

Postprint of article in IEEE Transactions on Services Computing (2014), doi: 10.1109/TSC.2014.2331683

A Subsumption Hierarchy of Test Case
Prioritization for Composite Services

Lijun Mei, Yan Cai, Changjiang Jia, Student Member, IEEE, Bo Jiang, Member, IEEE,
W.K. Chan, Member, IEEE, Zhenyu Zhang, and T.H. Tse, Senior Member, IEEE

Abstract—Many composite workflow services utilize non-imperative XML technologies such as WSDL, XPath, XML schema, and
XML messages. Regression testing should assure the services against regression faults that appear in both the workflows and these
artifacts. In this paper, we propose a refinement-oriented level-exploration strategy and a multilevel coverage model that captures
progressively the coverage of different types of artifacts by the test cases. We show that by using them, the test case prioritization
techniques initialized on top of existing greedy-based test case prioritization strategy form a subsumption hierarchy such that a
technique can produce more test suite permutations than a technique that subsumes it. Our experimental study of a model instance
shows that a technique generally achieves a higher fault detection rate than a subsumed technique, which validates that the
proposed hierarchy and model have the potential to improve the cost-effectiveness of test case prioritization techniques.

Index Terms—Test case prioritization, service orientation, XPath, WSDL, XML messages.

——————————  ——————————

1 INTRODUCTION

n a composite business service (typically specified in Web
Services Business Process Execution Language (WS-BPEL or

simply BPEL) [41]), a business process may invoke external
web services to execute the required functionality by match-
ing the contents of XML messages with schemas in Web
Services Description Language (WSDL) specifications [42].

A revised XPath expression [45] to support a particular
workflow step may extract wrong sets of contents from XML
messages for some other workflow steps [29]. Similarly, a
revised XML schema embedded in a WSDL specification that
includes an additional field may mistakenly cause the XPath
expression to match some extra query paths in an XML
message. Modifying the workflow logics may route mis-

matched XML messages along workflow steps different from
the previous workable ways unintentionally.

Regression testing [47] aims at detecting potential faults
caused by software changes, and is the de facto approach to
assuring revised applications [25], [37]. It reruns the existing
test cases to assure that no previously working function has
failed as a result of the modification [25]. To reduce costs, it is
desirable to detect failures as soon as possible. Test Case
Prioritization (TCP) [19], [28], [33], [48] is an important
aspect in regression testing [19], [47]. It schedules the test
cases in a regression test suite with a view to maximizing
certain objectives (such as revealing faults earlier), which
helps reduce the cost of maintenance.

A composite service has multiple levels of details. Take
WS-BPEL services as an example. Different services may
have different workflow steps. Every workflow step in a WS-
BPEL service may declare or refer to an XPath query. Each
XPath query incorporates a layer of “conceptual” branch
decisions into the workflow step (such as deciding whether a
hotel room can be selected by following the XML document
structure). It associated with a WSDL specification [29], each
“conceptual” branch decision becomes a set of concrete tags,
which is enumerable and varies according to the actual WSDL
specification available. One single such concrete tag in an
XML message suffices to make the corresponding “concep-
tual” branch decision to be evaluated as true (such as suc-
cessfully finding a hotel room according to a particular XML
tag). Of course, the specific tag matching the enumerable set
may vary from one XML message to another. For instance, by
viewing inside-out, the level of details changes from work-
flows to XPath queries, then to WSDL specifications, specific tag
usages, and finally to XML messages. Similarly, viewing from
outside-in produces another sequence of artifacts.

We have modeled such a layer of enumerable sets of tags
as an XPath Rewriting Graph (XRG) [29]. To specify a specific
tag in an enumerate set of tags of XRG to be referred to, we
defined a corresponding XRG pattern [30].

In [33], we have proposed the first multilevel coverage
model that considers the first three levels of details when

I

————————————————

© 2014 IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission
of the copyright holder. Permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

 L. Mei is with the Department of Solutions Engineering and Operation
Excellence, IBM Research—China, Beijing, China.
E-mail: meilijun@cn.ibm.com.

 Y. Cai is with the Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong and the State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China. E-mail: ycai.mail@gmail.com.

 C. Jia and W.K. Chan are with the Department of Computer Science, City
University of Hong Kong, Tat Chee Avenue, Hong Kong. E-mails:
cjjia2@gapps.cityu.edu.hk, wkchan@cityu.edu.hk.

 B. Jiang is with the School of Computer Science and Engineering, Beihang
University, Beijing, China. E-mail: jiangbo@buaa.edu.cn.

 Z. Zhang is with the State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, Beijing, China.
E-mail: zhangzy@ios.ac.cn.

 T.H. Tse is with the Department of Computer Science, The University of
Hong Kong, Pokfulam, Hong Kong. E-mail: thtse@cs.hku.hk.

Administrator
 HKU CS Tech Report TR-2014-07

2

viewed inside-out and formulated the first subsumption hier-
archy of TCP techniques. We have also shown that some
level-exploration strategies (such as the summation strategy)
fail to result in techniques that form a hierarchy based on
our subsumption relation.

In this paper, we extend the multilevel coverage model in
[33] to cover the last two levels of details presented above. To
explore different levels of details while preserving the
subsumption relation, we propose a Refinement-Oriented
Level-Exploration (ROLE) strategy. ROLE refers to the next
unused level of detail only if using the current level of detail
cannot help a prioritization strategy (e.g., the additional
strategy [19]) select a test case. To make our work more
focused, this paper does not consider other level-exploration
strategies such as the summation strategy, which has no
subsumption relation with TCP techniques.

Based on the above model, the ROLE strategy, and
various prioritization strategies, we formulate a subsumption
relation and a provable hierarchy of TCP techniques,
including eight ROLE-enriched techniques. We also verify
our work with experiments on fault detection rates using a
benchmark suite of eight WS-BPEL subjects as well as a case
study on a real-world service-based application. The result
shows that techniques located higher in the hierarchy are
more effective.

The main contribution of this paper, together with its
preliminary version [33], is threefold. (i) We propose the first
multilevel coverage model and refinement-oriented level-
exploration strategy for TCP techniques. (ii) We show that
the resultant TCP techniques form a subsumption hierarchy.
To the best of our knowledge, this is the first logical hier-
archy to relate TCP techniques in the public literature. The
hierarchy concretely demonstrates that some but not all TCP
techniques can be compared logically. (iii) We report an
experimental study that validates the fault detection rates of
the techniques in the hierarchy.

The rest of the paper is organized as follows: Section 2
gives the preliminaries. Section 3 outlines a motivating
example. Section 4 presents our hierarchy of prioritization
techniques, followed by its validation in Section 5. Section 6
discusses related work. Section 7 concludes the paper.

2 PRELIMINARIES

2.1 TCP Metrics and Control Techniques
TCP techniques can be designed to achieve certain goals
(such as maximizing the coverage rate) in regression testing
of the next revised versions. The TCP problem, adapted from
[19], is specified as follows:

Given. T, a test suite; PT, a set of permutations of T; and f,
a function from PT to real numbers.

Objective. To find a reordered test suit T’PT such that
T’’PT, f(T’) ≥ f(T’’).

The metrics weighted Average of the Percentage of Faults
Detected (APFD) [19], average Relative Position (RP) [39], and
Harmonic Mean of rate of Fault Detection (HMFD) [48] each
evaluates TCP techniques from the perspective of the rate of
revealing faults. A higher APFD value indicates a higher (or
better) fault detection rate, whereas a lower RP or HMFD
value indicates a higher fault detection rate. In this paper, the

function f maps every permutation T’ in PT to the APFD, RP,
or HMFD value of T’. Each metric value ranges between 0
and 1. More specifically, let T be a test suite containing n test
cases, F be a set of m faults revealed by T, and TFi be the
index of the first test case in the reordered test suite T’ that
reveals fault i. The APFD and HMFD values of T’ are
computed as follows:

Let be the probability that the first failed test case
caused by fault i is in position . The RP value of fault i is
computed as follows:

We will compare TCP techniques in Section 5 with two
control techniques, which we briefly summarize here:

C1: Random ordering [19] randomly orders the test cases
in a test suite T.

C2: Optimal prioritization [19]. Given a program P and a
set of known faults in P, if we know the specific test cases in
a test suite T that expose specific faults in P, then an optimal
ordering of the test cases is the one that maximizes the fault
detection rate of T. C2 approximates the optimal case [19].

2.2 XPath and XPath Query Model

2.2.1 XPath

We adopt the definition and notation of XPath expression
from [34]. Let  be the element labels and attribute labels that
may appear in XML documents. Figure 1 summarizes the
semantics of XPath expressions taken from [34], where an
XPath expression is defined by the following grammar:

][|//|/|.|*| qqqqqqnq

where n is any label in , * denotes a wildcard label, and “.”
(the dot operator) denotes the current node. The constructors
/ and // mean child and descendant navigations, while the
square brackets [] enclose a predicate. The set of all trees are
denoted by T, and each tree represents an XML document
satisfying an XML schema (denoted by ). For a tree tT, an
XPath query q(t) is a query on t using an XPath expression q,
and returns a set of nodes of t. Following [34], we denote the
sets of nodes and edges by NODES(t) and EDGES(t), respec-
tively, and denote the label of node x by LABEL(x). We also
use EDGES*(t) to denote the Kleene closure of EDGES(t).

n(x)

*(x)

.(x)

(q1/q2)(x)

(q1//q2)(x)

(q1[q2])(x)

=

=

=

=

=

=

Rule

1

2

3

4

5

6

…

…

…

…

…

…

{y | (x, y)∈EDGES(t), LABEL(y) = n}

{y | (x, y) ∈EDGES(t)}

{x}

{z | y∈q1(x), z∈q2(y)}

{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}

{y | y∈q1(x), q2(y)≠Ø}

left hand side right hand side

Figure 1. Semantics of XPath expressions (from [34]).

