
1 

Postprint of article in IEEE Computer 45 (6): 64–71 (2012) 

Cover Feature 

Fault Localization Based Only on Failed Runs* 

Zhenyu Zhang 

Institute of Software, Chinese Academy of Sciences 

W.K. Chan**
 

City University of Hong Kong 

T.H. Tse 

The University of Hong Kong 

Fault localization commonly relies on both passed and failed runs, but passed runs are 
generally susceptible to coincidental correctness and modern software automatically 
produces a huge number of bug reports on failed runs. FOnly is an effective new technique 
that relies only on failed runs to locate faults statistically. 

Program testing and debugging generally consume 50 percent or more of the costs of typical software 

development projects.1 Software engineers spend about 35 percent of their time debugging programs, and 

deploy software knowing that it still contains faults.2 

When an execution of a faulty program passes through a fault, it may result in an error in the internal 

program states. The program run generally executes other program statements as well, which might prop-

agate the error to other internal program states. If such program statements produce observable effects, 

the run will cause a visible failure. 

Once they observe failures, software engineers schedule program debugging to locate the faults, fix 

them, and confirm their removal. However, debugging is still laborious, and fault localization is com-

monly considered to be its most difficult component. 

Recent research in Asia has significantly advanced automatic fault localization. State-of-the-practice 

techniques commonly rely on a combination of passed and failed runs. However, a passed run may 

activate a fault but not reveal a failure. Furthermore, many systems today can detect failures automatically 

and produce a massive number of useful bug reports on failed runs. We propose FOnly, an effective 

technique that innovatively relies only on failed runs to locate faults statistically. 

STATE OF THE PRACTICE 
Researchers have developed many novel fault-localization techniques during the past two decades. To 

compare these techniques’ applicability, we categorized them according to whether they were originally 

designed to use passed runs and/or failed runs to locate faults, and, if they were, we identified the 

                                                           
* © 2012 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Personal use of this 

material is permitted. Copyright and all rights therein are retained by authors or by other copyright holders. All persons 

copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most 

cases, these works may not be reposted without the explicit permission of the copyright holder. Permission to reprint/republish 

this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers 

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

** Corresponding author. 

Administrator
  HKU CS Tech Report TR-2012-04



2 

respective numbers of such runs. We limited the classification to approaches that locate faults in the 

source code. By so doing, we excluded techniques such as delta debugging3 and semi-proving4 that only 

reveal the suspicious region of a program’s failure-causing inputs, as well as techniques that suppress or 

detect failures, such as Eraser.5 

Table 1 summarizes the categorization. The two leftmost columns indicate the numbers of passed and 

failed runs. The third column lists an early representative project for each category. The last column 

shows a recent project for each category presented at a top-notch venue by researchers affiliated with 

Asian institutes. 

Table 1. Categories of fault-localization techniques for program debugging. 

No. of 

passed runs 

No. of 

failed runs 
Early representative example Recent example project in Asia 

0 0 FindBugs (OOPSLA 2004) 

Approach: pattern matching with static 

analysis 

Application: locates bug patterns in Java 

lib/desktop/server programs 

N/A 

0 1 Dynamic program slicing (PLDI 1990) 

Approach: slicing 

Application: locates faulty slices, without 

limit in program type 

Saha et al. (India and USA—FSE 2011) 

Approach: key-based slicing and 

semantic differencing among traces 

Application: locates faulty slices in SAP 

systems in the ABAP language 

0 Many N/A FOnly (China and Hong Kong) 

Approach: trend estimation 

Application: locates faulty statements in 

C utility programs 

1 1 Chislice (ISSRE 1995) 

Approach: set differencing 

Application: Locate faulty slices in C 

algorithms 

N/A 

Many 1 Nearest neighbor (ASE 2003) 

Approach: sequence similarity 

Application: locate faulty statements in C 

utility programs 

Cheng et al. (Hong Kong, Singapore, 

China, and US—ISSTA 2009) 

Approach: control-flow subgraphs as 

bug signatures 

Application: locates faulty 

methods/blocks in C utility programs 

Many Many Tarantula (ICSE 2002) 

Approach: similarity correlation 

Application: locates faulty statements in 

language interpreter programs in C 

CP (Hong Kong—FSE 2009) 

