

1

Postprint of article in Information and Software Technology 55 (5): 897–917 (2013)

On the adoption of MC/DC and control-flow adequacy

for a tight integration of program testing and statistical fault localization
*,**

Bo Jiang
a
, Ke Zhai

b
, W. K. Chan

c,†
, T. H. Tse

b
, Zhenyu Zhang

d

a School of Computer Science and Engineering, Beihang University, Beijing, China
b Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
c Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
d State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

A B S T R A C T

Context: Testing and debugging consume a significant portion of software development effort. Both processes are usually

conducted independently despite their close relationship with each other. Test adequacy is vital for developers to assure that

sufficient testing effort has been made, while finding all the faults in a program as soon as possible is equally important. A

tight integration between testing and debugging activities is essential.

Objective: The paper aims at finding whether three factors, namely, the adequacy criterion to gauge a test suite, the size of a

prioritized test suite, and the percentage of such a test suite used in fault localization, have significant impacts on integrating

test case prioritization techniques with statistical fault localization techniques.

Method: We conduct a controlled experiment to investigate the effectiveness of applying adequate test suites to locate faults

in a benchmark suite of seven Siemens programs and four real-life UNIX utility programs using three adequacy criteria, 16

test case prioritization techniques, and four statistical fault localization techniques. We measure the proportion of code

needed to be examined in order to locate a fault as the effectiveness of statistical fault localization techniques. We also

investigate the integration of test case prioritization and statistical fault localization with postmortem analysis.

Result: The main result shows that on average, it is more effective for a statistical fault localization technique to utilize the

execution results of a MC/DC-adequate test suite than those of a branch-adequate test suite, and is in turn more effective to

utilize the execution results of a branch-adequate test suite than those of a statement-adequate test suite. On the other hand,

we find that none of the fault localization techniques studied can be sufficiently effective in suggesting fault-relevant

statements that can fit easily into one debug window of a typical IDE.

Conclusion: We find that the adequacy criterion and the percentage of a prioritized test suite utilized are major factors

affecting the effectiveness of statistical fault localization techniques. In our experiment, the adoption of a stronger adequacy

criterion can lead to more effective integration of testing and debugging.

Keywords: Debugging, testing, adequacy criterion, MC/DC, branch coverage, fault localization, test case prioritization

* © 2013 Elsevier Inc. This material is presented to ensure timely dissemination of scholarly and technical work. Personal use of this material is permitted.

Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the

terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the

copyright holder. Permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Elsevier Inc.

** This research is supported in part by the General Research Fund of the Research Grants Council of Hong Kong (project nos. 111410 and 717811), a

Strategic Research Grant of City University of Hong Kong (project no. 7002673), grants of the National Natural Science Foundation of China (project no.

61003027 and 61202077), and the Fundamental Research Fund for Central Universities (project no. YWF-12-LXGY-008). Part of this research was

conducted when Tse was a visiting scholar at the State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China.

† Corresponding author.

Administrator
 HKU CS Tech Report TR-2012-14

2

1. Introduction
Software testing can reveal program failures by running

the program over a set of test cases. However, simply
detecting program failures is inadequate. Developers must
continue to debug the program, that is, to locate faults
followed by fixing them. They also need to test the modified
program to verify whether the identified fault has been
removed as expected. Such an integrated loop of testing and
debugging processes account for more than 30% of the total
effort in typical software development [2]. Although testing
and debugging techniques are under active research, a tight
integration between testing and debugging is relatively
understudied. A better understanding of such integration
helps invent new methods that may further save project

costs.
A fundamental problem in software testing is to know

when to stop testing. Testers may apply a test adequacy
criterion such as statement coverage to measure the progress
of testing [1][5] and stop it accordingly. They may further
use a test case prioritization technique [9][10][15][21][25]
to reorder the test cases. As soon as the test adequacy
criterion has been achieved, testers may stop applying
further prioritized test cases even though the rest have been
scheduled. Furthermore, if the executed test cases have
exposed a program failure, testers may conduct debugging
immediately. In such situations, there are a few dimensions
that affect which particular test cases are used for subse-
quent debugging. They include the kind of test adequacy
criterion used, the kind of test case prioritization technique
used, and the proportion of prioritized test cases used.

There are many forms of debugging techniques. A major
category under active research in the last decade is statistical
fault localization [3][12][22][23][27][31][32]. They are
usually based on the coverage statistics of a set of execu-
tions to assess which particular program entity is more fault-
relevant than other entities in the same program. Previous
studies [16][23] have found empirically that the effective-
ness of statistical fault localization to identify faults is
heavily affected by the size of the test suite and the
strategies used to prioritize test cases. On the other hand, the
aspect of test adequacy criterion has not been studied.

To study the issue of integration between testing and
debugging, we investigate in this paper the above three
dimensions of test suite composition (namely, test adequacy
criterion, test case prioritization technique, and the propor-
tion of prioritized test cases used) from the perspective of
statistical fault localization. Because the code coverage
information on the program under regression test achieved
by different prioritization strategies (such as random,
adaptive random [15], meta-heuristics [21], and greedy [9])
on different types of adequate test suites can be different,
statistical fault localization techniques are likely to demon-
strate different effectiveness when using the corresponding
execution statistics to locate fault-relevant program entities.
Jiang et al. [16][17] studied the effectiveness of using the
prioritized test suites produced by different test case prioriti-

zation strategies to locate faults by statistical fault localiza-
tion techniques. In terms of the relative mean percentage of
code examined to locate faults, they found empirically [17]
that the random strategy and the additional statement strate-
gies [9] can be more stable than the clustering-based and the
total strategies. Nonetheless, they have not investigated the
influence of the composition of adequate test suites that
serve as inputs to test case prioritization and fault localiza-
tion techniques. There are many important research ques-
tions remaining to be answered, such as the probability of
obtaining a test suite that is both adequate with respect to
some testing criterion and effective with respect to some
fault localization technique, and whether the suggested
suspicious region (that is, the list of statements suspected of
containing a fault) can easily fit into a debug window on the
canvas of a typical IDE, given that this suggestion is
produced by a test suite that is deemed to be adequate.

In this paper, we report the results of an empirical study
that applied three test adequacy criteria, 16 test case prioriti-
zation techniques, and four statistical fault localization
techniques to 11 subject programs. We used Modified
Condition/Decision Coverage (MC/DC) adequacy, branch
adequacy, and statement adequacy because they are
commonly practiced coverage criteria that can be applied to
widely-used complex programs [1][5]. In total, we used 262
faulty program versions with 1000 different test suites for
every adequacy criterion. Each prioritization technique was
employed to prioritize each such test suite in every round of
the best two test adequacy criteria (owing to our resource
limitation in analyzing the huge amount of data). The
corresponding execution statistics of the reordered test cases
were utilized to locate faults using each of the four fault
localization techniques. We also repeated the same
procedure by systematically varying the proportion of each
reordered test suite to simulate that only a portion of a
reordered test suite can be used for fault localization. In
total, we repeated such variations ten times for every test
suite produced by each test case prioritization technique. As
such, we have produced more than 330 million data points
in terms of Expense [31]. It would be infeasible to report all
the individual data in detail. Hence, we only report how well
MC/DC adequacy, branch adequacy, and statement ade-
quacy integrate with statistical fault localization and how
they compare with one another at a summary level. We also
studied whether the use of adequate test suites is more
effective than random test suites in supporting fault localiza-
tion.

Although many statistical fault localization research
achievements have been obtained in the past decade, our
empirical results still show many interesting findings. First,
the use of MC/DC-adequate test suites is more effective in
integrating with statistical fault localization than the use of
branch-adequate test suites, which in turn is more effective
than the use of statement-adequate test suites. Our result
supports the conjecture that a stronger adequacy criterion
supports statistical fault localization better. Second, the
adoption of test case prioritization seems preferential, as

supported by our result that shows no more than 3040% of
the test cases compromise the effectiveness of fault localiza-

3

tion significantly in the statistical sense if the original test
suites are adequate with respect to some test adequacy crite-
rion. Last but not least, the result further shows that the fault
localization techniques studied can still be ineffective in
suggesting fault relevant statements that can easily fit into
one debug window (e.g., 25 lines of code) in a typical IDE
such as Eclipse. As such, we find that the current state of
integration between testing and debugging techniques is still
inadequate and far from satisfactory, which urges for more
research.

This paper extends its conference version [14] in the

following aspects:

(a) It reports the new result on MC/DC, a well-adopted

adequacy criterion. It also reports the result of the use of

the random strategy as a baseline “criterion” for compar-

ison with the other three test adequacy criteria.

(b) It significantly extends the empirical study that includes

a comprehensive study on how fault localization effec-

tiveness in terms of the metric Expense varies against the

change of size of test suites with respect to each test

adequacy criterion.

(c) It proposes a metric SavingRate, which allows one to

compare different adequacy criteria by normalizing an

existing metric by the sizes of test suites.

(d) It analyzes our finding from the perspective of the

subsumption relations among adequacy criteria in the

integration of test case prioritization and statistical fault

localization.

The main contribution of this paper with its preliminary
studies [13][14] is as follows: (i) It presents the first
controlled experiment to study the probability of obtaining a
test suite that is both adequate with respect to a specific test
adequacy criterion and effective with respect to a specific
fault localization technique. (ii) It is the first study on the
effectiveness of a hierarchy of adequacy criteria when their
adequate test suites are utilized in statistical fault localiza-
tion techniques. (iii) It proposes a new metric SavingRate
that characterizes how effective an adequacy criterion is in
the integration with statistical fault localization after
discounting the impact of test suite sizes. (iv) It reports the
first experimental results on how likely on average a test
case prioritization technique may effectively integrate with a
statement-level statistical fault localization technique if the
original test suite is adequate with respect to a specific test
adequacy criterion.

The rest of the paper is organized as follows: Section 2
reviews the test case prioritization and statistical fault
localization techniques used in our study. We present our
controlled experiment and its results in Section 3. Section 4
describes related work followed by a conclusion in Section 5.

2. Background
This section outlines the test case prioritization and

statistical fault localization techniques applied in our empiri-
cal study.

2.1 Test case prioritization techniques
We follow [9] to categorize test case prioritization

techniques in two dimensions. The first dimension is
granularity, expressed in terms of program entities, which
include statements, branches, and functions in the experi-
ment. The second dimension is prioritization strategy. We
study the Greedy [9] and the ART [15] strategies. The
Greedy strategy can be further classified into the Total and
Additional sub-strategies [9]. (We note that there are other
types of greedy strategies, but they are not a part of our
study, and hence we do not classify them here.) The ART
strategy is reported in [15].

ART represents a strategy that randomly selects test
cases followed by resolving the randomness among the
selected test cases through a coverage measure. Greedy
represents a strategy that selects test cases through a cover-
age measure followed by resolving tie cases randomly. As
such, we refer to these two strategies as the coverage-
before-random (C2R) strategy and the random-before-
coverage (R2C) strategy, respectively. Table 1 summarizes
the techniques studied in our experiment.