For Rule 5, apart from the sub-terms q1(x) and q2(u), there
is also a sub-term {u | (y, u)EDGES*(t)}, which means all the

 3

nodes u in t are reachable from y. For ease of specifying the
XPath query model in this paper, we define a new rule (Rule
7) as follows:

 //(x) = {y | (x, y)EDGES*(t)} … 7

We show an XML message on the right of Figure 2. It
contains two parts: a specific hotel room under the path
/hotel, and a list of hotel rooms under the path
/hotel/hotelList/hotel. Queries 1, 2, and 3 on the left of the
same figure are XPath queries each enclosed within a
dashed-and-dotted rectangle. They search for hotel name(s)
under the first path (/hotel/name/), both paths (//name/), and
the second path (/hotel/hotelList/hotel/name/), respectively.

hotel

……

name

hotelList

name name

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1</persons>

</room>

</hotel>

<hotel>

<hotelList>

<hotel><name>Hilton Hotel

</name>…</hotel>

<hotel><name>Westin Hotel

</name>…</hotel>

</hotelList>

</hotel>

search

/hotel/hotelList/hotel/name/

/hotel/name/
Query 1

Query 2

Query 3

search

//name/

Figure 2. Effects of the structure of an XML message
on different XPath queries to locate hotels using hotel name.

2.2.2 XPath Query Model
An XPath Rewriting Graph (XRG) [29] represents potential
scenarios of content selections by XML messages. XRG is
built on the semantics rules for an XPath expression q
presented in Figure 1. It treats every such rule as a “left-to-
right” rewriting rule in the spirit of term rewriting [13] to
transform the query q. In essence, given a query q and a
document model , the algorithm in [29] creates a node for
q, locates a rule whose left hand side matches the query q,
and then creates a set of XRG nodes pointed to by the former
node. Specifically, if the matching rule has d sub-terms on the
right hand side of the rule (such as d = 3 for Rule 5), it creates
d XRG nodes, one for each sub-term. The types of these d
nodes depend on whether the sub-term includes any query
(such as q2 in Rule 5). XRG nodes with and without query are
referred to as rewriting nodes and rewritten nodes, respectively.
Each rewritten node will not be subject to further rewriting.

The query (such as q2 in Rule 5) in each of such rewriting
nodes is then used to generate a new set of rewriting nodes
and rewritten nodes. If any newly generated XRG node is the
same as an existing XRG node that is previously generated,
the algorithm just reuses the existing XRG node (to create a
fixed point) and discards this newly generated one.

A rewriting node is represented by a triple q, Lc, rule and
a rewritten node is represented by a quadruple q, Lc, Ln, S.
In such an XRG node, q is an XPath expression. Lc and Ln are
sets of nodes in the document model  (that is, Lc, Ln 
NODES()). They represent the sets of nodes reachable by q
based on the semantics defined in Figure 1: Lc is the set of
nodes in  located by the rewriting step pointing to it, and Ln
is the set of nodes in  that can be located by q starting from
at least one node in Lc. S is the rewritten form of q based on
the matching rule. Since Figure 1 shows the semantic rules of
XPath expression in set notion, S is also expressed in set
notation. Also, rule denotes the left hand side of the matching
rewriting rule (in Figure 1). The set Lc in the rewriting node
for the inputted query q is singleton and contains the unique
root node ROOT of the schema .

In the spirit of data flow analysis, we further consider any
variable generated in XRG as a variable definition, and the use
of a variable provided by a preceding node as a variable usage.
Such variables (e.g., Lc and Ln in rewritten nodes) are concep-
tual in nature and are not program variables because they
never appear in an implemented program. We thus call them
conceptual variables. For example, the XPath query in Figure 4
returns the conceptual variable g at node R10.

Definition 1 (XPath Rewriting Graph). An XRG for an
XPath query is a five-tuple q, , Nx, Ex, Vx such that

(1) q is an XPath expression for the XPath query;  is an
XML schema that describes the XML document to be
queried on.

(2) Nx is a set of rewriting nodes and rewritten nodes; Vx
is a set of conceptual variables defined on the nodes
in Nx.

(3) Ex is a set of edges, each representing the transition
between two nodes. Each edge is denoted by a tuple
(sc, sn), where sc, sn ∈ Nx and sn rewrites sc.

1 <xsd:complexType name="hotel">

2 <xsd:element name="name" type="xsd:string"/>

3 <xsd:element name="room" type="xsd:roomType"/>

4 <xsd:element name="error" type="xsd:string"/>

5 <xsd:element name="hotelList" type="xs:hotelList"/>

6 </xsd:complexType>

7 <xsd:complexType name="roomType">

8 <xsd:element name="roomno" type="xsd:int" />

9 <xsd:element name="price" type="xsd:int"/>

10 <xsd:element name="persons" type="xsd:int"/>

11 </xsd:complexType>

12 <xsd:complexType name="hotelList">

13 <xs:element name="Hotel" type="xs:hotel"

maxOccurs="10"/>

14 </xsd:complexType>

Figure 3. Excerpt from WSDL document: XML schema of hotel.

< //price/, A,(q1//q2)>

<room[precondition]/price/*, C,(q3/q4)>

q7(E),q7=(price) q8(F), q8=*

q1(A), q1= * q2(C), q2=(room[precondition]/price/*)

R1

R3R2 R4

R9 R10

XQ(HotelInformation, //room[precondition]/price/)
Rewriting Node

Rewritten Node

precondition: (@price‘Price’ and @persons=’Num’)

A = {ROOT} B = {hotel} C = {name, room, roomno, price, persons, error} D = {room} E = {room}

F = {price} G = {g | g is the price value}

Rule 1: {y|(x, y)∈EDGES(t), LABEL(y) = n} Rule 2: {y|(x, y)∈EDGES (t)}

Rule 4: {z| y∈q1(x), z∈q2(y)} Rule 5: {z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u) }

Rule 6: {y| y∈q1(x), q2(y) ≠ Ø } Rule 7: {y|(x, y)∈EDGES*(t)}

< *, A, B, Rule2>

< price, E, F, Rule1> < *, F, G, Rule2>

q5(C),q5=(precondition) q6(D), q6=room

R7 R8

<precondition, C,

D, Rule 1>

< room, D, E,

Rule 1>

<room[precondition], C,(q5[q6])> <price/*, E,(q7/q8)>

R5 R6

q3(C),q3=room[precondition])
q4(E),q4= price/*

< //, B, C, Rule 7>

Figure 4. Example of XPath Rewriting Graph.

4

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

RoomPrice = XQ(HotelInformation,

//room[@price≤'Price' and
persons≥‘Num’]/price)

if XQ(HotelInformation, //roomno/) ≠
null

&& RoomPrice≤ Price
if RoomPrice≥ 0

&& RoomPrice≤ Price

No

RoomPrice = XQ(HotelInformation,

//room[@price≤'Price' and
@persons=‘Num’]/price)

Yes

Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

(a) Original Process (b) Changed Process – 1 (c) Changed Process  2

No
Yes Input:

RoomPrice

Output:

BookingResult

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≥ 0

&& RoomPrice≤ Price

Input: BookRequest

A5:

Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

RoomPrice = XQ(HotelInformation,

//room[@price≤'Price' or

@persons≥‘Num’]/price)

No Yes
Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

A9: Reply Fault A9: Reply Fault A9: Reply Fault

The test cases t2 and t3 can

detect the fault. The test case t6 can detect the fault.

Figure 5. Activity diagrams of business process HotelBooking.

Let us show an example of an XRG. Suppose, during the

reservation of a hotel room (see the full example in Section 3),
the booking information (in XML format) is kept in a BPEL
variable HotelInformation. Figure 3 shows a simplified XML
schema hotel for HotelInformation. A room has three attributes
(lines 8–10): roomno, price, and persons (indicating the
maximum number of persons allowed). Consider an XPath
query on HotelInformation, denoted by XQ(HotelInformation,
q), where q is //room[@price  ’Price’ and @persons =

’Num’]/price/. Informally, q finds a room within the requested
price that can accommodate the requested number of
persons. The corresponding XRG is shown in Figure 4.

We show the first rewriting step to illustrate how an XRG
is computed. XQ(HotelInformation, q) is identified by Rule 5
as q1//q2, where q1 = * and q2 = room[precondition1]/price/*), in
which precondition1 is “@price  ’Price’ and @persons

= ’Num’ ”. Since there are queries on the right hand side of
Rule 5, a rewriting node R1 is generated. The middle sub-
term on the right hand side of Rule 5 matches Rule 7, and
hence R3 is generated. Next, the algorithm recursively
processes the two queries q1 and q2. The query q1 matches
Rule 2, and the right hand side of Rule 2 does not contain
any query and only contains one sub-term, and thus one
rewritten node R2 is generated. The query q2 matches Rule 4,
which contains other queries on its right hand side. The
rewriting node R4 is thus generated. The remaining rewriting
steps are similar.

After constructing the XRG, we obtain a conceptual path
p that models a logical computation of an XPath query via an
inorder traversal of the XRG with all the rewritten nodes R2, R3,
R7, R8, R9, and R10 in sequence. Such a conceptual path p
contains implicit predicates, each of which decides on a
legitimate branch (called an XRG branch) to be taken. For
instance, if an XML document does not contain any element
that match the set B in R2, B will be empty. This will result in
no more applicable rewriting. A succeeding rewritten node
will appear in a conceptual path only if its preceding
rewritten node provides a non-empty set of Ln. A branch
decision can be modeled by whether Ln in a node is empty.

We revisit the notion of XRG pattern: In general, a
conceptual variable z may contain multiple tags of an XML
schema. As long as the corresponding XML message matches
at least one tag in the tag set of z, this variable does not
distinguish which subset of tags having been selected. There-
fore, we define an instantiation of z as assigning a concrete
value to z.

To differentiate the usages of these tags in the same query
path, we introduced XRG patterns in [30]. We will give
examples of XRG patterns in Section 3 (see Table 4 also).

Definition 2 (XRG Pattern [30]). For any given XRG r =
q, , Nx, Ex, Vx, an XRG pattern (r) is an instantiation of
r such that (i) a tag ti is assigned to the ith variable ( Vx)
in a conceptual path p based on the definition order of the
variables, and (ii) ti must be used (in terms of data flow
associations) by a subsequent rewritten node n  Nx to
locate ti+1 in the path p.

