsystematic: runs without per-

Patch for Apache Bug 45464 What is this bug 

status = apr_stat ( fscontext->info, 

- APR_DEFAULT ); 

+ APR_TYPE ); 

 modules/dav/fs/repos.c 

An Apache-API upgrade causes apr_stat to retrieve more 

information from the file system and take longer time. 

Now, APR_TYPE retrieves exactly what developers originally 

needed through APR_DEFAULT. 

Impact: The Apache http server is 10+ times slower in retrieving the file status. 

(a) A performance bug in Apache http server httpd 

MySQL Bug 38941 & Patch What is this bug 

int fastmutex_lock ( fmutex_t *mp ) { 
 ... 
-  maxdelay += (double) random(); 

+  maxdelay += (double) park_rng(); 

 ... 
} thr_mutex.c 

random() is a serialized global-mutex-protected function. 

Using it inside fastmutex causes 40X slowdown in users’ 

experiments. 

(b) A performance bug in MySQL 

Mozilla Bug 66461 and Patch What is this bug 

nsImage::Draw(...){ 
 ... 
+  if (mlsTransparent) return; 

 ... 
 // render the input image 
} nsImageGTK.cpp 

When the input is a transparent image, all the computation in 

Draw is useless. 

Mozilla developers did not expect that transparent images are 

commonly used by web developers to help layout. 

The patch conditionally skips Draw. 

 (c) A performance bug in Mozilla Firefox 

Figure 1. Three sample performance bugs presented in [10]. In each code listing, the line with “-” on the left is in the buggy version, the line with “+” in the 

left is in the bug-fixed version that replaces the “-” line. Other lines are in both the buggy and bug-fixed versions. 



 

 

formance anomaly may exercise the same code fragments that 
cause performance anomalies in other runs. 

We propose a novel approach to localizing performance 
bugs in multithreaded programs. The base model was outlined 
in Zhang et al. [25]. This paper extrapolates it to performance 
bug localization. The key idea is to model execution with 
performance statistics of each function using trend estimation. 
Such a trend can be a line or a higher order polynomial. From 
our case study on locating three real-world performance bugs 
in MySQL, we observe that a performance bug tends to be 
associated with a lower order polynomial with a small fitting 
error than a higher order polynomial with the best fitting error. 

The main contribution of this paper is twofold. First, it is 
the first work that presents a trend-estimation approach to per-
formance bug localization for multithreaded programs. Second, 
it presents an exploratory case study that shows the feasibility 
of locating performance bugs using trend estimation. 

The paper is organized as follows: We first review closely 
related literature in Section II. Then, we present the trend 
estimation model in Section III followed by a case study in 
Section IV. Section V concludes the paper. 

II. RELATED WORK 

We classify related work into three board categories. 
The first category consists of pattern-based techniques [5]

[10]. They mine the source code or execution of a program and 
match it against a set of predefined patterns (or rules), each 
indicating the possible presence of a performance anomaly. 
FindBugs is a classic example with a repository of 27 perfor-
mance bug patterns [5]. We found, however, that these patterns 
are rather low-level, such as “HSC: huge string constants are 
duplicated across multiple class files” (which locates a constant 
string copied from one class to another through sequences of 
function calls). Clearing all these anomalies still fails to locate 
the kinds of performance bugs (such as those illustrated in 
Section I) in real-world multithreaded programs. 

Jin et al. [10] defined 50 manually crafted patterns based on 
a study of real-world performance bugs in multithreaded 
programs. There were also attempts to apply patterns identified 
from one program to locate performance bugs in another 
program. Xiao et al. [20] proposed to identify code fragments 
in loops (such as user interface threads) that may slow down 
owing to the execution of workload-heavy tasks. 

Pattern-based techniques generally rely on manual 
identification and formalization of concrete patterns. Early 
recognition of performance bugs are impractical unless until a 
pattern has been identified or the usage profile has been 
changed significantly. Moreover, pattern-based approaches in 
general are well known to incur many false positives. 

The second category consists of performance profiling 
techniques with or without code-based analysis, such as GNU 
gprof [9] and StackMine [8]. A performance trace is a time-
ordered sequence of performance details. Each performance 
detail contains values of performance metrics or memory 
access metrics that characterize some aspects of the program 
performance. For instance, GNU gprof [9] generates such 
traces, which programmers may use to spot and revise parts of 
the code that are time-consuming. Unlike static pattern-based 
techniques, GNU gprof uses a dynamic approach to collect, for 
example, the execution count and other performance statistics. 

