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AbstractIn real life, a tester can only afford to apply one 

test case prioritization technique to one test suite against a 

service-oriented workflow application once in the regression 

testing of the application, even if it results in an adverse 

scenario such that the actual performance in the test session is 

far below the average. It is unclear whether the factors of test 

case prioritization techniques known to be significant in terms 

of average performance can be extrapolated to adverse 

scenarios. In this paper, we examine whether such a factor or 

technique may consistently affect the rate of fault detection in 

both the average and adverse scenarios. The factors studied 

include prioritization strategy, artifacts to provide coverage 

data, ordering direction of a strategy, and the use of executable 

and non-executable artifacts. The results show that only a 

minor portion of the 10 studied techniques, most of which are 

based on the iterative strategy, are consistently effective in 

both average and adverse scenarios. To the best of our know-

ledge, this paper presents the first piece of empirical evidence 

regarding the consistency in the effectiveness of test case 

prioritization techniques and factors of service-oriented 

workflow applications between average and adverse scenarios. 

Keywords—XML-based factor; WS-BPEL; adaptation; 

adverse 

I. INTRODUCTION 

A service-based workflow program such as a WS-BPEL 
application [30] is a service that, at runtime, binds each of 
its workflow steps to another service. A fault in such a 
service will affect the correctness of the service itself as 
well as each service that binds to it. Any modification of a 
workflow service should be thoroughly tested to reduce the 
potential impact of any fault to its consumers. To stay 
competitive, the service should be continuously maintained 
in order to adapt to any changing business requirements, or 

else a service consumer will bind to a competing service if 
the consumer’s requirements are not made available in time. 
In short, from the verification viewpoint, workflow services 
demand highly efficient test sessions. 

Regression testing is a widely used industrial practice 
[21]. Developers may execute the modified service over the 
test cases in a regression test suite to assess whether this 
service executes normally and computes outputs as specified 
[17]. It should be conducted on any modified version of a 
service before the new version is deployed. 

Owing to the need for thorough testing, the number of 
test case invocations with respect to the service under test 
may be very large. At the same time, native executions of 
workflow service (including the time to bind and invoke 
external services [16]) may be long. As a result, an entire 
test session may become too time-consuming, which is in 
conflict with the demand for efficient test sessions. 
Prioritization of the order of execution of test cases has the 
potential to alleviate this inefficient test session problem by 
revealing faults earlier, thereby starting the service repair 
earlier and shortening the maintenance period. Many 
research studies (such as [11][18][21][25][33]) have report-
ed that test case prioritization is an important aspect of 
practical regression testing. 

Although existing studies have shown that the fault 
detection rate of some test case prioritization techniques can 
be excellent, different strategies may exhibit subtle differ-
ences in their tradeoff [4][9]. For instance, comparing the 
results of the same technique on different languages (such as 
Java [3] versus C [4]) has revealed that such a technique 
may exhibit varying extents of effectiveness. Some prioriti-
zation techniques are also found to be multimodal, that is, 
their effectiveness has multiple peak regions [11]. 

Each test run of a WS-BPEL program may indicate the 
execution of a specific workflow path with reference to 
certain XML tags in the WSDL documents [31] of the 
program. Thus, the same execution of a service has the 
potential to generate coverage data based on different types 
of artifacts. Mei et al. [18] proposed to integrate progres-
sively the coverage data from multiple artifacts by using a 
level-exploration strategy with a greedy-based test case 
prioritization strategy at each level of exploration [13]. 
Moreover, XML messages sent and received by a service 
along the execution trace of each test case can be used as 
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runtime artifacts to provide a new dimension of data sources 
for prioritizing test cases [17]. Mei et al. [13][14] found that 
using more types of coverage data systematically can also 
make similarity-based test case prioritization techniques 
more effective. 

In practice, a developer only applies one test case 
prioritization technique to one test suite once. The developer 
does not have the luxury to apply multiple test suites to look 
for the average (that is, mean or median) performance of the 
technique on the same service. Thus, even when the average 
performance of a technique (or a factor across multiple 
techniques) is excellent, if the technique (or factor) performs 
very ineffectively in scenarios that are far below average 
(hereafter simply referred to as adverse scenarios), the 
technique (or factor) may not be reliably used in practice. 

To the best of our knowledge, existing test case prioriti-
zation techniques (including the above-stated work) 
exhaustively focus on comparing and analyzing the average 
effectiveness among multiple techniques (in terms of the 
fault detection rate such as APFD [26]). From our 
discussions above, we would like to see that they also 
perform satisfactorily in adverse scenarios, but this remains 
a conjecture, as formulated as follows, to be validated 
empirically. 