C2R strategy: When we pair up the two Greedy sub-
strategies with the three levels of granularities, we produce
six techniques: total statement (total-st), total branch (total-
br), total function (total-fn), additional statement (addtl-st),
additional branch (addtl-br), and additional function (addtl-
fn). All of them have been reported in previous work [9].
The total statement (total-st) test case prioritization tech-
nique ranks test cases in descending order of the number of
statements that they cover. When two test cases cover the
same number of statements, it orders them randomly. The
total branch (total-br) and the total function (total-fn) test
case prioritization techniques are the same as total-st,
except that they use branch coverage and function coverage
information, respectively, instead of statement coverage
information. The additional statement (addtl-st) test case
prioritization technique is the same as total-st, except that in
each round, it selects a test case that covers the maximum
number of statements not yet exercised. When no remaining
test case in the test suite can further improve the statement
coverage, addtl-st resets all the statements to “not yet
covered” and reapplies the same procedure to the set of
remaining test cases. When two test cases cover the same
number of additional statements in a round, it randomly
picks one. The additional branch (addtl-br) and additional
function (addtl-fn) test case prioritization techniques are the
same as addtl-st, except that they use branch coverage and
function coverage data, respectively, rather than statement
coverage data.

R2C Strategy: As mentioned above, we use the ART
strategy [15] to represent the R2C strategy. The basic
algorithm of ART reorders the test cases by iteratively
constructing a candidate set of test cases, and then picks one
test case out of the candidate set until all the test cases in a
given regression test suite have been selected. To generate a
candidate set of test cases, the algorithm randomly adds the
not-yet-selected test cases one by one into the candidate set
(which is initially empty) as long as they can increase the

4

code coverage achieved by the candidate set. The algorithm
then selects a test case from the candidate set that maxim-
izes the distance of the test cases from the already selected
test cases. The distance between two test cases is defined as
the Jaccard distance between the coverage of the program
entities of the two test cases. By combining three distance
measures (average, minimum, and maximum) and the above

three levels of granularities, we produce nine techniques:
ART-st-maxmin, ART-st-maxavg, ART-st-maxmax,
ART-fn-maxmin, ART-fn-maxavg, ART-fn-maxmax,
ART-br-maxmin, ART-br-maxavg, and ART-br-
maxmax. All the nine techniques have been defined and
evaluated in our previous work [15].

Table 1 Test case prioritization techniques.

Ref. Acronym Brief Description

T1 Random Random ordering

Ref. Acronym Brief Description

G
re

e
d
y

(C
2

R
)

T2 total-st Total statement

T3 total-fn Total function

T4 total-br Total branch

T5 addtl-st Additional statement

T6 addtl-fn Additional function

T7 addtl-br Additional branch

Ref. Acronym Level of Coverage Test Set Distance

A
R

T
 (

R
2
C

)

T8 ART-st-maxmin

Statement

Maximize the minimum distance between test cases

T9 ART-st-maxavg Maximize the average distance between test cases

T10 ART-st-maxmax Maximize the maximum distance between test cases

T11 ART-fn-maxmin

Function

Maximize the minimum distance between test cases

T12 ART-fn-maxavg Maximize the average distance between test cases

T13 ART-fn-maxmax Maximize the maximum distance between test cases

T14 ART-br-maxmin

Branch

Maximize the minimum distance between test cases

T15 ART-br-maxavg Maximize the average distance between test cases

T16 ART-br-maxmax Maximize the maximum distance between test cases

Table 2 Statistical fault localization techniques.

Technique Ranking formula

Tarantula [19]

Tie-breaker: max(%failed(s), %passed(s))

Adapted Statistical Bug Isolation (SBI) [22]

Jaccard [3]

Ochiai [3]

2.2 Fault localization techniques
We revisit four statistical fault localization techniques

used in our study. Each of them computes the suspicious-
ness of individual statements, followed by ranking these
statements according to their suspiciousness scores. One of
the techniques, namely Tarantula [19], further uses a tie-
breaker to resolve statements having identical suspicious-
ness values so that the ranking can be fine-tuned. This set of

techniques was also used in the experiment in previous work
[29].

Table 2 summarizes these fault localization techniques.
The function %failed(s) in the table is the percentage of
failed test cases that execute a statement s (among all the
failed test cases in the test suite). The function %passed(s) is
the percentage of passed test cases that execute that
statement. The functions failed(s) and passed(s) calculate

5

the number of failed and passed test cases, respectively, that
exercises statement s. The variable totalfailed is the total
number of failed test cases.

3. Controlled Experiment
In this section, we report on our controlled experiment.

3.1 Research questions
We raised three new and important research questions to

study the issue of integrating testing and debugging in
relation to test adequacy.

RQ1: How likely is it that a test suite produced to satisfy
a test adequacy criterion is effective for fault localization?

RQ2: How do different test adequacy criteria compare
with one another after factoring out the impact of the test
suite size?

RQ3: After prioritizing the test cases in an effective test
suite, what minimum portion of this test suite can have the
same fault localization effectiveness as the whole adequate
suite?

From the study of RQ1, developers and researchers will
have a better understanding of the probability of generating
effective test suites based on test adequacy criteria with
respect to some of the best and representative statistical fault
localization techniques. Having a high probability makes
developers more comfortable in employing such adequate
test suites to perform regression testing on their programs
and using the execution statistics to aid fault localization
activities. On the other hand, if the probability is found to be
low, the result can alert developers when using such test
suites. They may consider improving the test suites before
use to support their testing and debugging activities. For
RQ1, we used test suites of various sizes that satisfy a
specific testing adequacy criterion. This is because we want
to evaluate the “absolute” fault localization effectiveness of
the test suites generated by different adequacy criteria. Thus,
evaluating RQ1 without taking test suite size into considera-
tion helps us better understand the fault localization capabil-
ity of adequate test suites in practice.

Answering RQ2 will enable us to gauge the relative fault
localization effectiveness of the test suites generated by
different test adequacy criteria. Different adequacy criteria
will inherently require different test suite sizes, which is a
known factor affecting fault localization effectiveness.
Adding more test cases to a smaller adequate test suite will
introduce redundancy with respect to the test adequacy
criterion used to produce the test suite, which makes the
assessment of test adequacy criteria not meaningful. Simi-
larly, removing some test cases from a larger adequate test
suite will make the latter inadequate with respect to the test
adequacy criterion. Again, by so doing, it makes the
assessment of test adequacy criteria not meaningful. As
such, in the data analysis, we normalize the test suite sizes
to make the comparison among different test adequacy
criteria fairer.

Answering RQ3 helps developers and researchers decide
whether the effort on prioritizing test cases is worthwhile and
aaaa

whether executing only the higher priority portion of the
prioritized test cases still retains good fault localization
effectiveness. If the finding is positive, developers may be
comfortable in using a portion of test data for fault
localization. On the other hand, if the finding is negative,
additional test cases must be used to prevent the fault
localization effectiveness of the test suites from being
seriously compromised.

3.2 Subject programs
Our experiments used the Siemens suite and four UNIX

programs as subjects, as shown in Table 3. For each subject
program, the table shows the name, the number of faulty
versions, the executable lines of code, the test pool size, and
the average percentage of compound Boolean expressions in
decisions in relation to all Boolean expressions in decisions.
It is the existence of compound Boolean expressions in the
decision statements in a program that makes the MC/DC
adequacy criterion different from the branch adequacy
criterion. All the subject programs were downloaded from
the Software-artifact Infrastructure Repository (SIR) [7].
Each subject came with, among other files, a set of faulty
versions and a test pool. In this work, we use single fault
versions of the subject programs to study the proposed
research questions.

3.3 Test adequacy criteria
We used three adequacy criteria, namely, statement ade-

quacy, branch adequacy, and MC/DC adequacy. We chose
branch coverage and statement coverage because they are
commonly used criteria that are widely applicable to
industrial-strength programs [5]. Moreover, many existing
industrial-strength tools (such as gcov) can provide
profiling data for testers to determine whether these two
coverage criteria have been achieved. We also chose the
MC/DC adequacy criterion because it is a well-adopted
adequacy criterion in the aeronautics industry. For instance,
MC/DC is used in the FAA’s DO-178 standard [1] to ensure
that the most safety-critical software is tested adequately.
Thus, a study of the three adequacy criteria can provide
valuable contribution to the advance in the state of the art in
research and the advance in the state of the practice in
industry.

The statement (or branch, respectively) adequacy
criterion ensures that each statement (or branch, respectively)
is covered at least once by a test suite. The Modified
Condition/Decision Coverage (MC/DC) adequacy criterion
[1] requires a number of conditions: (i) for each decision
statement d, every point of entry or exit should be tested at
least once, (ii) every condition in d has taken all possible
outcomes at least once, (iii) every decision statement in the
program has taken all possible outcomes at least once, and
(iv) each condition in d has been shown to independently
affect the outcome of d. A condition is shown to inde-
pendently affect the outcome of a decision by varying only

that condition while all the other possible conditions remain

unchanged. To make the study complete, we also included
the random strategy as a baseline criterion for comparison.

6

Table 3 Subject programs.

Group Subject No. of Faulty Versions LOC Test Pool Size Percentage of Compound Boolean

S
ie

m
e
n

s

S
u

it
e

tcas 41 133137 1608 2.4

schedule 9 291294 2650 3.2

schedule2 10 261263 2710 1.0

tot_info 23 272274 1052 5.6

print_tokens 7 341342 4130 1.7

print_tokens2 10 350354 4115 5.4

replace 32 508515 5542 2.0

U
N

IX

P
r
o
g
ra

m
s flex (2.4.7–2.5.4) 21 8571–10124 567 5.5

grep (2.2–2.4.2) 17 8053–9089 809 14.1

gzip (1.1.2–1.3) 55 4081–5159 217 11.6

sed (1.18–3.02) 17 4756–9289 370 11.6

Table 4 Levels of adequacies achieved for the subject programs.

Subject
Statement Branch MC/DC

Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

Tcas 95% 5% 96% 5% 95% 3%
schedule 96% 4% 97% 5% 94% 6%
schedule2 96% 6% 95% 8% 95% 7%
tot_info 98% 6% 98% 3% 97% 4%
print_tokens 99% 5% 99% 2% 95% 6%
print_tokens2 99% 3% 97% 4% 95% 5%
replace 98% 5% 98% 3% 94% 6%
flex 2.4.7–2.5.4 97% 6% 96% 8% 98% 4%
grep 2.2–2.4.2 95% 3% 97% 6% 93% 3%
gzip 1.1.2–1.3 98% 3% 98% 4% 96% 4%

For the Siemens programs, SIR provides a set of 1000

branch-adequate test suites, 1000 statement-adequate test
suites, and 1000 random test suites. We further constructed
1000 MC/DC-adequate test suites using the test pool for
each Siemens program. However, only one test pool is
available for each UNIX program. We used this test pool to
construct 1000 branch-adequate test suites, 1000 statement-
adequate test suites, and 1000 MC/DC-adequate test suites
for each UNIX program. The test suites are constructed
independently of one another, while a test case may belong
to more than one test suite. The sizes of the test suites for all
programs range from 16 to 289. To generate a MC/DC-
adequate test suite, we iteratively selected test cases from
the test pool and added them into the test suite if the
coverage achieved by the constructed test suite could be
improved in terms of the criterion. The means and standard
deviations of the levels of adequacies achieved by different
adequacy suites generated in our experiment are shown in
Table 4. For example, the mean percentage of statement
coverage achieved by all the generated suites for tcas is 95%
with a standard deviation 5%. When generating random test
suites for the UNIX programs, we simply selected test cases
randomly from the test pool until the required suite size has
been reached. We randomly picked a value as the size of
each random test suite to be constructed, and produced 1000
random test suites.

