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Abstract—Many composite workflow services utilize non-imperative XML technologies such as WSDL, XPath, XML schema, and 
XML messages. Regression testing should assure the services against regression faults that appear in both the workflows and these 
artifacts. In this paper, we propose a refinement-oriented level-exploration strategy and a multilevel coverage model that captures 
progressively the coverage of different types of artifacts by the test cases. We show that by using them, the test case prioritization 
techniques initialized on top of existing greedy-based test case prioritization strategy form a subsumption hierarchy such that a 
technique can produce more test suite permutations than a technique that subsumes it. Our experimental study of a model instance 
shows that a technique generally achieves a higher fault detection rate than a subsumed technique, which validates that the 
proposed hierarchy and model have the potential to improve the cost-effectiveness of test case prioritization techniques. 

Index Terms—Test case prioritization, service orientation, XPath, WSDL, XML messages. 

——————————      —————————— 

1 INTRODUCTION 

n a composite business service (typically specified in Web 
Services Business Process Execution Language (WS-BPEL or 

simply BPEL) [41]), a business process may invoke external 
web services to execute the required functionality by match-
ing the contents of XML messages with schemas in Web 
Services Description Language (WSDL) specifications [42]. 

A revised XPath expression [45] to support a particular 
workflow step may extract wrong sets of contents from XML 
messages for some other workflow steps [29]. Similarly, a 
revised XML schema embedded in a WSDL specification that 
includes an additional field may mistakenly cause the XPath 
expression to match some extra query paths in an XML 
message. Modifying the workflow logics may route mis-

matched XML messages along workflow steps different from 
the previous workable ways unintentionally. 

Regression testing [47] aims at detecting potential faults 
caused by software changes, and is the de facto approach to 
assuring revised applications [25], [37]. It reruns the existing 
test cases to assure that no previously working function has 
failed as a result of the modification [25]. To reduce costs, it is 
desirable to detect failures as soon as possible. Test Case 
Prioritization (TCP) [19], [28], [33], [48] is an important 
aspect in regression testing [19], [47]. It schedules the test 
cases in a regression test suite with a view to maximizing 
certain objectives (such as revealing faults earlier), which 
helps reduce the cost of maintenance. 

A composite service has multiple levels of details. Take 
WS-BPEL services as an example. Different services may 
have different workflow steps. Every workflow step in a WS-
BPEL service may declare or refer to an XPath query. Each 
XPath query incorporates a layer of “conceptual” branch 
decisions into the workflow step (such as deciding whether a 
hotel room can be selected by following the XML document 
structure). It associated with a WSDL specification [29], each 
“conceptual” branch decision becomes a set of concrete tags, 
which is enumerable and varies according to the actual WSDL 
specification available. One single such concrete tag in an 
XML message suffices to make the corresponding “concep-
tual” branch decision to be evaluated as true (such as suc-
cessfully finding a hotel room according to a particular XML 
tag). Of course, the specific tag matching the enumerable set 
may vary from one XML message to another. For instance, by 
viewing inside-out, the level of details changes from work-
flows to XPath queries, then to WSDL specifications, specific tag 
usages, and finally to XML messages. Similarly, viewing from 
outside-in produces another sequence of artifacts.  

We have modeled such a layer of enumerable sets of tags 
as an XPath Rewriting Graph (XRG) [29]. To specify a specific 
tag in an enumerate set of tags of XRG to be referred to, we 
defined a corresponding XRG pattern [30]. 

In [33], we have proposed the first multilevel coverage 
model that considers the first three levels of details when 
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viewed inside-out and formulated the first subsumption hier-
archy of TCP techniques. We have also shown that some 
level-exploration strategies (such as the summation strategy) 
fail to result in techniques that form a hierarchy based on 
our subsumption relation. 

In this paper, we extend the multilevel coverage model in 
[33] to cover the last two levels of details presented above. To 
explore different levels of details while preserving the 
subsumption relation, we propose a Refinement-Oriented 
Level-Exploration (ROLE) strategy. ROLE refers to the next 
unused level of detail only if using the current level of detail 
cannot help a prioritization strategy (e.g., the additional 
strategy [19]) select a test case. To make our work more 
focused, this paper does not consider other level-exploration 
strategies such as the summation strategy, which has no 
subsumption relation with TCP techniques. 

Based on the above model, the ROLE strategy, and 
various prioritization strategies, we formulate a subsumption 
relation and a provable hierarchy of TCP techniques, 
including eight ROLE-enriched techniques. We also verify 
our work with experiments on fault detection rates using a 
benchmark suite of eight WS-BPEL subjects as well as a case 
study on a real-world service-based application. The result 
shows that techniques located higher in the hierarchy are 
more effective. 

The main contribution of this paper, together with its 
preliminary version [33], is threefold. (i) We propose the first 
multilevel coverage model and refinement-oriented level-
exploration strategy for TCP techniques. (ii) We show that 
the resultant TCP techniques form a subsumption hierarchy. 
To the best of our knowledge, this is the first logical hier-
archy to relate TCP techniques in the public literature. The 
hierarchy concretely demonstrates that some but not all TCP 
techniques can be compared logically. (iii) We report an 
experimental study that validates the fault detection rates of 
the techniques in the hierarchy. 

The rest of the paper is organized as follows: Section 2 
gives the preliminaries. Section 3 outlines a motivating 
example. Section 4 presents our hierarchy of prioritization 
techniques, followed by its validation in Section 5. Section 6 
discusses related work. Section 7 concludes the paper. 

2 PRELIMINARIES 

2.1 TCP Metrics and Control Techniques 
TCP techniques can be designed to achieve certain goals 
(such as maximizing the coverage rate) in regression testing 
of the next revised versions. The TCP problem, adapted from 
[19], is specified as follows: 

Given. T, a test suite; PT, a set of permutations of T; and f, 
a function from PT to real numbers. 

Objective. To find a reordered test suit T’PT such that 
T’’PT, f(T’) ≥ f(T’’). 

The metrics weighted Average of the Percentage of Faults 
Detected (APFD) [19], average Relative Position (RP) [39], and 
Harmonic Mean of rate of Fault Detection (HMFD) [48] each 
evaluates TCP techniques from the perspective of the rate of 
revealing faults. A higher APFD value indicates a higher (or 
better) fault detection rate, whereas a lower RP or HMFD 
value indicates a higher fault detection rate. In this paper, the 

function f maps every permutation T’ in PT to the APFD, RP, 
or HMFD value of T’. Each metric value ranges between 0 
and 1. More specifically, let T be a test suite containing n test 
cases, F be a set of m faults revealed by T, and TFi be the 
index of the first test case in the reordered test suite T’ that 
reveals fault i. The APFD and HMFD values of T’ are 
computed as follows:  

        
             

  
 

 

  
 

 

      
 

 
   

 
 

   
   

 
   

 

 

Let          be the probability that the first failed test case 
caused by fault i is in position    . The RP value of fault i is 
computed as follows: 

       
             

 
     

 
 

We will compare TCP techniques in Section 5 with two 
control techniques, which we briefly summarize here: 

C1: Random ordering [19] randomly orders the test cases 
in a test suite T. 

C2: Optimal prioritization [19]. Given a program P and a 
set of known faults in P, if we know the specific test cases in 
a test suite T that expose specific faults in P, then an optimal 
ordering of the test cases is the one that maximizes the fault 
detection rate of T. C2 approximates the optimal case [19]. 

2.2 XPath and XPath Query Model 

2.2.1 XPath 

We adopt the definition and notation of XPath expression 
from [34]. Let  be the element labels and attribute labels that 
may appear in XML documents. Figure 1 summarizes the 
semantics of XPath expressions taken from [34], where an 
XPath expression is defined by the following grammar: 

][|//|/|.|*| qqqqqqnq  

where n is any label in , * denotes a wildcard label, and “.” 
(the dot operator) denotes the current node. The constructors 
/ and // mean child and descendant navigations, while the 
square brackets [ ] enclose a predicate. The set of all trees are 
denoted by T, and each tree represents an XML document 
satisfying an XML schema (denoted by ). For a tree tT, an 
XPath query q(t) is a query on t using an XPath expression q, 
and returns a set of nodes of t. Following [34], we denote the 
sets of nodes and edges by NODES(t) and EDGES(t), respec-
tively, and denote the label of node x by LABEL(x). We also 
use EDGES*(t) to denote the Kleene closure of EDGES(t). 

n(x)

*(x)

.(x)

(q1/q2)(x) 

(q1//q2)(x) 

(q1[q2])(x) 

=

=

= 

=

=

=

Rule

1

2

3

4 

5

6 

…

…

…

…

…

…

{y | (x, y)∈EDGES(t), LABEL(y) = n}

{y | (x, y) ∈EDGES(t)}

{x}

{z | y∈q1(x), z∈q2(y)}

{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)} 

{y | y∈q1(x), q2(y)≠Ø} 

left hand side right hand side

 
Figure 1. Semantics of XPath expressions (from [34]). 