However, it does not have any extrapolation capability. As 
such, the bug in Fig. 1(b) is unlikely to be identified. 

Algorithmic profiling [24] is the latest dynamic technique 
that estimates an empirical cost function for a data structure 
based on the performance data collected when the executions 
use the instances of this data structure. A key limitation, as 
pointed out by the authors [24], is that this technique has not 
been generalized to handle all parts/types of the program code. 
Their research group also developed a performance trace ana-
lyzer framework [4], on top of which customized analyzers 
using the framework primitives can be built to locate bugs by 
correlating program locations with a certain type of perfor-
mance anomaly in mind. Their work does not address the 
concurrent aspect of multithreaded programs, however. 

Some research work adds various criteria to identify perfor-
mance bugs. One way is to integrate with the mining approach 
or specific patterns (say, those obtained by techniques in the 
first category). For instance, StackMine [8] has been applied to 
diagnose performance traces of the Microsoft Windows 7 pro-
duction system. StackMine mines the call stacks over a set of 
performance traces to find patterns that may adversely correlate 
with the performance anomalies in the majority of the traces. It 
shows the feasibility of trace comparisons to locate bugs in 
multithreaded programs. 

MacePC [12] first uses the executions with performance 
anomalies to extract performance anomaly patterns. It then 
applies model checking to explore the execution space similar 
to the former executions but without such patterns. It looks for 
the point in the earliest abstract state in the model checker that 
diverges into executions with and without the patterns. 

Yan et al. [22] statically analyze a codebase to identify 
statements that unnecessarily manipulate the data structures by 
tracking how object references are passed through functions. 
TODDLER [15] monitors whether the code fragment of a loop 
may perform computations with repetitive or partially similar 
memory-access patterns across its iterations to spot perfor-
mance anomalies.  

The third category consists of statistical correlation 
techniques. Using various suspiciousness formulas, these tech-
niques aim to locate faults in program entities by analyzing the 
distributions of passed and failed executions that exercise 
individual program entities (such as statements). One major 
class of techniques in this category is spectrum-based fault 
localization (SBFL). Well-known examples include Tarantula 
[11], Ochiai, CBI, CP [26], and SOBER. Theoretical analysis 
[21] has been performed to explain why one subclass of SBFL 
techniques can be more effective than another. SBFL is under 
active research to locate semantic and functional bugs in 
sequential programs, and has lately been adapted to locate 
concurrency functional bugs (such as Falcon [16] and Racon 
[13]). For example, Tarantula counts the proportions of failing 
executions (denoted by x) and passed executions (denoted by y) 
that exercise the same program statement. Then, it rates the 
statement associated with the largest value of x/(x+y) as the 
most suspicious to be faulty. It is clear from the formula x/(x+y) 
that Tarantula is blind to multiple bugs in a program (possibly 
exposed by the executions already). Moreover, most SBFL 
techniques require the availability of passed executions (or 
fragments of executions) to be effective [25]. Furthermore, the 
issue of coincidental correctness [19] (which means that a 



 

 

passed execution may go through a buggy statement) severely 
limits the accuracy of SBFL techniques. Our experiment [19] 
on functional bugs reveals that SBFL techniques may become 
less effective than a random guess in some coincidental 
correctness scenarios. 

Performance bug localization research is emerging. Intui-
tively speaking, for the three performance bugs illustrated in 
Fig. 1, an SBFL technique may count the number of times that 
certain statements within apr_stat() in Fig. 1(a) and within 
Draw() in Fig. 1(c) are executed, and the number of threads 
queuing to acquire the shared lock within random() in Fig. 1(b). 
These numbers are counted for both executions with and 
without performance anomalies and then correlated with the 
dissimilarity in the time taken to complete the executions. 

Furthermore, the criteria to deem a particular execution to 
be suffering from performance anomaly may be fuzzy and are 
likely to vary across different applications. Jin et al. [10] 
pointed out that a piece of code may perform well until the 
usage of an application gradually changes over the years. For 
example, a transparent bitmap image is more extensively used 
in recent years to serve as the space separator to beautify the 
layout of a webpage when compared with 10 years ago. 

III. OUR MODEL 

A. Basic Idea 

The basic idea of our trend estimation model rests with the 
following bug hypothesis (H1) as a starting point: The more 
times that the execution of a multithreaded program invokes a 
suspicious program entity1, the more likely is the execution 
related to performance anomalies.  

