

Extended version of article in Proceedings of the 21st IEEE International Conference on Web Services

(ICWS ’14), IEEE Computer Society, 2014

Is XML-based Test Case Prioritization for Validating WS-BPEL Evolution

Effective in both Average and Adverse Scenarios?

Changjiang Jia

City University of

Hong Kong

Kowloon Tong, Hong Kong

cjjia.cs@gmail.com

Lijun Mei

†

IBM Research – China

Beijing, China

meilijun@cn.ibm.com

W.K. Chan, Y.T. Yu

City University of

Hong Kong

Kowloon Tong, Hong Kong

{wkchan,csytyu}@cityu.edu.hk

T.H. Tse

The University of

Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

AbstractIn real life, a tester can only afford to apply one

test case prioritization technique to one test suite against a

service-oriented workflow application once in the regression

testing of the application, even if it results in an adverse

scenario such that the actual performance in the test session is

far below the average. It is unclear whether the factors of test

case prioritization techniques known to be significant in terms

of average performance can be extrapolated to adverse

scenarios. In this paper, we examine whether such a factor or

technique may consistently affect the rate of fault detection in

both the average and adverse scenarios. The factors studied

include prioritization strategy, artifacts to provide coverage

data, ordering direction of a strategy, and the use of executable

and non-executable artifacts. The results show that only a

minor portion of the 10 studied techniques, most of which are

based on the iterative strategy, are consistently effective in

both average and adverse scenarios. To the best of our know-

ledge, this paper presents the first piece of empirical evidence

regarding the consistency in the effectiveness of test case

prioritization techniques and factors of service-oriented

workflow applications between average and adverse scenarios.

Keywords—XML-based factor; WS-BPEL; adaptation;

adverse

I. INTRODUCTION

A service-based workflow program such as a WS-BPEL
application [30] is a service that, at runtime, binds each of
its workflow steps to another service. A fault in such a
service will affect the correctness of the service itself as
well as each service that binds to it. Any modification of a
workflow service should be thoroughly tested to reduce the
potential impact of any fault to its consumers. To stay
competitive, the service should be continuously maintained
in order to adapt to any changing business requirements, or

else a service consumer will bind to a competing service if
the consumer’s requirements are not made available in time.
In short, from the verification viewpoint, workflow services
demand highly efficient test sessions.

Regression testing is a widely used industrial practice
[21]. Developers may execute the modified service over the
test cases in a regression test suite to assess whether this
service executes normally and computes outputs as specified
[17]. It should be conducted on any modified version of a
service before the new version is deployed.

Owing to the need for thorough testing, the number of
test case invocations with respect to the service under test
may be very large. At the same time, native executions of
workflow service (including the time to bind and invoke
external services [16]) may be long. As a result, an entire
test session may become too time-consuming, which is in
conflict with the demand for efficient test sessions.
Prioritization of the order of execution of test cases has the
potential to alleviate this inefficient test session problem by
revealing faults earlier, thereby starting the service repair
earlier and shortening the maintenance period. Many
research studies (such as [11][18][21][25][33]) have report-
ed that test case prioritization is an important aspect of
practical regression testing.

Although existing studies have shown that the fault
detection rate of some test case prioritization techniques can
be excellent, different strategies may exhibit subtle differ-
ences in their tradeoff [4][9]. For instance, comparing the
results of the same technique on different languages (such as
Java [3] versus C [4]) has revealed that such a technique
may exhibit varying extents of effectiveness. Some prioriti-
zation techniques are also found to be multimodal, that is,
their effectiveness has multiple peak regions [11].

Each test run of a WS-BPEL program may indicate the
execution of a specific workflow path with reference to
certain XML tags in the WSDL documents [31] of the
program. Thus, the same execution of a service has the
potential to generate coverage data based on different types
of artifacts. Mei et al. [18] proposed to integrate progres-
sively the coverage data from multiple artifacts by using a
level-exploration strategy with a greedy-based test case
prioritization strategy at each level of exploration [13].
Moreover, XML messages sent and received by a service
along the execution trace of each test case can be used as

 2014. This material is presented to ensure timely dissemination of schol-
arly and technical work. Personal use of this material is permitted. Copy-
right and all rights therein are retained by the authors or by other copyright
holders. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission of the
copyright holder. Permission to reprint/republish this material for advertis-
ing or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the authors or other
copyright holders.

† All enquiries should be addressed to Lijun Mei.

Administrator
 HKU CS Tech Report TR-2014-05

2

runtime artifacts to provide a new dimension of data sources
for prioritizing test cases [17]. Mei et al. [13][14] found that
using more types of coverage data systematically can also
make similarity-based test case prioritization techniques
more effective.

In practice, a developer only applies one test case
prioritization technique to one test suite once. The developer
does not have the luxury to apply multiple test suites to look
for the average (that is, mean or median) performance of the
technique on the same service. Thus, even when the average
performance of a technique (or a factor across multiple
techniques) is excellent, if the technique (or factor) performs
very ineffectively in scenarios that are far below average
(hereafter simply referred to as adverse scenarios), the
technique (or factor) may not be reliably used in practice.

To the best of our knowledge, existing test case prioriti-
zation techniques (including the above-stated work)
exhaustively focus on comparing and analyzing the average
effectiveness among multiple techniques (in terms of the
fault detection rate such as APFD [26]). From our
discussions above, we would like to see that they also
perform satisfactorily in adverse scenarios, but this remains
a conjecture, as formulated as follows, to be validated
empirically.

Conjecture 1: Suppose that a factor of a test case
prioritization technique has been shown to exhibit
significant effectiveness in the average scenarios in
terms of fault detection rate. Then the factor will also be
a significant factor in the adverse scenarios.