For Rule 5, apart from the sub-terms q1(x) and q2(u), there 
is also a sub-term {u | (y, u)EDGES*(t)}, which means all the 
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nodes u in t are reachable from y. For ease of specifying the 
XPath query model in this paper, we define a new rule (Rule 
7) as follows: 

 //(x) = {y | (x, y)EDGES*(t)} …  7 

We show an XML message on the right of Figure 2. It 
contains two parts: a specific hotel room under the path 
/hotel, and a list of hotel rooms under the path 
/hotel/hotelList/hotel. Queries 1, 2, and 3 on the left of the 
same figure are XPath queries each enclosed within a 
dashed-and-dotted rectangle. They search for hotel name(s) 
under the first path (/hotel/name/), both paths (//name/), and 
the second path (/hotel/hotelList/hotel/name/), respectively. 

hotel

……

name

hotelList

name name

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1</persons>

</room>

</hotel>

<hotel>

<hotelList>

<hotel><name>Hilton Hotel

</name>…</hotel>

<hotel><name>Westin Hotel

</name>…</hotel>        

</hotelList>

</hotel>

search

/hotel/hotelList/hotel/name/

/hotel/name/
Query 1

Query 2

Query 3

search

//name/

 

Figure 2. Effects of the structure of an XML message 
on different XPath queries to locate hotels using hotel name. 

2.2.2 XPath Query Model 
An XPath Rewriting Graph (XRG) [29] represents potential 
scenarios of content selections by XML messages. XRG is 
built on the semantics rules for an XPath expression q 
presented in Figure 1. It treats every such rule as a “left-to-
right” rewriting rule in the spirit of term rewriting [13] to 
transform the query q. In essence, given a query q and a 
document model , the algorithm in [29] creates a node for 
q, locates a rule whose left hand side matches the query q, 
and then creates a set of XRG nodes pointed to by the former 
node. Specifically, if the matching rule has d sub-terms on the 
right hand side of the rule (such as d = 3 for Rule 5), it creates 
d XRG nodes, one for each sub-term. The types of these d 
nodes depend on whether the sub-term includes any query 
(such as q2 in Rule 5). XRG nodes with and without query are 
referred to as rewriting nodes and rewritten nodes, respectively. 
Each rewritten node will not be subject to further rewriting. 

The query (such as q2 in Rule 5) in each of such rewriting 
nodes is then used to generate a new set of rewriting nodes 
and rewritten nodes. If any newly generated XRG node is the 
same as an existing XRG node that is previously generated, 
the algorithm just reuses the existing XRG node (to create a 
fixed point) and discards this newly generated one. 

A rewriting node is represented by a triple q, Lc, rule and 
a rewritten node is represented by a quadruple q, Lc, Ln, S. 
In such an XRG node, q is an XPath expression. Lc and Ln are 
sets of nodes in the document model  (that is, Lc, Ln  
NODES()). They represent the sets of nodes reachable by q 
based on the semantics defined in Figure 1: Lc is the set of 
nodes in  located by the rewriting step pointing to it, and Ln 
is the set of nodes in  that can be located by q starting from 
at least one node in Lc. S is the rewritten form of q based on 
the matching rule. Since Figure 1 shows the semantic rules of 
XPath expression in set notion, S is also expressed in set 
notation. Also, rule denotes the left hand side of the matching 
rewriting rule (in Figure 1). The set Lc in the rewriting node 
for the inputted query q is singleton and contains the unique 
root node ROOT of the schema . 

In the spirit of data flow analysis, we further consider any 
variable generated in XRG as a variable definition, and the use 
of a variable provided by a preceding node as a variable usage. 
Such variables (e.g., Lc and Ln in rewritten nodes) are concep-
tual in nature and are not program variables because they 
never appear in an implemented program. We thus call them 
conceptual variables. For example, the XPath query in Figure 4 
returns the conceptual variable g at node R10. 

Definition 1 (XPath Rewriting Graph). An XRG for an 
XPath query is a five-tuple q, , Nx, Ex, Vx such that 

(1) q is an XPath expression for the XPath query;  is an 
XML schema that describes the XML document to be 
queried on. 

(2) Nx is a set of rewriting nodes and rewritten nodes; Vx 
is a set of conceptual variables defined on the nodes 
in Nx. 

(3) Ex is a set of edges, each representing the transition 
between two nodes. Each edge is denoted by a tuple 
(sc, sn), where sc, sn ∈ Nx and sn rewrites sc. 

1 <xsd:complexType name="hotel"> 

2  <xsd:element name="name" type="xsd:string"/> 

3  <xsd:element name="room" type="xsd:roomType"/> 

4  <xsd:element name="error" type="xsd:string"/> 

5  <xsd:element name="hotelList" type="xs:hotelList"/> 

6 </xsd:complexType> 

7 <xsd:complexType name="roomType"> 

8  <xsd:element name="roomno" type="xsd:int" /> 

9  <xsd:element name="price" type="xsd:int"/> 

10  <xsd:element name="persons" type="xsd:int"/> 

11 </xsd:complexType> 

12 <xsd:complexType name="hotelList"> 

13  <xs:element name="Hotel" type="xs:hotel" 

maxOccurs="10"/> 

14 </xsd:complexType> 
 

Figure 3. Excerpt from WSDL document: XML schema of hotel. 

< //price/, A,(q1//q2)>

<room[precondition]/price/*, C,(q3/q4)>

q7(E),q7=(price) q8(F), q8=*

q1(A), q1= * q2(C), q2=(room[precondition]/price/*)

R1

R3R2 R4

R9 R10

XQ(HotelInformation, //room[precondition]/price/)
Rewriting Node

Rewritten Node

precondition: (@price‘Price’ and @persons=’Num’)

A = {ROOT} B = {hotel} C = {name, room, roomno, price, persons, error}      D = {room}    E = {room}    

F = {price} G = {g | g is the price value} 

Rule 1: {y|(x, y)∈EDGES(t), LABEL(y) = n}     Rule 2:  {y|(x, y)∈EDGES (t)}   

Rule 4: {z| y∈q1(x), z∈q2(y)}              Rule 5:  {z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u) } 

Rule 6: {y| y∈q1(x), q2(y) ≠ Ø }                  Rule 7:  {y|(x, y)∈EDGES*(t)} 

< *, A, B, Rule2>

< price, E, F, Rule1> < *, F, G, Rule2>

q5(C),q5=(precondition) q6(D), q6=room

R7 R8

<precondition, C, 

D, Rule 1>

< room, D, E, 

Rule 1>

<room[precondition], C,(q5[q6])> <price/*, E,(q7/q8)>

R5 R6

q3(C),q3=room[precondition])
q4(E),q4= price/*

< //, B, C, Rule 7>

 

Figure 4. Example of XPath Rewriting Graph. 
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Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

RoomPrice =  XQ(HotelInformation,

//room[@price≤'Price' and 
persons≥‘Num’]/price)

if XQ(HotelInformation, //roomno/) ≠
null

&& RoomPrice≤ Price
if RoomPrice≥ 0

&& RoomPrice≤ Price

No

RoomPrice =  XQ(HotelInformation,

//room[@price≤'Price' and 
@persons=‘Num’]/price)

Yes

Input: 

RoomPrice

Output: 

BookingResult

Input: BookRequest

A5:

Validate

Price

A6: Fault 
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Input:    Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign 
RoomPrice

(a) Original Process (b) Changed Process – 1 (c) Changed Process  2

No
Yes Input: 

RoomPrice

Output: 

BookingResult

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≥ 0

&& RoomPrice≤ Price

Input: BookRequest

A5:

Validate

Price

A6: Fault 
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Input:    Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign 
RoomPrice

RoomPrice =  XQ(HotelInformation,

//room[@price≤'Price' or

@persons≥‘Num’]/price)

No Yes
Input: 

RoomPrice

Output: 

BookingResult

Input: BookRequest

A5:

Validate

Price

A6: Fault 
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Input:    Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign 
RoomPrice

A9: Reply Fault A9: Reply Fault A9: Reply Fault

The test cases t2 and t3 can 

detect the fault. The test case t6 can detect the fault.

 

Figure 5. Activity diagrams of business process HotelBooking. 