3 MOTIVATING EXAMPLE

3.1 Modification Example

We adapt the HotelBooking process in TripHandling [1] to
motivate our work. HotelBooking offers hotel booking services.
Since the actual BPEL code in XML format is quite lengthy,
we use an activity diagram to depict the business process, as
shown in Figure 5a.

We represent a workflow step (numbered as Ai for i from
1 to 9) and a transition between two steps by a node and a
link, respectively. We annotate nodes with data extracted
from the process, such as the input/output parameters of the
activities and XPath queries. The process in Figure 5a is:

(a) A1 receives a user’s hotel booking request, and stores it in
the variable BookRequest.

(b) A2 extracts the inputted room price and number of
persons via the XPath queries //price/ and //persons/ from
BookRequest, and stores them in the variables Price and
Num, respectively.

(c) A3 invokes an external service HotelPriceService to find
available hotel rooms with prices within budget (not

 5

exceeding Price), and keeps the result in HotelInformation
(with its schema as defined in Figure 3).

(d) A4 assigns RoomPrice using the price obtained from the
query //room[@price≤’Price’ and @persons=
’Num’]/price/.

(e) A5 further verifies locally that the price in HotelInformation
should not exceed the inputted price (the variable Price).

(f) If the verification passes, A7 will invoke HotelBookService
to book a room, and A8 returns the result to the customer.

(g) If RoomPrice is erroneous or HotelBookService (A7)
produces a failure, A6 will invoke a fault handler, and A9
will then return the fault.

We present two changes in Figure 5b and Figure 5c that
may result in integration failures. Suppose John decides that
node A4 in Figure 5a should be changed to node A4 in Figure
5b. That is, he attempts to allow customers to select any
available room for the requested number of persons.
However, he wrongly changes the precondition in the XPath
query (namely, changing “and” to “or”), which introduces a
regression fault. Further, suppose that another engineer Lucy
wants to correct this fault. She fixes node A4 in Figure 5b by
changing the precondition in the XPath query (namely,
changing “or” to “and”). But she considers the precondition
in node A5 to be redundant (that is, no need to require
RoomPrice ≥ 0). She therefore changes node A5 in Figure 5b to
node A5 in Figure 5c, and forgets to handle another potential
scenario (RoomPrice < 0). Her change thus introduces a
regression fault into the original program.

3.2 Sample Test Cases
The inputs to the WS-BPEL service are XML documents. We
use Price, Num to denote the BookRequest document at node
A1, where Price is the value of the price variable and Num is
value of the variable denoting the number of persons. (For
brevity, we do not introduce the XML schema that defines
BookRequest.) We use eight test cases (t1 to t8) for illustration:

 Price, Num Price, Num

Test case 1 (t1): 200, 1 Test case 2 (t2): 150, 2

Test case 3 (t3): 125, 3 Test case 4 (t4): 100, 2

Test case 5 (t5): 50, 1 Test case 6 (t6): –1, 1

Test case 7 (t7): 180, 5 Test case 8 (t8): 160, 4.

Figure 6 shows the XML messages used by t1 to t8 at node
A4. Each of the first two includes one single room and one
triple room. The third contains one single room. The fourth
includes the price of one room without the room number.
The sixth is an error message. The rest contain no room data.

The test oracle for the example is the booking result,

<hotel>

<hotelList>

<hotel><name>Hilton</name>

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1</persons>

</room>

</hotel>

<hotel>

<name>Westin</name>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3</persons>

</room></hotel>

</hotelList>

</hotel>

for Test Case t1 for Test Cases t2 for Test Cases t3

for Test Case t5

<hotel>

<room>

<price>-1</price>

<persons>1</persons>

</room>

<error>InvalidPrice</error>

</hotel >

for Test Case t4 for Test Case t6

<hotel>

</hotel>

<hotel>

<name>Hilton</name>

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1</persons>

</room>

</hotel >

<hotel>

<room>

<roomno></roomno>

<price>100</price>

<persons>2</persons>

</room>

</hotel >

<hotel>

<hotelList>

<hotel><name>Hilton</name>

<room>

<roomno>R106</roomno>

<price>105</price>

<persons>1<persons>

</room>

</hotel>

<hotel>

<name>Westin</name>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3</persons>

</room></hotel>

</hotelList>

</hotel>

<hotel>

<hotelList>

<hotel><name>Hilton</name>

<room><roomno></roomno><price></price>

<persons></persons></room></hotel>

<hotel><name>Westin</name>

<room><roomno></roomno><price></price>

<persons></persons></room></hotel>

</hotelList>

</hotel>

<hotel>

<name>Hilton</name>

<room><roomno></roomno>

<price></price>

<persons></persons></room>

</hotel>

for Test Case t7 for Test Case t8

Figure 6. XML messages for XQ(HotelInformation, //room[@price 
'Price' and @persons = 'Num']/price/) for different test cases.

TABLE 1
WORKFLOW BRANCH COVERAGE

FOR T1 TO T8
Branch t1 t2 t3 t4 t5 t6 t7 t8

A1, A2        

A2, A3        

A3, A4        

A4, A5        

A5, A6      

A5, A7  

A7, A6

A7, A8  

A6, A9      

Total 6 6 6 6 6 6 6 6

TABLE 2
XRG BRANCH COVERAGE

FOR T1 TO T8
XRG branch t1 t2 t3 t4 t5 t6 t7 t8

R2, R3        

R2, A4

R3, R7       

R3, A4 

R7, R8       

R7, A4

R8, R9   

R8, A4    

R9, R10   

R9, A4

Total 5 4 4 5 2 5 4 4

TABLE 3
STATISTICS OF WSDL ELEMENTS AND

XML MESSAGES FOR T1 TO T8

XML schema t1 t2 t3 t4 t5 t6 t7 t8

Hotel        

HotelList   

Name     

Room       

Roomno      

Price       

Persons       

Error 

Subtotal (WSDL) 7 7 6 5 1 5 7 6

val(name)     

val(roomno)   

val(price)     

val(persons)     

val(error) 

Total (XML) 11 11 10 7 1 8 8 7

TABLE 4
XRG PATTERN COVERAGE FOR T1 TO T8

Index XRG pattern t1 t2 t3 t4 t5 t6 t7 t8

x1
/hotel/hotelList/hotel
/room[predication]/price



x2 /hotel/room[prediction]/price  

 Total 1 0 0 1 0 1 0 0

6

namely, successful booking, failed booking, or error message.
When executing the process in Figure 5b, t1 extracts a correct
price; both t2 and t3 extract the price of 105 for a single room,
but they actually need to book a double room and a family
room, respectively; t4 extracts a price that it should not
extract, and it cannot book any room; each of t5 to t8 does not
extract any price value. Both t2 and t3 detect the fault shown
in Figure 5b. Similarly, executing the process shown in Figure
5c, t1 extracts the correct prices; t2, t3, t5, t7, and t8 do not
extract any price; t4 extracts a price that it should not extract,
and thus cannot book any room as expected; and t6 extracts a
price of –1 while it should not extract any price, and leads to
an error message. Only t6 can detect the fault shown in
Figure 5c.

3.3 Baseline

Table 1 shows the workflow branch coverage of t1 to t8
against the original process of HotelBooking in Figure 5a. We
use a “” to denote an item covered by a test case in Table 1
(as well as in Tables 2, 3, and 4 and Figure 7). As shown in
Table 1, the test cases t1 to t8 cover the same number of
workflow branches. The total-branch prioritization technique
(that is, the total prioritization strategy utilizing branch cover-
age data) thus behaves like random ordering [19]. If we
apply this technique to the coverage of workflow branches
only, t1t5t4t7t8t2t3t6 is one of the least effective
orderings. Its APFD value is 1 − (6 + 8)  (8  2) + 1  (2  8) =
0.1875. We observe that using the coverage data of workflow
branches is still nondeterministic in the selection of t1 to t8,
and finding ways to eliminate such ineffective orderings will
help increase the effectiveness of fault detection. This further
motivates our work.

4 A SUBSUMPTION HIERARCHY
In this section, we present the key aspects of TCP techniques
in our model followed by a subsumption hierarchy.

4.1 Multilevel Coverage Model
We propose a multilevel coverage model to facilitate the appli-
cation of level-exploration strategies. We use the sequence of
artifacts stated in the example in Section 1 to illustrate our
model. Our model is general, however. We emphasize that
the order of coverage data used in an individual level in the
model is independent of both the notion of ROLE and the
subsumption relation. Our model can be initialized with
other sequences of the same or different coverage data sets.

A coverage model for a service-oriented workflow appli-
cation P is a six-tuple T, Πα, Πβ, Πγ, Πδ, Πθ, where (a) T is a
regression test suite for P, and (b) Πα, Πβ, Πγ, Πδ, and Πθ rep-
resent, respectively, sets of workflow branches, sets of XRG
branches, sets of WSDL elements, sets of XRG patterns, and
sets of tag values and unique tags in XML messages collected
from the executions of all the test cases in T against P.

For any test case t  T, Πα(t), Πβ(t), Πγ(t), Πδ(t), and Πθ(t)
represent, respectively, the set of workflow branches, the set
of XRG branches, the set of WSDL elements, the set of XRG
patterns, and the set of tag values and unique tags in XML
messages covered by the execution of t against P.

For ease of presentation, we refer to the five levels as CM-
i levels, where CM stands for Coverage Model and i = 1 to 5.

4.2 Refinement-Oriented Level-Exploration Strategy

and ROLE-Enriched Prioritization Techniques

In this section, we illustrate a new aspect that systematically
explores coverage data in a stepwise refinement manner.
Independent of the prioritization strategy used, our work
makes more deterministic choices along the sequence of
coverage data. We refer to it as a level-exploration strategy.

Given a coverage model, one may formulate a strategy to
explore different levels of details. In this section, we present a
Refinement-Oriented Level-Exploration (ROLE) strategy.

We adopt two prioritization strategies as baselines to
illustrate our approach: the additional strategy and the total
strategy [19]. They are equipped with the CM-1 level of detail
to become the techniques M1 and M2 presented in Section
4.2.1. We illustrate these two prioritization strategies with
branch coverage because they are still the most effective
series of TCP techniques since the inception of TCP research
[50].