A clear difference between our model and other SBFL 
techniques for functional bugs is that we do not distinguish 
between passed and failed runs, as our interest is in perfor-
mance bugs. The model is based on the general statistical 
method of the same name for time series analysis. A widely 
adopted approach is to identify the best fit regression line using 
least-squares fitting, showing the tendency of the samples 
under study. Likewise, based on samples of the numbers of 
times that different executions exercise the same program 
entity, our base model identifies a best fit regression line. It 
then calculates the signal-to-noise ratio [17] from the slope of 
the regression line and the value of the fitting error. This ratio 
is used to estimate the relevance of the program entity to a 
performance bug. 

Our approach generalizes individual performance data 
samples for a program entity into an intuitively neat function, 
which opens up a brand new direction for theoretical analysis. 
We note that algorithmic profiling [24] produces an empirical 
cost function but such a function does not have a clear trend. 

B. Modeling 

Consider a program modeled by a list of program entities 
such as statements and functions. Suppose we are given a set of 
overall performance metric values of the program executions 
(such as the processing time of each execution). Given any 
program entity, our trend estimation model divides the set of 
program executions into disjoint partitions such that each 

                                                           
1
 Such as a function to retrieve the status of a file using apr_stat() in Fig. 1(a), 

a lock acquisition call within random() in Fig. 1(b), and a call to render an 

image using Draw() in Fig. 1(c). 

execution in the same partition invokes the program entity 
exactly the same number of times (say, c times). For the 
theoretical development of our model, we further presume a 
certain value of the anomaly rate     , that is, the proportion 
of executions with performance anomalies in each partition. 
Interestingly, the need for this presumed value in our model 
will be eliminated at the end. 

It is important to clarify that in the context of performance 
bug localization, the term “anomaly rate” is related to execu-
tions with performance anomalies rather than the exhibition of 
output incorrectness, unlike the term “failure rate” in the testing 
of functional properties or the localization of functional faults. 

Note also that one of our targets is to establish a means of 
locating performance bugs without having to determine the 
anomaly rate. In the present phase, we discuss the problem 
from a theoretical perspective to formulate the key notions and 
model the program entities involved, assuming that the 
anomaly rate is known. In a later phase of our model (see 
Section III.E), we will present how to eliminate the need. 

C. Recalibration 

Given a program entity s,      denotes the anomaly rate of 
the partition in which all the executions in the partition never 
invoke s. Conceptually, if none of the executions ever invokes 
s, the latter should not be related to any performance anomaly 
exhibited by the executions in question. Hence, if      for s is 
nonzero, it should be reset to zero. Similarly, other partitions 
for the same s may have also overestimated their anomaly rates 
by the amount     . To compensate for this systematic error, 
our trend estimation model calculates a recalibrated anomaly 
rate               , which gives a more realistic 
estimate of the probability that the program entity exhibits 
performance anomalies when exercised exactly c times. 

Intuitively, if the program entity in question is within the 
performance bug region and yet      is nonzero, it may 
indicate the existence of at least one other performance bug that 
our trend estimation model can be iteratively applied to locate. 
We will leave the reporting of the iterative strategy for locating 
multiple performance bugs to future work. 

D. Trend Fitting 

In the fitting phase, our model estimates the trend for each 
program entity to exhibit performance anomalies according to 
the recalibrated anomaly rates. Given any program entity, when 
     is defined, we may model          as a point in two-
dimensional space. Following the bug hypothesis H1, for a 
problematic program entity,      should intuitively possess the 
characteristics of a discrete monotonically increasing function. 
Our base model estimates the relevance of a program entity to a 
performance bug using a best fit regression line in two-
dimensional space. 

To establish the base model, we consider the probability 
that invoking s exactly c times does not lead to a performance 
anomaly. This probability is given by       , where p is the 
probability that invoking s only once results in a performance 
anomaly. The same probability can also be computed directly 
as       . (Note that we have not lifted the theoretical 
assumption on the identification of non-problematic executions 
with respect to the performance anomalies.) Equating these two 
probabilities, we obtain              . 



 

 

Under suitable mathematical conditions, a function      
may be represented by an infinite Maclaurin series2 

                 
 

  
        

  

  
    

where         is the ith derivative of      at the point    . 
In the base model, we use a linear function for trend estimation. 
Thus, the recalibrated anomaly rate can be approximated by 

                 
 

  
               or simply as 

           where              is a constant. In this 
way, the recalibrated anomaly rate can be fitted by a regression 
line passing through       with slope  . 