 

Conjecture 1: Suppose that a factor of a test case 
prioritization technique has been shown to exhibit 
significant effectiveness in the average scenarios in 
terms of fault detection rate. Then the factor will also be 
a significant factor in the adverse scenarios. 

 
This conjecture has significant implications because 

handling adverse scenarios can significantly improve the 
confidence in accepting such techniques in practice, and 
there is a large body of research results on the average 
performance of various test case prioritization techniques. If 
the conjecture can be (largely) established, we may extrapo-
late existing research results to adverse scenarios. If the 
conjecture cannot be established, then there is an obvious 
gap between previous analyses of test case prioritization 
techniques and the above practical consideration, which 
urges for more effort to be filled. However, to the best of 
our knowledge, there is as yet no evidence about the validity 
of the conjecture. 

To examine Conjecture 1, we empirically study a suite 
of factors in this paper: (1) prioritization strategy, (2) type 
of artifacts that generate coverage data for prioritization 
usages, (3) ordering direction of a prioritization strategy 
(whether ascending or descending), and (4) the nature of the 
artifacts that produces the coverage data (whether the data 
are obtained from executable or non-executable artifacts). 
For instance, these four factors have been studied in 
previous experiments [4][13][17][18] in the standard (that is, 
“average”) scenarios. 

In the experiment, we attempt to observe the effects of 
these factors in both the average and adverse scenarios, the 
latter being quantified as the lowest 25th percentile of the 
Average Percentage of Faults Detected (APFD) [26] 

achieved by a test case prioritization technique on a suite of 
subjects. To support our experiment, we formulate four new 
XRG-based techniques (M5 to M8 in Section III) to bridge 
the gap between existing strategies, namely, the additional/
total greedy strategy [4] and the iterative strategy [13]. The 
results show that only a minor portion of techniques (4 out 
of 10 techniques studied) are effective in both average and 
adverse scenarios. Moreover, only one of the four factors 
(namely, the iterative strategy in the strategy factor) can be 
largely consistent in effectiveness in both types of scenarios. 
Our results provide the first piece of evidence data to show 
that, among the four factors and their choices studied, only 
one single choice (the iterative strategy) out of one single 
factor (the strategy factor) supports Conjecture 1. 

The main contribution of this paper is twofold. (i) To the 
best of our knowledge, this paper presents the first analysis 
of adverse scenarios, in which it examines a suite of tech-
niques and four factors. Moreover, it shows that, for only 4 
out of 10 studied techniques, the effectiveness in average 
scenarios can be extrapolated to adverse scenarios. It also 
identifies the iterative strategy in the strategy factor as the 
only choice that supports Conjecture 1. (ii) We propose four 
new XRG-based techniques that supplement existing ones. 

The rest of the paper is organized as follows: Section II 
describes the background of the test case prioritization 
problem and related work. Section III reviews the test case 
prioritization techniques under study. Section IV presents 
our empirical study. Finally, Section V concludes the paper. 

II. RELATED WORK 

This section reviews related work and revisits the 
terminology used in test case prioritization. 

Regression testing is widely used in the industry [21]. It 
is a testing process performed after the modification of a 
program [10]. Leung and White [10] pointed out that it is 
not a simple testing process by just rerunning all the test 
cases. Regression testing can be more effective by selecting 
only those test cases relevant to the modified components. 
Test case prioritization is one of major tasks in regression 
testing, enabling test cases to be executed in selected order 
to achieve specific testing purposes, such as a higher fault 
detection rate [26]. 

The test case prioritization problem has been formally 
defined in [26], which we adapt as follows: 

Given: T, a test suite; PT, a set of permutations of T; and 
f, a function from PT to real numbers. 

Objective: To find a reordered test suite T'  PT such 

that T''  PT, f(T') ≥ f(T''). 

Leung and White [10] provided a principle of retests by 
dividing the regression testing problem into two sub-
problems: test selection and test plan update. Rothermel and 
Harrold [25] surveyed earlier families of techniques for 
regression test selection (such as symbolic execution tech-
niques, path analysis techniques, dataflow techniques [22], 
and modification-based techniques). More recently, Yoo 
and Harman [37] reported that there are an increasing 
number of papers that study regression testing techniques. 
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Generally, there are two kinds of test case prioritization, 
namely general test case prioritization and version-specific 
test case prioritization [26]. For the former, a test suite T for 
a program P is sorted with the intent of being useful over 
the subsequent modified versions of P. For the latter, the 
test suite is prioritized to be useful on a specific version P' 
of P. Such a test suite may be more effective at meeting the 
goal of the prioritization for P'. Our study in this paper 
focuses on the former kind. 