 
Let us show an example of an XRG. Suppose, during the 

reservation of a hotel room (see the full example in Section 3), 
the booking information (in XML format) is kept in a BPEL 
variable HotelInformation. Figure 3 shows a simplified XML 
schema hotel for HotelInformation. A room has three attributes 
(lines 8–10): roomno, price, and persons (indicating the 
maximum number of persons allowed). Consider an XPath 
query on HotelInformation, denoted by XQ(HotelInformation, 
q), where q is //room[@price  ’Price’ and @persons = 

’Num’]/price/. Informally, q finds a room within the requested 
price that can accommodate the requested number of 
persons. The corresponding XRG is shown in Figure 4. 

We show the first rewriting step to illustrate how an XRG 
is computed. XQ(HotelInformation, q) is identified by Rule 5 
as q1//q2, where q1 = * and q2 = room[precondition1]/price/*), in 
which precondition1 is “@price  ’Price’ and @persons 

= ’Num’ ”. Since there are queries on the right hand side of 
Rule 5, a rewriting node R1 is generated. The middle sub-
term on the right hand side of Rule 5 matches Rule 7, and 
hence R3 is generated. Next, the algorithm recursively 
processes the two queries q1 and q2. The query q1 matches 
Rule 2, and the right hand side of Rule 2 does not contain 
any query and only contains one sub-term, and thus one 
rewritten node R2 is generated. The query q2 matches Rule 4, 
which contains other queries on its right hand side. The 
rewriting node R4 is thus generated. The remaining rewriting 
steps are similar. 

After constructing the XRG, we obtain a conceptual path 
p that models a logical computation of an XPath query via an 
inorder traversal of the XRG with all the rewritten nodes R2, R3, 
R7, R8, R9, and R10 in sequence. Such a conceptual path p 
contains implicit predicates, each of which decides on a 
legitimate branch (called an XRG branch) to be taken. For 
instance, if an XML document does not contain any element 
that match the set B in R2, B will be empty. This will result in 
no more applicable rewriting. A succeeding rewritten node 
will appear in a conceptual path only if its preceding 
rewritten node provides a non-empty set of Ln. A branch 
decision can be modeled by whether Ln in a node is empty. 

We revisit the notion of XRG pattern: In general, a 
conceptual variable z may contain multiple tags of an XML 
schema. As long as the corresponding XML message matches 
at least one tag in the tag set of z, this variable does not 
distinguish which subset of tags having been selected. There-
fore, we define an instantiation of z as assigning a concrete 
value to z. 

To differentiate the usages of these tags in the same query 
path, we introduced XRG patterns in [30]. We will give 
examples of XRG patterns in Section 3 (see Table 4 also). 

Definition 2 (XRG Pattern [30]). For any given XRG r = 
q, , Nx, Ex, Vx, an XRG pattern (r) is an instantiation of 
r such that (i) a tag ti is assigned to the ith variable ( Vx) 
in a conceptual path p based on the definition order of the 
variables, and (ii) ti must be used (in terms of data flow 
associations) by a subsequent rewritten node n  Nx to 
locate ti+1 in the path p. 

3 MOTIVATING EXAMPLE 

3.1 Modification Example 

We adapt the HotelBooking process in TripHandling [1] to 
motivate our work. HotelBooking offers hotel booking services. 
Since the actual BPEL code in XML format is quite lengthy, 
we use an activity diagram to depict the business process, as 
shown in Figure 5a. 

We represent a workflow step (numbered as Ai for i from 
1 to 9) and a transition between two steps by a node and a 
link, respectively. We annotate nodes with data extracted 
from the process, such as the input/output parameters of the 
activities and XPath queries. The process in Figure 5a is: 

(a) A1 receives a user’s hotel booking request, and stores it in 
the variable BookRequest. 

(b) A2 extracts the inputted room price and number of 
persons via the XPath queries //price/ and //persons/ from 
BookRequest, and stores them in the variables Price and 
Num, respectively. 

(c) A3 invokes an external service HotelPriceService to find 
available hotel rooms with prices within budget (not 
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exceeding Price), and keeps the result in HotelInformation 
(with its schema as defined in Figure 3). 

(d) A4 assigns RoomPrice using the price obtained from the 
query //room[@price≤’Price’ and @persons= 
’Num’]/price/. 

(e) A5 further verifies locally that the price in HotelInformation 
should not exceed the inputted price (the variable Price). 

(f) If the verification passes, A7 will invoke HotelBookService 
to book a room, and A8 returns the result to the customer. 

(g) If RoomPrice is erroneous or HotelBookService (A7) 
produces a failure, A6 will invoke a fault handler, and A9 
will then return the fault. 

We present two changes in Figure 5b and Figure 5c that 
may result in integration failures. Suppose John decides that 
node A4 in Figure 5a should be changed to node A4 in Figure 
5b. That is, he attempts to allow customers to select any 
available room for the requested number of persons. 
However, he wrongly changes the precondition in the XPath 
query (namely, changing “and” to “or”), which introduces a 
regression fault. Further, suppose that another engineer Lucy 
wants to correct this fault. She fixes node A4 in Figure 5b by 
changing the precondition in the XPath query (namely, 
changing “or” to “and”). But she considers the precondition 
in node A5 to be redundant (that is, no need to require 
RoomPrice ≥ 0). She therefore changes node A5 in Figure 5b to 
node A5 in Figure 5c, and forgets to handle another potential 
scenario (RoomPrice < 0). Her change thus introduces a 
regression fault into the original program. 

 

3.2 Sample Test Cases 
The inputs to the WS-BPEL service are XML documents. We 
use Price, Num to denote the BookRequest document at node 
A1, where Price is the value of the price variable and Num is 
value of the variable denoting the number of persons. (For 
brevity, we do not introduce the XML schema that defines 
BookRequest.) We use eight test cases (t1 to t8) for illustration: 

 Price, Num  Price, Num 

Test case 1 (t1): 200, 1 Test case 2 (t2): 150, 2 

Test case 3 (t3): 125, 3 Test case 4 (t4): 100, 2 

Test case 5 (t5): 50, 1 Test case 6 (t6): –1, 1 

Test case 7 (t7): 180, 5 Test case 8 (t8): 160, 4. 

Figure 6 shows the XML messages used by t1 to t8 at node 
A4. Each of the first two includes one single room and one 
triple room. The third contains one single room. The fourth 
includes the price of one room without the room number. 
The sixth is an error message. The rest contain no room data. 

The test oracle for the example is the booking result, 

<hotel>

<hotelList>

<hotel><name>Hilton</name>   

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1</persons>

</room> 

</hotel>

<hotel>

<name>Westin</name>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3</persons>

</room></hotel>

</hotelList>

</hotel>

for Test Case t1 for Test Cases  t2 for Test Cases  t3

for Test Case  t5

<hotel>

<room>

<price>-1</price>

<persons>1</persons>

</room>

<error>InvalidPrice</error>

</hotel >

for Test Case  t4 for Test Case  t6

<hotel>

</hotel>

<hotel>

<name>Hilton</name>

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1</persons>

</room>

</hotel >

<hotel>

<room>

<roomno></roomno>

<price>100</price>

<persons>2</persons>

</room>

</hotel >

<hotel>

<hotelList>

<hotel><name>Hilton</name>   

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1<persons>

</room> 

</hotel>

<hotel>

<name>Westin</name>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3</persons>

</room></hotel>

</hotelList>

</hotel>

<hotel>

<hotelList>

<hotel><name>Hilton</name>   

<room><roomno></roomno><price></price>

<persons></persons></room></hotel>

<hotel><name>Westin</name>

<room><roomno></roomno><price></price>

<persons></persons></room></hotel>

</hotelList>

</hotel>

<hotel>

<name>Hilton</name>   

<room><roomno></roomno>

<price></price>

<persons></persons></room>

</hotel>

for Test Case  t7 for Test Case  t8
 

Figure 6. XML messages for XQ(HotelInformation, //room[@price  
'Price' and @persons = 'Num']/price/) for different test cases. 