Approach: propagation of fault-failure 

correlation 

Application: locates faulty blocks in 

Unix utilities in C 

Coincidental correctness 
The use of passed runs, irrespective of the number of instances, is generally susceptible to coincidental 

correctness, in which a run activates a fault but does not result in a failure. Approaches such as set differ-

encing, similarity correlation, and sequence similarity do not eliminate variations among sets of program 

statements that are common to passed and failed runs. Consequently, early algorithms like chislice,6 

nearest neighbor,
7
 and Tarantula

8
 cannot reliably locate faults if the passed runs suffer from coincidental 

correctness. Recent Asian research has attempted to address this problem. 



3 

CP9 is a technique that locates faulty blocks in Unix utilities in C by computing the transition fre-

quency among basic blocks in a run and backwardly propagating the fault-failure correlations measured 

by similarity coefficients along the edges of the program’s control-flow graph so that the code delivering 

a fault receives a higher rank. 

Hong Cheng and colleagues10 localized faults in C utility programs by analyzing the most discrimina-

tive graph patterns in a bug report. 

Diptikalyan Saha and coauthors11 identified faulty program slices in SAP systems in the ABAP 

language by taking program loops in a failed run that constructs database queries as starting points of 

individual slices, and splitting the single failed run into several such slices, some of which are associated 

with correct database records and deemed as “passed.” However, the passed runs thus generated might 

still be coincidentally correct. 

Additional discussion about coincidental correctness in debugging can be found elsewhere.12 

Eliminating passed runs 
Another way to address the issue of coincidental correctness is to completely abandon the use of 

passed runs. Static analyzers like FindBugs13 require neither passed nor failed runs. They may, however, 

produce warnings even if the programs are correct, necessitating additional runs to confirm such warn-

ings. When only one single failed run is available, early techniques like dynamic program slicing14 could 

produce a set of statements per run. Debuggers similar to Tarantula, such as Ochiai,15 can also be used 

without any passed runs. The problem is that such brute-force applications are mostly ineffective in fault 

localization. 

To the best of our knowledge, there has been little research on effectively locating faults with one or 

multiple failed runs and without support from passed runs. In the past, using many failed runs without any 

passed run was deemed unrealistic because, when testing a program, a large proportion of runs were ex-

pected to reveal no failure. However, emerging dynamic (concurrency) bug detectors can monitor runs on 

the fly and report failures. Based on the bug reports, researchers can use execution synthesis to reproduce 

failed runs. 

DEBUGGING BASED ON FAILURES ONLY 
Modern software often has the built-in facility to detect failures and report them to the original vendor 

through the Web. Software debuggers are thus faced with a huge number of automatic bug reports. It 

would be time-consuming for debuggers to generate a similar number of passed runs to compare with the 

given failed runs. This creates a strong incentive for fault-localization techniques that make good use of 

failure information only. 

We propose FOnly based on the following fault hypothesis. Consider a particular run of a faulty 

program. The more times that the run goes through a faulty program entity such as a statement, the more 

likely it will consistently lead to failure. If such a trend cannot be observed among the failed runs with 

respect to another program entity, the latter entity is less likely to be at fault. 

Trend estimation, a popular statistical technique, lies at the heart of FOnly. A simple but effective 

means of trend estimation is to find a regression line using the least-squares fitting process. Such a line 

reveals the tendencies in the samples. 

Based on samples of the numbers of times that different failed runs go through the same program 

entity, FOnly finds a regression line that minimizes the fitting error. It then uses the slope of the 

regression line and the value of the fitting error to compute a signal-to-noise ratio,16 which represents an 

estimate of that program entity’s fault relevance. Program entities with higher signal-to-noise ratios are 

deemed to be more fault-relevant. 



4 

APPLYING THE FAULT HYPOTHESIS 
Let us use an example to illustrate how FOnly applies the fault hypothesis to perform trend estimation 

to locate faults.  

Figure 1a shows two code fragments from a faulty program known as replace from the Software-

artifact Infrastructure Repository (SIR).17 The upper fragment (lines L115 to L124) shows an if-statement 

that evaluates a compound Boolean expression consisting of a character-checking function (L115) and a 

boundary condition (L117). If the Boolean expression is evaluated as true, the function addstr will 

modify the variable dest (L121); otherwise, dest will remain unchanged. The lower fragment (L495 to 

L502) outputs the characters. 