This conjecture has significant implications because

handling adverse scenarios can significantly improve the
confidence in accepting such techniques in practice, and
there is a large body of research results on the average
performance of various test case prioritization techniques. If
the conjecture can be (largely) established, we may extrapo-
late existing research results to adverse scenarios. If the
conjecture cannot be established, then there is an obvious
gap between previous analyses of test case prioritization
techniques and the above practical consideration, which
urges for more effort to be filled. However, to the best of
our knowledge, there is as yet no evidence about the validity
of the conjecture.

To examine Conjecture 1, we empirically study a suite
of factors in this paper: (1) prioritization strategy, (2) type
of artifacts that generate coverage data for prioritization
usages, (3) ordering direction of a prioritization strategy
(whether ascending or descending), and (4) the nature of the
artifacts that produces the coverage data (whether the data
are obtained from executable or non-executable artifacts).
For instance, these four factors have been studied in
previous experiments [4][13][17][18] in the standard (that is,
“average”) scenarios.

In the experiment, we attempt to observe the effects of
these factors in both the average and adverse scenarios, the
latter being quantified as the lowest 25th percentile of the
Average Percentage of Faults Detected (APFD) [26]

achieved by a test case prioritization technique on a suite of
subjects. To support our experiment, we formulate four new
XRG-based techniques (M5 to M8 in Section III) to bridge
the gap between existing strategies, namely, the additional/
total greedy strategy [4] and the iterative strategy [13]. The
results show that only a minor portion of techniques (4 out
of 10 techniques studied) are effective in both average and
adverse scenarios. Moreover, only one of the four factors
(namely, the iterative strategy in the strategy factor) can be
largely consistent in effectiveness in both types of scenarios.
Our results provide the first piece of evidence data to show
that, among the four factors and their choices studied, only
one single choice (the iterative strategy) out of one single
factor (the strategy factor) supports Conjecture 1.

The main contribution of this paper is twofold. (i) To the
best of our knowledge, this paper presents the first analysis
of adverse scenarios, in which it examines a suite of tech-
niques and four factors. Moreover, it shows that, for only 4
out of 10 studied techniques, the effectiveness in average
scenarios can be extrapolated to adverse scenarios. It also
identifies the iterative strategy in the strategy factor as the
only choice that supports Conjecture 1. (ii) We propose four
new XRG-based techniques that supplement existing ones.

The rest of the paper is organized as follows: Section II
describes the background of the test case prioritization
problem and related work. Section III reviews the test case
prioritization techniques under study. Section IV presents
our empirical study. Finally, Section V concludes the paper.

II. RELATED WORK

This section reviews related work and revisits the
terminology used in test case prioritization.

Regression testing is widely used in the industry [21]. It
is a testing process performed after the modification of a
program [10]. Leung and White [10] pointed out that it is
not a simple testing process by just rerunning all the test
cases. Regression testing can be more effective by selecting
only those test cases relevant to the modified components.
Test case prioritization is one of major tasks in regression
testing, enabling test cases to be executed in selected order
to achieve specific testing purposes, such as a higher fault
detection rate [26].

The test case prioritization problem has been formally
defined in [26], which we adapt as follows:

Given: T, a test suite; PT, a set of permutations of T; and
f, a function from PT to real numbers.

Objective: To find a reordered test suite T'  PT such

that T''  PT, f(T') ≥ f(T'').

Leung and White [10] provided a principle of retests by
dividing the regression testing problem into two sub-
problems: test selection and test plan update. Rothermel and
Harrold [25] surveyed earlier families of techniques for
regression test selection (such as symbolic execution tech-
niques, path analysis techniques, dataflow techniques [22],
and modification-based techniques). More recently, Yoo
and Harman [37] reported that there are an increasing
number of papers that study regression testing techniques.

3

Generally, there are two kinds of test case prioritization,
namely general test case prioritization and version-specific
test case prioritization [26]. For the former, a test suite T for
a program P is sorted with the intent of being useful over
the subsequent modified versions of P. For the latter, the
test suite is prioritized to be useful on a specific version P'
of P. Such a test suite may be more effective at meeting the
goal of the prioritization for P'. Our study in this paper
focuses on the former kind.

Many coverage-based prioritization techniques (such as
[4][25][26][33]) have been proposed, including prioritizing
test cases by the total statement or branch coverage achieved
by individual test cases, and by additional statement or
branch coverage (or additional cost [33]) achieved by
not-yet-selected test cases. Zhang et al. [41] generalized the
total-and-additional test case prioritization strategies. Some
techniques are not purely based on code coverage data of
test cases such as prioritization based on test costs [5], fault
severities [4], ability to detect specification-based faults [38],
data from the test history [5][9], or fault-exposing-potential
[26]. The effects of granularity [23] and compositions of test
suites have been reported. Srivastava and Thiagarajan [28]
built an Echelon system to prioritize test cases according to
the potential change impacts of individual test cases
between versions of a program to cover maximally the
affected programs. Most of the existing experiments are
conducted on procedural and object-oriented programs [3].
In addition, studies on prioritizing test cases using input
domain information [7][39] and service discovery mechan-
isms [40] have been explored. Methods to reveal internal
state transitions have also been developed [2][36].

Xu and Rountev [35] proposed a regression test
selection technique for AspectJ programs. They use a
control-flow representation for AspectJ software to capture
aspect-related interactions and develop a graph comparison
algorithm to select test cases. Martin et al. [12] gave a
framework that generates and executes web-service requests,
and collects the corresponding responses from web services.
Using such request-response pairs, they test the robustness
aspect of services. They discuss the potential of using
request-response pairs for regression testing. Ruth [27]

proposed a framework that automates safe regression test
selection [24] for web services. Tsai et al. [29] proposed an
adaptive group testing technique to address the challenges in
testing a service-oriented application with a large number of
web services simultaneously.