 

TABLE 1 
WORKFLOW BRANCH COVERAGE 

FOR T1 TO T8 
Branch t1 t2 t3 t4 t5 t6 t7 t8 

A1, A2         

A2, A3         

A3, A4         

A4, A5         

A5, A6         

A5, A7         

A7, A6         

A7, A8         

A6, A9         

Total 6 6 6 6 6 6 6 6 
 

TABLE 2 
XRG BRANCH COVERAGE 

FOR T1 TO T8 
XRG branch t1 t2 t3 t4 t5 t6 t7 t8 

R2, R3         

R2, A4         

R3, R7         

R3, A4         

R7, R8         

R7, A4         

R8, R9         

R8, A4         

R9, R10         

R9, A4         

Total 5 4 4 5 2 5 4 4 
 

TABLE 3 
STATISTICS OF WSDL ELEMENTS AND 

XML MESSAGES FOR T1 TO T8 

XML schema t1 t2 t3 t4 t5 t6 t7 t8 

Hotel         

HotelList         

Name         

Room         

Roomno         

Price         

Persons         

Error         

Subtotal (WSDL) 7 7 6 5 1 5 7 6 

val(name)         

val(roomno)         

val(price)         

val(persons)         

val(error)         

Total (XML) 11 11 10 7 1 8 8 7 
 

TABLE 4 
XRG PATTERN COVERAGE FOR T1 TO T8 

Index XRG pattern t1 t2 t3 t4 t5 t6 t7 t8 

x1 
/hotel/hotelList/hotel 
/room[predication]/price 

        

x2 /hotel/room[prediction]/price         

 Total 1 0 0 1 0 1 0 0 
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namely, successful booking, failed booking, or error message. 
When executing the process in Figure 5b, t1 extracts a correct 
price; both t2 and t3 extract the price of 105 for a single room, 
but they actually need to book a double room and a family 
room, respectively; t4 extracts a price that it should not 
extract, and it cannot book any room; each of t5 to t8 does not 
extract any price value. Both t2 and t3 detect the fault shown 
in Figure 5b. Similarly, executing the process shown in Figure 
5c, t1 extracts the correct prices; t2, t3, t5, t7, and t8 do not 
extract any price; t4 extracts a price that it should not extract, 
and thus cannot book any room as expected; and t6 extracts a 
price of –1 while it should not extract any price, and leads to 
an error message. Only t6 can detect the fault shown in 
Figure 5c. 

3.3 Baseline 

Table 1 shows the workflow branch coverage of t1 to t8 
against the original process of HotelBooking in Figure 5a. We 
use a “” to denote an item covered by a test case in Table 1 
(as well as in Tables 2, 3, and 4 and Figure 7). As shown in 
Table 1, the test cases t1 to t8 cover the same number of 
workflow branches. The total-branch prioritization technique 
(that is, the total prioritization strategy utilizing branch cover-
age data) thus behaves like random ordering [19]. If we 
apply this technique to the coverage of workflow branches 
only, t1t5t4t7t8t2t3t6 is one of the least effective 
orderings. Its APFD value is 1 − (6 + 8)  (8  2) + 1  (2  8) = 
0.1875. We observe that using the coverage data of workflow 
branches is still nondeterministic in the selection of t1 to t8, 
and finding ways to eliminate such ineffective orderings will 
help increase the effectiveness of fault detection. This further 
motivates our work. 

4 A SUBSUMPTION HIERARCHY 
In this section, we present the key aspects of TCP techniques 
in our model followed by a subsumption hierarchy. 

4.1 Multilevel Coverage Model 
We propose a multilevel coverage model to facilitate the appli-
cation of level-exploration strategies. We use the sequence of 
artifacts stated in the example in Section 1 to illustrate our 
model. Our model is general, however. We emphasize that 
the order of coverage data used in an individual level in the 
model is independent of both the notion of ROLE and the 
subsumption relation. Our model can be initialized with 
other sequences of the same or different coverage data sets. 

A coverage model for a service-oriented workflow appli-
cation P is a six-tuple T, Πα, Πβ, Πγ, Πδ, Πθ, where (a) T is a 
regression test suite for P, and (b) Πα, Πβ, Πγ, Πδ, and Πθ rep-
resent, respectively, sets of workflow branches, sets of XRG 
branches, sets of WSDL elements, sets of XRG patterns, and 
sets of tag values and unique tags in XML messages collected 
from the executions of all the test cases in T against P. 

For any test case t  T, Πα(t), Πβ(t), Πγ(t), Πδ(t), and Πθ(t) 
represent, respectively, the set of workflow branches, the set 
of XRG branches, the set of WSDL elements, the set of XRG 
patterns, and the set of tag values and unique tags in XML 
messages covered by the execution of t against P. 

For ease of presentation, we refer to the five levels as CM-
i levels, where CM stands for Coverage Model and i = 1 to 5. 

4.2 Refinement-Oriented Level-Exploration Strategy 

and ROLE-Enriched Prioritization Techniques 

In this section, we illustrate a new aspect that systematically 
explores coverage data in a stepwise refinement manner. 
Independent of the prioritization strategy used, our work 
makes more deterministic choices along the sequence of 
coverage data. We refer to it as a level-exploration strategy. 

Given a coverage model, one may formulate a strategy to 
explore different levels of details. In this section, we present a 
Refinement-Oriented Level-Exploration (ROLE) strategy. 

We adopt two prioritization strategies as baselines to 
illustrate our approach: the additional strategy and the total 
strategy [19]. They are equipped with the CM-1 level of detail 
to become the techniques M1 and M2 presented in Section 
4.2.1. We illustrate these two prioritization strategies with 
branch coverage because they are still the most effective 
series of TCP techniques since the inception of TCP research 
[50]. 

ROLE enriches each prioritization strategy S with increas-
ing levels of details. Whenever S cannot resolve ambiguity in 
test case priority due to equivalent coverage statistics, ROLE 
exposes the level of detail CM-(i+1) next to the current level 
of detail CM-i. At each new level of detail, it uses the strategy 
S to prioritize test cases still in tie using the coverage data of 
that level. Each refinement step turns nondeterministic 
choices into more deterministic choices. 

ROLE is orthogonal to the prioritization strategy S used. 
For instance, it can be incorporated into a coverage-based 
prioritization strategy S that adopts random resolution of tie 
cases. In theory, some prioritization strategies have their own 
deterministic approaches to resolving tie cases. For example, 
a prioritization strategy may consistently prefer to give a 
higher priority to test cases having smaller test case identities 
(or appearing earlier in a test suite). Intuitively, such a deter-
ministic strategy can be replaced by the ROLE strategy. 

4.2.1 CM-1 Level: Baselines 

M1 (Total-CM1) is the total-branch technique [19]. It sorts the 
test cases in T in descending order of the total number of Πα 
items executed by each test case. If a set of test cases cover 
the same number of Πα items, M1 orders them randomly. 

M2 (Addtl-CM1) [19] iteratively selects a test case t in T 
that yields the greatest cumulative Πα item coverage, and 
then removes the covered Πα items from all remaining test 
cases to indicate that the removed items have been covered. 
Additional iterations will be conducted until all the Πα items 
have been covered by at least one selected test case. If 
multiple test cases cover the same number of Πα items in the 
current round of selection, M2 selects one of them randomly. 
If no remaining test cases can further improve the cumulative 
Πα item coverage, M2 resets the Πα item covered by each 
remaining test case to its original value. It repeats the above 
procedure until all test cases in T have been selected. 

4.2.2 CM-2 to CM-5 Levels 

This section presents techniques M3 to M10 recursively. We 
first describe the ROLE-enriched techniques based on the 
total strategy, followed by the additional strategy. 

Total-CMi-Refine Techniques: M3 (Total-CM2-Refine), 
M5 (Total-CM3-Refine), M7 (Total-CM4-Refine), and M9 
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(Total-CM5-Refine). Total-CMi-Refine (i = 2 to 5) is the same 
as Total-CM(i–1)-Refine, except when multiple test cases 
cover the same number of CM-(i–1) items, it will order them 
in descending order of the number of CM-i items covered by 
each test case involved in the tie. If there is still a tie, Total-
CMi-Refine randomly orders the test cases involved. 

Addtl-CMi-Refine techniques: M4 (Addtl-CM2-Refine), 
M6 (Addtl-CM3-Refine), M8 (Addtl-CM4-Refine), and M10 
(Addtl-CM5-Refine). Addtl-CMi-Refine (i = 2 to 5) is the 
same as Addtl-CM(i–1)-Refine except three things. (1) In each 
iteration, Addtl-CMi-Refine removes the covered CM-1 to 
CM-i items of the selected test cases from the remaining test 
cases to indicate that the removed items have been covered 
by the selected test cases. (Note that Addtl-CMi-Refine still 
selects test cases based on the CM-1 item coverage as in M2.) 
(2) If multiple test cases cover the same number of CM-(i–1) 
items in the current round of selection, Addtl-CMi-Refine 
selects the test case that has the maximum number of un-
covered CM-i items. If there is still a tie, it randomly selects 
one of the test cases involved. (3) When resetting is needed, 
Addtl-CMi-Refine resets each remaining test case to the 
corresponding original coverage of CM-1 to CM-i items. 