3.4 Metrics

3.4.1 Expense
To measure the effectiveness of fault localization, we

used the Expense metric [12] defined as:

where the rank of a given statement is the sum of (a) the
number of statements with higher suspiciousness values and
(b) the number of statements with identical suspiciousness
values and identical or higher tiebreaker values.

3.4.2 FLSP
In practice, a developer may only walk through a small

portion of the source code. As a result, a high value of
Expense (such as 90%) may be useless for debugging. A
sequence of test cases with respect to a fault localization

technique and a given faulty program is said to be -
effective if the value of Expense using this sequence of test
cases by the fault localization technique on the faulty
program is strictly lower than the threshold value specified

by .
If this is the case, we say that “the test suite supports the

fault localization technique”. As such, the proportion of
adequate test suites for a test adequacy criterion C empiri-
cally represents the probability that a C-adequate test suite

7

supports a statistical fault localization technique T. We use
this probability to measure how well C supports T.

Given a faulty program and a fault localization tech-
nique T, we define the metric Fault Localization Success

Percentage (FLSP) as the ratio between the number of -
effective test suites in a test suite pool P and the size of P
(denoted by |P|), thus:

 is effective

3.4.3 SavingRate
We define Saving as the percentage of code that need

not be examined to locate a fault.

Saving = 1 − Expense

Thus, the higher the value of Saving, the better will be
the fault localization result.

However, when discussing the impact of an adequate
test suite on statistical fault localization, an important factor
to be considered is the number of test cases in the suite.
Generally speaking, if a test adequacy criterion A subsumes
another criterion B, satisfying criterion A will require more
(if not the same) test cases than satisfying criterion B. The
number of test cases within a test suite is, however, a
confounding factor in comparing fault localization effective-
ness achieved by different test suites. To compare the
effectiveness of different test adequacy criteria in a more
objective manner, it is important to control the impact of the
test suite size.

We propose a derived metric SavingRate to measure the
average effectiveness of a testing criterion in supporting
statistical fault localization. Given a test suite of size n, we
define SavingRate by the formula:

Intuitively, SavingRate is a measure of the fault localiza-
tion effectiveness per test case. It is a measure of the fault
localization capability of different adequacy criteria normal-
ized against test suite size.

3.5 Experimental setup
We applied each test case prioritization technique (see

Table 1) and each fault localization technique (see Table 2)
to every adequate test suite of every subject program. For
every prioritized test suite generated by each test case
prioritization technique, we repeated the above procedure
using, in turn, the top 10%, 20%, …, 90% of the prioritized
test suite. For every such portion of all the prioritized test
suites applicable to every corresponding version of each
subject program, we collected the values of Expense for
each fault localization technique, and computed the FLSP
values and the SavingRate values.

We conducted the experiment on a Dell PowerEdge
2950 server serving a Solaris UNIX system. We used gcc
version 4.4.1 as the C compiler. The server has two Xeon
5430 (2.66 GHz, 4 core) processors and 4 GB physical
memory. We followed previous test case prioritization

studies [31] to remove faulty versions that cannot be
detected by any test case in the test pool as well as those that
can be detected by more than 20% of the test cases in the
pool. We used the gcov tool with the gcc compiler to
collect the execution statistics for each execution.

To study RQ1 and RQ2, we used all the random, branch-
adequate, statement-adequate, and MC/DC-adequate test
suites for our experimentation. For each faulty version, we
also removed those test suites that cannot detect the fault
because the fault localization techniques we used require at
least one failed test case. We also removed all the test suites
whose results on our platform differed from those indicated
in the downloaded benchmark. We then passed the execu-
tion statistics to all the four fault localization techniques.
For RQ1, we followed [13] to measure their results in terms
of FLSP on all subject programs with three different fault
localization effectiveness threshold values (1%, 5%, and
10%). For RQ2, we calculated the SavingRate for all test
suites generated from all adequacy criteria and all subject
programs.

We studied RQ1 and RQ2 separately rather than merg-
ing them because they are targeting at different goals. For
RQ1, we used the test suites satisfying a specific testing
adequacy criterion without considering test suite size. In this
way, we can evaluate the “absolute” fault localization effec-
tiveness of the test suites generated by different adequacy
criteria in practice. For RQ2, we are interested in comparing
different adequacy criteria while controlling the confound-
ing factor of test suite size. This makes the comparison
between different adequacy criteria fairer.

RQ3 is a follow-up research question based on the
results of RQ1 and RQ2. We used the two best adequacy
criteria from the two previous research questions, namely,
branch adequacy and MC/DC adequacy. In this way, we can
still preserve the generality of our findings while controlling
the scale of our empirical study. Similarly to RQ1 and RQ2,
we removed all the test suites that contain no failed test case
as well as all test suites that cannot work on our platform.

All ART techniques are adapted from random selection.

We followed [13] to repeat each of them 20 times so as to

obtain an average performance and to select 50 suites out of

the available 1000 test suites for every Siemens and UNIX

subject program. Thus, we conducted a total of 1000 priori-

tizations for every ART technique on each subject. We then

used MATLAB for ANOVA tests and multiple comparisons

on the mean values, and specified a 5% significance level

for hypothesis testing.

3.6 Data analysis

3.6.1 Answering RQ1
We studied the effectiveness of a fault localization tech-

nique using all the test cases within an adequate or random
test suite. As a result, we need not distinguish between
different test case prioritization techniques, as the test suites
generated by them will have the same fault localization
results. Tables 5 to 12 present the means and standard
deviations of the numbers of effective suites averaged over
all faulty versions of the Siemens and UNIX programs on
aaaaaaaa

8

Table 5 Mean numbers of effective test suites for Tarantula.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 5 8 25 34 23 36 191 221 23 31 193 212
replace 32 46 145 166 77 126 342 363 107 140 381 399
tot_info 59 74 145 160 82 140 331 349 102 181 430 470
schedule 0 1 14 18 37 52 169 198 45 61 243 281
schedule2 0 0 0 0 4 5 35 45 9 11 107 123
print_tokens 1 3 55 59 17 22 151 178 21 37 215 247
print_tokens2 18 56 156 163 83 121 317 361 101 159 332 387

grep 121 371 618 719 348 546 832 867 432 756 936 962
sed 108 319 604 732 401 594 860 886 511 753 931 971
flex 124 376 665 750 335 586 827 890 486 720 951 979
gzip 131 395 674 681 362 516 843 832 502 711 945 978

Table 6 Standard deviations of the numbers of effective test suites for Tarantula.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 2 4 3 5 6 0 4 5 4 3 6 4
replace 6 7 6 7 5 5 6 7 10 8 6 4
tot_info 4 5 8 9 13 3 7 9 5 7 8 6
schedule 0 0 3 2 3 5 4 5 4 4 3 3
schedule2 0 0 0 0 0 0 2 3 2 2 3 4
print_tokens 0 1 4 6 3 3 1 4 3 4 6 4
print_tokens2 5 6 5 3 7 8 7 6 5 5 2 5

grep 30 26 28 20 25 21 26 28 27 24 22 32
sed 22 27 22 23 26 29 23 29 30 27 23 33
flex 25 31 19 18 28 33 32 34 16 18 12 18
gzip 26 33 31 31 28 30 34 26 21 19 10 12

Table 7 Mean numbers of effective test suites for SBI.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 7 11 29 29 29 46 205 232 25 39 201 205
replace 36 48 152 172 86 134 353 357 106 154 388 396
tot_info 71 80 157 166 94 141 335 348 117 186 437 463
schedule 6 10 19 21 39 63 180 203 46 70 246 273
schedule2 0 0 0 0 10 15 38 43 10 16 109 114
print_tokens 3 5 61 66 24 35 153 165 30 43 215 239
print_tokens2 45 70 166 179 87 132 317 336 104 168 337 361

grep 193 306 690 731 393 595 831 889 445 742 952 958
sed 225 389 681 763 401 590 880 898 496 719 946 963
flex 186 306 678 719 335 541 860 903 498 754 940 961
gzip 205 324 611 648 362 548 818 843 531 759 953 972

Table 8 Standard deviations of the numbers of effective test suites for SBI.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 2 2 3 4 5 6 4 7 4 5 7 6
replace 5 3 6 3 4 5 6 5 6 7 5 6
tot_info 3 5 8 5 6 5 4 13 16 14 13 21
schedule 0 0 0 2 0 0 0 0 3 5 6 3
schedule2 0 0 0 0 0 0 0 0 0 2 3 7
print_tokens 0 0 3 5 4 3 4 6 3 5 4 5
print_tokens2 5 6 3 5 6 5 5 6 7 5 6 4

grep 16 18 12 13 14 12 15 14 13 16 18 17
sed 23 30 22 24 20 18 25 20 16 18 11 20
flex 13 19 24 20 16 19 20 22 15 20 16 19
gzip 22 19 17 18 19 21 22 25 16 11 15 14

9

Table 9 Mean numbers of effective test suites for Jaccard.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 6 9 31 38 28 41 235 245 25 37 217 232
replace 17 24 42 46 25 36 206 215 20 33 207 235
tot_info 35 56 153 162 84 138 354 362 103 154 394 421
schedule 51 80 147 155 107 158 338 359 126 186 433 456
schedule2 8 13 31 40 43 69 180 192 46 69 256 306
print_tokens 0 0 0 0 8 11 36 42 7 11 109 153
print_tokens2 11 16 73 82 20 32 156 181 35 51 216 230

grep 211 306 693 713 343 512 844 867 474 687 920 970
sed 272 389 660 695 333 513 799 812 493 747 885 899
flex 193 306 685 692 352 510 805 822 494 705 903 937
gzip 220 324 670 711 369 568 852 890 480 695 915 928

Table 10 Standard deviations of the numbers of effective test suites for Jaccard.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 0 0 2 6 7 6 6 10 2 12 5 8
replace 4 4 8 6 6 12 8 10 3 10 9 11
tot_info 6 5 7 5 6 8 7 8 7 6 11 14
schedule 2 4 5 4 12 11 9 10 8 9 6 7
schedule2 5 11 7 6 6 8 7 9 5 9 6 6
print_tokens 0 0 0 0 0 0 3 2 2 4 10 9
print_tokens2 2 0 4 3 6 3 4 4 12 10 9 8

grep 14 13 9 11 10 16 12 26 21 11 13 18
sed 16 17 21 23 19 25 13 27 24 8 10 5
flex 12 16 19 15 16 18 22 24 22 15 25 16
gzip 11 22 25 22 24 18 25 22 19 20 32 27

Table 11 Mean numbers of effective test suites for Ochiai.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 10 15 31 36 30 49 198 202 16 26 201 225
replace 30 46 163 43 82 130 349 380 93 148 388 411
tot_info 52 76 157 168 92 138 338 352 118 181 448 506
schedule 5 8 12 162 41 61 180 202 38 64 243 292
schedule2 0 0 0 34 14 20 48 58 6 9 115 121
print_tokens 6 9 56 0 20 29 160 168 24 39 231 252
print_tokens2 38 58 168 80 81 123 320 339 112 173 343 377

grep 208 306 615 783 363 595 842 926 469 722 900 955
sed 245 389 669 766 373 574 805 894 451 716 925 972
flex 208 306 666 822 362 517 824 981 427 712 894 912
gzip 194 324 698 764 302 503 834 892 461 709 944 988

Table 12 Standard deviations of the numbers of effective test suites for Ochiai.