Many coverage-based prioritization techniques (such as 
[4][25][26][33]) have been proposed, including prioritizing 
test cases by the total statement or branch coverage achieved 
by individual test cases, and by additional statement or 
branch coverage (or additional cost [33]) achieved by 
not-yet-selected test cases. Zhang et al. [41] generalized the 
total-and-additional test case prioritization strategies. Some 
techniques are not purely based on code coverage data of 
test cases such as prioritization based on test costs [5], fault 
severities [4], ability to detect specification-based faults [38], 
data from the test history [5][9], or fault-exposing-potential 
[26]. The effects of granularity [23] and compositions of test 
suites have been reported. Srivastava and Thiagarajan [28] 
built an Echelon system to prioritize test cases according to 
the potential change impacts of individual test cases 
between versions of a program to cover maximally the 
affected programs. Most of the existing experiments are 
conducted on procedural and object-oriented programs [3]. 
In addition, studies on prioritizing test cases using input 
domain information [7][39] and service discovery mechan-
isms [40] have been explored. Methods to reveal internal 
state transitions have also been developed [2][36]. 

Xu and Rountev [35] proposed a regression test 
selection technique for AspectJ programs. They use a 
control-flow representation for AspectJ software to capture 
aspect-related interactions and develop a graph comparison 
algorithm to select test cases. Martin et al. [12] gave a 
framework that generates and executes web-service requests, 
and collects the corresponding responses from web services. 
Using such request-response pairs, they test the robustness 
aspect of services. They discuss the potential of using 
request-response pairs for regression testing. Ruth [27] 

proposed a framework that automates safe regression test 
selection [24] for web services. Tsai et al. [29] proposed an 
adaptive group testing technique to address the challenges in 
testing a service-oriented application with a large number of 
web services simultaneously. 

Using the mathematical definitions of XPath constructs 
[34] as rewriting rules, Mei et al. [15] developed a data 
structure known as an XPath Rewriting Graph (XRG). They 
propose an algorithm to construct XRGs and a family of 
unit testing criteria to test WS-BPEL applications. Their 
research group has also developed test case prioritization 
techniques for service testing [13][14][16][17][18]. How-
ever, they do not study the factors that may affect the fault 
detecting effectiveness in adverse scenarios. 

III. TEST CASE PRIORITIZATION 

This section introduces the set of test case prioritization 
techniques used in our empirical study. To study the 
effectiveness and tradeoff of different strategies and types of 
artifacts, we follow existing work [4][17][26] to compare 
them with two control techniques, namely random and 
optimal. 

C1: Random ordering [4]. This strategy randomly 
orders the test cases in a test suite T. 

C2: Optimal prioritization [4]. Given a program P and 
a set of known faults in P, if we also know which of the test 
cases can expose which faults in P, then we can figure out 
an optimal ordering of the test cases in the test suite T to 
maximize the fault detection rate of T for that set of faults. 
We adopt the definition presented in Rothermel et al. [26] to 
implement this technique. Specifically, test cases are 
iteratively selected by the ability of exposing the most faults 
not yet exposed. The remaining test cases are prioritized by 
the same method, until test cases that expose all the faults 
have been selected. As noted by Rothermel et al., such an 
optimal prioritization is not practical and only serves as an 
approximation to the optimal case, but it can be used as a 
technique for comparison purposes. 

TABLE 1. FACTORS OF PRIORITIZATION TECHNIQUES 

Strategy (A: Additional Greedy; T: Total Greedy; I: Iterative), Order Direction (A: Ascending; D: Descending) 

Prioritization Techniques Factors 

Ref. Name 
Type of 

Artifact 
Strategy 

Order 

Direction 

Are Coverage Data Obtained 

from Executable Artifacts? 