ROLE enriches each prioritization strategy S with increas-
ing levels of details. Whenever S cannot resolve ambiguity in
test case priority due to equivalent coverage statistics, ROLE
exposes the level of detail CM-(i+1) next to the current level
of detail CM-i. At each new level of detail, it uses the strategy
S to prioritize test cases still in tie using the coverage data of
that level. Each refinement step turns nondeterministic
choices into more deterministic choices.

ROLE is orthogonal to the prioritization strategy S used.
For instance, it can be incorporated into a coverage-based
prioritization strategy S that adopts random resolution of tie
cases. In theory, some prioritization strategies have their own
deterministic approaches to resolving tie cases. For example,
a prioritization strategy may consistently prefer to give a
higher priority to test cases having smaller test case identities
(or appearing earlier in a test suite). Intuitively, such a deter-
ministic strategy can be replaced by the ROLE strategy.

4.2.1 CM-1 Level: Baselines

M1 (Total-CM1) is the total-branch technique [19]. It sorts the
test cases in T in descending order of the total number of Πα
items executed by each test case. If a set of test cases cover
the same number of Πα items, M1 orders them randomly.

M2 (Addtl-CM1) [19] iteratively selects a test case t in T
that yields the greatest cumulative Πα item coverage, and
then removes the covered Πα items from all remaining test
cases to indicate that the removed items have been covered.
Additional iterations will be conducted until all the Πα items
have been covered by at least one selected test case. If
multiple test cases cover the same number of Πα items in the
current round of selection, M2 selects one of them randomly.
If no remaining test cases can further improve the cumulative
Πα item coverage, M2 resets the Πα item covered by each
remaining test case to its original value. It repeats the above
procedure until all test cases in T have been selected.

4.2.2 CM-2 to CM-5 Levels

This section presents techniques M3 to M10 recursively. We
first describe the ROLE-enriched techniques based on the
total strategy, followed by the additional strategy.

Total-CMi-Refine Techniques: M3 (Total-CM2-Refine),
M5 (Total-CM3-Refine), M7 (Total-CM4-Refine), and M9

 7

(Total-CM5-Refine). Total-CMi-Refine (i = 2 to 5) is the same
as Total-CM(i–1)-Refine, except when multiple test cases
cover the same number of CM-(i–1) items, it will order them
in descending order of the number of CM-i items covered by
each test case involved in the tie. If there is still a tie, Total-
CMi-Refine randomly orders the test cases involved.

Addtl-CMi-Refine techniques: M4 (Addtl-CM2-Refine),
M6 (Addtl-CM3-Refine), M8 (Addtl-CM4-Refine), and M10
(Addtl-CM5-Refine). Addtl-CMi-Refine (i = 2 to 5) is the
same as Addtl-CM(i–1)-Refine except three things. (1) In each
iteration, Addtl-CMi-Refine removes the covered CM-1 to
CM-i items of the selected test cases from the remaining test
cases to indicate that the removed items have been covered
by the selected test cases. (Note that Addtl-CMi-Refine still
selects test cases based on the CM-1 item coverage as in M2.)
(2) If multiple test cases cover the same number of CM-(i–1)
items in the current round of selection, Addtl-CMi-Refine
selects the test case that has the maximum number of un-
covered CM-i items. If there is still a tie, it randomly selects
one of the test cases involved. (3) When resetting is needed,
Addtl-CMi-Refine resets each remaining test case to the
corresponding original coverage of CM-1 to CM-i items.

4.3 Illustration Using Motivating Example

Different XRG branches may lead to different content
selections, and return different values to the workflow step
[29]. For example, the XRG branch of t1 extracts the value 150
from the price tag and assigns the value to the variable Price.
However, for t2, t3, t5, t7, and t8, it will return no value
(referred to as the “null value” for ease of discussion) to Price.

As shown in Table 2, test cases t1, t4, and t6 cover the same
set of XRG branches each; and test cases t2, t3, t7, and t8 cover
another set of XRG branches each. The XRG branches
covered by t5 are different from the other seven test cases.

After considering the XRG branches in solving the tie cases,
t1t4t6t7t8t2t3t5 (with an APFD value of 0.50) is
one of the least effective orderings.

Similarly, the above level of detail, denoted by CM-2, does
not help resolve tie cases among t1, t4, and t6, or among t2, t3, t7,
and t8. ROLE then extends the coverage model to the next
level of detail, denoted by CM-3. Table 3 shows that t1, t2, and
t7 cover the same set of WSDL elements but are different
from those covered by the other test cases. By using the total
prioritization strategy and the WSDL coverage data to
resolve tie cases, t1t4t6t7t2t8t3t5 (with an APFD
value of 0.56) is one of least effective orderings.

The above CM-3 level of detail does not resolve tie cases
among t4 and t6, among t2 and t7, and among t3 and t8. ROLE
thus further includes the next level of detail, denoted by CM-
4, as shown in Table 4. For the purpose of illustration, we
only consider the XRG pattern at node A4.

From Figure 5a and Figure 6, t1 only searches for hotels
from the hotel list, whereas t4 only selects from a specific
hotel. Both test cases cannot select any hotel, even though the
XRG patterns they cover are different. We denote the query
paths of t1 and t4 on the XML messages in Figure 6 by XRG
patterns x1 and x2, respectively. As an illustration that
adding more coverage data may not resolve tie cases, these
two XRG patterns cannot resolve tie cases among t4 and t6,

among t2 and t7, and among t3 and t8. Hence, t1t4t6t7t2
t8t3t5 is still one of the least effective orderings.

TABLE 5
DIFFERENT LEVELS OF PRIORITIZATION TECHNIQUES

WITH EXAMPLES

CM
Level

Technique
Ref.

Code

Example of
least effective ordering APFD

t1 t2 t3 t4 t5 t6 t7 t8

CM-1

Total-CM1 M1 1 6 7 3 2 8 4 5 0.19

Addtl-CM1 M2 1 4 5 3 2 6 7 8 0.44

R
O

L
E

-E
n

ri
ch

ed
 CM-2

Total-CM2-Refine M3 1 6 7 2 8 3 4 5 0.50

Addtl-CM2-Refine M4 1 4 6 3 2 5 7 8 0.50

CM-3
Total-CM3-Refine M5 1 5 7 2 8 3 4 6 0.56

Addtl-CM3-Refine M6 1 5 7 4 2 3 6 8 0.56

CM-4
Total-CM4-Refine M7 1 5 7 2 8 3 4 6 0.56

Addtl-CM4-Refine M8 1 4 2 3 8 5 6 7 0.63

CM-5
Total-CM5-Refine M9 1 4 6 3 8 2 5 7 0.69

Addtl-CM5-Refine M10 1 5 2 4 8 3 6 7 0.75

This process is continued to include the next level of detail
(the XML message level), denoted by CM-5, whose coverage
data is also shown in Table 4. For example, t4 and t6 cover
the same number of XRG patterns, but t6 achieves higher
coverage than t4 in terms of the number of elements in XML
messages, where t1t6t4t2t7t3t8t5 (with an
APFD value of 0.69) is one of the least effective orderings.

Table 5 summarizes the acronyms and reference codes of
the 10 techniques presented above. We also use sample least
effective prioritization results of t1–t8 against the HotelBooking
process to illustrate each technique. We also show the APFD
values of each sample ordering under the “APFD” column.

4.4 Subsumption Hierarchy of ROLE-Enriched

TCP Techniques

Subsumption relations are a classical concept in various areas
of computer science research, such as artificial intelligence
[10], databases [23], programming languages [20], and
software testing [44]. We propose a notion of subsumption
relations for TCP. The basic idea is that if a TCP criterion
subsumes another TCP criterion, the former defines more
specific coverage requirements while the latter makes a less
deterministic choice. Although there is no theoretically
proven relationship between the fault detection abilities of
the two criteria, empirically speaking, the latter tends to
exhibit weaker fault detection ability.

Definition 3 (Subsumption). Given two TCP techniques X
and Y, we say that X subsumes Y (denoted by X  Y) if and
only if any permutation of any test suite produced by X can
also be produced by Y.

The subsumption relation is reflexive, transitive, and anti-
symmetric, and is therefore a partial order. We have analyzed
the subsumption relations among M1 to M10 and the result
is summarized in Figure 7. For instance, we have shown that
(M3) Total-CM2-Refine subsumes (M1) Total-CM1, and we
use an arrow from M3 to M1 to represent this relation in the
figure. Other arrows can be interpreted similarly.

A sketch of the proof of the subsumption relations among
the techniques is as follows: The basic idea is that, if random
selection in resolving ties in one technique is replaced by a
more deterministic procedure in another technique, then the

8

latter technique subsumes the former. For instance, unlike
M1 (which randomly resolve tie cases), M3 refers to XRG
branch coverage of test cases to resolve tie cases before using
random selection as the last resort. Because any test case that
M3 can pick to resolve a tie may also be selected by chance
by M1, any test case permutation produced by M3 must be a
permutation that can be produced by M1. Other subsump-
tion relations shown in Figure 7 can also be reasoned
similarly.

Random

Total-CM1 Addtl-CM1

Total-CM5-Refine Addtl-CM5-Refine

Total-CM4-Refine Addtl-CM4-Refine

Optimal

(C1)

(M1) (M2)

(M9)

(M7)

(C2)

(M10)

(M8)

Total-CM3-Refine Addtl-CM3-Refine(M5) (M6)

Total-CM2-Refine Addtl-CM2-Refine(M3) (M4)

Figure 7. Subsumption hierarchy of test case prioritization techniques.

4.5 Discussions of Subsumption Hierarchies

A level-exploration strategy may or may not be good
enough to lead to a subsumption hierarchy. In this section,
we present a negative example followed by a positive
example.

Negative example. We use the summation strategy [33] as a
negative example. Under this strategy, the technique at
CM-i level treats all the coverage data from CM-1 to CM-i
levels homogeneously and applies a given TCP strategy to
prioritize all the test cases (not just the tie cases as in
ROLE). Take the total prioritization strategy S1 for the sake
of discussion. Suppose that at CM-1 level, the three test
cases ta, tb, and tc achieve coverage counts of 1, 2 and 3,
respectively; and at CM-2 level, they achieve coverage
counts of 6, 4, and 2, respectively. At CM-1 level, S
produces the test suite permutation tc, tb, ta. At CM-2 level,
the summation strategy provides the coverage counts of 7,
6, and 5 for the three test cases for S1 to rank test cases,
which produces the test suite permutation ta, tb, tc, but this
permutation is infeasible at CM-1 level.