In general, the function      may be a higher order poly-
nomial. Indeed, our preliminary case study to be presented in 
Section IV shows that when performance anomalies are 
present, the corresponding curve may be nonlinear. 

For the moment, let us continue to take the linear form of 
the polynomial function to present this part of trend estimation. 
Our model applies least-squares analysis to minimize the error 
in regression line fitting. For a given program entity, the mean 

slope   and standard deviation  are given by 

                   
     

          
 

                  
 
    

     

where D is the set of possible numbers of times that any 
program execution may invoke the given program entity. 

However, the number of times that an execution invokes a 
program entity is only a relative concept and may be weighted 
differently among various program entities. Hence, the mean 

slope   for each specific program entity s should be normalized 
by a factor        before comparison, where        is the largest 

possible number of times that any execution may invoke s. 
Inspired by the notion of the signal-to-noise ratio [17], for 

each program entity, our base model determines ranking score 
R as the ratio of the mean to the standard deviation, thus: 

         

The ranking score estimates the relevance of each program 
entity to performance bugs when executions with and without 
performance anomalies can be distinguished. The higher the 
value of R, the more suspicious will be the program entity s. 

The range of the ranking score R is [−∞, +∞]. In other 
words, both −∞ and +∞ are valid ranking scores. If a program 
entity s comes with no sample point, it means that none of the 
executions with performance anomalies has invoked s before 
resulting in a performance problem. Hence, R is assigned a 
value of −∞, meaning that s is the least suspicious with respect 
to any performance anomalies demonstrated by the executions. 
If a program entity comes with only one sample point, the slope 

  is undefined, and we tentatively assign a value of 0 to R 
because the program entity has not yet been demonstrated to 
exhibit performance anomalies in more than one execution. We 
will investigate whether this assumption holds and rectify the 
value assignment accordingly. If the standard deviation is zero, 
we have two sub-cases: (1) If s comes with one sample point, R 

                                                           
2
 A Taylor series represents      by an infinite series in terms of the ith 

derivative of      at the point     for some constant a. A Maclaurin 

series is a special case of a Taylor series such that    . 

is tentatively assigned a value of 0 just as before. (2) If s comes 
with more than one sample point, R is computed by taking the 
limit, resulting in a value of +∞. 

We will leave the formulation of the ranking score for 
higher order polynomial functions to future work.  

E. Eliminating the Dependency on Anomaly Rate 

In this section, we would like to eliminate the need to find 
the number of executions without performance anomalies as 
presented in last section. Again, we illustrate the process using 
the best fit regression line model. 

For any program entity s, let      be the number of 
program executions such that each execution invokes s exactly 
c times. We first determine the mean number of executions    
irrespective of the value of c. We then replace every N(c) by    

in the calculation of R to obtain an estimator    as follows: 

   
                              

   

                                            
   

  

where      is the number of runs with performance anomalies 
such that each run invokes s exactly c times. 

   only depends on executions with performance anomalies. 
As we have mentioned in Section I, it is not practical enough to 
deem which execution may incur a performance issue before 
applying a performance bug localization technique. To tackle 
this issue, we will further explore the technique design space. 
For instance, one may fit the points          by a polynomial 
function h(x) with a monotonically increasing trend. Then, each 

     in    is replaced by h(c). 
The elimination phase is optional if the set of executions 

without performance anomalies can be clearly identified. Note 
that this phase depends on the calculation of R using the signal-
to-noise ratio concept as presented in the last section, which is 
only a linear approximation in our base model. 

IV. EXPLORATORY CASE STUDY 

We have conducted an exploratory case study on the appli-
cation of our trend estimation model to bug localization. The 
aim of our case study is to explore the possible setting in the 
design and solution spaces rather than verifying the proposed 
model. The empirical results are summarized in this section. 

The first phase of the case study [25] is on functional bugs. 
It shows that, in most cases, the use of only failed executions to 
locate functional bugs is as effective as existing SBFL 
techniques that use both passed and failed executions. A clear 
message is that if there is indeed valuable information in the 
passed runs, current SBFL techniques have not been fully 
successful in utilizing it. 

The second case study is on performance bugs. We used the 
keyword “performance” to search the MySQL bug repository 
and picked three closed bug reports, each describing a bug-fix. 