Using the mathematical definitions of XPath constructs
[34] as rewriting rules, Mei et al. [15] developed a data
structure known as an XPath Rewriting Graph (XRG). They
propose an algorithm to construct XRGs and a family of
unit testing criteria to test WS-BPEL applications. Their
research group has also developed test case prioritization
techniques for service testing [13][14][16][17][18]. How-
ever, they do not study the factors that may affect the fault
detecting effectiveness in adverse scenarios.

III. TEST CASE PRIORITIZATION

This section introduces the set of test case prioritization
techniques used in our empirical study. To study the
effectiveness and tradeoff of different strategies and types of
artifacts, we follow existing work [4][17][26] to compare
them with two control techniques, namely random and
optimal.

C1: Random ordering [4]. This strategy randomly
orders the test cases in a test suite T.

C2: Optimal prioritization [4]. Given a program P and
a set of known faults in P, if we also know which of the test
cases can expose which faults in P, then we can figure out
an optimal ordering of the test cases in the test suite T to
maximize the fault detection rate of T for that set of faults.
We adopt the definition presented in Rothermel et al. [26] to
implement this technique. Specifically, test cases are
iteratively selected by the ability of exposing the most faults
not yet exposed. The remaining test cases are prioritized by
the same method, until test cases that expose all the faults
have been selected. As noted by Rothermel et al., such an
optimal prioritization is not practical and only serves as an
approximation to the optimal case, but it can be used as a
technique for comparison purposes.

TABLE 1. FACTORS OF PRIORITIZATION TECHNIQUES

Strategy (A: Additional Greedy; T: Total Greedy; I: Iterative), Order Direction (A: Ascending; D: Descending)

Prioritization Techniques Factors

Ref. Name
Type of

Artifact
Strategy

Order

Direction

Are Coverage Data Obtained

from Executable Artifacts?

M1 Total-BPEL-Activity [4][26]

BPEL

T D Yes

M2 Addtl-BPEL-Activity [4][26] A D Yes

M3 Total-BPEL-Workflow [4][26] T D Yes

M4 Addtl-BPEL-Workflow [4][26] A D Yes

M5 Total-XPath-Selection

XRG

T D Yes

M6 Addtl-XPath-Selection A D Yes

M7 Ascending-XRG-Node I A No

M8 Descending-XRG-Node I D No

M9 Ascending-WSDL-Element [17]
WSDL

I A No

M10 Descending-WSDL-Element [17] I D No

4

Apart from the two control techniques above, a total of
10 other techniques are examined in our empirical study.
We recall that a WS-BPEL application includes three types
of artifacts: BPEL, XPath, and WSDL. If we consider a
BPEL program as a conventional program, then the next

four techniques (M1M4) resemble the statement and
branch coverage-based techniques of conventional programs

[4][26]. The remaining six techniques (M5M10) explore
the dimension of XML technologies to address the chal-
lenges caused by XPath and WSDL when using Greedy as
the base test case prioritization techniques. We do so
because Additional Greedy techniques [41] are still the most
effective series of techniques (in terms of APFD) ever pro-
posed. These 10 techniques are listed in Table 1.

A. BPEL Code Coverage Prioritization

This section presents four techniques using activity and
workflow transition coverage of BPEL artifacts.

M1: Total BPEL activity coverage prioritization
(Total-BPEL-Activity). Adapted from the total-statement
technique presented in Elbaum et al. [4], this technique sorts
the test cases in descending order of the total number of
BPEL activities executed by each test case. If multiple test
cases cover the same number of BPEL activities, M1 orders
them randomly.

M2: Additional BPEL activity coverage prioritization
(Addtl-BPEL-Activity). This technique iteratively selects a
test case that yields the maximum cumulative BPEL activity
coverage, and then removes the covered activities from the
coverage information of each remaining test case. Addi-
tional iterations will be conducted until all the activities
have been covered by at least one test case. If multiple test
cases cover the same number of activities in the current
coverage information of the test cases, M2 selects one of
them randomly. Having achieved the complete coverage of
all the activities by the prioritized subset of test cases in the
given test suite, M2 resets the coverage information of each
remaining test case to its initial value and then reapplies the
algorithm to the remaining test cases. M2 is adapted from
the addtl-statement technique used by Elbaum et al.

M3: Total BPEL workflow coverage prioritization
(Total-BPEL-Workflow). This technique is the same as
M1 (Total-BPEL-Activity) except that it uses test coverage
measured in terms of BPEL workflow transitions rather than
BPEL activities. It is adapted from the total-branch
technique presented in Elbaum et al.

M4: Additional BPEL workflow coverage prioritiza-
tion (Addtl-BPEL-Workflow). This technique is the same
as M2 (Addtl-BPEL-Activity) except that it uses test
coverage measured in terms of BPEL workflow transitions
rather than BPEL activities. It is adapted from the
addtl-branch technique presented in Elbaum et al.

B. XRG Coverage Prioritization

The next two techniques are inspired by M3, M4, and
prioritization of XPath queries proposed by Mei et al. [15].

M5: Total XPath selection coverage prioritization
(Total-XPath-Selection). This technique is the same as M3
(Total-BPEL-Workflow) except that it uses test coverage
measured in terms of XPath selections rather than BPEL
workflow transitions.

M6: Additional XPath selection coverage prioritiza-
tion (Addtl-XPath-Selection). This technique is the same
as M4 (Addtl-BPEL-Workflow) except that it uses test
coverage measured in terms of XPath selections rather than
workflow transitions. Similar to M4, after complete cover-
age using M6 has been achieved, this technique will reset
the coverage of each remaining test case to its initial value
and will then be reapplied to the remaining test cases.