4.3 Illustration Using Motivating Example 

Different XRG branches may lead to different content 
selections, and return different values to the workflow step 
[29]. For example, the XRG branch of t1 extracts the value 150 
from the price tag and assigns the value to the variable Price. 
However, for t2, t3, t5, t7, and t8, it will return no value 
(referred to as the “null value” for ease of discussion) to Price. 

As shown in Table 2, test cases t1, t4, and t6 cover the same 
set of XRG branches each; and test cases t2, t3, t7, and t8 cover 
another set of XRG branches each. The XRG branches 
covered by t5 are different from the other seven test cases. 

After considering the XRG branches in solving the tie cases, 
t1t4t6t7t8t2t3t5 (with an APFD value of 0.50) is 
one of the least effective orderings. 

Similarly, the above level of detail, denoted by CM-2, does 
not help resolve tie cases among t1, t4, and t6, or among t2, t3, t7, 
and t8. ROLE then extends the coverage model to the next 
level of detail, denoted by CM-3. Table 3 shows that t1, t2, and 
t7 cover the same set of WSDL elements but are different 
from those covered by the other test cases. By using the total 
prioritization strategy and the WSDL coverage data to 
resolve tie cases, t1t4t6t7t2t8t3t5 (with an APFD 
value of 0.56) is one of least effective orderings. 

The above CM-3 level of detail does not resolve tie cases 
among t4 and t6, among t2 and t7, and among t3 and t8. ROLE 
thus further includes the next level of detail, denoted by CM-
4, as shown in Table 4. For the purpose of illustration, we 
only consider the XRG pattern at node A4. 

From Figure 5a and Figure 6, t1 only searches for hotels 
from the hotel list, whereas t4 only selects from a specific 
hotel. Both test cases cannot select any hotel, even though the 
XRG patterns they cover are different. We denote the query 
paths of t1 and t4 on the XML messages in Figure 6 by XRG 
patterns x1 and x2, respectively. As an illustration that 
adding more coverage data may not resolve tie cases, these 
two XRG patterns cannot resolve tie cases among t4 and t6, 

among t2 and t7, and among t3 and t8. Hence, t1t4t6t7t2 
t8t3t5 is still one of the least effective orderings. 

TABLE 5 
DIFFERENT LEVELS OF PRIORITIZATION TECHNIQUES 

WITH EXAMPLES 

CM 
Level 

Technique 
Ref. 

Code 

Example of 
least effective ordering APFD 

t1 t2 t3 t4 t5 t6 t7 t8 

 
CM-1 

Total-CM1 M1 1 6 7 3 2 8 4 5 0.19 

Addtl-CM1 M2 1 4 5 3 2 6 7 8 0.44 

R
O

L
E

-E
n

ri
ch

ed
 CM-2 

Total-CM2-Refine M3 1 6 7 2 8 3 4 5 0.50 

Addtl-CM2-Refine M4 1 4 6 3 2 5 7 8 0.50 

CM-3 
Total-CM3-Refine M5 1 5 7 2 8 3 4 6 0.56 

Addtl-CM3-Refine M6 1 5 7 4 2 3 6 8 0.56 

CM-4 
Total-CM4-Refine M7 1 5 7 2 8 3 4 6 0.56 

Addtl-CM4-Refine M8 1 4 2 3 8 5 6 7 0.63 

CM-5 
Total-CM5-Refine M9 1 4 6 3 8 2 5 7 0.69 

Addtl-CM5-Refine M10 1 5 2 4 8 3 6 7 0.75 

This process is continued to include the next level of detail 
(the XML message level), denoted by CM-5, whose coverage 
data is also shown in Table 4. For example, t4 and t6 cover 
the same number of XRG patterns, but t6 achieves higher 
coverage than t4 in terms of the number of elements in XML 
messages, where t1t6t4t2t7t3t8t5 (with an 
APFD value of 0.69) is one of the least effective orderings. 

Table 5 summarizes the acronyms and reference codes of 
the 10 techniques presented above. We also use sample least 
effective prioritization results of t1–t8 against the HotelBooking 
process to illustrate each technique. We also show the APFD 
values of each sample ordering under the “APFD” column. 

4.4 Subsumption Hierarchy of ROLE-Enriched 

TCP Techniques 

Subsumption relations are a classical concept in various areas 
of computer science research, such as artificial intelligence 
[10], databases [23], programming languages [20], and 
software testing [44]. We propose a notion of subsumption 
relations for TCP. The basic idea is that if a TCP criterion 
subsumes another TCP criterion, the former defines more 
specific coverage requirements while the latter makes a less 
deterministic choice. Although there is no theoretically 
proven relationship between the fault detection abilities of 
the two criteria, empirically speaking, the latter tends to 
exhibit weaker fault detection ability. 

Definition 3 (Subsumption). Given two TCP techniques X 
and Y, we say that X subsumes Y (denoted by X  Y) if and 
only if any permutation of any test suite produced by X can 
also be produced by Y. 

The subsumption relation is reflexive, transitive, and anti-
symmetric, and is therefore a partial order. We have analyzed 
the subsumption relations among M1 to M10 and the result 
is summarized in Figure 7. For instance, we have shown that 
(M3) Total-CM2-Refine subsumes (M1) Total-CM1, and we 
use an arrow from M3 to M1 to represent this relation in the 
figure. Other arrows can be interpreted similarly. 

A sketch of the proof of the subsumption relations among 
the techniques is as follows: The basic idea is that, if random 
selection in resolving ties in one technique is replaced by a 
more deterministic procedure in another technique, then the 
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latter technique subsumes the former. For instance, unlike 
M1 (which randomly resolve tie cases), M3 refers to XRG 
branch coverage of test cases to resolve tie cases before using 
random selection as the last resort. Because any test case that 
M3 can pick to resolve a tie may also be selected by chance 
by M1, any test case permutation produced by M3 must be a 
permutation that can be produced by M1. Other subsump-
tion relations shown in Figure 7 can also be reasoned 
similarly. 

Random          

Total-CM1 Addtl-CM1

Total-CM5-Refine Addtl-CM5-Refine

Total-CM4-Refine Addtl-CM4-Refine

Optimal

(C1)

(M1) (M2)

(M9)

(M7)

(C2)

(M10)

(M8)

Total-CM3-Refine Addtl-CM3-Refine(M5) (M6)

Total-CM2-Refine Addtl-CM2-Refine(M3) (M4)

 
Figure 7. Subsumption hierarchy of test case prioritization techniques. 

4.5 Discussions of Subsumption Hierarchies 

A level-exploration strategy may or may not be good 
enough to lead to a subsumption hierarchy. In this section, 
we present a negative example followed by a positive 
example. 

Negative example. We use the summation strategy [33] as a 
negative example. Under this strategy, the technique at 
CM-i level treats all the coverage data from CM-1 to CM-i 
levels homogeneously and applies a given TCP strategy to 
prioritize all the test cases (not just the tie cases as in 
ROLE). Take the total prioritization strategy S1 for the sake 
of discussion. Suppose that at CM-1 level, the three test 
cases ta, tb, and tc achieve coverage counts of 1, 2 and 3, 
respectively; and at CM-2 level, they achieve coverage 
counts of 6, 4, and 2, respectively. At CM-1 level, S 
produces the test suite permutation tc, tb, ta. At CM-2 level, 
the summation strategy provides the coverage counts of 7, 
6, and 5 for the three test cases for S1 to rank test cases, 
which produces the test suite permutation ta, tb, tc, but this 
permutation is infeasible at CM-1 level. 

Positive example. On the other hand, if a technique X 
located higher in the coverage model instance refines (but 
not supersede) the decision made by a technique Y located 
lower in the same model instance, then X will produce a 
test suite permutation that is also producible by Y (or the 
other way round). Consider, for instance, a hypothetical 
search-based level-exploration strategy S2. At CM-i level, 
this strategy checks the coverage data set at every CM-j 
level (where j = 1, 2, ..., i) and finds a most similar (or 
diverse) not-yet-prioritized test case from each such data 
set with respect to the already-prioritized test cases. The 
strategy S2 then randomly picks one among these most 
similar (or diverse) test cases. In this case, a technique at 
CM-i level can produce more possible permutations than a 
technique at CM-k level (where k < i). According to 
Definition 3, it will lead to a subsumption hierarchy but in 
the reversed direction as shown in Figure 7. 