Positive example. On the other hand, if a technique X
located higher in the coverage model instance refines (but
not supersede) the decision made by a technique Y located
lower in the same model instance, then X will produce a
test suite permutation that is also producible by Y (or the
other way round). Consider, for instance, a hypothetical
search-based level-exploration strategy S2. At CM-i level,
this strategy checks the coverage data set at every CM-j
level (where j = 1, 2, ..., i) and finds a most similar (or
diverse) not-yet-prioritized test case from each such data
set with respect to the already-prioritized test cases. The
strategy S2 then randomly picks one among these most
similar (or diverse) test cases. In this case, a technique at
CM-i level can produce more possible permutations than a
technique at CM-k level (where k < i). According to
Definition 3, it will lead to a subsumption hierarchy but in
the reversed direction as shown in Figure 7.

In the above discussion, we use the same baseline TCP
strategy across all levels. Using different strategies at
different levels is a further generalization. The selection
among coverage levels to be explored may also be further
integrated with some coverage-based selection strategies.

5 EXPERIMENT

The relative strength in fault detection rate of TCP tech-
niques may not necessarily be proven. We will supplement
our analytical result with an experimental study in Sections
5.1 and 5.2, followed by a case study in Section 5.3.

5.1 Experimental Design

We chose eight benchmarks [29] to evaluate our work. The
subjects were downloaded from the BPWS4J repository [18],
Oracle BPEL Process Manager [24], IBM BPEL repository
[41], and Web Services Innovation Framework [43]. These
subjects are representative service-based applications
developed in WS-BPEL [1], [18], [43]. Previous empirical
studies (such as [28], [33]) have reported results on this
benchmark suite. (Note that this suite is larger in size than
other sets of subjects reported by the testing research
papers of the same journal, such as [36].) Table 6 shows the
descriptive statistics of the suite. The number of XML
elements (“Elements”) and the number of lines of BPEL code
(“LOC”) of each benchmark are shown in the table.

We used the set of faults and associated test suites in the
benchmark suite to measure the effectiveness of different
prioritization techniques. We followed the spirit of mutation
testing [2] to seed faults in the major artifacts (BPEL, XPath,
and WSDL) of the benchmarks. Andrews et al. [2] suggested
that mutation faults can be representative of real faults.
Many researchers thus used mutation testing for empirical
evaluation of TCP techniques [17]. We used three typical
types of mutations in fault seeding: value mutations, decision
mutations, and statement mutations. Since BPEL can be
treated as Control Flow Graphs (CFG), the above mutations
can be seeded in the way as seeding faults in CFG. Figure 5c
gives one example of a BPEL fault. An XPath fault is the
wrong usage of XPath expressions, such as extracting the
wrong content, or failing to extract any content. Figure 5b
gives one example of an XPath fault. A WSDL fault is the
wrong usage of WSDL specifications, such as binding to a
wrong WSDL specification, or inconsistent message defini-
tions. The faults in the modified versions have been reported
by [29]. The statistics of the selected modified versions are
shown in the rightmost column of Table 6.

When constructing the benchmark suite [29], we imple-
mented a tool that automatically generated a pool of 1,000
test cases for each subject. The tool generated test cases to
ensure that they covered all workflow branches, XRG
branches, WSDL elements, XRG patterns, and types of XML
messages of the original subject at least once. We then
followed the common practice [19], [28], [32] in evaluating
TCP techniques to discard any version if more than 20
percent of the test cases can detect failures due to its fault.
The tool adopted the test suite construction process
presented in [19], which ensured that the fault detection
effectiveness of test suites was not influenced by the order of

 9

test case generation [19]: It randomly selected test cases one
by one from a test pool and placed them in a test suite T
(which was initially empty) without applying any test case to
the modified versions of the corresponding subject. Such
selection was iteratively done until all the workflow branches,
XRG branches, WSDL elements, XRG patterns, and all types
of XML messages had been covered at least once. If the
outputs of the same test case against a subject and a modified
version were different, the test case detected a fault in the
modified version. This suite T would be retained if it
detected a fault in a modified version. The tool successfully
retained a total of 100 test suites for each benchmark. Table 7
shows their statistics.

TABLE 6

BENCHMARKS AND THEIR DESCRIPTIVE STATISTICS

Ref. Benchmark

M
o

d
if

ie
d

V

er
si

o
n

s

E
le

m
en

ts

L
O

C

X
P

at
h

X
R

G

B
ra

n
ch

es

W
S

D
L

E

le
m

en
ts

U
se

d

V
er

si
o

n
s

A atm 8 94 180 3 12 12 5

B buybook 7 153 532 3 16 14 5

C dslservice 8 50 123 3 16 20 5

D gymlocker 7 23 52 2 8 8 5

E loanapproval 8 41 102 2 8 12 7

F marketplace 6 31 68 2 10 10 4

G purchase 7 41 125 2 8 10 4

H triphandling 9 94 170 6 36 20 8

 Total 60 527 1352 23 114 106 43

TABLE 7

STATISTICS OF TEST SUITE SIZES

Ref.

Size
A B C D E F G H Mean

Max. 146 93 128 151 197 189 113 108 140.6

Mean 95 43 56 80 155 103 82 80 86.8

Min. 29 12 16 19 50 30 19 27 25.3

For each subject and for each constructed test suite T for
the subject, the tool applied every technique to prioritize T.
The tool executed each prioritized T against every modified
version of the subject. It used the outputs of the original
version as expected outputs. It calculated the corresponding
APFD, RP, and HMFD values. In total, 833,280 APFD values,
516 RP values, and 833,280 HMFD values were collected.

5.2 Data Analyses

5.2.1 Overall Effectiveness

Figure 8 shows the 25th percentile, median, 75th percentile
and mean APFD results of each of the techniques C1, C2, and
M1–M10, in which the result of every individual technique is
represented using box-plots. Each box-plot shows the 25th
percentile, median, and 75th percentile of a particular
technique. For instance, the 25th percentile, median, and 75th
percentile of the mean APFD of M10 are shown in the last
plot of Figure 8d.

Let us first examine the overall mean APFD result of each
technique in Figure 8d. As expected, the box-plot of C2
shows the best mean APFD in the figure. M8 and M10 are
only three percent less effective than C2. All the techniques
M1–M10 are more effective than C1.

The effectiveness of the Total-CM series of techniques
increases from CM-i to CM-(i+1) level (i = 1 to 4) at the 25th
percentile, medium, 75th percentile, and mean APFD, except
for the change in mean APFD from CM-1 to CM-2 level and
the change in the 25th percentile from CM-3 to CM-4 level.
Similarly, the effectiveness of the Addtl-CM series increases
from CM-i to CM-(i+1) level (i = 1 to 4) at the 25th percentile,
medium, 75th percentile and mean APFD, except for the
change in the 25th percentile from CM-4 to CM-5 level.

We further investigate the impact of level changes. If a
technique at CM-i level is worse than that at CM-(i–1) level in
terms of median APFD value, we call the scenario an
exception, and assign to it a value of 1 (and darken the cell);
otherwise 0 is assigned. Table 8 shows the result together
with the median APFD values of random ordering and the
techniques at CM-1 level (M1–M2) and CM-5 level (M9–M10).
When CM-1 level is more effective than CM-5 level, such as
the case of the purchase application in the Total-CM category,
an exception occurs. When random ordering is more
effective than CM-1 level, such as the case of the dslservice
application in the Total-CM category, an exception is also
said to occur. The observations on the exceptions in the
Addtl-CM category are similar to the Total-CM category.

There are 64 comparisons in total, but only nine excep-
tions. Hence, 85.9 percent of the cases show improved
effectiveness when the level in the subsumption hierarchy
increases.

By comparing the pairs of techniques (M1, M2), (M3, M4),
(M5, M6), (M7, M8), and (M9, M10), we observe that an
Addtl-CM technique has a shorter length of the box (smaller
variances) than the corresponding Total-CM technique at the

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
1

C
2

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
1

C
2

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
1

C
2

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1

0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
1

C
2

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

(b) Median (c) 75th Percentile (d) Mean(a) 25th Percentile

L-1 L-2 L-3 L-4 L-5 L-1 L-2 L-3 L-4 L-5 L-1 L-2 L-3 L-4 L-5 L-1 L-2 L-3 L-4 L-5

Figure 8. Overall comparisons in terms of APFD measure.

10

TABLE 8
IMPACTS OF CM LEVEL CHANGES

Type
Benchmark
Application

Is CM-i
worse than
CM-(i–1)?