In the upper fragment, the if-statement (L115) is faulty because an operand of the expected version of 

the Boolean expression is missing (shown in L116). Note that the faulty statement is more likely to be 

evaluated as true than the correct version, so an execution has a higher chance of going through L121 than 

the correct version. Consequently, the variable dest may contain an erroneous value. At the same time, 

the faulty statement (L115) may produce a result different from its expected version only when the 

missing function call to isalnum() returns false, which in turn depends partially on its input parameter 

src. Because it is generally difficult to predict string content statically, the probability of the faulty 

statement producing an incorrect decision value is hard to know. 

We executed the faulty program over each of the 5,542 test cases supplied by SIR.17 For every 

statement, we recorded its execution count c with respect to each program run. For every value c0 of an 

execution count, we tallied the number of program runs N(c) having a count c = c0 and calculated the 

failure rate, which is the fraction of failed runs among the N(c) runs. 

A comparison of L115 with L121, L497, and L500 indicates that L121 is closest to the faulty state-

ment in terms of the number of lines of code (LOC). L121 is indeed suspicious because it may modify the 

variable dest wrongly. At the same time, we inspected the source code to ensure that the fault is not 

related to the logic in L497 or L500. 

We plotted the failure rate against the execution count for each of these four statements and fitted the 

points using a regression line with the least-squares error among the data points. Figure 1b shows the 

results. Note that as the execution count increases, the failure rates for L115 and L121 increase faster than 

those for L497 and L500. Fault-irrelevant statements (such as L497 and L500) thus appear to have gentler 

slopes. For L500, the statement least related to the fault, the change in failure rate with respect to 

execution count is least observable. 

However, this simple regression line estimation has not considered line-fitting errors. It also requires 

information on both passed and failed runs. FOnly addresses both of these issues, as detailed in the next 

section. 

HOW FONLY WORKS 
Consider a program modeled by a list of program entities such as statements. Given a collection of 

execution results of the program, known as the set of program runs, FOnly conducts fault localization by 

comparing the suspiciousness of each program entity, measured by its failure trend in the set of program 

runs. Figure 2 illustrates the process, which consists of four phases: partitioning, calibration, line fitting, 

and elimination. 

Partitioning phase 
Given any program entity, such as a statement, FOnly divides the set of program runs into disjoint 

partitions. Every partition contains all the runs such that each run goes through the entity exactly the same 

number of times (say, c times). FOnly further computes the proportion of failed runs in each partition, 

referred to as the failure rate F(c). 

 



5 

 

  

 L115 if ((isalnum(src[*i - 1]))  

 L116     /* missing code "&& (isalnum(src[*i + 1]))" */  

 L117     && (src[*i - 1] <= src[*i + 1]))  

 L118 {  

 L119     for (k = src[*i-1]+1; k<=src[*i+1]; k++)  

 L120     {  

 L121         junk = addstr(k, dest, j, maxset);  

 L122     }  

 L123     *i = *i + 1;  

 L124 }  
    

 L495 if ((m >= 0) && (lastm != m)) {  

 L496     putsub(lin, i, m, sub);  

 L497     lastm = m;  

 L498 }  

 L499 if ((m == -1) || (m == i)) {  

 L500     fputc(lin[i],stdout);  

 L501     i = i + 1;  

 L502 }  

 
(a) Two code fragments from a faulty program. 

L121 is closer than L497 and L500 to the faulty statement, L115, in terms of the 

number of lines of code. 

 

 

  

 

 (i) Faulty statement L115 (ii) Statement L121  

 

  

 

 (iii) Statement L497 (iv) Statement L500  

 (b) Plots of the failure rate versus the execution count for the four statements. 

As the execution count increases, the failure rates for L115 and L121 increase faster 

than those for L497 and L500. 

 

 Figure 1. Applying the fault hypothesis.  