Threshold Value = 1% = 5% = 10%

Adequacy Criteria Rand Stmt Br MC/DC Rand Stmt Br MC/DC Rand Stmt Br MC/DC

tcas 3 0 6 9 5 6 10 8 2 2 5 4
replace 3 2 4 6 7 5 6 10 15 9 17 17
tot_info 2 3 5 4 8 4 6 10 13 8 5 6
schedule 0 0 0 0 3 0 4 5 6 4 3 9
schedule2 0 0 0 5 6 5 3 9 6 6 2 9
print_tokens 0 0 5 0 8 0 3 0 0 0 9 3
print_tokens2 14 8 18 6 5 7 6 2 5 3 9 9

grep 22 19 17 12 14 26 31 3 12 16 15 19
sed 17 17 21 19 16 29 5 14 15 9 19 23
flex 28 25 23 16 21 39 15 11 15 19 8 26
gzip 9 10 15 34 15 13 19 14 6 18 27 16

10

Tarantula, SBI, Jaccard, and Ochiai, respectively. In each
table, the first row shows the threshold values used in the
experiment. We used three threshold values to determine the
effectiveness of fault localization, namely, 1%, 5%, and
10%. In other words, if a fault can be located by inspecting
less than 1% (or 5% or 10%) of the suggested list of
suspicious statements, we deem the fault localization result
to be effective. Based on the threshold values, we obtained
three such groups of results. The second row shows four
adequacy criteria for each group, namely, Rand for the
random strategy, Stmt for statement adequacy, Br for
branch adequacy, and MC/DC for MC/DC adequacy. The
remaining rows show the means and standard deviations of
the numbers of effective test suites for each program. (The
total number of test suites for each faulty version is 1000.)

We studied how different adequacy criteria compare

with one another without considering test suite size. We

observe from Table 5 that for every subject program and

every threshold value, on average, the use of an MC/DC-

adequate test suite performs consistently better than the use

of a branch-adequate test suite, which in turn performs

consistently better than the use of a statement-adequate test

suite. We further conducted ANOVA analysis between

MC/DC- and branch-adequate test suites as well as between

branch- and statement-adequate test suites to see whether

each pair differs significantly. The results give small p-

values (0.0034 and 0.0049, respectively), which success-

fully reject the null hypothesis that there is no difference

between each pair of them and confirms our observation at a

5% significance level.

From Table 6, we observe that the standard deviations of

the numbers of effective test suites for different adequacy

criteria are comparable to one another. We further con-

ducted hypothesis testing, which produced a large p-value

(0.26) to confirm our observation.

Moreover, the results from Tables 5 and 6 are consistent

with those of the other three fault localization techniques in

Tables 7 to 12. The relative order is also consistent with the

subsumption relationships among the three test adequacy

criteria, where MC/DC adequacy subsumes branch

adequacy, which in turn subsumes statement adequacy (in

terms of test coverage requirements). Furthermore, the use

of each adequacy criterion in supporting statistical fault

localization is more effective than random testing. The

result is consistent with our conjecture that the adoption of

adequacy criteria is, in general, worthwhile.

We also observe that the probability of obtaining an

effective test suite for a UNIX program is significantly

higher than that for a program in Siemens suites. This

observation is interesting. Future work should study the

underlying rationales.

To have a better understanding of the results, Fig. 1
shows all the data points in the experiment, each of which
represents the code examination effort to locate a fault
(measured by Expense) for program versions of different
sizes (measured by lines of code). The x-axis shows the
lines of code for all the Siemens and UNIX programs while

the y-axis shows the number of lines in the source code that
need to be examined to find a fault. Each dot represents the

two values LOC, no. of lines examined for a specific
faulty version, and every regression line represents the
impact of program size on the code examination effort for a
specific test adequacy criterion.

Moreover, when using a fault localization tool as a
debugging aid, developers would expect it to help them
focus their attention on as small a suspicious code segment
as possible; otherwise, the developers may lose patience and
consider abandoning the use of the apparently ineffective
tool. We observe that a typical debug window of an IDE
(such as an Eclipse IDE or a Visual Studio IDE) may show
around 25 lines of code without any scrolling. Using this
number as a rough benchmark, we have drawn a solid (light

blue) horizontal line in Fig. 1.

Interestingly, we find from Fig. 1 that the most of the

dots are distributed above the solid (light blue) line, and all
the linear regression lines are also above that line. This
indicates that in general, it is more likely that fault
localization results based on the integration of the adequacy
criteria and the statistical fault localization techniques under
study do not help developers locate the fault within one
debug window of a practical IDE.

Our analysis above represents the start of a new line of
research, and the aim of this analysis is not to fully answer
whether existing IDEs can effectively present information
on statistical fault localization results to developers. How-
ever, the finding does raise interesting questions for future
work. Can we design a test adequacy criterion that will
likely construct test suites with effective fault localization
results fitting into one screen? Alternatively, what kind of
information should fit into a debug window to support
effective fault localization? Also, what kinds of advances in
human-computer interaction techniques (such as interactive
presentation) will support effective fault localization of
large applications?

Furthermore, we find that the slopes of the regression
lines for statement-, branch-, and MC/DC-adequate test
suites are around 0.0082, 0.0072, and 0.0059, respectively.
For example, the slope for MC/DC is 0.0059, which implies
that slightly less than 6 extra lines of code need to be
examined for every 1000 LOC increase in program size.
Moreover, the comparative slopes of the regression lines
indicate that the differences in marginal effects of
statement-, branch-, and MC/DC-adequate test suites in
supporting effective statistical fault localization are signifi-
cant. The linear equations for the regression lines can be
approximated as y = 0.0082+77, y = 0.0072x + 56, and y =
0.0059x + 48. All the intercepts are positive numbers and
more than 25, which indicate that there are overheads in
locating faults even in small programs. Such overheads have
typically exceeded the usual size of a 25-line screen in an
IDE.

In the above discussion, we have also shown that
adequate test suites outperform random test suites. Taking
these two points into consideration, it appears that the use of
the MC/DC adequacy criterion is the most promising choice
aaaa

11

y = 0.0082x + 77.56

y = 0.0072x + 56.305

y = 0.0059x + 48.208

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

N
o

.
o

f
L

in
e

s
 E

x
a

m
in

e
d
 t
o

 L
o

c
a

te
 t
h

e
 F

a
u

lt

Line of Code

Statement

Branch

MC/DC

Eclipse Window

Linear (Statement)

Linear (Statement)

Linear (Eclipse Window)
Linear (MC/DC)

Linear (Branch)

Fig. 1. Distribution of Expense with respect to size of faulty programs.

The slopes of the regression lines are less than 0.0082, 0.0072, and 0.0059, respectively, indicating that the differences in marginal effects of statement-,
branch-, and MC/DC-adequate test suites in supporting effective statistical fault localization are significant. Nonetheless, most data points are above the
dotted line, indicating that a typical 25-line screen in an IDE may be ineffective in displaying the code that includes the faults.

in addressing the precision and scalability challenges in the
integration issue, which we will further verify in the next
section.

3.6.2 Answering RQ2
From RQ1, we know that using a MC/DC-adequate test

suite seems better than using a branch-adequate test suite,
which is in turn better than using a statement-adequate test
suite. However, a stronger adequacy criterion (higher in the
subsumption hierarchy) is usually associated with a larger
test suite. Simply using more test cases alone can, on aver-
age, provide more information for fault localization. Thus,
both the adequacy criterion and the test suite size may have
influences on the effectiveness of statistical fault localiza-
tion. We used a 2-dimensional plot of Expense with respect
to test suite size for different adequacy criteria to see if one
adequacy criterion is clearly a dominator of another, as
shown in Section 3.6.2.1. To compare different test ade-
quacy criteria more fairly, it is necessary to control the
impact due to test suite size, which is further presented in
Section 3.6.2.1. In addition, different adequacy criteria
usually incur different test suite generation costs. Thus, we
also measured the test suite generation cost for different
adequacy criteria. We will discuss the cost-effectiveness of
the studied adequacy criteria in Section 3.6.2.2.

3.6.2.1 Adequacy Criteria vs. Suite Size
Because both test suite size and adequacy criterion are

possible factors affecting the fault localization effectiveness

of the test suites, we want to first analyze them by drawing
2-dimensional plots of Expense with respect to test suite size
for the different adequacy criteria in Figs. 2 and 3, to see
whether one adequacy criterion is clearly a dominator of
another.
In Fig. 2, the x-axis is the test suite size, the y-axis is the
Expense values of various test suites, and the three trend
lines show the Expense values for statement-, branch-, and
MC/DC-adequacy criteria with respect to test suite size over
all programs, faulty versions, and fault localization tech-
niques. Fig. 3 shows the same trend lines as those of Fig. 2,
except that it shows the results for Siemens and UNIX pro-
grams on each fault localization technique separately.

Fig. 2. Impacts of adequacy criteria and suite size on Expense.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

20 48 76 103 131 159 187 215 243 270 298

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

12

0

0.05

0.1

0.15

0.2

0.25

0.3

20 39 57 76 94 113 131 150

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

Siemens-Tarantula

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 48 76 103 131 159 187 215 243 270 298

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

UNIX-Tarantula

0

0.05

0.1

0.15

0.2

0.25

20 39 57 76 94 113 131 150

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

Siemens-SBI

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 48 76 103 131 159 187 215 243 270 298

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

UNIX-SBI

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 39 57 76 94 113 131 150

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

Siemens-Jaccard

0

0.02

0.04

0.06

0.08

0.1

0.12

20 48 76 103 131 159 187 215 243 270 298

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

UNIX-Jaccard

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 39 57 76 94 113 131 150

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

Siemens-Ochiai

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 48 76 103 131 159 187 215 243 270 298

E
x
p

e
n

s
e

Test Suite Size

MC/DC v.s. Branch v.s. Statement

Statement

Branch

MC/DC

UNIX-Ochiai

Fig. 3. Impacts of adequacy criteria and suite size on Expense for different fault localization techniques.

13

If we fix the adequacy criterion, we can also see the
trend that the Expense value tends to decrease gradually
with larger test suite sizes. This finding affirms previous
observations in the literature that larger test suite sizes
usually incur better fault localization effectiveness. At the
same time, Fig. 3 clearly shows that the trend is not smooth
— along part of the curves, some smaller test suites can be
more effective than larger ones in terms of Expense, with a
difference of as much as 30 test cases in the test suite sizes.

We can see clearly from Figs 2 and 3 that for a fixed test
suite size, test suites satisfying the MC/DC-adequacy
criterion have consistently lower Expense values than those
satisfying the branch-adequacy criterion, which in turn has
consistently lower Expense values than those satisfying the
statement-adequacy criterion. If we fix the Expense value,
we can see that MC/DC-adequate test suites, in fact,
requires fewer test cases than branch-adequate test suites,
which in turn requires fewer test cases than statement-
adequate test suites. This clearly shows that statement ade-
quacy, branch adequacy, and MC/DC adequacy are increas-
ingly good at supporting effective fault localization.