(1: yes, 0: no)

Exception
Rate

Median APFD
Values

Random CM-1 CM-5

i=2 i=3 i=4 i=5

Total-
CM

atm 0 0 0 0 0.00 0.837 0.855 0.981

buybook 0 0 0 0 0.00 0.848 0.879 0.979

dslservice 1 0 0 0 0.25 0.806 0.770 0.833

gymlocker 0 0 0 0 0.00 0.943 0.950 0.994

loanapproval 0 0 0 0 0.00 0.845 0.928 0.947

marketplace 1 1 0 0 0.50 0.878 0.893 0.948

purchase 0 0 1 0 0.25 0.760 0.923 0.904

triphandling 0 0 0 0 0.00 0.912 0.987 0.983

Addtl-
CM

atm 0 0 0 0 0.00 0.837 0.874 0.965

buybook 0 0 0 0 0.00 0.848 0.871 0.974

dslservice 1 0 0 0 0.25 0.806 0.775 0.983

gymlocker 0 0 0 0 0.00 0.943 0.962 0.994

loanapproval 0 0 0 0 0.00 0.845 0.925 0.961

marketplace 0 1 1 0 0.50 0.878 0.907 0.871

purchase 0 0 1 1 0.50 0.760 0.929 0.919

triphandling 0 0 0 0 0.00 0.912 0.986 0.981

TABLE 9
STATISTICS OF TIME COSTS OF TEST SUITE PRIORITIZATION

STRATEGIES (IN MILLISECONDS)

Ref. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A 0.15 1.09 1.24 2.65 1.71 3.12 1.71 3.72 2.34 5.36

B 0.16 0.80 0.63 1.25 0.78 1.4 1.69 2.67 1.39 3.27

C 0.31 0.32 0.93 1.87 0.77 2.18 1.55 2.53 1.41 6.08

D 0.79 0.78 1.09 1.10 1.08 3.43 1.73 4.98 2.04 5.46

E 1.08 2.65 1.25 5.00 2.5 9.03 2.66 10.9 3.72 15.89

F 0.94 1.57 1.58 5.13 1.09 6.71 1.57 8.50 2.02 13.77

G 0.79 0.79 1.23 2.33 0.64 4.69 1.69 4.06 0.93 8.41

H 0.77 1.07 0.47 2.84 1.71 2.93 0.77 6.24 2.06 7.62

Mean 0.62 1.13 1.05 2.77 1.29 4.19 1.67 5.45 1.99 8.23

TABLE 10
RESULT OF HYPOTHESIS TESTING

C1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

C1 − < < < < < < < < < <

M1 > − = = < < < < < < <

M2 > = − > = = < < < < <

M3 > = < − < < < < < < <

M4 > > = > − = < < < < <

M5 > > = > = − < < < < <

M6 > > > > > > − = < = <

M7 > > > > > > = − < = <

M8 > > > > > > > > − > =

M9 > > > > > > = = < − <

M10 > > > > > > > > = > −

same CM level, as shown in Figure 8. We observe that the
effectiveness of the Total-CM series grows faster than that of
the Addtl-CM techniques, and the Addtl-CM techniques do
not change significantly until CM-4 and CM-5 levels.

We also observe a trend where a technique is more likely
to achieve a higher fault detection rate (in terms of APFD)
than a technique that is subsumed by the former. For
example, M3 is more effective than M1 and subsumes M1. In
Figure 8d, we find that M6–M10 are generally better than all
the other techniques except C2. When we focus on the
techniques M1–M4, we find M2 and M4 to be the best two

among all the techniques at the same level. In Figure 8d, the
lengths of the boxes in the bars at CM-4 level (M7 and M8)
and CM-5 level (M9 and M10) are shorter than the boxes at
lower levels ({M1, M3, M5} and {M2, M4, M6}, respectively),
and also shorter than the box for random ordering.

We have also collected the times to prioritize test suites
for M1 to M10. Table 9 shows that, as the CM level increases,
the Total-CM techniques and Addtl-CM techniques use
more time. However, even M9 and M10, which use the
most time in the corresponding Total-CM series and Addtl-
CM series, only use 1.99 and 8.23 milliseconds, respectively.

5.2.2 Hypothesis Testing

We have also performed a one-way analysis of variance
(ANOVA) using MatLab to find out whether the mean
APFD for different techniques differ significantly. The null
hypothesis is that the mean APFD values for C1 and M1–
M10 (11 techniques in total) are equal. To decide whether to
accept or reject the null hypothesis, we set the significance
level to 5 percent. For each benchmark, we find that
ANOVA returns a p-value much less than 0.05, which
successfully rejects the null hypothesis at a significance
level of 5 percent.

Following [32], we further apply the multiple compari-
son procedure to study which TCPs have mean values that
differ significantly from others at a significance level of 5
percent. The Least Significant Difference (LSD) method was
employed in multiple-comparison. Table 10 summarizes
the hypothesis testing result. In the table, the symbols “>”,
“=”, and “<” indicate that the technique in the row is more
effective, equally effective (indicating no statistical differ-
ence rather than the same distribution), and less effective
than the technique in the column, respectively. In general, a
technique with more instances of “>” indicates that it is an
effective technique.

Table 10 shows that, at CM-2 level and above, a technique
achieves a higher APFD value than a technique subsumed by
the former, except between M8 and M10 and between M7
and M9. Between CM-1 and CM-2 levels, however, there is
no consistent and statistically significant difference.

5.2.3 Further Evaluation of the Benchmarks

We further evaluate the techniques using manual test suites.
We have invited five non-author and experienced testers
(who are vendor developers having 3 to 5 years of testing
experience) to manually develop a test suite for each bench-
mark to cover all the workflow branches, XRG branches,
WSDL elements, XRG patterns, and types of XML messages
of the original subject at least once. Table 11 shows the
statistics of the manual test suites. The sizes of the manual
test suites are smaller than those of the tool-generated test
suites, since the latter test suites contain more randomly
selected test cases.

TABLE 11
STATISTICS OF MANUAL TEST SUITE SIZES

Ref.

Size
A B C D E F G H Mean

Maximum 40 31 25 32 33 20 15 71 33

Mean 32 24 21 25 28 14 12 54 26

Minimum 26 18 18 19 22 8 8 44 20

 11

We applied each technique to this test suite, and repeated
the procedure 100 times. Figure 9 presents the comparison
results in terms of the mean APFD measure.

Comparing Figure 8d and Figure 9, we find the trends of
the Total-CM series and the Addtl-CM series in both figures
are similar. For each series, a technique at CM-i level (for i = 2
to 5) shows more effective result than that at CM-(i–1) level.
The result of the manual test suites consolidates our finding
on using tool-generated test suites to evaluate the proposed
subsumption hierarchy.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Figure 9. Overall comparisons in terms of mean APFD using

manual test suites.

We also observe that when a technique uses a manual test
suite, it has a smaller APFD value than when it uses a tool-
generated test suite. This is because tool-generated test suites
contain more randomly selected test cases, which may
increase the number of times to reveal a failure, and thus
increase the chance of finding a fault earlier.

We also analyze the raw data set that provides the APFD
results using RP and HMFD as alternatives. The results are
shown in Figure 10. We find that across the board, the
general trends among techniques are similar to what we
observe from the APFD values, namely, that as the CM level
increases, the prioritization strategy can become more
effective. In addition, using manual test suites can be less
effective and more effective than tool-generated test suites in
terms of RP and HMFD, respectively.

5.3 Case Study
We further evaluated our proposal using the service appli-
cation presented in the case study of [30]. It was a real-life
choreography service for Data Exchange Platform (DEP). Due
to the page limit, we only briefly revisit the key features of
this application from [30].

The application had four major subject services. Table
12 recaps their statistics. We followed the fault seeding

strategies stated in Section 5.1 (that is, in the spirit of
mutation testing [2]) to seed faults in the major artifacts
(WSDL, XPath, and WS-CDL specifications [30]) of DEP.
The functions of these subject services are as follows:

(1) AgentService monitors the database updates, collects the
change logs, and collaborates with MonitorService to
update the data stored in other information systems.

(2) DataService enables an agent to upload data to the server
and to download data from the server.

(3) MonitorService handles the requests from AgentService,
verifies the authority of the agent, and allocates a data
transfer thread to handle the authenticated request.

(4) AuthenticationService authenticates whether an agent has
the rights to perform the data transfer.

There was, however, no workflow information in this
service application. We used labeled queries [30] (similar to
workflow transitions) to replace the workflow data as the
Πα coverage instead. The coverage items for Πβ, Πγ, Πδ, and
Πθ were not affected. All the remaining experimental proce-
dure was the same as that presented in Section 5.1. The
minimum, average, and maximum test suite sizes were 8,
42, and 178, respectively.

TABLE 12
DESCRIPTIVE STATISTICS OF SUBJECTS IN CASE STUDY

Services
No.
of

Ports

No. of
WSDL

No.
of

XPath

SLOC
(Java)

No.
of

Faults

AgentService 6 2 6 4,000–5,000 3

MonitorService 8 2 8 6,000–7,000 3

DataService 4 1 4 3,000–4,000 2

AuthenticationService 2 1 2 1,000–2,000 2

Total 20 6 20 > 14,000 10

Figure 11a, Figure 11c, and Figure 11e show the APFD, RP,
and HMFD results, respectively, of C1 and M1–M10. We
observe that the effectiveness of the Total-CM series and the
Addtl-CM series of techniques increase from CM-i to CM-
(i+1) level (for i = 1 to 4) at the 25th percentile, the medium,
the 75th percentile, and the mean for each of the APFD, RP,
and HMFD measures.

We find that M1–M10 all outperform C1. M3–M10 all
outperform M1 and M2. We also observe that the APFD and
HMFD values for outliers (denoted by red + signs) become
higher as the coverage levels increase.

We also invited the five testers (introduced in Section
5.2.3) to manually develop five test suites. The maximum,
minimum, and average suite sizes were 24, 15, and 19,

R
P

(a)

R
P

(b)

H
M

F
D

(c) (d)

H
M

F
D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

1

2

3

4

5

6

7

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0

1

2

3

4

5

6

7

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Figure 10. Results of techniques in terms of (a) RP using tool-generated test suites, (b) RP using manual test suites, (c) HMFD using tool-
generated test suites, and (d) HMFD using manual test suites.

12

respectively. We applied each technique to this test suite,
and repeated the procedure 20 times. Figure 11b, Figure 11d,
and Figure 11f present the APFD, RP, and HMFD results,
respectively. Comparing between subfigures (a) and (b),
subfigures (c) and (d), and subfigures (e) and (f) of Figure 11,
we find the trends of the Total-CM series and the Addtl-CM
series in each pair of plots to be similar. We observe that as
the CM level increases, the difference between the two
types of test suites gradually becomes smaller We find that
for each technique (except C1), the standard deviation for
the manual test suite is smaller than that for the tool-
generated test suite in terms of APFD and HMFD. We find
that the techniques using the manually-crafted test suite are
slightly less effective than the same techniques using the
tool-generated test suites in terms of APFD and RP, but are
slightly more effective in terms of HMFD. The results of the
manual test suite consolidate our finding on using tool-
generated test suites to evaluate the proposed subsumption
hierarchy. We also observe that Figure 11a and Figure 11b
report smaller relative differences between techniques than
Figure 8 and Figure 9.

5.4 Threats to Validity
We used APFD, RP, and HMFD in our experiment. They
provide useful feedback to specific prioritization techniques
after testing has been completed. Different metrics measure
different aspects of testing techniques.