M1 Total-BPEL-Activity [4][26] 

BPEL 

T D Yes 

M2 Addtl-BPEL-Activity [4][26] A D Yes 

M3 Total-BPEL-Workflow [4][26] T D Yes 

M4 Addtl-BPEL-Workflow [4][26] A D Yes 

M5 Total-XPath-Selection 

XRG 

T D Yes 

M6 Addtl-XPath-Selection A D Yes 

M7 Ascending-XRG-Node I A No 

M8 Descending-XRG-Node I D No 

M9 Ascending-WSDL-Element [17] 
WSDL 

I A No 

M10 Descending-WSDL-Element [17] I D No 
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Apart from the two control techniques above, a total of 
10 other techniques are examined in our empirical study. 
We recall that a WS-BPEL application includes three types 
of artifacts: BPEL, XPath, and WSDL. If we consider a 
BPEL program as a conventional program, then the next 

four techniques (M1M4) resemble the statement and 
branch coverage-based techniques of conventional programs 

[4][26]. The remaining six techniques (M5M10) explore 
the dimension of XML technologies to address the chal-
lenges caused by XPath and WSDL when using Greedy as 
the base test case prioritization techniques. We do so 
because Additional Greedy techniques [41] are still the most 
effective series of techniques (in terms of APFD) ever pro-
posed. These 10 techniques are listed in Table 1. 

A. BPEL Code Coverage Prioritization 

This section presents four techniques using activity and 
workflow transition coverage of BPEL artifacts. 

M1: Total BPEL activity coverage prioritization 
(Total-BPEL-Activity). Adapted from the total-statement 
technique presented in Elbaum et al. [4], this technique sorts 
the test cases in descending order of the total number of 
BPEL activities executed by each test case. If multiple test 
cases cover the same number of BPEL activities, M1 orders 
them randomly. 

M2: Additional BPEL activity coverage prioritization 
(Addtl-BPEL-Activity). This technique iteratively selects a 
test case that yields the maximum cumulative BPEL activity 
coverage, and then removes the covered activities from the 
coverage information of each remaining test case. Addi-
tional iterations will be conducted until all the activities 
have been covered by at least one test case. If multiple test 
cases cover the same number of activities in the current 
coverage information of the test cases, M2 selects one of 
them randomly. Having achieved the complete coverage of 
all the activities by the prioritized subset of test cases in the 
given test suite, M2 resets the coverage information of each 
remaining test case to its initial value and then reapplies the 
algorithm to the remaining test cases. M2 is adapted from 
the addtl-statement technique used by Elbaum et al. 

M3: Total BPEL workflow coverage prioritization 
(Total-BPEL-Workflow). This technique is the same as 
M1 (Total-BPEL-Activity) except that it uses test coverage 
measured in terms of BPEL workflow transitions rather than 
BPEL activities. It is adapted from the total-branch 
technique presented in Elbaum et al. 

M4: Additional BPEL workflow coverage prioritiza-
tion (Addtl-BPEL-Workflow). This technique is the same 
as M2 (Addtl-BPEL-Activity) except that it uses test 
coverage measured in terms of BPEL workflow transitions 
rather than BPEL activities. It is adapted from the 
addtl-branch technique presented in Elbaum et al. 

B. XRG Coverage Prioritization 

The next two techniques are inspired by M3, M4, and 
prioritization of XPath queries proposed by Mei et al. [15]. 

M5: Total XPath selection coverage prioritization 
(Total-XPath-Selection). This technique is the same as M3 
(Total-BPEL-Workflow) except that it uses test coverage 
measured in terms of XPath selections rather than BPEL 
workflow transitions. 

M6: Additional XPath selection coverage prioritiza-
tion (Addtl-XPath-Selection). This technique is the same 
as M4 (Addtl-BPEL-Workflow) except that it uses test 
coverage measured in terms of XPath selections rather than 
workflow transitions. Similar to M4, after complete cover-
age using M6 has been achieved, this technique will reset 
the coverage of each remaining test case to its initial value 
and will then be reapplied to the remaining test cases. 

The next two techniques (M7 and M8) are adapted from 
M9 and M10, respectively, by using XRG instead of WSDL 
as the artifacts to provide coverage data. 

M7: Ascending XRG node coverage prioritization 
(Ascending-XRG-Node). This technique first partitions test 
cases into groups such that all the test cases with the same 
number of XRG nodes are placed in the same group. 
Suppose that the partitioning process results in m+1 groups 
G0, G1, ..., Gm, where Gi is a group of test cases each of 
which covers exactly i XRG nodes. This technique will 
select one test case randomly from a group starting from G0 
to Gm in ascending order of the index of the groups. The 
procedure is repeated until all the test cases in all the groups 
have been selected. 