3.6.2.2 Comparison of Fault Localization Effectiveness
Tables 13 to 16 compare three pairs of strategies

(random vs. statement, statement vs. branch, and branch vs.
MC/DC) over all faulty versions for the Siemens and UNIX
programs on Tarantula, SBI, Jaccard, and Ochiai, respec-
tively. We summarize and compare what percentage of the aaaa

adequate test suite for one criterion was better or worse than
another in terms of SavingRate. The first row lists the pairs
of adequacy criteria to be compared in the experiment. The
second row shows the statistics to be compared for each
group, namely, Rand for the random strategy, Stmt for
statement adequacy, Br for branch adequacy, and MC/DC
for MC/DC adequacy. The remaining rows show the values
of the statistics (what percentage of one adequate test suite
is better or worse than the other) across all the test suites for
every program. For example, the row for tcas shows that
among all the test suites for all the faulty versions of tcas,
89% of the statement-adequate test suites have better fault
localization results than random test suites, 78% of the
branch-adequate test suites have better fault localization
results than statement-adequate test suites, and 80% of the
MC/DC-adequate test suites have better fault localization
results than branch-adequate test suites.

We first studied the comparison results for the three
pairs of adequacy criteria in supporting statistical fault
localization, considering random as a pseudo-criterion.
From Tables 13 to 16, we observe that statement adequacy
consistently performs better than the random strategy in
terms of SavingRate across all programs and all fault local-
ization techniques. Similarly, we also observe that MC/DC
adequacy (or branch adequacy, respectively) consistently
performs better than branch adequacy (or statement ade-
quacy, respectively) in terms of SavingRate across all
programs and all fault localization techniques.

Table 13. Comparison of SavingRate for different adequacy criteria on Tarantula.

Subject Random vs. Statement (%) Statement vs. Branch (%) Branch vs. MC/DC (%)

 Rand ≥ Stmt Rand < Stmt Stmt ≥ Br Stmt < Br Br ≥ MC/DC Br < MC/DC

tcas 11 89 22 78 20 80

replace 9 91 10 90 35 65

tot_info 18 82 25 75 21 79

schedule 18 82 17 83 11 89

schedule2 15 85 22 78 23 77

print_tokens 9 91 20 80 24 76

print_tokens2 6 94 23 77 35 65

grep 17 83 20 80 32 68

sed 9 91 16 84 34 66

flex 6 94 14 86 16 84

gzip 5 95 16 84 31 69

Table 14 Comparison of SavingRate for different adequacy criteria on SBI.

Subject
Random vs. Statement (%) Statement vs. Branch (%) Branch vs. MC/DC (%)

Rand ≥ Stmt Rand < Stmt Stmt ≥ Br Stmt < Br Br ≥ MC/DC Br < MC/DC

tcas 19 81 24 76 34 66
replace 8 92 23 77 13 87
tot_info 7 93 10 90 21 79
schedule 14 86 23 77 31 69
schedule2 19 81 18 82 27 73
print_tokens 19 81 14 86 35 65
print_tokens2 17 83 17 83 20 80
grep 6 94 19 81 18 82
sed 7 93 12 88 22 78
flex 20 80 14 86 27 73
gzip 18 82 24 76 26 74

14

Table 15 Comparison of SavingRate for different adequacy criteria on Jaccard.

Subject
Random vs. Statement (%) Statement vs. Branch (%) Branch vs. MC/DC (%)

Rand ≥ Stmt Rand < Stmt Stmt ≥ Br Stmt < Br Br ≥ MC/DC Br < MC/DC

tcas 16 84 20 80 13 87
replace 17 83 24 76 32 68
tot_info 15 85 24 76 16 84
schedule 11 89 10 90 13 87
schedule2 9 91 17 83 35 65
print_tokens 19 81 23 77 14 86
print_tokens2 6 94 25 75 15 85
grep 18 82 21 79 14 86
sed 14 86 16 84 15 85
flex 20 80 22 78 21 79
gzip 16 84 14 86 11 89

Table 16 Comparison of SavingRate for different adequacy criteria on Ochiai.

Subject
Random vs. Statement (%) Statement vs. Branch (%) Branch vs. MC/DC (%)

Rand ≥ Stmt Rand < Stmt Stmt ≥ Br Stmt < Br Br ≥ MC/DC Br < MC/DC

tcas 6 94 25 75 29 71
replace 10 90 10 90 12 88
tot_info 13 87 25 75 30 70
schedule 14 86 14 86 33 67
schedule2 16 84 19 81 29 71
print_tokens 20 80 25 75 27 73
print_tokens2 12 88 24 76 28 72
grep 19 81 10 90 12 88
sed 11 89 19 81 28 72
flex 16 84 16 84 31 69
gzip 17 83 18 82 13 87

Our observed results are consistent with our conjecture

that among the adequacy criteria studied, the stronger the

criterion (that is, subsuming others), the more effective it is

for testing and debugging.

3.6.2.3 Discussion on cost-effectiveness

Different adequate test suites usually incur different test

suite generation costs. In this section, we first measure the

cost to select test cases from a test pool to generate an

adequate test suite with respect to a test adequacy criterion,

and then discuss the cost-effectiveness of different adequacy

criteria. As discussed in previous sections, to generate

statement-, branch-, and MC/DC-adequate test suites, we

iteratively selected test cases from the test pool and added

them into the test suite if the coverage achieved by the

constructed test suite could be improved in terms of the

criterion. The number of test cases within the adequate test

suites used in our experiments varied from around 20 to 300

for different criteria and programs. The size of the random

test suite ranged from A / 2 to A × 2, where A is the average

size of the branch adequacy suites for the same program.

When constructing the test suites in our experiment, we

recorded and calculated the means and standard deviations

of the test suite generation times (in ms) for different test

adequacy criteria, as shown in Table 17.

We can see that the time taken to generate a random test

suite is negligible. When comparing the mean test suite

generation time for statement-, branch-, and MC/DC-

adequate test suites, we can find that generating branch-

adequate test suites incurs the smallest cost. Generating the

MC/DC-adequate test suite incurs higher cost than

generating statement-adequate test suite, which in turn

involves higher cost than branch adequacy. We find the

standard deviations of the time costs for generating different

adequate test suites to be very close. Although different

adequacy criteria involve different costs, the absolute time

cost of the most expensive criterion (MC/DC) is not high for

our subject programs. On average, our tool will take less

than 23 seconds to generate a MC/DC-adequate test suites

from the test pool. On the other hand, adopting stronger

criteria like MC/DC will provide more precise debugging

aid to save human debugging time, which can be very long.

In general, trading affordable machine execution time for

human code inspection time during debugging is quite

worthwhile. This is because the former can run in the

background while the latter is usually on the critical path in

software development.

Table 17 Means and standard deviations of test suite generation

times for different adequacy criteria.

Adequacy Criteria Random Statement Branch MC/DC

Mean (ms) 0.01 12988 8267 22568

Standard deviation < 0.01 3550 2619 3815

15

In general, a test case may be generated automatically,

semi-automatically, or manually. Our result is applicable

when comparing test suite construction costs under the auto-

matic scenario. A further extension of the present study to

cover the cost-effectiveness of testing-debugging integration

for manual or semi-automatic test case constructions can be

useful. To the best of our knowledge, the vast majority of

existing research work on test adequacy criteria, test case

prioritization, and statistical fault localizations do not deal

with the human aspects of computing. They are certainly

interesting to explore. One consideration for such explora-

tions is that the experimentation requires controlling the

content of the test pool among different test adequacy

criteria to be compatible (if not identical) even when

heterogeneous manual processes are involved. Furthermore,

convincing show cases to demonstrate an effective integra-

tion between automatic test case generation and our work

will also be crucial to make the research results more trans-

ferrable to the industry.

3.6.3 Answering RQ3
To answer RQ3, we conducted postmortem analysis on

the integration results. Owing to the large number of
possible standards to determine whether an integration is
effective, we used three different threshold values of

Expense, namely, = 0.01, 0.05, and 0.10, as the criteria to
deem a test suite to be effective. They represent the cases
that developers need to examine up to 1%, 5%, and 10% of
the code in order to locate the faults. They were used in the
conference version of this paper. In the present study, we
analyze RQ3 based on the two best adequacy criteria from
RQ1 and RQ2: branch adequacy and MC/DC adequacy.
When studying RQ3, we present the overall results of all
prioritization techniques rather than showing each of them
separately. We want to explore whether the adoption of test
case prioritization techniques in general can be helpful for
statistical fault localization.

3.6.3.1 Siemens programs with branch-adequate test suites
Figs. 4(a), (c), and (e) show the results of using branch-

adequate test suites on Siemens programs. In each of these
subfigures, the x-axis represents different percentages of a
test suite used for fault localization while the y-axis repre-
sents the FLSP values (by examining the percentage of code
up to the threshold value) for applying a test case prioritiza-
tion technique before locating faults.

We observe from Fig. 4(a) that, by inspecting the top 1%
of the ranked list of statements, the median FLSP value of a
test suite is 8% if we prioritize and run the top 10% of a test
suite for fault localization, which is very low. Even if we
increase the percentage of test suite to 100%, the median of
the percentages of effective test suites is still less than 14%.
The result indicates that it is still unlikely to locate the fault
in the few (say, 1 to 5) top-ranked statements.

From Fig. 4(a), (c), and (e), we observe that if a higher
percentage of an original test suite is used for fault
localization, the percentage of effective test suites increases.
However, the increase is gradually less intense when the
percentage of the test suite used reaches 60%. In particular,

given a code inspection range of 1%, the use of 60% of the
prioritized test cases for the fault localization already
achieves a FLSP value of 13%, whereas the use of all the
remaining 40% of test cases will only increase the
percentage value up to 14%. We observe similar trends for
code inspection ranges of 5% and 10% in Fig. 4(c) and (e),
respectively.

We also performed an ANOVA analysis to compare the
mean FLSPs. The small p-value of 0.0032 consistently
rejects the null hypothesis that the use of different percent-
ages (namely, 10%, 20%, …, 100%) of the same ordered
test suites has the same FLSP values, at a significance level
of 5%.

Fig. 4(a), (c), and (e) only show that there are differences
in effectiveness when using various percentages of test
suites for statistical fault localization, but they cannot tell
whether they differ significantly. To see what percentage of
test suites differ from one another in terms of FLSP, we
further performed the multiple comparison procedure to find
how different percentages of test suites differ significantly
from one another at a significance level of 5%. Figs. 4(b),
(d), and (f) show the results. The solid lines not intersected
by the two vertical lines represent the percentages of test
suites whose means differ significantly from the use of 60%
of the suite for fault localization, while the gray lines
represent the percentages of test suites comparable to the
use of 60% of the suites for fault localization.

From Figs. 4(b) and (d), we find that executing 60% of a
test suite has no significant difference from executing the
entire test suite. If we relax the code examination range to
10% for the Siemens suite, as shown in Fig. 4(f), there will
be a significant difference. It indicates that developers
should estimate the amount of code they can afford to exam-
ine so that a test case prioritization technique can use it as a
reference to determine the proportion of test suites to be
executed.

3.6.3.2 UNIX utility programs with branch-adequate test

suites
We also conducted the same postmortem analysis on the

integration study for UNIX programs with branch-adequate
test suites as we have presented in Section 3.5.3.1. Fig. 5(a),
(c), and (e) show the results.

We observe from Fig. 5(a) that, by inspecting the top 1%
of the ranked list of statements, the median FLSP value is
47% if we prioritize and execute the top 10% of a test suite
for fault localization, which is much higher than that for the
Siemens programs. Even if we increase the percentage of
test suite to 100%, the median FLSP value is still under
65%. Although developers are willing to examine up to 5%
(or 10%, respectively) of the code, Fig. 5(c) (or Fig. 5(e),
respectively) still shows that there is less than 65% (or 73%,
respectively) of chance that the top 10% of test cases can
assist them in locating faults effectively. The results show
that developers should not greedily start fault localization
based on a small percentage (10% in the above discussion)
of the whole test suite.