0 

0.02 

0.04 

0.06 

0 3 6 9 12 15 

fa
il

u
re

 r
a

te
 

execution count 

0 

0.02 

0.04 

0.06 

0 3 6 9 12 15 

fa
il

u
re

 r
a

te
 

execution count 

0 

0.02 

0.04 

0.06 

0 3 6 9 12 15 

fa
il

u
re

 r
a
te

 

execution count 

0 

0.02 

0.04 

0.06 

0 3 6 9 12 15 

fa
il

u
re

 r
a
te

 

execution count 



6 

  

 Set of program runs

Partitioning phase

…

Other program entities     

Program entity

None Twice 10x

Calibration phase

0 2 10 c

Line-fitting phase

Fail-only scenarioPass-and-fail scenario

0 2 10 c

Elimination phase

0 2 10

F(c)

G(c)

c

x

x
x

The proportion F(c) of failed runs in 

each partition is determined.

Trend estimation.

Pair up c and F(c) in a  2D plane, 

and calibrate F(c) to G(c).

The proportion F(c) is the size of the partition 

to the mean size of all partitions.

Line-fitting phase
The mean size Ñ

of all partitions 

R1 =            =
signal1
noise1

l1

1

~

R1 =            =      =
signal1
noise1

l1

1

~
~

1

Ñ

1

Ñ

(…)

(…)

Figure 2. FOnly uses a four-phase process to localize faults.



7 

Calibration phase 
For a given program entity s, F(0) denotes the failure rate of the partition in which none of the 

program runs ever goes through s. If all the runs in the partition have never gone through s, the latter 

should not be related to any failure. Hence, if F(0) for s happens to be not 0, it should be reset to 0. 

Likewise, all other partitions for the same s might have overestimated failure rates. As such, FOnly 

computes a calibrated failure rate G(c) = F(c)  F(0), which aims to capture a more accurate estimate of 

the probability that going through the program entity exactly c times leads to a failure. 

Line-fitting phase 
Based on the calibrated failure rates, FOnly estimates the failure trend for each program entity in the 

fitting phase. For any given entity, by pairing up every c with the corresponding G(c) when the latter is 

defined, FOnly creates a point c, G(c) in a 2D space. For a fault-relevant program entity, G(c) should be 

a discrete monotonically increasing function of c. FOnly estimates the fault relevance of any program 

entity using line fitting in 2D space. 

There are two ways to estimate the probability that going through s exactly c times does not result in a 

failure. The first is to directly use G(c) and estimate the probability as 1  G(c). The second way is to use 

the probability that executing the program entity up to c times does not lead to any failure. This probabil-

ity can be estimated to be (1  p)c, where p denotes the probability that going through s only once leads to 

a failure. Equating the two probabilities results in the formula G(c) = 1  (1  p)c. 

A function f(x) can be expanded into an infinite Taylor series f(x) = f(0) + f(1)(0)x/1! + …, where f(i)(0) 

denotes the i-th derivative of f(x) at the point x = 0. Hence, the calibrated failure rate can be approximated 

by G(c) = G(0) + G(1)(0)c/1! = log(1  p) × c, which simplifies to G(c) = l × c. Thus, the calibrated 

failure rate is modeled by a straight line passing through 0, G(0) with a slope l. 

FOnly applies least-squares analysis to minimize the error in line fitting. For a given program entity, 

the slope l is given by 

 

                    
     

 

and the standard deviation  is given by 

 

          
 

                       
   , 

 

where D is the set of all possible number of times that any program run might go through the given 

program entity. However, the number of times that a program run goes through a program entity may 

vary among entities. Hence, l for each specific program entity should be normalized to    = l × cmax before 

comparison, where cmax is the largest possible number of times that any program run can go through that 

particular entity. 

To estimate the fault relevance of each program entity in the presence of both passed and failed runs, 

FOnly computes the ranking score R, which is equivalent to the signal-to-noise ratio and defined as the 

mean over the standard deviation: R =    / . The higher the value of R, the more fault-relevant the pro-

gram entity. 

The ranking score’s range is [∞,+∞]. If a program entity s has no sample point, none of the failed 

runs has gone through s before resulting in a failure, and hence FOnly assigns a value of ∞ to R, 

meaning that s is least suspicious. If a program entity has only one sample point, the slope l is undefined, 

and FOnly assigns a value of 0 to R. If the standard deviation is 0, FOnly cannot directly compute the 

ranking score. In this case, if the number of failed runs for s is 0, FOnly assigns a value of ∞ to R; 

otherwise, it calculates the limit of R, resulting in a value of +∞. 