The next two techniques (M7 and M8) are adapted from
M9 and M10, respectively, by using XRG instead of WSDL
as the artifacts to provide coverage data.

M7: Ascending XRG node coverage prioritization
(Ascending-XRG-Node). This technique first partitions test
cases into groups such that all the test cases with the same
number of XRG nodes are placed in the same group.
Suppose that the partitioning process results in m+1 groups
G0, G1, ..., Gm, where Gi is a group of test cases each of
which covers exactly i XRG nodes. This technique will
select one test case randomly from a group starting from G0
to Gm in ascending order of the index of the groups. The
procedure is repeated until all the test cases in all the groups
have been selected.

M8: Descending XRG node coverage prioritization
(Descending-XRG-Node). This technique is the same as
M7 (Ascending-XRG-Node) except that it selects a test case
randomly from a group in descending order instead of
ascending order of the group index.

C. WSDL Element Coverage Prioritization

In this section, we introduce the two techniques pro-
posed in Mei et al. [17]. WSDL documents define the XML
schemas used by WS-BPEL applications. Each XML
schema contains a set of elements and can be used by one or
more XPaths. Thus, the coverage data of these elements can
reveal the usage of the internal messages among the work-
flow steps. For ease of presentation, we simply assume that
all the XML schemas are included in WSDL documents. In
this paper, we call an XML element z defined in any XML
schemas as a WSDL element. If a test case t includes an
XML message or causes the WS-BPEL application to gen-
erate an XML message that has an XML element z, then we
say that the WSDL element z is covered by t.

M9: Ascending WSDL element coverage prioritiza-
tion (Ascending-WSDL-Element) [17]. This technique is
the same as M7 (Ascending-XRG-Node) except that it uses
test coverage measured in terms of the elements in WSDL
documents rather than XRG nodes.

M10: Descending WSDL element coverage prioritiza-
tion (Descending-WSDL-Element) [17]. This technique is
the same as M8 (Descending-XRG-Node) except that it uses

5

test coverage measured in terms of the elements in WSDL
documents rather than XRG nodes.

IV. EMPIRICAL STUDY

The empirical study aims to examine the following
research questions.

RQ1: To what extent is a prioritization technique that is
effective in average scenarios also effective in adverse
scenarios?

RQ2: Do any of the following factors significantly
affect the effectiveness of a technique in both the average
and adverse scenarios: (i) the prioritization strategy, (ii) the
type of artifacts used to provide coverage data, (iii) the
ordering direction of the prioritization technique, and
(iv) the executable nature of the artifacts?

A. Experimental Setup

To evaluate the techniques, we chose a benchmark suite of
eight service-based subjects [1][8][32] (all developed in
WS-BPEL) as representative service-based applications, as
listed in Table 2. This benchmark suite was also used in
previous empirical studies reported in existing work
[13][14][15][16][17]. To the best of our knowledge, this
suite is larger than that used by Ni et al. [19] in their
experiment in terms of the number of individual subjects,
the variety of subjects, the number of versions, and the size
of individual subjects.

Each modified version had one fault seeded with three
typical types of mutations [20], namely, value mutation,
decision mutation, and statement mutation. Since BPEL can
be treated as Control Flow Graphs (CFGs), the mutations
were performed in the same way as seeding faults in CFGs.
An XPath fault is a wrong usage of XPath expressions, such

as extracting the wrong content or failing to extract any
content. A WSDL fault is a wrong usage of WSDL speci-
fications, such as binding to a wrong WSDL specification,
or inconsistent message definitions. The faults in the modi-
fied versions have been reported in Mei et al. [15].

The statistics of the selected modified versions are
shown in the rightmost column of Table 2. The size of each
application, under the labels “Elements” and “LOC” in the
table, refers to the number of XML elements and the lines of
code in each WS-BPEL application. Other descriptive statis-
tics of the benchmark suite are shown in the four rightmost
columns in the table.

To facilitate the experiment, we implemented a tool to

generate random test cases for each application. A thousand

(1000) test cases were generated to form a test pool for each

subject. We applied each constructed test case to each faulty

version of the corresponding subject. To determine whether

the test case revealed a failure, our tool compared its

execution result against the original subject program with its

result against a faulty version. If there is any difference, we

deem the output of the faulty version reveals a failure.
Then, from each generated test pool, we randomly

selected test cases one by one and put it into a test suite
(which was initially empty). The selection was repeated
until all the workflow branches, XRG branches, and WSDL
elements had been covered at least once. This process was
the same as that in the test suite construction in Elbaum et al.
[4] and Mei et al. [18], except that we used the adequacy on
BPEL, XRG and WSDL instead of that on program state-
ments as the stopping criterion.

In total, we constructed 100 test suites for each subject.
Table 3 shows the maximum, mean, and minimum sizes of
the test suites. We followed existing work [3][17] to exclude
a faulty version from data analysis if more than 20 percent
of the test cases detected failures from the version. As such,

TABLE 2. SUBJECTS AND THEIR DESCRIPTIVE STATISTICS

Ref. Subject Modified Versions Elements LOC XPath Queries XRG Branches WSDL Elements Used Versions

A atm 8 94 180 3 12 12 5

B buybook 7 153 532 3 16 14 5

C dslservice 8 50 123 3 16 20 5

D gymlocker 7 23 52 2 8 8 5

E loanapproval 8 41 102 2 8 12 7

F marketplace 6 31 68 2 10 10 4

G purchase 7 41 125 2 8 10 4

H triphandling 9 94 170 6 36 20 8

 Total 60 527 1352 23 114 106 43

TABLE 3. STATISTICS OF TEST SUITE SIZES

 Ref. / Subject

Size

A B C D E F G H
Mean

atm buybook dslservice gymlocker loanapproval marketplace purchase triphandling

Maximum 146 93 128 151 197 189 113 108 140.6

Mean 95 43 56 80 155 103 82 80 86.8

Minimum 29 12 16 19 50 30 19 27 25.3

6

for each generated test suite, we further marked which test
case reveals which fault.