In the above discussion, we use the same baseline TCP 
strategy across all levels. Using different strategies at 
different levels is a further generalization. The selection 
among coverage levels to be explored may also be further 
integrated with some coverage-based selection strategies. 

5 EXPERIMENT 

The relative strength in fault detection rate of TCP tech-
niques may not necessarily be proven. We will supplement 
our analytical result with an experimental study in Sections 
5.1 and 5.2, followed by a case study in Section 5.3. 

5.1 Experimental Design 

We chose eight benchmarks [29] to evaluate our work. The 
subjects were downloaded from the BPWS4J repository [18], 
Oracle BPEL Process Manager [24], IBM BPEL repository 
[41], and Web Services Innovation Framework [43]. These 
subjects are representative service-based applications 
developed in WS-BPEL [1], [18], [43]. Previous empirical 
studies (such as [28], [33]) have reported results on this 
benchmark suite. (Note that this suite is larger in size than 
other sets of subjects reported by the testing research 
papers of the same journal, such as [36].) Table 6 shows the 
descriptive statistics of the suite. The number of XML 
elements (“Elements”) and the number of lines of BPEL code 
(“LOC”) of each benchmark are shown in the table. 

We used the set of faults and associated test suites in the 
benchmark suite to measure the effectiveness of different 
prioritization techniques. We followed the spirit of mutation 
testing [2] to seed faults in the major artifacts (BPEL, XPath, 
and WSDL) of the benchmarks. Andrews et al. [2] suggested 
that mutation faults can be representative of real faults. 
Many researchers thus used mutation testing for empirical 
evaluation of TCP techniques [17]. We used three typical 
types of mutations in fault seeding: value mutations, decision 
mutations, and statement mutations. Since BPEL can be 
treated as Control Flow Graphs (CFG), the above mutations 
can be seeded in the way as seeding faults in CFG. Figure 5c 
gives one example of a BPEL fault. An XPath fault is the 
wrong usage of XPath expressions, such as extracting the 
wrong content, or failing to extract any content. Figure 5b 
gives one example of an XPath fault. A WSDL fault is the 
wrong usage of WSDL specifications, such as binding to a 
wrong WSDL specification, or inconsistent message defini-
tions. The faults in the modified versions have been reported 
by [29]. The statistics of the selected modified versions are 
shown in the rightmost column of Table 6. 

When constructing the benchmark suite [29], we imple-
mented a tool that automatically generated a pool of 1,000 
test cases for each subject. The tool generated test cases to 
ensure that they covered all workflow branches, XRG 
branches, WSDL elements, XRG patterns, and types of XML 
messages of the original subject at least once. We then 
followed the common practice [19], [28], [32] in evaluating 
TCP techniques to discard any version if more than 20 
percent of the test cases can detect failures due to its fault. 
The tool adopted the test suite construction process 
presented in [19], which ensured that the fault detection 
effectiveness of test suites was not influenced by the order of 
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test case generation [19]: It randomly selected test cases one 
by one from a test pool and placed them in a test suite T 
(which was initially empty) without applying any test case to 
the modified versions of the corresponding subject. Such 
selection was iteratively done until all the workflow branches, 
XRG branches, WSDL elements, XRG patterns, and all types 
of XML messages had been covered at least once. If the 
outputs of the same test case against a subject and a modified 
version were different, the test case detected a fault in the 
modified version. This suite T would be retained if it 
detected a fault in a modified version. The tool successfully 
retained a total of 100 test suites for each benchmark. Table 7 
shows their statistics. 

TABLE 6 

BENCHMARKS AND THEIR DESCRIPTIVE STATISTICS 

Ref. Benchmark 

M
o

d
if

ie
d

 
V

er
si

o
n

s 

E
le

m
en

ts
 

L
O

C
 

X
P

at
h

 

X
R

G
 

B
ra

n
ch

es
 

W
S

D
L

 
E

le
m

en
ts

 

U
se

d
 

V
er

si
o

n
s 

A atm 8 94 180 3 12 12 5 

B buybook  7 153 532 3 16 14 5 

C dslservice 8 50 123 3 16 20 5 

D gymlocker  7 23 52 2 8 8 5 

E loanapproval 8 41 102 2 8 12 7 

F marketplace  6 31 68 2 10 10 4 

G purchase  7 41 125 2 8 10 4 

H triphandling  9 94 170 6 36 20 8 

 Total 60 527 1352 23 114 106 43 

TABLE 7 

STATISTICS OF TEST SUITE SIZES 

Ref. 

Size 
A B C D E F G H Mean 

Max. 146 93 128 151 197 189 113 108 140.6 

Mean 95 43 56 80 155 103 82 80 86.8 

Min. 29 12 16 19 50 30 19 27 25.3 

 

For each subject and for each constructed test suite T for 
the subject, the tool applied every technique to prioritize T. 
The tool executed each prioritized T against every modified 
version of the subject. It used the outputs of the original 
version as expected outputs. It calculated the corresponding 
APFD, RP, and HMFD values. In total, 833,280 APFD values, 
516 RP values, and 833,280 HMFD values were collected. 

5.2 Data Analyses 

5.2.1 Overall Effectiveness 

Figure 8 shows the 25th percentile, median, 75th percentile 
and mean APFD results of each of the techniques C1, C2, and 
M1–M10, in which the result of every individual technique is 
represented using box-plots. Each box-plot shows the 25th 
percentile, median, and 75th percentile of a particular 
technique. For instance, the 25th percentile, median, and 75th 
percentile of the mean APFD of M10 are shown in the last 
plot of Figure 8d. 

Let us first examine the overall mean APFD result of each 
technique in Figure 8d. As expected, the box-plot of C2 
shows the best mean APFD in the figure. M8 and M10 are 
only three percent less effective than C2. All the techniques 
M1–M10 are more effective than C1. 

The effectiveness of the Total-CM series of techniques 
increases from CM-i to CM-(i+1) level (i = 1 to 4) at the 25th 
percentile, medium, 75th percentile, and mean APFD, except 
for the change in mean APFD from CM-1 to CM-2 level and 
the change in the 25th percentile from CM-3 to CM-4 level. 
Similarly, the effectiveness of the Addtl-CM series increases 
from CM-i to CM-(i+1) level (i = 1 to 4) at the 25th percentile, 
medium, 75th percentile and mean APFD, except for the 
change in the 25th percentile from CM-4 to CM-5 level. 

We further investigate the impact of level changes. If a 
technique at CM-i level is worse than that at CM-(i–1) level in 
terms of median APFD value, we call the scenario an 
exception, and assign to it a value of 1 (and darken the cell); 
otherwise 0 is assigned. Table 8 shows the result together 
with the median APFD values of random ordering and the 
techniques at CM-1 level (M1–M2) and CM-5 level (M9–M10). 
When CM-1 level is more effective than CM-5 level, such as 
the case of the purchase application in the Total-CM category, 
an exception occurs. When random ordering is more 
effective than CM-1 level, such as the case of the dslservice 
application in the Total-CM category, an exception is also 
said to occur. The observations on the exceptions in the 
Addtl-CM category are similar to the Total-CM category. 

There are 64 comparisons in total, but only nine excep-
tions. Hence, 85.9 percent of the cases show improved 
effectiveness when the level in the subsumption hierarchy 
increases. 

By comparing the pairs of techniques (M1, M2), (M3, M4), 
(M5, M6), (M7, M8), and (M9, M10), we observe that an 
Addtl-CM technique has a shorter length of the box (smaller 
variances) than the corresponding Total-CM technique at the 
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Figure 8. Overall comparisons in terms of APFD measure. 
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TABLE 8 
IMPACTS OF CM LEVEL CHANGES 

Type 
Benchmark 
Application 

Is CM-i 
worse than 
CM-(i–1)? 