The data show that there can be at least two strategies to
address this problem. First, we observe across Fig. 5(a), (c),

16

and (e) that since the corresponding bars among the three
plots increase in terms of their y-values, it may be
worthwhile to put in more effort in examining the code.
Second, on each plot in Fig. 5(a), (c), and (e), when a higher
percentage of an original test suite is used for fault
localization, the percentage of effective test suite increases
remarkably. The results suggest that, if the preferred code
examination range is fixed, the use of a higher percentage of

test cases can be a good choice. It seems to us that this
second strategy provides hints to answer the follow-up
question in RQ1 that, in order to fit the code into one code-
view screen, the use of a smaller adequate test suite for such
testing-debugging integration may be a viable research
direction. (However, the study on this aspect is outside the
scope of this paper.)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6%

8%

10%

12%

14%

16%

P
e
r
c
e
n

ta
g
e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

Percentage of Test Suite Used
(a) Expense < 1%

8% 9% 10% 11% 12% 13% 14% 15% 16%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Click on the group you want to test

3 groups have means significantly different from %60 suite

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

 U
s

e
d

Percentage of Effective Test Suite
(b) Expense < 1%

20%

25%

30%

35%

40%

45%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

Percentage of Test Suite Used
(c) Expense < 5%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
4 groups have means significantly different from %60

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Percentage of Effective Test Suite

P
e
rc

e
n

ta
g

e
 o

f
T

e
s
t

S
u

it
e
 U

s
e
d

(d) Expense < 5%

20%

25%

30%

35%

40%

45%

50%

55%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Test Suite Used

P
e
r
c
e
n

ta
g
e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

(e) Expense < 10%

25% 30% 35% 40% 45% 50%
6 groups have means significantly different from %60

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Percentage of Effective Test Suite

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

 U
s

e
d

(f) Expense < 10%

Fig. 4. The chance of test case prioritization techniques supporting effective fault localization using branch-adequate test suite for

Siemens programs.

17

(a) Expense < 1%

P
e
rc

e
n

ta
g

e
 o

f
T
e
s
t

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

35% 40% 45% 50% 55% 60% 65% 70% 75%

Click on the group you want to test

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(b) Expense < 1%

(c) Expense < 5%

P
e
rc

e
n

ta
g

e
 o

f
T
e
s
t

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Click on the group you want to test

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(d) Expense < 5%

(e) Expense < 10%

P
e
rc

e
n

ta
g

e
 o

f
T
e
s
t

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

65% 70% 75% 80% 85% 90% 95% 100%

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(f) Expense < 10%

Fig. 5. The chance of test case prioritization techniques supporting effective fault localization using branch-adequate test suites

for UNIX programs.

We perform ANOVA analysis to compare the mean

FLSPs. The small p-value of 0.0142 rejects the null
hypothesis (at a significance level of 5%) that the use of
different percentages of test suites generates identical FLSP
values. We further conduct the multiple comparisons proce-
dure to find how different percentages of the same ordered
test suites differ significantly from one another at a signifi-
cance level of 5%. Fig. 5(b), (d), and (f) show the results.
The solid lines not cut by the two vertical lines represent
those percentages of test suites whose mean values differ
significantly from the use of 100% of the suite for fault
localization, while the gray lines represent those proportions

of test suites whose effectiveness is comparable to the use of
100% of the suites for fault localization.

We observe from Fig. 5(b) that only when executing more
than 60% of a test suite will there be no significant
difference from executing the entire test suite in terms of
FLSP. If we relax the code examination range to 5% and
10% of the code as shown in Fig. 5(d) and (f), respectively,
we still have the same results. It indicates that, for UNIX
programs, around 60% of the test suite should be used to
obtain fault localization effectiveness comparable to the use
of the whole test suite. The results indicate that, if smaller
test suites are used, the fault localization effectiveness is
extremely likely to be decreased.

18

3.6.3.3 Siemens programs with MC/DC adequacy suites
Figs. 6(a), (c), and (e) show the corresponding results on

the Siemens programs using the MC/DC-adequate test
suites. The same procedure as described in Section 3.6.3.1
was used except that we used the MC/DC-adequate test
suites rather than the branch-adequate test suites. We
observe from Fig. 6(a) that by inspecting the top 1% of the
ranked list of statements, the median FLSP value of a test
suite is around 12.8% if we prioritize and execute the top
10% of the test suite for fault localization, which is still low.
If we increase the percentage of test suite to 100%, the
median percentage of effective test suites is still less than
22%. Similar to the result for branch-adequate test suites,
the present result indicates that for the MC/DC-adequate test
suites, it is also quite impractical to assume that the faults
will be in the few (say, 1 to 5) top-ranked statements.

From Figs. 6(a), (c), and (e), we find that if a higher
percentage of an original test suite is used for fault localiza-
tion, the percentage of effective test suites increases. How-
ever, the increase is gradually less noticeable when the
percentage of the test suite used reaches 60%. In particular,
given a code inspection range of < 1%, the use of 60% of
the prioritized test cases for the fault localization already
achieves a FLSP value of 21%, whereas the use of all the
remaining 40% of test cases will increase the percentage to
23% at most. We observe similar trends for code inspection
ranges of < 5% and < 10% in Fig. 6(c) and (e), respectively.

We conducted ANOVA analysis to compare the mean
FLSPs. The p-value 0.021 rejects the null hypothesis that
the use of different percentages (namely, 10%, 20%, …,
100%) of the same ordered test suites has the same FLSP
value, at a significance level of 5%. To see what percent-
ages of test suites differ from one another in terms of FLSP,
we further conducted multiple comparisons to find how
different percentages of test suites differ significantly from
one another, at a significance level of 5%. Fig. 6(b), (d), and
(f) show the results. The solid horizontal lines not
intersected by the two vertical lines represent the
percentages of test suites whose mean values differ signifi-
cantly from the use of 60% of the suite for fault localization,
while the gray lines represent the percentages of test suites
whose usage is comparable to the use of 60% of the suites
for fault localization. We observe from Figs. 6 (b) and (d)
that executing 60% of a test suite has no significant
difference from executing the entire test suite.

If we compare between Figs. 4 and 6, we can find that
for both adequacy criteria, they show similar trends as a
larger proportion of an adequate test suite is used for
statistical fault localization. This implies that for the
Siemens programs, around 40% of test suite can be avoided
from execution without significantly compromising fault
localization effectiveness.

There are also differences between MC/DC adequacy
and branch adequacy in supporting fault localization. Let us
compare the corresponding subfigures in Figs. 4 and 6. We
find that larger proportions of MC/DC-adequate test suites
are more effective in supporting fault localization than those
of branch-adequate test suites. Our hypothesis testing
confirms that the difference is statistically significant at a

level of 5%. This is consistent with our earlier finding that
MC/DC adequacy is stronger than branch adequacy in
supporting effective fault localization.

3.6.3.4 UNIX utility programs with MC/DC adequacy

suites
We also conducted postmortem analysis on the inte-

gration study for the UNIX programs using the MC/DC
adequacy suites. Fig. 7(a), (c), and (e) show the correspond-
ing results. The meanings of the x- and y-axes are similar to
the corresponding subfigures in Fig. 6.

We observe from Fig. 7(a) that by inspecting the top 1%
of the ranked list of statements, the median FLSP value is
54% if we order a test suite by prioritizing the test cases and
execute the top 10% of them for fault localization, which is
much higher than that for the Siemens programs. Even if we
increase the percentage of test suite to 100%, the median
FLSP value is still under 75%. If we compare the results of
Fig. 7 with those of Fig. 5, we find that fault localization
effectiveness on the MC/DC-adequate test suites performs
consistently better than that on the branch-adequate test
suites. We also performed hypothesis testing to confirm that
the difference is significant at a 5% significance level. This
echoes our finding in earlier sections that stronger
(subsuming) adequacy criteria can support statistical fault
localization better than weaker (subsumed) ones.

Similar to the discussions on Fig. 5, we observe from
Fig. 7(b) that only when executing more than 70% of a test
suite will there be no significant difference (in terms of
FLSP) from executing the entire test suite. If we relax the
code examination range to 5% and 10% of the code as
shown in Fig. 7(d) and (f), we still have similar results (70%
and 60%, respectively). It shows that for the UNIX pro-

grams and the MC/DC-adequate test suites, around 6070%
of a test suite should be used to obtain a fault localization
effectiveness comparable to the use of the whole test suite.
The results indicate that using test case prioritization is
highly recommended in the integration process as it can
save as much as 40% of test case execution without
affecting fault localization effectiveness.

We also looked into the test cases of the effective
adequate test suites (including statement adequacy, branch
adequacy, and MC/DC adequacy). We found that they are
effective in locating faults due to several reasons. First, they
may cover failure-revealing paths that are relatively difficult
to cover in code coverage. Second, these adequate test suites
on average have higher failure rates. Third, the branch or
MC/DC coverage criterion has relatively more even cover-
age over all the possible paths, which makes the comparison
between pass and fail test cases more precise and significant.

To conclude our finding, we can answer RQ3 that the
probability of using a test case prioritization technique to
generate effective test suites for statistical fault localization
is higher on the UNIX programs than on the Siemens
programs. Furthermore, around 70% of a test suite should be
used to retain the fault localization effectiveness of the whole
test suite. Finally, we find that applying a stronger adequacy
criterion not only indicates better testing effectiveness but
also achieves better fault localization support.

19

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

7%

10%

13%

16%

19%

22%

P
e
r
c
e
n

ta
g

e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

Percentage of Test Suite Used
(a) Expense < 1%

10% 12% 14% 16% 18% 20% 22% 24% 26%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

3 groups have means significantly different from %60 suite

P
er

ce
n

ta
ge

 o
f

Te
st

 S
u

it
e

U
se

d

Percentage of Effective Test Suite
(b) Expense < 1%

30%

35%

40%

45%

50%

55%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
er

ce
n

ta
g

e
o
f

E
ff

ec
ti

v
e

T
es

t
S

u
it

e

Percentage of Test Suite Used
(c) Expense < 5%

30% 32% 34% 36% 38% 40% 42% 44% 46% 48% 50%

4 groups have means significantly different from %60

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Percentage of Effective Test Suite

P
e

rc
e

n
ta

ge
 o

f
Te

st
 S

u
it

e
 U

se
d

(d) Expense < 5%

30%

35%

40%

45%

50%

55%

60%

65%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Test Suite Used

P
e
rc

en
ta

g
e

o
f

E
ff

ec
ti

v
e

T
es

t
S

u
it

e

(e) Expense < 10%

35% 40% 45% 50% 55% 60%
4 groups have means significantly different from %60

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Percentage of Effective Test Suite

P
e

rc
e

n
ta

ge
 o

f
Te

st
 S

u
it

e
 U

se
d

(f) Expense < 10%

Fig. 6. The chance of test case prioritization techniques supporting effective fault localization using MC/DC-adequate test suite for

Siemens programs.

3.7 Threats to validity

We used seven Siemens programs, four UNIX programs,
and their accompanied faulty versions as our subjects. The
use of other subject programs may result in different
coverage patterns for failed test executions and passed test
executions, which may result in different suspiciousness
values assigned to the program statements. Although the set
of faults cannot represent all possible faults, using them to
conduct comparisons among techniques published in peer

work is useful for researchers to compare results across
different papers and experiments. Moreover, we used the
adequate test suites provided by the SIR repository for
Siemens programs and generated the branch- and statement-
adequate test suites for the UNIX programs. We also
generated MC/DC-adequate test suites for both Siemens and
UNIX programs. The use of other adequate test suites may
provide other results. We will leave the analysis and report-
ing of such test suites as future work.