B. Effectiveness Measure

Following most of the previous test case prioritization
studies, we use the Average Percentage of Faults Detected
(APFD) to measure the weighted average of the percentage
of faults detected over the life of a test suite. As Elbaum et
al. [4] pointed out, a high APFD value intuitively indicates a
better fault detection rate. Let T be a test suite containing n
test cases, and F be a set of m faults revealed by T. Let TFi
be the first test case in a reordering T' of T that reveals
fault i. A higher APFD value indicates a more effective
result [26]. The APFD value for T' is given by the formula

nmn

TFTFTF
APFD m

 2

1

 ...
 1 21 




C. Procedure

We applied each of the techniques C1, C2, and M1 to
M10 to prioritize every generated test suite to produce an
ordered test suite. Based on the failure marking of
individual test cases in the ordered test suite, we computed
the APFD value of each technique against each faulty
version, and repeated the process 100 times.

D. Data Analyses

1. Average Scenarios

To understand the performance of the same techniques
and factors, we first analyze the average scenarios.

The aggregated APFD results of C1, C2, and M1 to M10
on all the test suites against all the subjects are shown in
Figure 1(a), where the x-axis shows the techniques C1, C2,
and M1–M10 from left to right, and the y-axis shows the
APFD values. Each box-plot in the graph shows the lowest,
25th percentile, median, 75th percentile and the highest
APFD values of a prioritization technique. The breakdowns
for individual subjects are shown in Figure 2, which can be
interpreted in a similar way as Figure 1(a).

We first discuss the median APFD values achieved by
the techniques in the average scenarios. Figure 1(a) shows
that the median APFD values of M1 to M10 are generally
higher than or equal to that of C1, indicating that techniques
M1 to M10 can be effective in improving the fault detection
rate in the average scenarios. Moreover, M5 to M8 are more
effective than other techniques. Nonetheless, M5 appears to
exhibit problems because there is a long line below the box
for this technique, whereas C1 (random ordering) does not
show a similar problem. This result indicates that in quite a
number of cases, M5 is worse than C1 in the adverse scenar-
ios, which confirms our motivations as stated in Section 1.

To find out the extent of differences among the techni-
ques, we have performed hypothesis testing using Analysis
of Variance (ANOVA). The test confirms that for each
subject, techniques M1 to M10 differ statistically at a signif-
icance level of 5%. We further conducted a multiple-mean
comparison using MatLab (with HSD [39], which is the
default option for MatLab comparisons). The results are
shown in Figure 3, in which the x-axis of each graph shows
the APFD values while the y-axis shows the techniques C1,
C2, and M1 to M10. If the bars of two techniques shown in
a graph are non-overlapping, the difference in their effect-
iveness is statistically significant at a level of 5%.

We find that techniques M5 to M8 (which use the XRG
artifacts for prioritization) are more effective than techni-
ques M1 to M4 (which use the BPEL artifacts), while tech-
niques M9 to M10 (which use the WSDL artifacts) applied
to 4 (or 50%) of the 8 subjects are at least as effective as
other techniques applied to two other subjects (or 25% of all
the subjects). However, techniques M1 to M4, which use the
executable artifacts (BPEL), can be either as effective as
techniques that use the non-executable artifacts (if WSDL is
involved) or worse than the latter (if XRG is involved). In
fact, techniques M1 to M4 only outperform M7 to M10
(which use the non-executable artifacts WSDL or XRG) on
one subject. On the other hand, comparing techniques that
use the ascending order (M7 and M9) and those using the

A
P

F
D

(a) Comparison on all data

A
P

F
D

(b) Comparison in the adverse scenarios

Figure 1. Overall comparisons of the techniques using all the experimental subjects

7

(A) atm

(B) buybook

(C) dslservice

(D) gymlocker

(E) loanapproval

(F) marketplace

(G) purchase

(H) triphandling

Figure 2. Comparisons of the techniques on all data of each individual subject (y-axis shows the APFD values)

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

8

(A) atm

(B) buybook

(C) dslservice

(D) gymlocker

(E) loanapproval

(F) marketplace

(G) purchase

(H) triphandling

Figure 3. Multiple-mean comparisons of the techniques on all data of each individual subject (x-axis shows the APFD values)

0.8 0.85 0.9 0.95 1 1.05

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

The means of groups 1 and 2 are significantly different

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

4 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

8 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

11 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

8 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

8 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

5 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

9

(A) atm

(B) buybook

(C) dslservice

(D) gymlocker

(E) loanapproval

(F) marketplace

(G) purchase

(H) triphandling

Figure 4. Comparisons of the techniques in the adverse scenarios of each individual subject (y-axis shows the APFD values)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

10

(A) atm

(B) buybook

(C) dslservice

(D) gymlocker

(E) loanapproval

(F) marketplace

(G) purchase

(H) triphandling

Figure 5. Multiple-mean comparisons of the techniques in the adverse scenarios of each individual subject (x-axis shows the APFD values)

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

2 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

6 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.8 0.85 0.9 0.95 1 1.05

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

8 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

8 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

7 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

9 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

12

11

10

9

8

7

6

5

4

3

2

1

Click on the group you want to test

5 groups have means significantly different from Group 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

C2

C1

11

descending order (M8 and M10), we notice no consistent
trend of one ordering direction being more effective than the
other. Last but not least, techniques M7 and M8 that use the
iterative strategy can be more effective than techniques M1
to M6 that use the additional or total greedy strategy, even
though the additional greedy strategy was found to be the
best one for C++ or Java programs so far [41].