(1: yes, 0: no) 

Exception 
Rate 

Median APFD 
Values 

Random CM-1 CM-5 

i=2 i=3 i=4 i=5 

Total-
CM 

atm 0 0 0 0 0.00 0.837 0.855 0.981 

buybook  0 0 0 0 0.00 0.848 0.879 0.979 

dslservice 1 0 0 0 0.25 0.806 0.770 0.833 

gymlocker  0 0 0 0 0.00 0.943 0.950 0.994 

loanapproval 0 0 0 0 0.00 0.845 0.928 0.947 

marketplace  1 1 0 0 0.50 0.878 0.893 0.948 

purchase  0 0 1 0 0.25 0.760 0.923 0.904 

triphandling  0 0 0 0 0.00 0.912 0.987 0.983 

Addtl-
CM 

atm 0 0 0 0 0.00 0.837 0.874 0.965 

buybook  0 0 0 0 0.00 0.848 0.871 0.974 

dslservice 1 0 0 0 0.25 0.806 0.775 0.983 

gymlocker  0 0 0 0 0.00 0.943 0.962 0.994 

loanapproval 0 0 0 0 0.00 0.845 0.925 0.961 

marketplace  0 1 1 0 0.50 0.878 0.907 0.871 

purchase  0 0 1 1 0.50 0.760 0.929 0.919 

triphandling  0 0 0 0 0.00 0.912 0.986 0.981 

TABLE 9 
STATISTICS OF TIME COSTS OF TEST SUITE PRIORITIZATION 

STRATEGIES (IN MILLISECONDS) 

Ref. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

A 0.15 1.09 1.24 2.65 1.71 3.12 1.71 3.72 2.34 5.36 

B 0.16 0.80 0.63 1.25 0.78 1.4 1.69 2.67 1.39 3.27 

C 0.31 0.32 0.93 1.87 0.77 2.18 1.55 2.53 1.41 6.08 

D 0.79 0.78 1.09 1.10 1.08 3.43 1.73 4.98 2.04 5.46 

E 1.08 2.65 1.25 5.00 2.5 9.03 2.66 10.9 3.72 15.89 

F 0.94 1.57 1.58 5.13 1.09 6.71 1.57 8.50 2.02 13.77 

G 0.79 0.79 1.23 2.33 0.64 4.69 1.69 4.06 0.93 8.41 

H 0.77 1.07 0.47 2.84 1.71 2.93 0.77 6.24 2.06 7.62 

Mean 0.62  1.13  1.05  2.77  1.29  4.19  1.67  5.45  1.99  8.23  

TABLE 10 
RESULT OF HYPOTHESIS TESTING 

 

C1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

C1 − < < < < < < < < < < 

M1 > − = = < < < < < < < 

M2 > = − > = = < < < < < 

M3 > = < − < < < < < < < 

M4 > > = > − = < < < < < 

M5 > > = > = − < < < < < 

M6 > > > > > > − = < = < 

M7 > > > > > > = − < = < 

M8 > > > > > > > > − > = 

M9 > > > > > > = = < − < 

M10 > > > > > > > > = > − 

 

same CM level, as shown in Figure 8. We observe that the 
effectiveness of the Total-CM series grows faster than that of 
the Addtl-CM techniques, and the Addtl-CM techniques do 
not change significantly until CM-4 and CM-5 levels. 

We also observe a trend where a technique is more likely 
to achieve a higher fault detection rate (in terms of APFD) 
than a technique that is subsumed by the former. For 
example, M3 is more effective than M1 and subsumes M1. In 
Figure 8d, we find that M6–M10 are generally better than all 
the other techniques except C2. When we focus on the 
techniques M1–M4, we find M2 and M4 to be the best two 

among all the techniques at the same level. In Figure 8d, the 
lengths of the boxes in the bars at CM-4 level (M7 and M8) 
and CM-5 level (M9 and M10) are shorter than the boxes at 
lower levels ({M1, M3, M5} and {M2, M4, M6}, respectively), 
and also shorter than the box for random ordering. 

We have also collected the times to prioritize test suites 
for M1 to M10. Table 9 shows that, as the CM level increases, 
the Total-CM techniques and Addtl-CM techniques use 
more time. However, even M9 and M10, which use the 
most time in the corresponding Total-CM series and Addtl-
CM series, only use 1.99 and 8.23 milliseconds, respectively. 

5.2.2 Hypothesis Testing 

We have also performed a one-way analysis of variance 
(ANOVA) using MatLab to find out whether the mean 
APFD for different techniques differ significantly. The null 
hypothesis is that the mean APFD values for C1 and M1–
M10 (11 techniques in total) are equal. To decide whether to 
accept or reject the null hypothesis, we set the significance 
level to 5 percent. For each benchmark, we find that 
ANOVA returns a p-value much less than 0.05, which 
successfully rejects the null hypothesis at a significance 
level of 5 percent. 

Following [32], we further apply the multiple compari-
son procedure to study which TCPs have mean values that 
differ significantly from others at a significance level of 5 
percent. The Least Significant Difference (LSD) method was 
employed in multiple-comparison. Table 10 summarizes 
the hypothesis testing result. In the table, the symbols “>”, 
“=”, and “<” indicate that the technique in the row is more 
effective, equally effective (indicating no statistical differ-
ence rather than the same distribution), and less effective 
than the technique in the column, respectively. In general, a 
technique with more instances of “>” indicates that it is an 
effective technique. 

Table 10 shows that, at CM-2 level and above, a technique 
achieves a higher APFD value than a technique subsumed by 
the former, except between M8 and M10 and between M7 
and M9. Between CM-1 and CM-2 levels, however, there is 
no consistent and statistically significant difference. 

5.2.3 Further Evaluation of the Benchmarks 

We further evaluate the techniques using manual test suites. 
We have invited five non-author and experienced testers 
(who are vendor developers having 3 to 5 years of testing 
experience) to manually develop a test suite for each bench-
mark to cover all the workflow branches, XRG branches, 
WSDL elements, XRG patterns, and types of XML messages 
of the original subject at least once. Table 11 shows the 
statistics of the manual test suites. The sizes of the manual 
test suites are smaller than those of the tool-generated test 
suites, since the latter test suites contain more randomly 
selected test cases. 

TABLE 11 
STATISTICS OF MANUAL TEST SUITE SIZES 

 

Ref. 

Size 
A B C D E F G H Mean 

Maximum 40 31 25 32 33 20 15 71 33 

Mean 32 24 21 25 28 14 12 54 26 

Minimum 26 18 18 19 22 8 8 44 20 
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We applied each technique to this test suite, and repeated 
the procedure 100 times. Figure 9 presents the comparison 
results in terms of the mean APFD measure. 

Comparing Figure 8d and Figure 9, we find the trends of 
the Total-CM series and the Addtl-CM series in both figures 
are similar. For each series, a technique at CM-i level (for i = 2 
to 5) shows more effective result than that at CM-(i–1) level. 
The result of the manual test suites consolidates our finding 
on using tool-generated test suites to evaluate the proposed 
subsumption hierarchy. 
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Figure 9. Overall comparisons in terms of mean APFD using 

manual test suites. 

We also observe that when a technique uses a manual test 
suite, it has a smaller APFD value than when it uses a tool-
generated test suite. This is because tool-generated test suites 
contain more randomly selected test cases, which may 
increase the number of times to reveal a failure, and thus 
increase the chance of finding a fault earlier. 

We also analyze the raw data set that provides the APFD 
results using RP and HMFD as alternatives. The results are 
shown in Figure 10. We find that across the board, the 
general trends among techniques are similar to what we 
observe from the APFD values, namely, that as the CM level 
increases, the prioritization strategy can become more 
effective. In addition, using manual test suites can be less 
effective and more effective than tool-generated test suites in 
terms of RP and HMFD, respectively. 

5.3 Case Study 
We further evaluated our proposal using the service appli-
cation presented in the case study of [30]. It was a real-life 
choreography service for Data Exchange Platform (DEP). Due 
to the page limit, we only briefly revisit the key features of 
this application from [30]. 

The application had four major subject services. Table 
12 recaps their statistics. We followed the fault seeding 

strategies stated in Section 5.1 (that is, in the spirit of 
mutation testing [2]) to seed faults in the major artifacts 
(WSDL, XPath, and WS-CDL specifications [30]) of DEP. 
The functions of these subject services are as follows: 

 

(1) AgentService monitors the database updates, collects the 
change logs, and collaborates with MonitorService to 
update the data stored in other information systems. 

(2) DataService enables an agent to upload data to the server 
and to download data from the server. 

(3) MonitorService handles the requests from AgentService, 
verifies the authority of the agent, and allocates a data 
transfer thread to handle the authenticated request. 

(4) AuthenticationService authenticates whether an agent has 
the rights to perform the data transfer. 

There was, however, no workflow information in this 
service application. We used labeled queries [30] (similar to 
workflow transitions) to replace the workflow data as the 
Πα coverage instead. The coverage items for Πβ, Πγ, Πδ, and 
Πθ were not affected. All the remaining experimental proce-
dure was the same as that presented in Section 5.1. The 
minimum, average, and maximum test suite sizes were 8, 
42, and 178, respectively. 