M8: Descending XRG node coverage prioritization 
(Descending-XRG-Node). This technique is the same as 
M7 (Ascending-XRG-Node) except that it selects a test case 
randomly from a group in descending order instead of 
ascending order of the group index. 

C. WSDL Element Coverage Prioritization 

In this section, we introduce the two techniques pro-
posed in Mei et al. [17]. WSDL documents define the XML 
schemas used by WS-BPEL applications. Each XML 
schema contains a set of elements and can be used by one or 
more XPaths. Thus, the coverage data of these elements can 
reveal the usage of the internal messages among the work-
flow steps. For ease of presentation, we simply assume that 
all the XML schemas are included in WSDL documents. In 
this paper, we call an XML element z defined in any XML 
schemas as a WSDL element. If a test case t includes an 
XML message or causes the WS-BPEL application to gen-
erate an XML message that has an XML element z, then we 
say that the WSDL element z is covered by t. 

M9: Ascending WSDL element coverage prioritiza-
tion (Ascending-WSDL-Element) [17]. This technique is 
the same as M7 (Ascending-XRG-Node) except that it uses 
test coverage measured in terms of the elements in WSDL 
documents rather than XRG nodes. 

M10: Descending WSDL element coverage prioritiza-
tion (Descending-WSDL-Element) [17]. This technique is 
the same as M8 (Descending-XRG-Node) except that it uses 
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test coverage measured in terms of the elements in WSDL 
documents rather than XRG nodes. 

IV. EMPIRICAL STUDY 

The empirical study aims to examine the following 
research questions. 

RQ1: To what extent is a prioritization technique that is 
effective in average scenarios also effective in adverse 
scenarios? 

RQ2: Do any of the following factors significantly 
affect the effectiveness of a technique in both the average 
and adverse scenarios: (i) the prioritization strategy, (ii) the 
type of artifacts used to provide coverage data, (iii) the 
ordering direction of the prioritization technique, and 
(iv) the executable nature of the artifacts? 

A. Experimental Setup 

To evaluate the techniques, we chose a benchmark suite of 
eight service-based subjects [1][8][32] (all developed in 
WS-BPEL) as representative service-based applications, as 
listed in Table 2. This benchmark suite was also used in 
previous empirical studies reported in existing work 
[13][14][15][16][17]. To the best of our knowledge, this 
suite is larger than that used by Ni et al. [19] in their 
experiment in terms of the number of individual subjects, 
the variety of subjects, the number of versions, and the size 
of individual subjects. 

Each modified version had one fault seeded with three 
typical types of mutations [20], namely, value mutation, 
decision mutation, and statement mutation. Since BPEL can 
be treated as Control Flow Graphs (CFGs), the mutations 
were performed in the same way as seeding faults in CFGs. 
An XPath fault is a wrong usage of XPath expressions, such 

as extracting the wrong content or failing to extract any 
content. A WSDL fault is a wrong usage of WSDL speci-
fications, such as binding to a wrong WSDL specification, 
or inconsistent message definitions. The faults in the modi-
fied versions have been reported in Mei et al. [15]. 

The statistics of the selected modified versions are 
shown in the rightmost column of Table 2. The size of each 
application, under the labels “Elements” and “LOC” in the 
table, refers to the number of XML elements and the lines of 
code in each WS-BPEL application. Other descriptive statis-
tics of the benchmark suite are shown in the four rightmost 
columns in the table. 

To facilitate the experiment, we implemented a tool to 

generate random test cases for each application. A thousand 

(1000) test cases were generated to form a test pool for each 

subject. We applied each constructed test case to each faulty 

version of the corresponding subject. To determine whether 

the test case revealed a failure, our tool compared its 

execution result against the original subject program with its 

result against a faulty version. If there is any difference, we 

deem the output of the faulty version reveals a failure. 
Then, from each generated test pool, we randomly 

selected test cases one by one and put it into a test suite 
(which was initially empty). The selection was repeated 
until all the workflow branches, XRG branches, and WSDL 
elements had been covered at least once. This process was 
the same as that in the test suite construction in Elbaum et al. 
[4] and Mei et al. [18], except that we used the adequacy on 
BPEL, XRG and WSDL instead of that on program state-
ments as the stopping criterion. 