2. Adverse Scenarios

We define an adverse scenario as a test run in which the
APFD value of a subject falls below the 25th percentile. In
this section, we analyze the data for these adverse scenarios.

The aggregated APFD results of C1, C2, and M1 to M10
on the ordered test suites in the adverse scenarios against all
the subjects are shown in Figure 1(b), which can be inter-
preted in a similar way as Figure 1(a). The breakdowns for
individual subjects are shown in Figure 4, which can be
interpreted in a similar way as Figure 2. The corresponding
multiple mean comparisons are shown in Figure 5, which
can be interpreted in a similar way as Figure 3.

From Figure 1(b), we find that in the adverse scenarios,
each technique is about 5% less effective than that shown in
Figure 1(a) in terms of the medians of the datasets. Between
each pair of the corresponding plots, the effectiveness of
each of M1 to M10 (relative to other techniques in the same
plot) is consistent in terms of the medians of the datasets.

We have also performed the ANOVA test for the dataset
depicted in Figure 1(b) similar to what we have presented in
Section IV.D.1. The test shows again that techniques M1 to
M10 are statistically different at a significance level of 5%.
We further find from Figure 5 that, in general, techniques
that use the XRG artifacts (M5–M8) are more effective than
those using the BPEL artifacts (M1–M4), whereas applying
techniques that use the WSDL artifacts (M9–M10) to 6
subjects (or 75% of all the subjects) are at least as effective
as applying the other techniques to one other subject (or
12.5% of all the subjects). We only see techniques that use
the executable artifacts (M1–M4) outperforming those using
the non-executable artifacts (M7–M10) for one subject.

3. Comparisons of the Same Techniques between the
Average Scenarios and the Adverse Scenarios

Based on the findings presented in Sections IV.D.1–2,
we have the following observations. First, in both the aver-
age and adverse scenarios, prioritization is more effective
with the use of the non-executable artifacts. This finding
provides new evidence to support the investigation of using
non-executable artifacts for test case prioritization. Second,
our findings show no consistent trend that the use of a
particular ordering direction will result in more effective
techniques. However, unlike the average scenarios, we find
that the differences between M5 and M6 on some subjects
in the adverse scenarios are drastic, which reconfirm that the
relatively stable performances in the average scenarios can-
not be directly extrapolated to the adverse scenarios. Third,
Figure 1(a) shows a long tail at the bottom of the box-plot of
M5, meaning that it can sometimes perform very poorly.
Comparing M5–M6 with M7–M8 or comparing M1–M6
with M7–M10, the iterative strategy (M7 to M10) tends to
be more consistent in effectiveness than the additional or
total greedy strategy (M1 to M6).

Table 4 summarizes the hypothesis testing results of the
multiple mean comparisons presented in Sections IV.D.1–2
to validate each of M1 to M10 against random ordering (C1)
in both the average scenarios (denoted by All) and the ad-
verse scenarios (denoted by 25%). Specifically, if a techni-
que Mi is significantly more effective than C1, we mark “>”
in the cell; if Mi does not differ significantly from C1, we
mark “=” in the cell; and if Mi is significantly worse than
C1, we mark “<” in the cell.

We find that only M3, M7, M8, and M10 always do not
perform worse than C1 (i.e., no “<” is marked in these
columns) and at the same time produce consistent results
(i.e., two corresponding cells sharing the same labels “<”,
“=”, or “>”) for all the corresponding pairs in both the All
and 25% columns. The result also indicates that the use of
the iterative strategy (M7, M8, and M10 but not M9; or 75%
of the studied techniques using this strategy) can be a
technique factor to consider in the two scenarios. On the
other hand, only one technique (M3) out of six (M1 to M6)

TABLE 4. HYPOTHESIS TESTING COMPARISONS OF M1–M10 WITH C1 FOR ALL THE ORDERED TEST SUITES AND

FOR THE LEAST EFFECTIVE 25% OF SUCH SUITES (AT A SIGNIFICANCE LEVEL OF 5%)

Ref. Subject
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

All 25% All 25% All 25% All 25% All 25% All 25% All 25% All 25% All 25% All 25%

A atm = = = = = = = = > > = = > > > > < = = =

B buybook = = = = = = = = = = = > = = = = = = = =

C dslservice = < = = = = = = < < > > = = = = = > > >

D gymlocker > > > > = = > > > > > > > > > > = = = =

E loanapproval > > > = > > > = > > > = > > > > > > > >

F marketplace = = > > = = > > > > > > = = > > > = > >

G purchase = = > > = = > > > > > > > > > > = > > >

H triphandling > > > > > > > > = = = = = = = = = = = =

12

can achieve a comparative result with C1. We do not find
that the other three factors (namely, the type of artifact, the
ordering direction, and whether the artifacts are executable)
correlate with more than 50% of the studied techniques that
show similar consistent results across the two types of
scenarios and across all the subjects.

Finally, we answer the research questions posed in
Section IV. To answer RQ1, we find that all the techniques
(except M5) that are effective in the average scenarios can
also be effective in the adverse scenarios, but the differences
in effectiveness among techniques widen in the adverse
scenarios. However, only some techniques (M3, M7, M8,
and M10) show consistent effectiveness results over random
ordering in both types of scenarios.

To answer RQ2, we find that out of all the choices in the
four factors, only the iterative strategy under the strategy
factor has a potential to be a significant factor in both types
of scenarios.

Our result provides evidence to support Conjecture 1
that there exists a factor such that the resulting technique is
effective in both the average and adverse scenarios. At the
same time, Conjecture 1 is not generally established.