8 

Elimination phase 
Unlike related approaches, FOnly adds a phase to eliminate dependency on the number of passed runs 

incurred in computing a program entity’s fault relevance. For this phase, it uses a formula that relies only 

on failed runs. 

For any program entity s, let N(c) denote the number of program runs such that each run goes through 

s exactly c times. FOnly computes the mean number of runs Ñ irrespective of the value of c. It replaces 

every instance of N(c) by Ñ in the computation of R to obtain   , which is dependent on failed executions 

only and free from passed runs: 

 

   
                             

   

                                            
   

, 

 

where Y(c) is the number of failed runs such that each run goes through the program entity exactly c 

times. 

Of course, the elimination phase is optional if the set of passed runs can be reliable. 

EXPERIMENTAL EVALUATION 
To validate FOnly’s effectiveness, we conducted an empirical study using faulty programs from SIR.17 

Table 2 summarizes the programs’ statistics. Each of the program versions is seeded with one to three 

faults to simulate both single- and multifault scenarios, resulting in a total of 186 single-fault versions and 

20 multifault versions. 

 
Table 2. Faulty programs used in FOnly evaluation. 

Program (source) Real-life version no. 
No. of 

faults 

Executable 

LOC 

No. of single-

fault/multifault versions 

No. of test 

cases 

print_tokens (Siemens) Not available in SIR 7 341–342 5/0 4,130 

print_tokens2 (Siemens) Not available in SIR 10 350–354 10/0 4,115 

replace (Siemens) Not available in SIR 32 508–515 30/0 5,542 

schedule (Siemens) Not available in SIR 9 291–294 6/0 2,650 

schedule2 (Siemens) Not available in SIR 10 261–263 8/0 2,710 

tcas (Siemens) Not available in SIR 41 133–137 40/0 1,608 

tot_info (Siemens) Not available in SIR 23 272–274 23/0 1,052 

flex (Unix) 2.4.7–2.5.4 81 8,571–10,124 18/4 567 

grep (Unix) 2.2–2.4.2 57 8,053–9,089 17/6 809 

gzip (Unix) 1.1.2–1.3 59 4,035–5,159 13/4 217 

sed (Unix) 1.18–3.02 25 4,756–9,289 16/6 370 

 

We compared FOnly’s performance with that of four representative statement-level fault-localization 

techniques: Tarantula,8 Ochiai,15 Jaccard,15 and statistical bug isolation (SBI).18 Because these techniques 

were originally designed to work under the assumption that both passed and failed results were available, 

for every technique we first executed each program version using the whole test pool and then repeated 

the process using only failed runs. Following previous research,8,9 we measured fault-localization 

effectiveness in terms of the percentage of statements a technique examined (among all the statements 

ranked) until it found a faulty statement. 

Figure 3 shows the overall results for the pass-and-fail and fail-only scenarios. In each plot, the x-axis 

represents the percentage of code examined, while the y-axis represents the percentage of faults located 

within the examined code. 

 



9 

As Figure 3a shows, when the examined code ranges from 10 to 100 percent, FOnly’s curve is above, 

or at least overlaps with, the curves of the peer techniques. For example, when examining up to 20 

percent of the code, FOnly can locate faults in 86 percent of the faulty versions, while Tarantula, Ochiai, 

Jaccard, and SBI can only locate faults in 79, 77, 77, and 77 percent of the faulty versions, respectively. 

However, when examining the first 5 percent of the code, FOnly is not as effective as the other techniques 

and has room for improvement. 

When no passed runs are available, the ranking formulas for Tarantula, Ochiai, and Jaccard produce 

the same list of statements. Figure 3b therefore shows one curve instead of three for these techniques. SBI 

is not included in the fail-only scenario because its formula gives all executed statements the same rank 

and does not have any fault-localization capability. 

  

(a) pass-and-fail scenario (b) fail-only scenario 

Figure 3. Fault-localization technique effectiveness. 

When passed executions are unavailable or not reliable, FOnly’s performance does not degrade as dramatically 

as peer techniques. 