In total, we constructed 100 test suites for each subject. 
Table 3 shows the maximum, mean, and minimum sizes of 
the test suites. We followed existing work [3][17] to exclude 
a faulty version from data analysis if more than 20 percent 
of the test cases detected failures from the version. As such, 

TABLE 2. SUBJECTS AND THEIR DESCRIPTIVE STATISTICS 

Ref. Subject Modified Versions Elements LOC XPath Queries XRG Branches WSDL Elements Used Versions 

A atm 8 94 180 3 12 12 5 

B buybook 7 153 532 3 16 14 5 

C dslservice 8 50 123 3 16 20 5 

D gymlocker 7 23 52 2 8 8 5 

E loanapproval 8 41 102 2 8 12 7 

F marketplace 6 31 68 2 10 10 4 

G purchase 7 41 125 2 8 10 4 

H triphandling 9 94 170 6 36 20 8 

 Total 60 527 1352 23 114 106 43 

TABLE 3. STATISTICS OF TEST SUITE SIZES 

     Ref. / Subject 

Size 

A B C D E F G H 
Mean 

atm buybook dslservice gymlocker loanapproval marketplace purchase triphandling 

Maximum 146 93 128 151 197 189 113 108 140.6 

Mean 95 43 56 80 155 103 82 80 86.8 

Minimum 29 12 16 19 50 30 19 27 25.3 
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for each generated test suite, we further marked which test 
case reveals which fault. 

B. Effectiveness Measure 

Following most of the previous test case prioritization 
studies, we use the Average Percentage of Faults Detected 
(APFD) to measure the weighted average of the percentage 
of faults detected over the life of a test suite. As Elbaum et 
al. [4] pointed out, a high APFD value intuitively indicates a 
better fault detection rate. Let T be a test suite containing n 
test cases, and F be a set of m faults revealed by T. Let TFi 
be the first test case in a reordering T' of T that reveals 
fault i. A higher APFD value indicates a more effective 
result [26]. The APFD value for T' is given by the formula 

nmn

TFTFTF
APFD m

 2

1

 

  ...    
  1   21 




 

C. Procedure 

We applied each of the techniques C1, C2, and M1 to 
M10 to prioritize every generated test suite to produce an 
ordered test suite. Based on the failure marking of 
individual test cases in the ordered test suite, we computed 
the APFD value of each technique against each faulty 
version, and repeated the process 100 times. 

D. Data Analyses 

1. Average Scenarios 

To understand the performance of the same techniques 
and factors, we first analyze the average scenarios. 

The aggregated APFD results of C1, C2, and M1 to M10 
on all the test suites against all the subjects are shown in 
Figure 1(a), where the x-axis shows the techniques C1, C2, 
and M1–M10 from left to right, and the y-axis shows the 
APFD values. Each box-plot in the graph shows the lowest, 
25th percentile, median, 75th percentile and the highest 
APFD values of a prioritization technique. The breakdowns 
for individual subjects are shown in Figure 2, which can be 
interpreted in a similar way as Figure 1(a). 

We first discuss the median APFD values achieved by 
the techniques in the average scenarios. Figure 1(a) shows 
that the median APFD values of M1 to M10 are generally 
higher than or equal to that of C1, indicating that techniques 
M1 to M10 can be effective in improving the fault detection 
rate in the average scenarios. Moreover, M5 to M8 are more 
effective than other techniques. Nonetheless, M5 appears to 
exhibit problems because there is a long line below the box 
for this technique, whereas C1 (random ordering) does not 
show a similar problem. This result indicates that in quite a 
number of cases, M5 is worse than C1 in the adverse scenar-
ios, which confirms our motivations as stated in Section 1. 

To find out the extent of differences among the techni-
ques, we have performed hypothesis testing using Analysis 
of Variance (ANOVA). The test confirms that for each 
subject, techniques M1 to M10 differ statistically at a signif-
icance level of 5%. We further conducted a multiple-mean 
comparison using MatLab (with HSD [39], which is the 
default option for MatLab comparisons). The results are 
shown in Figure 3, in which the x-axis of each graph shows 
the APFD values while the y-axis shows the techniques C1, 
C2, and M1 to M10. If the bars of two techniques shown in 
a graph are non-overlapping, the difference in their effect-
iveness is statistically significant at a level of 5%. 