E. Threats to Validity

In this section, we discuss the threats to validity of the
experiment. First, APFD is a commonly used measure of the
effectiveness of a prioritization technique, but it cannot be
computed unless the faults are known [4][26]. Zhai et al.
[39] proved that APFD depends on the size of a test suite.
Other measures such as APSC [11], FATE [38], or HMFD
[40] may also be used to evaluate a prioritization technique.
Second, we have tested our automated tool using small
WS-BPEL programs. Third, our experiment used a suite of
subjects and techniques to study the research questions. The
use of other programs, test cases, faults, test oracles, and
techniques may yield different results. The use of alternative
definitions of the adverse scenarios may also yield other
results. Our experiment has not used any mutation operators
proposed to mutate XML documents. The use of such
operators may produce results that are different from ours.

V. CONCLUSION

We have empirically studied test case prioritization
techniques for WS-BPEL applications in both the average
and adverse scenarios. We find that only 4 out of the 10
studied techniques are consistently effective in both types of
scenarios, and only the iterative strategy shows its promise
as a significant factor affecting the effectiveness of a techni-
que in both types of scenarios. Our empirical study shows,
however, that Conjecture 1 cannot be established.

In the future, we would like to study mechanisms to
improve test case prioritization techniques with respect to
the “lower end” spectrum of their effectiveness. Our work
can be put into a broader context of software testing in
general. We have raised a generic research question of
whether it is sufficient to assess testing techniques in terms
of their average performance. Our empirical results have
provided counterexamples in test case prioritization tech-

niques in regression testing. Do other types of testing
techniques suffer from a similar problem that their average
performance cannot be extrapolated effectively to the
adverse scenarios? More studies should be carried out in
these aspects in the future in order to transfer reliable
research on testing techniques to the industry.

ACKNOWLEDGMENT

This work is supported in part by the Early Career
Scheme and the General Research Fund of the Research
Grants Council of Hong Kong (project numbers 111313,
123512, 125113, 716612, and 717811).

REFERENCES

[1] alphaWorks Technology: BPEL Repository, IBM, 2006,

https://www14.software.ibm.com/webapp/iwm/web/preLogin.

do?source=AW-0KN.

[2] C. Bartolini, A. Bertolino, S.G. Elbaum, and E. Marchetti,

“Bringing white-box testing to service oriented architectures

through a service oriented approach,” Journal of Systems and

Software, vol. 84, no. 4, 2011, pp. 655–668.

[3] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of

test case prioritization in a JUnit testing environment,”

Proceedings of the 15th International Symposium on Software

Reliability Engineering (ISSRE ’04), IEEE Computer Society,

2004, pp. 113–124.

[4] S.G. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test

case prioritization: a family of empirical studies,” IEEE

Transactions on Software Engineering, vol. 28, no. 2, 2002,

pp. 159–182.

[5] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based

cost-cognizant test case prioritization technique in regression

testing,” Journal of Systems and Software, vol. 85, no. 3,

2012, pp. 626–637.

[6] C. Jia, L. Mei, W.K. Chan, Y.T. Yu, and T.H. Tse, “Is

XML-based test case prioritization for validating WS-BPEL

evolution effective in both average and adverse scenarios?”

Proceedings of the 21st IEEE International Conference on

Web Services (ICWS ’14), IEEE Computer Society, 2014.

[7] B. Jiang and W.K. Chan, “Bypassing code coverage approx-

imation limitations via effective input-based randomized test

case prioritization,” Proceedings of the IEEE 37th Annual

Computer Software and Applications Conference (COMPSAC

’13), IEEE Computer Society, 2013, pp. 190–199.

[8] M.B. Juric, A Hands-on Introduction to BPEL, Part 2:

Advanced BPEL, Oracle Technology Networks, http://www.

oracle.com/technetwork/articles/matjaz-bpel2-082861.html.

[9] J.-M. Kim and A. Porter, “A history-based test prioritization

technique for regression testing in resource constrained envi-

ronments,” Proceedings of the 24th International Conference

on Software Engineering (ICSE ’02), ACM, 2002, pp. 119–

129.

[10] H.K.N. Leung and L.J. White, “Insights into regression test-

ing,” Proceedings of the IEEE International Conference on

13

Software Maintenance (ICSM ’89), IEEE Computer Society,

1989, pp. 60–69.

[11] Z. Li, M. Harman, and R.M. Hierons, “Search algorithms for

regression test case prioritization,” IEEE Transactions on

Software Engineering, vol. 33, no. 4, 2007, pp. 225–237.

[12] E. Martin, S. Basu, and T. Xie, “Automated testing and

response analysis of web services,” Proceedings of the IEEE

International Conference on Web Services (ICWS ’07), IEEE

Computer Society, 2007, pp. 647–654.

[13] L. Mei, Y. Cai, C. Jia, B. Jiang, and W.K. Chan, “Prioritizing

structurally complex test pairs for validating WS-BPEL evo-

lutions,” Proceedings of the IEEE International Conference

on Web Services (ICWS ’13), IEEE Computer Society, 2013,

pp. 147–154.

[14] L. Mei, Y. Cai, C. Jia, B. Jiang, and W.K. Chan, “Test pair

selection for test case prioritization in regression testing for

WS-BPEL programs,” International Journal of Web Services

Research, vol. 10, no. 1, 2013, pp. 73–102.

[15] L. Mei, W.K. Chan, and T.H. Tse, “Data flow testing of

service-oriented workflow applications,” Proceedings of the

30th International Conference on Software Engineering

(ICSE ’08), ACM, 2008, pp. 371–380.

[16] L. Mei, W.K. Chan, T.H. Tse, B. Jiang, and K. Zhai, “Pre-

emptive regression testing of workflow-based web services,”

IEEE Transactions on Services Computing, vol. 8, no. 5,

2015, pp. 740–754.