20

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Test Suite Used

P
er

ce
n

ta
g

e
o
f

E
ff

ec
ti

v
e

T
es

t
S

u
it

e

(a) Expense < 1%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

P
e

rc
e

n
ta

ge
 o

f
Te

st
 S

u
it

e
 U

se
d

Percentage of Effective Test Suite

45% 50% 55% 60% 65% 70% 75% 80%

Click on the group you want to test

6 groups have means significantly different from Group 10

(b) Expense < 1%

45%

55%

65%

75%

85%

95%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Test Suite Used

P
er

ce
n

ta
g

e
o
f

E
ff

ec
ti

v
e

T
es

t
S

u
it

e

(c) Expense < 5%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

P
e

rc
e

n
ta

ge
 o

f
Te

st
 S

u
it

e
 U

se
d

Percentage of Effective Test Suite

65% 70% 75% 80% 85% 90% 95%

Click on the group you want to test

6 groups have means significantly different from Group 10

(d) Expense < 5%

45%

55%

65%

75%

85%

90%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Test Suite Used

P
er

ce
n

ta
g

e
o
f

E
ff

ec
ti

v
e

T
es

t
S

u
it

e

(e) Expense < 10%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

P
e

rc
e

n
ta

ge
 o

f
Te

st
 S

u
it

e
 U

se
d

Percentage of Effective Test Suite

70% 75% 80% 85% 90% 95%

Click on the group you want to test

5 groups have means significantly different from Group 10

(f) Expense < 10%

Fig. 7. The chance of test case prioritization techniques supporting effective fault localization using MC/DC-adequate test suite for

UNIX programs.

In any case, our subjects have been widely used in
existing test case prioritization, statistical fault localization,
and regression testing research. Furthermore, branch- and
MC/DC-adequate test suites have frequently been used in
the experiments of testing and debugging papers. We
believe that they have used these subjects in their
experiments on solid basis with practical considerations.
The results of our experiment complement their findings on
these artifacts and help comparison across publications.

In this work, we used single fault versions of the subject
program to perform the empirical study. On one hand, the
single fault assumption is also frequently used in many

other empirical studies. On the other hand, we recognize
that a program may contain multiple faults in practice. Due
to the tremendous scale of our current empirical study, we
will leave the study of multi-fault versions as future work.

In our experiment, we excluded some faulty versions
and test cases available from SIR. There are several reasons.
The foremost reason is that in our experimental framework,
we use gcov, a popular and freely available tool, to collect
the branch and statement execution profile of each non-
crashed execution. For crashed executions, gcov cannot
provide coverage data. The techniques in our experiment,
however, require coverage data in order to operate. Conse-

21

quently, we excluded these test cases from the data analysis.
As we have reported, our experimental environment was a
UNIX server running Solaris. The C compiler on the
underlying platform was provided by Oracle. Some versions
could not be compiled. This was a platform-dependent issue
and we removed these versions to reduce their impact.

Another reason for us to exclude some faulty version
from the data analysis is that we followed previous papers
on test case prioritization to conduct the experiment to
exclude any version whose failures can be detected by more
than 20% of the test cases in the test pool. The choice of this
threshold value poses a threat to this study. Nonetheless,
this practice has been widely used in the test case prioritiza-
tion experiments. The use of this threshold value facilitates
a comparison between this work and existing publications.
A way to address this threat could be to conduct a larger
experiment to vary this threshold from 0% to 100% system-
atically, and observe the effect. The effort to conduct this
experiment and the corresponding data analysis are, how-
ever, overwhelming for us. We, therefore, excluded this
aspect from our current experiment.

In Tables 5, 7, 9 and 11, the differences between the
UNIX programs and the Siemens programs are dramatic. To
avoid the internal validity caused by our subject programs,
tools and results analysis procedures, we carefully checked
and verified them, which confirmed the results. We believe
that the program size, faults seeded, as well as other pro-
gram features may explain these big differences, which we
will explore as future work.

Another concern about the study may be the characteris-
tics of the test suites. We used the test suites provideßπd by
SIR. They may not be representative in the sense that some
test cases important to statistical fault localization may not
be available. On the other hand, test case prioritization and
fault localization are becoming mature and hence a common
basis for comparison is necessary. To strike a balance
between the use of more test suites and the comparability
with a large body of published work, we chose the latter
option in this study. In RQ1, we had 1000 branch-adequate
test suites, 1000 statement-adequate test suites, 1000
MC/DC-adequate test suites, and 1000 random test suites
for each subject program. They provided us with sufficient
data points to compile statistical results shown in the paper.
For RQ2, we would like to highlight that the results were
based on one small test pool per subject program. As a
result, we should not overly generalize the results. For some
subject programs, the requirement of having branch- or
MC/DC-adequate test suites may still be too demanding.
For instance, almost all the subject programs used in the
experiment reported in [5] did not come with test suites that
are branch adequate or MC/DC adequate. We will leave this
practical consideration as future work.

Another potential threat to validity is that the way we
constructed adequate test suites may be different from that
used in practice. It might be the case that a test suite
constructed to target MC/DC has different features than one
including test cases sampled from a pool until MC/DC is
achieved. The evaluation of the impact of different adequate
test suite construction strategy on fault localization effec-

tiveness can be left as future work.
In this study, owing to time and resource limitation, we

only evaluated random ordering, the coverage-based
Greedy, and the white-box ART-based test case prioritiza-
tion techniques. Although they are among the best general
test case prioritization techniques studied in previous work,
they have not been optimized. The use of optimized
versions or other variants of these strategies as well as the
use of other strategies may produce different results.

In drawing a comparison, we used the Expense metric,
the FLSP metric, and the SavingRate metric. The use of
other metrics may produce different results. The Expense
metric has been widely used to evaluate statistical fault
localization techniques. It, however, only represents one
possible way of how developers may use the ranked list of
statements, and it makes an assumption that any fault on
each visited statement can be identified correctly with the
same amount of effort. The time taken to evaluate such a
statement and the precision of the fault identification has not
been captured by this metric. The FLSP metric is built on
top of the Expense metric. Owing to the limitation of the
original metric, the effort to reveal a fault measured by the
FLSP metric may not fully reflect the effort of developers to
use the generated ranked list of statements to perform
debugging. Readers are advised to interpolate the results of
the experiment carefully. Finally, SavingRate is only one
possible approach to discounting the influence of test suite
size. Researchers may adopt other approaches to achieve the
same goal.

Furthermore, the adequate test suite construction method
for a stronger criterion such as MC/DC can be costly in
practice. Our adequate test suite construction approach to
selecting from a large test pool may incur less manual effort
than that used in practice. Thus, there is a potential tradeoff:
adopting a stronger adequacy criterion can improve fault
localization precision and save debugging effort while it
may also incur higher test suite construction effort. A study
of the issue using different adequate test suite construction
approaches in the industry can further strengthen the
validity of our empirical study, which is left as future work.

We also measured the means and standard deviations of
different adequacy criteria. Our results show that different
adequacy criteria have significantly different mean values in
terms of SavingRate, although the absolute difference seems
to be not large. The standard deviations are small. However,
when the sizes of regression test suites are large (which is
often the case in practice), the absolute difference will
become much larger. To strengthen the validity of our
results, we carefully verified our results to ensure the
statistical difference was not due to large sample size.

4. Related work

Previous work has also studied the integration problem
between testing and debugging.

Wong and colleagues proposed a technique to integrate
test suite minimization and prioritization together [28].
Their heuristics is to select test cases based on the cost per
additional coverage. Baudry et al. [4] used a bacteriologic
approach to generating test cases in order to maximize the

22

number of dynamic basic blocks. In this way, the fault
localization techniques can be more effective. Yu and
colleagues [29] explored the impact of using test suite
reduction on fault localization. Their results show that test
suite reduction does have an impact on fault localization
effectiveness. However, test case prioritization differs from
test suite reduction techniques in that test case prioritization
is more flexible when allocating testing resources. If we use
test case prioritization, the resources are used to execute the
most important test cases, regardless of the time to stop. On
the other hand, it is often the case that test suite execution
must finish within a fixed time budget. As test suite
reduction is criterion-based, it is difficult to fit into a
changing testing budget. Another difference between our
work and the above studies is that we focus on the
differences among test adequacy and compare the effective-
ness among such criteria. This dimension is new, and has
not been studied in related work.

Jiang et al. [15] studied the integration problem of test
case prioritization and fault localization. Their results show
that test case prioritization does have an impact on the
effectiveness of fault localization techniques and that the
random strategy is surprisingly effective. However, the
work did not study to what extent test case prioritizations
may generate test suites that existing fault localization
techniques can use to locate faults effectively. Neither did
the work investigate the impact of test adequacy criteria on
statistical fault localization. Gonzalez-Sanchez et al. [11]
proposed a new test case prioritization approach to maxim-
ize the improvement of the diagnostic information per test
case. Their results showed that their technique could reduce
the overall testing and debugging cost for some scenarios.
They also did not examine the effect of adequate test suites
on fault localization techniques.

There are plenty of studies on test case prioritization
techniques. Srivastava and Thiagarajan [26] proposed a
binary matching technique to compute the changes between
program versions at the basic block level and prioritize test
cases to cover greedily the affected program changes. Li et
al. [21] conducted evaluations of various search-based
algorithms for test cases prioritization. Their results show
that several search-based algorithms are surprisingly effec-
tive. Leon et al. [20] also proposed failure-pursuit sampling
techniques. They are based on the observation that failure-
inducing test cases tend to cluster together with respect to
the code space of a program. Their failure-pursuit sampling
uses one-per-cluster sampling to select the initial sample
and, if a failure is found, its k nearest neighbors will be
selected and checked. If additional failures are found, the
process will be repeated.

There are also studies on fault localization techniques
closely related to the four techniques studied in our experi-
ment. For example, Cleve and Zeller [6] proposed delta
debugging, which automatically isolates failure-inducing
inputs, generates cause-effect chains, and exposes the faults.
Renieris and Reiss [24] observed that using the execution
trace difference between a failed run and its nearest passed
neighbor run is more effective than using other pairs for
fault localization. Jeffrey et al. [12] proposed a value-profile

based approach to ranking program statements according to
their likelihood of being faulty. Zhang et al. [32] differenti-
ated short-circuit evaluations of individual predicates in
individual program statements and produced a set of
evaluation sequences per predicate for fault localization.
They found that the use of evaluation sequence can
significantly improve existing fault localization techniques.
Zhang et al. [31] used a network propagation approach,
taking into consideration the error propagation phenomena
along the edges of a program control flow graph. They rank
the edges of the program control flow graph and propagate
back the suspicious scores to the program statements
(representing states).

Since our study is an integration of test case prioritiza-
tion techniques and fault localization techniques, the
experiment will grow steeply when we evaluate more fault
localization techniques. We therefore focus on the four most
typical fault localization techniques in our study so that the
empirical study is manageable without losing represent-
ativeness. Similarly, in RQ3, we narrow down our study to
compare between MC/DC- and branch-adequate test suites.
Although we have restrained the scale of our study, to the
best of our knowledge, it is the largest empirical study on
this topic to date.