We find that techniques M5 to M8 (which use the XRG 
artifacts for prioritization) are more effective than techni-
ques M1 to M4 (which use the BPEL artifacts), while tech-
niques M9 to M10 (which use the WSDL artifacts) applied 
to 4 (or 50%) of the 8 subjects are at least as effective as 
other techniques applied to two other subjects (or 25% of all 
the subjects). However, techniques M1 to M4, which use the 
executable artifacts (BPEL), can be either as effective as 
techniques that use the non-executable artifacts (if WSDL is 
involved) or worse than the latter (if XRG is involved). In 
fact, techniques M1 to M4 only outperform M7 to M10 
(which use the non-executable artifacts WSDL or XRG) on 
one subject. On the other hand, comparing techniques that 
use the ascending order (M7 and M9) and those using the 
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Figure 1. Overall comparisons of the techniques using all the experimental subjects 
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Figure 2. Comparisons of the techniques on all data of each individual subject (y-axis shows the APFD values) 
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Figure 3. Multiple-mean comparisons of the techniques on all data of each individual subject (x-axis shows the APFD values) 
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Figure 4. Comparisons of the techniques in the adverse scenarios of each individual subject (y-axis shows the APFD values) 
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Figure 5. Multiple-mean comparisons of the techniques in the adverse scenarios of each individual subject (x-axis shows the APFD values) 
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descending order (M8 and M10), we notice no consistent 
trend of one ordering direction being more effective than the 
other. Last but not least, techniques M7 and M8 that use the 
iterative strategy can be more effective than techniques M1 
to M6 that use the additional or total greedy strategy, even 
though the additional greedy strategy was found to be the 
best one for C++ or Java programs so far [41]. 

2. Adverse Scenarios 

We define an adverse scenario as a test run in which the 
APFD value of a subject falls below the 25th percentile. In 
this section, we analyze the data for these adverse scenarios. 

The aggregated APFD results of C1, C2, and M1 to M10 
on the ordered test suites in the adverse scenarios against all 
the subjects are shown in Figure 1(b), which can be inter-
preted in a similar way as Figure 1(a). The breakdowns for 
individual subjects are shown in Figure 4, which can be 
interpreted in a similar way as Figure 2. The corresponding 
multiple mean comparisons are shown in Figure 5, which 
can be interpreted in a similar way as Figure 3. 

From Figure 1(b), we find that in the adverse scenarios, 
each technique is about 5% less effective than that shown in 
Figure 1(a) in terms of the medians of the datasets. Between 
each pair of the corresponding plots, the effectiveness of 
each of M1 to M10 (relative to other techniques in the same 
plot) is consistent in terms of the medians of the datasets. 

We have also performed the ANOVA test for the dataset 
depicted in Figure 1(b) similar to what we have presented in 
Section IV.D.1. The test shows again that techniques M1 to 
M10 are statistically different at a significance level of 5%. 
We further find from Figure 5 that, in general, techniques 
that use the XRG artifacts (M5–M8) are more effective than 
those using the BPEL artifacts (M1–M4), whereas applying 
techniques that use the WSDL artifacts (M9–M10) to 6 
subjects (or 75% of all the subjects) are at least as effective 
as applying the other techniques to one other subject (or 
12.5% of all the subjects). We only see techniques that use 
the executable artifacts (M1–M4) outperforming those using 
the non-executable artifacts (M7–M10) for one subject. 

3. Comparisons of the Same Techniques between the 
Average Scenarios and the Adverse Scenarios 

Based on the findings presented in Sections IV.D.1–2, 
we have the following observations. First, in both the aver-
age and adverse scenarios, prioritization is more effective 
with the use of the non-executable artifacts. This finding 
provides new evidence to support the investigation of using 
non-executable artifacts for test case prioritization. Second, 
our findings show no consistent trend that the use of a 
particular ordering direction will result in more effective 
techniques. However, unlike the average scenarios, we find 
that the differences between M5 and M6 on some subjects 
in the adverse scenarios are drastic, which reconfirm that the 
relatively stable performances in the average scenarios can-
not be directly extrapolated to the adverse scenarios. Third, 
Figure 1(a) shows a long tail at the bottom of the box-plot of 
M5, meaning that it can sometimes perform very poorly. 
Comparing M5–M6 with M7–M8 or comparing M1–M6 
with M7–M10, the iterative strategy (M7 to M10) tends to 
be more consistent in effectiveness than the additional or 
total greedy strategy (M1 to M6). 

Table 4 summarizes the hypothesis testing results of the 
multiple mean comparisons presented in Sections IV.D.1–2 
to validate each of M1 to M10 against random ordering (C1) 
in both the average scenarios (denoted by All) and the ad-
verse scenarios (denoted by 25%). Specifically, if a techni-
que Mi is significantly more effective than C1, we mark “>” 
in the cell; if Mi does not differ significantly from C1, we 
mark “=” in the cell; and if Mi is significantly worse than 
C1, we mark “<” in the cell. 