[17] L. Mei, W.K. Chan, T.H. Tse, and R.G. Merkel, “XML-

manipulating test case prioritization for XML-manipulating

services,” Journal of Systems and Software, vol. 84, no. 4,

2011, pp. 603–619.

[18] L. Mei, Z. Zhang, W.K. Chan, and T.H. Tse, “Test case

prioritization for regression testing of service-oriented busi-

ness applications,” Proceedings of the 18th International

Conference on World Wide Web (WWW ’09), ACM, 2009,

pp. 901–910.

[19] Y. Ni, S.-S. Hou, L. Zhang, J. Zhu, Z.J. Li, Q. Lan, H. Mei,

and J.-S. Sun, “Effective message-sequence generation for

testing BPEL programs,” IEEE Transactions on Services

Computing, vol. 6, no. 1, 2013, pp. 7–19.

[20] J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf, “An

experimental determination of sufficient mutant operators,”

ACM Transactions on Software Engineering and Methodol-

ogy, vol. 5, no. 2, 1996, pp. 99–118.

[21] A.K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma,

“Regression testing in an industrial environment,” Communi-

cations of the ACM, vol. 41, no. 5, 1998, pp. 81–86.

[22] S. Rapps and E.J. Weyuker, “Selecting software test data

using data flow information,” IEEE Transactions on Software

Engineering, vol. 11, no. 4, 1985, pp. 367–375.

[23] G. Rothermel, S.G. Elbaum, A.G. Malishevsky, P. Kallakuri,

and B. Davia, “The impact of test suite granularity on the

cost-effectiveness of regression testing,” Proceedings of the

24th International Conference on Software Engineering

(ICSE ’02), ACM, 2002, pp. 130–140.

[24] G. Rothermel and M.J. Harrold, “A safe, efficient regression

test selection technique,” ACM Transactions on Software

Engineering and Methodology, vol. 6, no. 2, 1997, pp.

173–210.

[25] G. Rothermel and M.J. Harrold, “Analyzing regression test

selection techniques,” IEEE Transactions on Software Engi-

neering, vol. 22, no. 8, 1996, pp. 529–551.

[26] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,

“Prioritizing test cases for regression testing,” IEEE Transac-

tions on Software Engineering, vol. 27, no. 10, 2001, pp. 929–

948.

[27] M.E. Ruth, “Concurrency in a decentralized automatic regres-

sion test selection framework for web services,” Proceedings

of the 15th ACM Mardi Gras Conference (MG ’08), ACM,

2008, pp. 7:1–7:8.

[28] A. Srivastava and J. Thiagarajan, “Effectively prioritizing

tests in development environment,” Proceedings of the 2002

ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA ’02), ACM, 2002, pp. 97–106.

[29] W.-T. Tsai, Y. Chen, R.A. Paul, H. Huang, X. Zhou, and X.

Wei, “Adaptive testing, oracle generation, and test case

ranking for web services,” Proceedings of the 29th Annual

International Computer Software and Applications Confer-

ence (COMPSAC ’05), vol. 1, IEEE Computer Society, 2005,

pp. 101–106.

[30] Web Services Business Process Execution Language

Version 2.0: OASIS Standard, Organization for the Advance-

ment of Structured Information Standards (OASIS), 2007,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[31] Web Services Description Language (WSDL) Version 2.0

Part 1: Core Language, W3C, 2007, http://www.w3.org/TR/

wsdl20/.

[32] Web Services Invocation Framework: DSL Provider Sample

Application, Apache Software Foundation, 2006,

http://svn.apache.org/viewvc/webservices/wsif/trunk/java/

samples/dslprovider/README. html?view=co.

[33] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A

study of effective regression testing in practice,” Proceedings

of the 8th International Symposium on Software Reliability

Engineering (ISSRE ’97), IEEE Computer Society, 1997,

pp. 264–274.

[34] XML Path Language (XPath) 2.0: W3C Recommendation,

W3C, 2007, http://www.w3.org/TR/xpath20/.

[35] G. Xu and A. Rountev, “Regression test selection for AspectJ

software,” Proceedings of the 29th International Conference

on Software Engineering (ICSE ’07), IEEE Computer Soci-

ety, 2007, pp. 65–74.

[36] C. Ye and H.-A. Jacobsen, “Whitening SOA testing via event

exposure,” IEEE Transactions on Software Engineering, vol.

39, no. 10, 2013, pp. 1444–1465.

[37] S. Yoo and M. Harman, “Regression testing minimization,

selection and prioritization: a survey,” Software Testing, Veri-

fication and Reliability, vol. 22, no. 2, 2012, pp. 67–120.

14

[38] Y.T. Yu and M.F. Lau, “Fault-based test suite prioritization

for specification-based testing,” Information and Software

Technology, vol. 54, no. 2, 2012, pp. 179–202.

[39] K. Zhai, B. Jiang, and W.K. Chan, “Prioritizing test cases for

regression testing of location-based services: metrics,

techniques, and case study,” IEEE Transactions on Services

Computing, vol. 7, no. 1, 2014, pp. 54–67.

[40] K. Zhai, B. Jiang, W.K. Chan, and T.H. Tse, “Taking

advantage of service selection: a study on the testing of

location-based web services through test case prioritization,”

Proceedings of the IEEE International Conference on Web

Services (ICWS ’10), IEEE Computer Society, 2010, pp.

211–218.

[41] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei,

“Bridging the gap between the total and additional test-case

prioritization strategies,” Proceedings of the 2013 Interna-

tional Conference on Software Engineering (ICSE ’13), IEEE,

2013, pp. 192–201.