Researchers have studied the MC/DC adequacy criterion
for a long time because of its significance. Yu et al. [30]
compared MC/DC, MUMCUT, and other related coverage
criteria for safety-critical software by formal and empirical
analysis. Since MC/DC is the required coverage criterion for
airborne software by FAA through the DO-178B standard, it
is also extensively studied in the aeronautics industry.
Dupuy et al. [8] conducted an empirical evaluation of the
MC/DC adequacy criterion on the HETE-2 satellite software.
They found that test cases generated using the MC/DC-
adequacy criterion detected important errors not detectable
by functional testing. They further found that although
MC/DC incurs more testing resources (40% of the total
testing time), the effort is worthwhile as it can detect errors
that could not have been found by lower level structural
coverage. The relationship between test case prioritization
and the MC/DC adequacy criterion has also been studied by
Jones and Harrold [18]. Our work does not analyze this
dimension whereas the work of Jones and Harrold does not
study the fault localization aspect.

5. Concluding Remarks

To select test cases from a huge input domain, testers
use adequacy criteria to determine when to stop testing.
Because the execution results and coverage information of
the adequate test suite can be fed to fault localization
techniques, the choice of adequacy criterion may have a
significant impact on the effectiveness of fault localization.

We find from our study that stronger adequacy criteria
may be more promising in supporting effective fault locali-
zation. In particular, we find that MC/DC adequacy
performs better than branch adequacy, which in turn per-
forms better than statement adequacy. Furthermore, we
conducted postmortem analysis on existing fault localization
techniques and found that they still could not effectively

23

narrow down the suspicious region of faults within one
debug window of typical IDEs. The result shows that there
are still large gaps in integrating various kinds of testing and
debugging techniques so that they can be effectively used by
developers uniformly. The result, however, indicates that
MC/DC-adequate test suites can be more scalable and
precise.

In terms of practice, there are a number of implications
from the study. First, MC/DC is normally applied to safety-
critical software. They have seldom been used in general.
We have found from Tables 8 to 11 that as a stronger test
adequacy is used, the probability of effective fault localiza-
tion increases across all statistical fault localization
techniques and across all subjects except applying Tarantula
on the subject tot_info. In other words, the following
conjecture holds, on average, for 97.7% of the 44 cases
(four techniques with 11 subjects each):

Conjecture: Using a stronger test adequacy increases the
probability of effective fault localization via the use of a
prioritized adequate test suite.

Based on this validated conjecture, we recommend the
use of MC/DC instead of branch adequacy, statement
adequacy, or random selection as the criterion to construct
adequate test suite if the goal of the testing-debugging
integration is effective statistical fault localization.

We have further discussed in Section 3.5.1 that using

MC/DC test suites can make the regression line in Fig. 1 to

have a gentler slope and a smaller y-intercept than using

branch- and statement-adequate test suites that is, it is
more scalable and has less fixed cost. Nonetheless, to the
best of our knowledge, only weaker criteria are popularly
supported by many industrial-strength tools. While this may
indicate the favor and demand of the software industry, we
have conjectured that such popular adequacy criteria could
be too weak for fault localization. In our experiment, the
adoption of a stronger adequacy criterion can lead to more
effective integration of testing and debugging.

On the other hand, random testing can be effectively
used, say, to crash a program. We believe that random
testing and adequacy testing are useful for different
purposes and are complementary to each other. Our paper
focuses on the impact of adequate test suites on fault local-
ization. It will be interesting to study other popular and
useful testing techniques (such as data flow testing) and
resolve their effective integration. It will also be interesting
to study reliability testing and its integration with program
debugging.

6. References

[1] Software considerations in airborne systems and

equipment certification, DO-178B, RTCA, Washing-

ton, DC, 1992.

[2] The economic impacts of inadequate infrastructure for

software testing, Final Report, National Institute of

Standards and Technology, Gaithersburg, MD, 2002.

Available from http://www.nist.gov/director/planning

/upload/report02-3.pdf.

[3] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, On

the accuracy of spectrum-based fault localization, in:

Proceedings of the Testing: Academic and Industrial

Conference: Practice And Research Techniques

(TAICPART-MUTATION 2007), IEEE Computer

Society, Los Alamitos, CA, 2007, pp. 89–98.

[4] B. Baudry, F. Fleurey, and Y. Le Traon, Improving

test suites for efficient fault localization, in: Proceed-

ings of the 28th International Conference on Software

Engineering (ICSE 2006), ACM, New York, NY,

2006, pp. 82–91.

[5] C. Cadar, D. Dunbar, and D.R. Engler, KLEE:

unassisted and automatic generation of high-coverage

tests for complex systems programs, in: Proceedings of

the 8th USENIX Conference on Operating Systems

Design and Implementation (OSDI 2008), USENIX

Association, Berkeley, CA, 2008, pp. 209–224.

[6] H. Cleve and A. Zeller, Locating causes of program

failures, in: Proceedings of the 27th International Con-

ference on Software Engineering (ICSE 2005), ACM,

New York, NY, 2005, pp. 342–351.

[7] H. Do, S.G. Elbaum, and G. Rothermel, Supporting

controlled experimentation with testing techniques: an

infrastructure and its potential impact, Empirical Soft-

ware Engineering 10 (4) (2005) 405–435.

[8] A. Dupuy and N. Leveson, An empirical evaluation of

the MC/DC coverage criterion on the HETE-2 satellite

software, in: Proceedings of the 19th Digital Avionics

Systems Conference (DASC 2000), vol. 1, IEEE Com-

puter Society, Los Alamitos, CA, 2000, pp. 1B6/1–

1B6/7.

[9] S.G. Elbaum, A.G. Malishevsky, and G. Rothermel,

Test case prioritization: a family of empirical studies,

IEEE Transactions on Software Engineering 28 (2)

(2002) 159–182.

[10] S.G. Elbaum, G. Rothermel, S. Kanduri, and A.G.

Malishevsky, Selecting a cost-effective test case priori-

tization technique, Software Quality Control 12 (3)

(2004) 185–210.

[11] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, and A.J.C.

van Gemund, Prioritizing tests for software fault

localization, in: Proceedings of the 10th International

Conference on Quality Software (QSIC 2010), IEEE

Computer Society, Los Alamitos, CA, 2010, pp. 42–

51.

[12] D. Jeffrey, N. Gupta, and R. Gupta, Fault localization

using value replacement, in: Proceedings of the 2008

ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2008), ACM, New York,

NY, 2008, pp. 167–178.

[13] B. Jiang and W.K. Chan, On the integration of test

adequacy: test case prioritization and statistical fault

24

localization, The 1st International Workshop on

Program Debugging in China (IWPDC 2010), in

Proceedings of the 10th International Conference on

Quality Software (QSIC 2010), IEEE Computer

Society, Los Alamitos, CA, 2010, 377–384.

[14] B. Jiang, W.K. Chan, and T.H. Tse, On practical

adequate test suites for integrated test case prioritiza-

tion and fault localization, in: Proceedings of the 11th

International Conference on Quality Software (QSIC

2011), IEEE Computer Society, Los Alamitos, CA,

2011, pp. 21–30.

[15] B. Jiang, Z. Zhang, W.K. Chan, and T.H. Tse, Adap-

tive random test case prioritization, in: Proceedings of

the 24th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2009), IEEE

Computer Society, Los Alamitos, CA, 2009, pp. 233–

244.

[16] B. Jiang, Z. Zhang, W.K. Chan, T.H. Tse, and T.Y.

Chen, How well does test case prioritization integrate

with statistical fault localization?, Information and

Software Technology 54 (7) (2012) 739–758.

[17] B. Jiang, Z. Zhang, T.H. Tse, and T.Y. Chen, How

well do test case prioritization techniques support

statistical fault localization, in: Proceedings of the 33rd

Annual International Computer Software and Applica-

tions Conference (COMPSAC 2009), vol. 1, IEEE

Computer Society, Los Alamitos, CA, 2009, pp. 99–

106.

[18] J.A. Jones and M.J. Harrold, Test-suite reduction and

prioritization for modified condition/decision cover-

age, IEEE Transactions on Software Engineering 29

(3) (2003) 195–209.

[19] J.A. Jones, M.J. Harrold, and J. Stasko, Visualization

of test information to assist fault localization, in:

Proceedings of the 24th International Conference on

Software Engineering (ICSE 2002), ACM, New York,

NY, 2002, pp. 467–477.

[20] D. Leon, W. Masri, and A. Podgurski, An empirical

evaluation of test case filtering techniques based on

exercising complex information flows, in: Proceedings

of the 27th International Conference on Software Engi-

neering (ICSE 2005), ACM, New York, NY, 2005, pp.

412–421.

[21] Z. Li, M. Harman, and R.M. Hierons, Search algo-

rithms for regression test case prioritization, IEEE

Transactions on Software Engineering 33 (4) (2007)

225–237.

[22] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I.

Jordan, Scalable statistical bug isolation, in: Proceed-

ings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation

(PLDI 2005), ACM, New York, NY, 2005, pp. 15–26.

[23] C. Liu, X. Yan, L. Fei, J. Han, and S.P. Midkiff,

SOBER: statistical model-based bug localization, in:

Proceedings of the Joint 10th European Software

Engineering Conference and 13th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering (ESEC 2005/FSE-13), ACM, New York,

NY, 2005, pp. 286–295.

[24] M. Renieris and S.P. Reiss, Fault localization with

nearest neighbor queries, in: Proceedings of the 18th

IEEE International Conference on Automated

Software Engineering (ASE 2003), IEEE Computer

Society, Los Alamitos, CA, 2003, pp. 30–39.

[25] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,

Prioritizing test cases for regression testing, IEEE

Transactions on Software Engineering 27 (10) (2001)

929–948.

[26] A. Srivastava and J. Thiagarajan, Effectively prioritiz-

ing tests in development environment, in: Proceedings

of the 2002 ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA 2002),

ACM, New York, NY, 2002, pp. 97–106.

[27] W.E. Wong, V. Debroy, and B. Choi, A family of code

coverage-based heuristics for effective fault localiza-

tion, Journal of Systems and Software 83 (2) (2010)

188–208.

[28] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal,

A study of effective regression testing in practice, in:

Proceedings of the 8th International Symposium on

Software Reliability Engineering (ISSRE 1997), IEEE

Computer Society, Los Alamitos, CA, 1997, pp. 264–

274.

[29] Y. Yu, J.A. Jones, and M.J. Harrold, An empirical

study of the effects of test-suite reduction on fault

localization, in: Proceedings of the 30th International

Conference on Software Engineering (ICSE 2008),

ACM, New York, NY, 2008, pp. 201–210.

[30] Y.T. Yu and M.F. Lau, A comparison of MC/DC,

MUMCUT and several other coverage criteria for

logical decisions, Journal of Systems and Software 79

(5) (2006) 577–590.

[31] Z. Zhang, W.K. Chan, T.H. Tse, B. Jiang, and X.

Wang, Capturing propagation of infected program

states, in: Proceedings of the 7th Joint Meeting of the

European Software Engineering Conference and the

ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (ESEC 2009/FSE-17),

ACM, New York, NY, 2009, pp. 43–52.

[32] Z. Zhang, B. Jiang, W.K. Chan, T.H. Tse, and X.

Wang, Fault localization through evaluation sequenc-

es, Journal of Systems and Software 83 (2) (2010)

174–187.