  

(a) pass-and-fail scenario (b) fail-only scenario 

Figure 4. Impact of program size and number of faults on fault-localization effectiveness. 

FOnly performed better on medium-scale Unix programs with thousands of LOC than on small-scale Siemens 

programs with hundreds of LOC. It located faults in multifault programs almost as effectively as it did in 

single-fault programs. 

0% 

20% 

40% 

60% 

80% 

100% 

0% 20% 40% 60% 80% 100% 

%
 o

f 
fa

u
lt

s 
lo

ca
te

d
 

% of code examined 

FOnly 

Tarantula 

Ochiai 

Jaccard 

SBI 
0% 

20% 

40% 

60% 

80% 

100% 

0% 20% 40% 60% 80% 100% 

%
 o

f 
fa

u
lt

s 
lo

ca
te

d
 

% of code examined 

FOnly 

Tarantula/Ochiai/Jaccard 

0% 

20% 

40% 

60% 

80% 

100% 

0% 20% 40% 60% 80% 100% 

%
 o

f 
fa

u
lt

s 
lo

ca
te

d
 

% of code examined 

FOnly (Siemens single-fault) 

FOnly (Unix single-fault) 

FOnly (Unix multi-fault) 
0% 

20% 

40% 

60% 

80% 

100% 

0% 20% 40% 60% 80% 100% 

%
 o

f 
fa

u
lt

s 
lo

ca
te

d
 

% of code examined 

FOnly (Siemens single-fault) 

FOnly (Unix single-fault) 

FOnly (Unix multi-fault) 



10 

As the graph shows, FOnly’s curve is always above, or at least overlaps with, the curves for the other 

techniques. For example, when examining up to 10 percent of the code, FOnly can locate faults in 57 

percent of the faulty versions while the peer techniques can locate faults in only 37 percent of the faulty 

versions. In the first half of the code-examining range, FOnly always locates more faults than the other 

techniques; after examining 50 percent of the code, it locates all the faults. Notably, FOnly’s effectiveness 

is comparable to that in the pass-and-fail scenario, whereas that of the other techniques is significantly 

lower. 

Overall, the results in Figure 3 indicate that FOnly has promising fault-localization capability when 

statements are used as the diagnostic unit. When passed executions are unavailable or not reliable, its 

performance does not degrade as dramatically as the peer techniques. Although FOnly is relatively less 

effective when examining the first 5 percent of the code in the traditional pass-and-fail scenario, this 

deficiency is due to the very few failed runs in corner cases, where FOnly has insufficient sample points 

to make reliable trend estimations. 

A straightforward way to enhance efficiency is to apply FOnly at the block level. Because statements 

in the same block are mostly assigned identical ranking scores, precision will not be lost. Higher 

efficiency could be gained by a coarser-grained usage of FOnly at, say, the function level, but this will 

result in less precise fault localization. 

To assess the impact of program size and the number of faults on FOnly’s effectiveness, we 

categorized the subject programs according to their size and whether a faulty version contained single or 

multiple faults. As Figure 4 shows, in both the pass-and-fail scenario and the fail-only scenarios, FOnly 

performed better on the medium-scale Unix programs with thousands of LOC than on the small-scale 

Siemens programs with hundreds of LOC. In comparing the results of single-fault Unix programs with 

multifault Unix programs, we found that FOnly can locate faults in multifault programs almost as 

effectively as in single-fault programs. 

In recent years, researchers in Asia have contributed significantly to advances in fault localization for 

program debugging. In addition to tackling existing challenges, they continue to introduce techniques for 

new classes of real-life problems. 

FOnly is a proposed solution to the increasingly common situation developers face when a huge 

number of bug reports are sent automatically through the Web. It uses trend estimation as a novel method 

to localize faults and demonstrates the feasibility of using only the results of failed runs, rather than 

comparing passed and failed runs. Empirical results demonstrate FOnly’s promise. 

For corner cases where there are very few failed runs, however, peer techniques that use passed and 

failed runs are more effective when it is possible to review only a small percentage of the source code. In 

future work, we plan to apply combinatorial testing to improve FOnly in such situations. 

Acknowledgments 
This research is supported in part by grants from the Natural Science Foundation of China (project no. 

61003027) and the General Research Fund of the Research Grants Council of Hong Kong (project nos. 