 

TABLE 12 
DESCRIPTIVE STATISTICS OF SUBJECTS IN CASE STUDY 

Services 
No. 
of 

Ports 

No. of 
WSDL 

No. 
of 

XPath 

SLOC 
(Java) 

No. 
of 

Faults 

AgentService 6 2 6 4,000–5,000 3 

MonitorService 8 2 8 6,000–7,000 3 

DataService 4 1 4 3,000–4,000 2 

AuthenticationService 2 1 2 1,000–2,000 2 

Total 20 6 20 > 14,000 10 

Figure 11a, Figure 11c, and Figure 11e show the APFD, RP, 
and HMFD results, respectively, of C1 and M1–M10. We 
observe that the effectiveness of the Total-CM series and the 
Addtl-CM series of techniques increase from CM-i to CM-
(i+1) level (for i = 1 to 4) at the 25th percentile, the medium, 
the 75th percentile, and the mean for each of the APFD, RP, 
and HMFD measures. 

We find that M1–M10 all outperform C1. M3–M10 all 
outperform M1 and M2. We also observe that the APFD and 
HMFD values for outliers (denoted by red + signs) become 
higher as the coverage levels increase. 

We also invited the five testers (introduced in Section 
5.2.3) to manually develop five test suites. The maximum, 
minimum, and average suite sizes were 24, 15, and 19, 
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Figure 10. Results of techniques in terms of (a) RP using tool-generated test suites, (b) RP using manual test suites, (c) HMFD using tool-
generated test suites, and (d) HMFD using manual test suites. 
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respectively. We applied each technique to this test suite, 
and repeated the procedure 20 times. Figure 11b, Figure 11d, 
and Figure 11f present the APFD, RP, and HMFD results, 
respectively. Comparing between subfigures (a) and (b), 
subfigures (c) and (d), and subfigures (e) and (f) of Figure 11, 
we find the trends of the Total-CM series and the Addtl-CM 
series in each pair of plots to be similar. We observe that as 
the CM level increases, the difference between the two 
types of test suites gradually becomes smaller We find that 
for each technique (except C1), the standard deviation for 
the manual test suite is smaller than that for the tool-
generated test suite in terms of APFD and HMFD. We find 
that the techniques using the manually-crafted test suite are 
slightly less effective than the same techniques using the 
tool-generated test suites in terms of APFD and RP, but are 
slightly more effective in terms of HMFD. The results of the 
manual test suite consolidate our finding on using tool-
generated test suites to evaluate the proposed subsumption 
hierarchy. We also observe that Figure 11a and Figure 11b 
report smaller relative differences between techniques than 
Figure 8 and Figure 9. 

5.4 Threats to Validity 
We used APFD, RP, and HMFD in our experiment. They 
provide useful feedback to specific prioritization techniques 
after testing has been completed. Different metrics measure 
different aspects of testing techniques. 

Detecting mutation faults can simulate the detection of 
real faults in the same program [2], and many studies have 
used these faults to evaluate TCP techniques. We also used 
mutants. We did not measure the costs of test execution and 
profiling because remote service executions were obviously 
the major bottlenecks and independent of the testing 
techniques used. Although the techniques shared the same 
such cost if they used the same coverage data, interpreting 

results across different levels should be carefully conducted. 
We used both tool-generated test suites and manual test 
suites, and observed similar trends between them. We 
implemented our tools for program instrumentation and test 
suite prioritization in Java, and used MatLab to compute the 
experimental results. To minimize errors, we carefully tested 
our tools to assure their correctness. The responses of some 
services depend on the service contexts (such as database 
status). In the experiment, our tool did reset the contexts to 
the same values every time before executing a test case. This 
approach is also advocated in agile software development. 

Our subjects included one real-world choreography 
service-based application and eight orchestration applica-
tions. Our studies also covered mutation faults, as well as 
both manual and tool-generated test suites. These factors 
should be considered if the results are used beyond the 
experimental context. 

6 RELATED WORK 
Regression testing has been extensively studied [14], [37]. 
Our work is a kind of general test case prioritization [19], 
which reorders a test suite for a service P to be useful in 
subsequent revised versions of P. To adopt it for version-
specific test case prioritization, one has to find out the 
differences between a preceding version and the modified 
version of the same service. Ruth and Tu [37], Chen et al. [14], 
Li et al. [26], Liu et al. [27], and Tarhini et al. [40] contributed 
to this topic in services computing. They conducted impact 
analyses of web services to identify revised fragments of 
code in a service by comparing the flow graphs between 
versions of the same service. 

Li et al. [26] selected workflow paths to ease regression 
testing based on the insights collected from messages. Liu et 
al. [27] considered concurrency control activities and their 
control flow in BPEL processes to make regression testing 
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Figure 11. Comparisons in case study, in terms of (a) APFD using tool-generated test suites, (b) APFD using manual test suites, 
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more effective. Tarhini et al. [40] developed a model-based 
approach to impact analysis so that regression testing can 
address changes in various development phases. 

There have been other studies on TCP in services 
computing. Chen et al. [14] proposed weighted test case 
prioritization. Hou et al. [22] proposed to fit the requests 
(within a maximal number) imposed by external services 
into TCP. Mei et al. [31] considered an external service may 
change within a round of regression testing of a WS-BPEL 
web service. They proposed to detect whether the code 
coverage of BPEL code had been changed, and initialized 
nested rounds of regression testing to address this issue. 
They [28], [32] further followed the preliminary version [33] 
of the present paper to consider multilevel coverage, but they 
did not consider the relationships with XPath queries 
(including XRG and XRG patterns). The mean APFD results 
published in [28], [32] seldom exceeded 0.90. Our 
experimental result presented in Section 5 of this paper 
shows that quite a number of our techniques exceed this 
mean APFD. 

Nguyen et al. [35] integrated TCP with audit testing to 
control resource consumption. Zhai et al. [49] observed that 
service selection had the ability to include/exclude a service 
in consideration, and used this feature to reduce the service 
invocation cost. They [48] studied location-centric diversity 
strategies to reorder test cases for location-based services. 

There have been many projects on other topics in the 
testing of web services. Bozkurt et al. [9] provided a 
comprehensive summary on the testing and verification of 
service-oriented architecture. Bartolini et al. [5] proposed to 
use a dataflow-based approach to validate the composition 
of web services. Mei et al. [29], [30] formulated dataflow-
based test adequacy criteria to test WS-BPEL web services. 
As we have presented in Section 4, our work builds on top of 
these two studies [29], [30] and puts forward a subsumption 
hierarchy of prioritization techniques. 

Casado et al. [11] used a classification-tree methodology 
[15], [21] to determine test coverage in the testing of web 
services transactions. Our coverage model has not consid-
ered constraints among coverage elements. 

In terms of multilevel coverage, the closest related work 
is Zou et al. [52]. They studied the integration of coverage 
data on program statements and HTML elements for the 
testing of dynamic web applications. Their work did not 
consider XPath queries and regression testing. 

Maintaining a regression test suite has also been an active 
area of research. Becker et al. [7] checked whether a 
document of a service is backwardly compatible. Belli et al. [8] 
and Zheng et al. [51] studied model-based approaches to 
constructing both abstract and concrete test cases semi-
automatically. Li et al. [26] studied the generation of control-
flow test cases for the unit testing of BPEL programs. 
Bartolini et al. [6] generated test cases that conform to WSDL 
schemas so that these test cases could be meaningfully run 
by a service under test. Li et al. [26] studied test case selection. 
All these projects can significantly enhance the practicability 
of our work. 

Our present work also requires profiling the service 
executions. Bartolini et al. [4] extracted state machine data 
based on messages from opaque web services. It appears 

that their model can be integrated with our strategy. Bai et 
al. [3] studied web services with ontology. Ni et al. [36] 
modeled a WS-BPEL web service as a message-sequence 
graph and suggested coordinating messages to control 
service execution. de Almeida and Vergilio [16] and Xu et 
al. [46] perturbed inputs to produce test cases for 
robustness testing. 

Regression testing should also address the test oracle 
problem. Both Chan et al. [12] and Sun et al. [38] studied 
the use of metamorphic relations to address this problem. 

7 CONCLUSION 

In this paper, we have proposed a multi-coverage model, 
the first refinement-oriented level-exploration strategy, and 
the first subsumption hierarchy of test case prioritization 
techniques in the context of regression testing of composite 
services. To the best of our knowledge, all existing studies 
on TCP exhaustively observe the effects of prioritization 
techniques from empirical studies. We have shown that 
some test case prioritization techniques can be compared 
analytically. It significantly complements the inadequacy of 
existing work in theoretical studies of TCP. We have 
verified our proposal through an experiment. 

It will be interesting to extend the notion of level-
exploration to other branches of regression testing and 
handle other types of service scenarios. 
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