Detecting mutation faults can simulate the detection of
real faults in the same program [2], and many studies have
used these faults to evaluate TCP techniques. We also used
mutants. We did not measure the costs of test execution and
profiling because remote service executions were obviously
the major bottlenecks and independent of the testing
techniques used. Although the techniques shared the same
such cost if they used the same coverage data, interpreting

results across different levels should be carefully conducted.
We used both tool-generated test suites and manual test
suites, and observed similar trends between them. We
implemented our tools for program instrumentation and test
suite prioritization in Java, and used MatLab to compute the
experimental results. To minimize errors, we carefully tested
our tools to assure their correctness. The responses of some
services depend on the service contexts (such as database
status). In the experiment, our tool did reset the contexts to
the same values every time before executing a test case. This
approach is also advocated in agile software development.

Our subjects included one real-world choreography
service-based application and eight orchestration applica-
tions. Our studies also covered mutation faults, as well as
both manual and tool-generated test suites. These factors
should be considered if the results are used beyond the
experimental context.

6 RELATED WORK
Regression testing has been extensively studied [14], [37].
Our work is a kind of general test case prioritization [19],
which reorders a test suite for a service P to be useful in
subsequent revised versions of P. To adopt it for version-
specific test case prioritization, one has to find out the
differences between a preceding version and the modified
version of the same service. Ruth and Tu [37], Chen et al. [14],
Li et al. [26], Liu et al. [27], and Tarhini et al. [40] contributed
to this topic in services computing. They conducted impact
analyses of web services to identify revised fragments of
code in a service by comparing the flow graphs between
versions of the same service.

Li et al. [26] selected workflow paths to ease regression
testing based on the insights collected from messages. Liu et
al. [27] considered concurrency control activities and their
control flow in BPEL processes to make regression testing

A
P

F
D

A
P

F
D

Random M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.65

0.7

0.75

0.8

0.85

0.9

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
M

F
D

0.1

0.2

0.3

0.4

0.5

0.6

R
P

1.5

2

2.5

3

H
M

F
D

Random M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
P

F
D

(a)

(b)

(c)

(d)

(e)

(f)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
P

Figure 11. Comparisons in case study, in terms of (a) APFD using tool-generated test suites, (b) APFD using manual test suites,
(c) RP using tool-generated test suites, (d) RP using manual test suites, (e) HMFD using tool-generated test suites, and
(f) HMFD using manual test suites.

 13

more effective. Tarhini et al. [40] developed a model-based
approach to impact analysis so that regression testing can
address changes in various development phases.

There have been other studies on TCP in services
computing. Chen et al. [14] proposed weighted test case
prioritization. Hou et al. [22] proposed to fit the requests
(within a maximal number) imposed by external services
into TCP. Mei et al. [31] considered an external service may
change within a round of regression testing of a WS-BPEL
web service. They proposed to detect whether the code
coverage of BPEL code had been changed, and initialized
nested rounds of regression testing to address this issue.
They [28], [32] further followed the preliminary version [33]
of the present paper to consider multilevel coverage, but they
did not consider the relationships with XPath queries
(including XRG and XRG patterns). The mean APFD results
published in [28], [32] seldom exceeded 0.90. Our
experimental result presented in Section 5 of this paper
shows that quite a number of our techniques exceed this
mean APFD.

Nguyen et al. [35] integrated TCP with audit testing to
control resource consumption. Zhai et al. [49] observed that
service selection had the ability to include/exclude a service
in consideration, and used this feature to reduce the service
invocation cost. They [48] studied location-centric diversity
strategies to reorder test cases for location-based services.

There have been many projects on other topics in the
testing of web services. Bozkurt et al. [9] provided a
comprehensive summary on the testing and verification of
service-oriented architecture. Bartolini et al. [5] proposed to
use a dataflow-based approach to validate the composition
of web services. Mei et al. [29], [30] formulated dataflow-
based test adequacy criteria to test WS-BPEL web services.
As we have presented in Section 4, our work builds on top of
these two studies [29], [30] and puts forward a subsumption
hierarchy of prioritization techniques.

Casado et al. [11] used a classification-tree methodology
[15], [21] to determine test coverage in the testing of web
services transactions. Our coverage model has not consid-
ered constraints among coverage elements.

In terms of multilevel coverage, the closest related work
is Zou et al. [52]. They studied the integration of coverage
data on program statements and HTML elements for the
testing of dynamic web applications. Their work did not
consider XPath queries and regression testing.

Maintaining a regression test suite has also been an active
area of research. Becker et al. [7] checked whether a
document of a service is backwardly compatible. Belli et al. [8]
and Zheng et al. [51] studied model-based approaches to
constructing both abstract and concrete test cases semi-
automatically. Li et al. [26] studied the generation of control-
flow test cases for the unit testing of BPEL programs.
Bartolini et al. [6] generated test cases that conform to WSDL
schemas so that these test cases could be meaningfully run
by a service under test. Li et al. [26] studied test case selection.
All these projects can significantly enhance the practicability
of our work.

Our present work also requires profiling the service
executions. Bartolini et al. [4] extracted state machine data
based on messages from opaque web services. It appears

that their model can be integrated with our strategy. Bai et
al. [3] studied web services with ontology. Ni et al. [36]
modeled a WS-BPEL web service as a message-sequence
graph and suggested coordinating messages to control
service execution. de Almeida and Vergilio [16] and Xu et
al. [46] perturbed inputs to produce test cases for
robustness testing.

Regression testing should also address the test oracle
problem. Both Chan et al. [12] and Sun et al. [38] studied
the use of metamorphic relations to address this problem.

7 CONCLUSION

In this paper, we have proposed a multi-coverage model,
the first refinement-oriented level-exploration strategy, and
the first subsumption hierarchy of test case prioritization
techniques in the context of regression testing of composite
services. To the best of our knowledge, all existing studies
on TCP exhaustively observe the effects of prioritization
techniques from empirical studies. We have shown that
some test case prioritization techniques can be compared
analytically. It significantly complements the inadequacy of
existing work in theoretical studies of TCP. We have
verified our proposal through an experiment.

It will be interesting to extend the notion of level-
exploration to other branches of regression testing and
handle other types of service scenarios.

ACKNOWLEDGMENTS

This research is supported in part by the National Key Basic
Research Program of China (project no. 2014CB340702), the
General Research Fund of the Research Grants Council of
Hong Kong (project nos. 123512, 125113, 716612, and
717811), the National Natural Science Foundation of China
(project nos. 61202077 and 61379045), and the National
Science and Technology Major Project of China (grant no.
2012ZX01039-004). W.K. Chan is the corresponding author.
A preliminary version [33] of this paper was published in
the Proceedings of the International Conference on World
Wide Web (WWW ’09). The preliminary version was also
one of the six best paper nominees of WWW ’09.

REFERENCES
[1] alphaWorks Technology: BPEL Repository, IBM, 2006,

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do

?source=AW-0KN.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche, “Is mutation an

appropriate tool for testing experiments?” Proceedings of the 27th

International Conference on Software Engineering (ICSE ’05), pp. 402–

411, 2005.

[3] X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, “Ontology-based test

modeling and partition testing of web services,” Proceedings of the

IEEE International Conference on Web Services (ICWS ’08), pp. 465–

472, 2008.

[4] C. Bartolini, A. Bertolino, S.G. Elbaum, and E. Marchetti, “Bring-

ing white-box testing to service oriented architectures through a

service oriented approach,” Journal of Systems and Software, vol. 84,

no. 4, pp. 655–668, 2011.

[5] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis, “Data flow-

based validation of web services compositions: Perspectives and

examples,” Architecting Dependable Systems V, LNCS, 5135,

Springer, pp. 298–325, 2008.

14

[6] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Towards

automated WSDL-based testing of web services,” Service-Oriented

Computing (ICSOC ’08), pp. 524–529, 2008.

[7] K. Becker, J. Pruyne, S. Singhal, A. Lopes, and D. Milojicic,

“Automatic determination of compatibility in evolving services,”

International Journal of Web Services Research, vol. 8, no. 1, pp. 21–

40, 2011.

[8] F. Belli, A.T. Endo, M. Linschulte, and A. Simão, “A holistic

approach to model-based testing of web service compositions,”

Software: Practice and Experience, vol. 44, no. 2, pp. 201–234, 2014.

[9] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verifica-

tion in service-oriented architecture: A survey,” Software Testing,

Verification and Reliability, vol. 23, no. 4, pp. 261–313, 2013.

[10] R.J. Brachman and J.G. Schmolze, “An overview of the KL-ONE

knowledge representation system,” Cognitive Science, vol. 9, no. 2,

1985.

[11] R. Casado, M. Younas, and J. Tuya, “Multi-dimensional criteria

for testing web services transactions,” Journal of Computer and

System Sciences, vol. 79, no. 7, pp. 1057–1076, 2013.

[12] W.K. Chan, S.C. Cheung, and K.R.P.H. Leung, “A metamorphic

testing approach for online testing of service-oriented software

applications,” International Journal of Web Services Research, vol. 4,

no. 2, pp. 60–80, 2007.

[13] H.Y. Chen, T.H. Tse, and T.Y. Chen, “TACCLE: A methodology

for object-oriented software testing at the class and cluster levels,”

ACM Transactions on Software Engineering and Methodology, vol. 10,

no. 1, pp. 56–109, 2001.

[14] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu, “Test case prioritiza-

tion for web service regression testing,” Proceedings of the 5th IEEE

International Symposium on Service Oriented System Engineering

(SOSE ’10), pp. 173–178, 2010.

[15] T.Y. Chen and P.-L. Poon, “On the effectiveness of classification

trees for test case construction,” Information and Software Technol-

ogy, vol. 40, no. 13, pp. 765–775, 1998.

[16] L.F. de Almeida, Jr. and S.R. Vergilio, “Exploring perturbation

based testing for web services,” Proceedings of the IEEE

International Conference on Web Services (ICWS ’06), pp. 717–726,

2006.

[17] H. Do and G. Rothermel, “On the use of mutation faults in

empirical assessments of test case prioritization techniques,” IEEE

Transactions on Software Engineering, vol. 32, no. 9, pp. 733–752,

2006.

[18] Eclipse Environment Implementation of the Business Process Execution

Language Engine (BPWS4J Engine 2.1), http://en.pudn.com/

downloads53/sourcecode/middleware/detail184250_en.html.