We executed MySQL 5.5 and MySQL 5.0, respectively, 
over 10 randomly selected test cases taken from the MySQL 
repository. Our experiment was conducted on Ubuntu Linux 
10.04 configured on a 3.16GHz Intel Core 2 Duo processor 
with 3.25GB physical memory. Following [2], we measured 
the times needed to execute the test cases using the time 
command of the Linux system. We plotted the execution times 
against the numbers of invocations of the functions described 
in the bug reports. The results are shown in Fig. 2. 



 

 

The two functions in Figs. 2(a)(b) are buggy whereas the 
function in Fig. 2(c) is non-buggy but simply mentioned in the 
bug report. In each case, we make a best-fit polynomial. We 

observe that the buggy functions in Figs. 2(a)(b) closely 
resemble a polynomial of lower order than the curve in Fig. 
2(c). Moreover, the curve in Fig. 2(c) also disagrees with our 
base model that hypothesizes that a fitted curve resembles a 
monotonically increasing function. 

By the nature of curve fitting, it is possible to fit the data 

points in Figs. 2(a)(b) by a polynomial of much higher order. 
We did make such exploratory attempts but found that the 
fitted curves would not monotonically increase. Moreover, the 
corresponding curve fitting errors were not further reduced by 
any significant amount (and certainly not by an order of 
magnitude). By contrast, when we attempted to fit the data 
points in Fig. 2(c) by a polynomial of much lower order, the 
curve fitting error increased by at least an order of magnitude. 

From the case study, it appears feasible to use polynomial 
fitting and relative polynomial orders to assess whether a 
program entity can be more relevant to performance anomalies. 

V. CONCLUSION 

We have presented a trend estimation approach to perfor-
mance bug localization. We have outlined an exploratory case 
study on three real-world performance bugs that were present 
in MySQL. As ongoing and further work, we will continue to 
enhance the effectiveness and applicability of our approach. 
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Figure 2. Performance versus execution count graphs for functions in three real-world MySQL bug reports. Both subfigures (a) and (b) show the buggy 

functions that have been fixed in bug reports 60025 and 11604 while subfigure (c) shows the non-buggy function mentioned in bug report 29921. 

0 

10 

20 

30 

40 

50 

0 50000 100000 

E
x
ec

u
ti

o
n

 t
im

e 
(s

) 

No. of invocations for buggy function 

agg_item_set_convert() 

Result of MySQL 5.5 Bug Report 60025 

0 

2 

4 

6 

8 

0 2000000 4000000 

E
x
ec

u
ti

o
n

 t
im

e 
(s

) 

No. of invocations for buggy 

function  do_div_mod() 

Result of MySQL 5.0 Bug Report 11604 

0 

10 

20 

30 

31000 31200 31400 31600 

E
x
ec

u
ti

o
n

 t
im

e 
(s

) 

No. of inocations for non-buggy 

function MySQLparse() 

Result of MySQL 5.0 Bug Report 29921 



 

 

Transactions on Software Engineering and Methodology, vol. 22, no. 4, 
2013, pp. 31:1–31:40. 

[22] D. Yan, G. Xu, and A. Rountev, “Uncovering performance problems in 
Java applications with reference propagation profiling,” Proceedings of 
the 34th International Conference on Software Engineering (ICSE ’12), 
IEEE Computer Society, 2012, pp. 134–144. 

[23] C. Yang, C. Jia, W.K. Chan, and Y.T. Yu, “On accuracy-performance 
tradeoff frameworks for energy saving: Models and review,” Interna-
tional Workshop on Software Quality and Management (SQAM ’12), 
Proceedings of the 19th Asia-Pacific Software Engineering Conference 
(APSEC ’12), vol. 2, IEEE Computer Society, 2012, pp. 58–65. 

[24] D. Zaparanuks and M. Hauswirth, “Algorithmic Profiling,” Proceedings 
of the 33rd ACM SIGPLAN Conference on Programming Language 
Design and Implementation (PLDI ’12), ACM, 2012, pp. 67–76. 

[25] Z. Zhang, W.K. Chan, and T.H. Tse, “Fault localization based only on 
failed runs,” IEEE Computer, vol. 45, no. 6, 2012, pp. 64–71. 

[26] Z. Zhang, W.K. Chan, T.H. Tse, B. Jiang, and X. Wang, “Capturing 
propagation of infected program states,” Proceedings of the 7th Joint 
Meeting of the European Software Engineering Conference and the ACM 
SIGSOFT International Symposium on Foundations of Software Engi-
neering (ESEC ’09/FSE-17), ACM, 2009, pp. 43–52. 