We find that only M3, M7, M8, and M10 always do not 
perform worse than C1 (i.e., no “<” is marked in these 
columns) and at the same time produce consistent results 
(i.e., two corresponding cells sharing the same labels “<”, 
“=”, or “>”) for all the corresponding pairs in both the All 
and 25% columns. The result also indicates that the use of 
the iterative strategy (M7, M8, and M10 but not M9; or 75% 
of the studied techniques using this strategy) can be a 
technique factor to consider in the two scenarios. On the 
other hand, only one technique (M3) out of six (M1 to M6) 

TABLE 4. HYPOTHESIS TESTING COMPARISONS OF M1–M10 WITH C1 FOR ALL THE ORDERED TEST SUITES AND 

FOR THE LEAST EFFECTIVE 25% OF SUCH SUITES (AT A SIGNIFICANCE LEVEL OF 5%) 

Ref. Subject 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

All 25% All 25% All 25% All 25% All 25% All 25% All 25% All 25% All 25% All 25% 

A atm = = = = = = = = > > = = > > > > < = = = 

B buybook = = = = = = = = = = = > = = = = = = = = 

C dslservice = < = = = = = = < < > > = = = = = > > > 

D gymlocker > > > > = = > > > > > > > > > > = = = = 

E loanapproval > > > = > > > = > > > = > > > > > > > > 

F marketplace = = > > = = > > > > > > = = > > > = > > 

G purchase = = > > = = > > > > > > > > > > = > > > 

H triphandling > > > > > > > > = = = = = = = = = = = = 
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can achieve a comparative result with C1. We do not find 
that the other three factors (namely, the type of artifact, the 
ordering direction, and whether the artifacts are executable) 
correlate with more than 50% of the studied techniques that 
show similar consistent results across the two types of 
scenarios and across all the subjects. 

Finally, we answer the research questions posed in 
Section IV. To answer RQ1, we find that all the techniques 
(except M5) that are effective in the average scenarios can 
also be effective in the adverse scenarios, but the differences 
in effectiveness among techniques widen in the adverse 
scenarios. However, only some techniques (M3, M7, M8, 
and M10) show consistent effectiveness results over random 
ordering in both types of scenarios. 

To answer RQ2, we find that out of all the choices in the 
four factors, only the iterative strategy under the strategy 
factor has a potential to be a significant factor in both types 
of scenarios. 

Our result provides evidence to support Conjecture 1 
that there exists a factor such that the resulting technique is 
effective in both the average and adverse scenarios. At the 
same time, Conjecture 1 is not generally established. 

E. Threats to Validity 

In this section, we discuss the threats to validity of the 
experiment. First, APFD is a commonly used measure of the 
effectiveness of a prioritization technique, but it cannot be 
computed unless the faults are known [4][26]. Zhai et al. 
[39] proved that APFD depends on the size of a test suite. 
Other measures such as APSC [11], FATE [38], or HMFD 
[40] may also be used to evaluate a prioritization technique. 
Second, we have tested our automated tool using small 
WS-BPEL programs. Third, our experiment used a suite of 
subjects and techniques to study the research questions. The 
use of other programs, test cases, faults, test oracles, and 
techniques may yield different results. The use of alternative 
definitions of the adverse scenarios may also yield other 
results. Our experiment has not used any mutation operators 
proposed to mutate XML documents. The use of such 
operators may produce results that are different from ours. 

V. CONCLUSION 

We have empirically studied test case prioritization 
techniques for WS-BPEL applications in both the average 
and adverse scenarios. We find that only 4 out of the 10 
studied techniques are consistently effective in both types of 
scenarios, and only the iterative strategy shows its promise 
as a significant factor affecting the effectiveness of a techni-
que in both types of scenarios. Our empirical study shows, 
however, that Conjecture 1 cannot be established. 

In the future, we would like to study mechanisms to 
improve test case prioritization techniques with respect to 
the “lower end” spectrum of their effectiveness. Our work 
can be put into a broader context of software testing in 
general. We have raised a generic research question of 
whether it is sufficient to assess testing techniques in terms 
of their average performance. Our empirical results have 
provided counterexamples in test case prioritization tech-

niques in regression testing. Do other types of testing 
techniques suffer from a similar problem that their average 
performance cannot be extrapolated effectively to the 
adverse scenarios? More studies should be carried out in 
these aspects in the future in order to transfer reliable 
research on testing techniques to the industry. 
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