[19] S.G. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test case

prioritization: A family of empirical studies,” IEEE Transactions on

Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[20] R.E. Griswold, D.R. Hanson, and J.T. Korb, “Generators in icon,”

ACM Transactions on Programming Languages and Systems, vol. 3,

no. 2, pp. 144–161, 1981.

[21] M. Grochtmann and K. Grimm, “Classification trees for partition

testing,” Software Testing, Verification and Reliability, vol. 3, no. 2,

pp. 63–82, 1993.

[22] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun, “Quota-constrained test-

case prioritization for regression testing of service-centric sys-

tems,” Proceedings of the IEEE International Conference on Software

Maintenance (ICSM ’08), pp. 257–266, 2008.

[23] H.V. Jagadish, “Incorporating hierarchy in a relational model of

data,” Proceedings of the 1989 ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD ’89), pp. 78–87, 1989.

[24] M.B. Juric, A Hands-on Introduction to BPEL, Part 2: Advanced

BPEL, Oracle Technology Networks, http://www.oracle.com/

technetwork/articles/matjaz-bpel2-082861.html.

[25] H.K.N. Leung and L.J. White, “Insights into regression testing,”

Proceedings of the IEEE International Conference on Software

Maintenance (ICSM ’89), pp. 60–69, 1989.

[26] B. Li, D. Qiu, H. Leung, and D. Wang, “Automatic test case

selection for regression testing of composite service based on

extensible BPEL flow graph,” Journal of Systems and Software, vol.

85, no. 6, pp. 1300–1324, 2012.

[27] H. Liu, Z. Li, J. Zhu, and H. Tan, “Business process regression

testing,” Proceedings of the 5th International Conference on Service-

Oriented Computing (ICSOC ’07), pp. 157–168, 2007.

[28] L. Mei, Y. Cai, C. Jia, B. Jiang, and W.K. Chan, “Prioritizing

structurally complex test pairs for validating WS-BPEL evolu-

tions,” Proceedings of the IEEE International Conference on Web

Services (ICWS ’13), pp. 147–154, 2013.

[29] L. Mei, W.K. Chan, and T.H. Tse, “Data flow testing of service-

oriented workflow applications,” Proceedings of the 30th Interna-

tional Conference on Software Engineering (ICSE ’08), pp. 371–380,

2008.

[30] L. Mei, W.K. Chan, and T.H. Tse, “Data flow testing of service

choreography,” Proceedings of the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (ESEC ’09 /

FSE-17), pp. 151–160, 2009.

[31] L. Mei, W.K. Chan, T.H. Tse, B. Jiang, and K. Zhai, “Preemptive

regression testing of workflow-based web services,” IEEE Trans-

actions on Services Computing, 2014, doi: 10.1109/TSC.2014.2322621.

[32] L. Mei, W.K. Chan, T.H. Tse, and R.G. Merkel, “XML-

manipulating test case prioritization for XML-manipulating

services,” Journal of Systems and Software, vol. 84, no. 4, pp. 603–

619, 2011.

[33] L. Mei, Z. Zhang, W.K. Chan, and T.H. Tse, “Test case

prioritization for regression testing of service-oriented business

applications,” Proceedings of the 18th International Conference on

World Wide Web (WWW ’09), pp. 901–910, 2009.

[34] G. Miklau and D. Suciu, “Containment and equivalence for a

fragment of XPath,” Journal of the ACM, vol. 51, no. 1, pp. 2–45,

2004.

[35] C.D. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritiza-

tion for audit testing of evolving web services using information

retrieval techniques,” Proceedings of the 2011 IEEE International

Conference on Web Services (ICWS ’11), pp. 636–643, 2011.

[36] Y. Ni, S.-S. Hou, L. Zhang, J. Zhu, Z.J. Li, Q. Lan, H. Mei, and J.-S.

Sun, “Effective message-sequence generation for testing BPEL

programs,” IEEE Transactions on Services Computing, vol. 6, no. 1,

pp. 7–19, 2013.

[37] M.E. Ruth and S. Tu, “Towards automating regression test selec-

tion for web services,” Proceedings of the 16th International

Conference on World Wide Web (WWW ’07), pp. 1265–1266, 2007.

[38] C.-A. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T.Y. Chen, “A

metamorphic relation-based approach to testing web services

without oracles,” International Journal of Web Services Research, vol.

9, no. 1, pp. 51–73, 2012.

[39] L. Tahat, B. Korel, M. Harman, and H. Ural, “Regression test suite

prioritization using system models,” Software Testing, Verification

and Reliability, vol. 22, no. 7, pp. 481–506, 2012.

[40] A. Tarhini, H. Fouchal, and N. Mansour, “Regression testing web

services-based applications,” Proceedings of the IEEE International

Conference on Computer Systems and Applications (AICCSA ’06), pp.

163–170, 2006.

[41] Web Services Business Process Execution Language Version 2.0: OASIS

Standard, Organization for the Advancement of Structured Infor-

mation Standards (OASIS), 2007, http://docs.oasis-open.org/

wsbpel/2.0/wsbpel-v2.0.pdf.

[42] Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, W3C, 2007, http://www.w3.org/TR/wsdl20/.

[43] Web Services Invocation Framework: DSL Provider Sample Applica-

tion, Apache Software Foundation, 2006, http://svn.apache.org/

viewvc/webservices/wsif/trunk/java/samples/dslprovider/

README.html?view=co.

 15

[44] E.J. Weyuker, S.N. Weiss, and D. Hamlet, “Comparison of

program testing strategies,” Proceedings of the ACM SIGSOFT 4th

Symposium on Software Testing, Analysis, and Verification (TAV 4),

pp. 1–10, 1991.

[45] XML Path Language (XPath) 2.0: W3C Recommendation, W3C, 2007,

http://www.w3.org/TR/xpath20/.

[46] W. Xu, J. Offutt, and J. Luo, “Testing web services by XML

perturbation,” Proceedings of the 16th International Symposium on

Software Reliability Engineering (ISSRE ’05), pp. 257–266, 2005.

[47] S. Yoo and M. Harman, “Regression testing minimization, selec-

tion and prioritization: A survey,” Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[48] K. Zhai, B. Jiang, and W.K. Chan, “Prioritizing test cases for

regression testing of location-based services: Metrics, techniques,

and case study,” IEEE Transactions on Services Computing, vol. 7,

no. 1, pp. 54–67, 2014.

[49] K. Zhai, B. Jiang, W.K. Chan, and T.H. Tse, “Taking advantage of

service selection: A study on the testing of location-based web

services through test case prioritization,” Proceedings of the IEEE

International Conference on Web Services (ICWS ’10), pp. 211–218,

2010.

[50] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging

the gap between the total and additional test-case prioritization

strategies,” Proceedings of the 2013 International Conference on Soft-

ware Engineering (ICSE ’13), pp. 192–201, 2013.

[51] Y. Zheng, J. Zhou, and P. Krause, “An automatic test case

generation framework for web services,” Journal of Software, vol. 2,

no. 3, pp. 64–77, 2007.

[52] Y. Zou, C. Feng, Z. Chen, X. Zhang, and Z. Zhao, “A hybrid

coverage criterion for dynamic web testing,” Proceedings of the

25th International Conference on Software Engineering and Knowledge

Engineering (SEKE ’13), pp. 210–213, 2013.

Lijun Mei received the PhD degree from The University of Hong Kong. He
is a staff researcher at IBM Research—China. His research interest is to
address the issues of program testing and testing management in the
business environment. He has conducted extensive research in testing
service-based applications.

Yan Cai received the BEng degree in computer science and technology
from Shandong University, China in 2009 and the PhD degree from City
University of Hong Kong in 2014. He is currently an associate research

professor at the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences. His current research interests
include concurrency bug detection and reproduction in large-scale multi-
threaded and concurrent systems. His research results have been reported
in venues such as TSE, TPDS, SPE, JWSR, ICSE, ISSRE, and ICWS.

Changjiang Jia received the BEng and MEng degrees from the National
University of Defense Technology, China. He is currently working toward
the PhD degree at the Department of Computer Science, City University of
Hong Kong. His research interests are concurrency bug detection and fail-
ure diagnosis in large-scale multithreaded programs. His research results
have been reported in QSIC, ICWS, JWSR, and TPDS. He is a student
member of the IEEE.

Bo Jiang received the PhD degree from The University of Hong Kong. He
is an assistant professor at Beihang University. His research interests are
the reliability of mobile applications, program debugging, adaptive testing,
and regression testing. He has received the best paper awards from
COMPSAC ’08, COMPSAC ’09, and QSIC ’11. He is a member of the
IEEE.

W.K. Chan is an assistant professor in the City University of Hong Kong.
His current main research interest is program analysis and testing for
concurrent software and systems. He is on the editorial board of the Journal
of Systems and Software. He has published extensively in venues such as
TOSEM, TSE, TPDS, TSC, CACM, Computer, ICSE, FSE, ISSTA, ASE,
WWW, ICWS, and ICDCS. He is a member of the IEEE.

Zhenyu Zhang received the PhD degree from The University of Hong
Kong. He is an associate professor at the State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences.
His current research interests are program debugging and testing for
software and systems, and the reliability issues of web-based services and
cloud-based systems. He has published research results in venues such as
Computer, ICSE, FSE, ASE, and WWW.

T.H. Tse received the PhD degree from the London School of Economics
and was a visiting fellow at the University of Oxford. He is a professor in
computer science at The University of Hong Kong. His current research
interest is in program testing, debugging, and analysis. He is the steering
committee chair of QSIC and an editorial board member of the Journal of
Systems and Software, Software Testing, Verification and Reliability,
Software: Practice and Experience, and the Journal of Universal Computer
Science. He also served on the search committee for the editor-in-chief of
the IEEE Transactions on Software Engineering in 2013. He is a fellow of
the British Computer Society, a fellow of the Institute for the Management of
Information Systems, a fellow of the Institute of Mathematics and Its
Applications, and a fellow of the Hong Kong Institution of Engineers. He
was awarded an MBE by The Queen of the United Kingdom. He is a senior
member of the IEEE.