111410 and 717811). 

  



11 

References 
1. G.J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 3rd ed., John Wiley & Sons, 

2011. 

2. RTI, The Economic Impacts of Inadequate Infrastructure for Software Testing, 2002; 

www.nist.gov/director/planning/upload/report02-3.pdf. 

3. H. Cleve and A. Zeller, “Locating Causes of Program Failures,” Proc. 27th Int’l Conf. Software Eng. 

(ICSE 05), ACM, 2005, pp. 342–351. 

4. T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Semi-Proving: An Integrated Method for Program Proving, 

Testing, and Debugging,” IEEE Trans. Software Eng., Jan. 2011, pp. 109–125. 

5. S. Savage et al., “Eraser: A Dynamic Data Race Detector for Multithreaded Programs,” ACM Trans. 

Computer Systems, Nov. 1997, pp. 391–411. 

6. H. Agrawal et al., “Fault Localization Using Execution Slices and Dataflow Tests,” Proc. 6th Int’l 

Symp. Software Reliability Eng. (ISSRE 95), IEEE CS, 1995, pp. 143–151. 

7. M. Renieris and S.P. Reiss, “Fault Localization with Nearest Neighbor Queries,” Proc. 18th IEEE 

Int’l Conf. Automated Software Eng. (ASE 03), IEEE CS, pp. 30–39. 

8. J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test Information to Assist Fault Localiza-

tion,” Proc. 24th Int’l Conf. Software Eng. (ICSE 02), ACM, 2002, pp. 467–477. 

9. Z. Zhang et al., “Capturing Propagation of Infected Program States,” Proc. 7th Joint Meeting Euro-

pean Software Eng. Conf. and ACM SIGSOFT Int’l Symp. Foundations of Software Eng. 

(ESEC/FSE 09), ACM, 2009, pp. 43–52. 

10. H. Cheng et al., “Identifying Bug Signatures Using Discriminative Graph Mining,” Proc. 18th ACM 

SIGSOFT Int’l Symp. Software Testing and Analysis (ISSTA 09), ACM, 2009, pp. 141–152. 

11. D. Saha et al., “Fault Localization for Data-Centric Programs,” Proc. 19th ACM SIGSOFT Symp. and 

13th European Conf. Foundations of Software Eng. (ESEC/FSE 11), ACM, 2011, pp. 157–167. 

12. W.K. Chan and Y. Cai, “In Quest of the Science in Statistical Fault Localization,” Software: Practice 

and Experience, Aug. 2013, pp. 971–987. 

13. D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” ACM SIGPLAN Notices, Dec. 2004, pp. 92–

106. 

14. H. Agrawal and J.R. Horgan, “Dynamic Program Slicing,” Proc. ACM SIGPLAN 1990 Conf. Pro-

gramming Language Design and Implementation (PLDI 90), ACM, 1990, pp. 246–256. 

15. R. Abreu et al., “A Practical Evaluation of Spectrum-Based Fault Localization,” J. Systems and 

Software, Nov. 2009, pp. 1780–1792. 

16. E. Säckinger, Broadband Circuits for Optical Fiber Communication, John Wiley & Sons, 2005. 

17. H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled Experimentation with Testing Tech-

niques: An Infrastructure and Its Potential Impact,” Empirical Software Eng., Oct. 2005, pp. 405–435. 

18. Y. Yu, J.A. Jones, and M.J. Harrold, “An Empirical Study of the Effects of Test-Suite Reduction on 

Fault Localization,” Proc. 30th Int’l Conf. Software Eng. (ICSE 08), ACM, 2008, pp. 201–210. 

  



12 

Zhenyu Zhang is an associate research professor at the State Key Laboratory of Computer 
Science, Institute of Software, Chinese Academy of Sciences, Beijing, China. His research interests 
include software testing and debugging, with a focus on fault localization. Zhang received a PhD in 
computer science from The University of Hong Kong. He is a member of ACM, IEEE, and the China 
Computer Federation. Contact him at zhangzy@ios.ac.cn. 

W.K. Chan is an associate professor in the Department of Computer Science, City University of 
Hong Kong. His research interests include software testing and analysis of concurrent systems and 
software. Chan received a PhD in computer science from The University of Hong Kong. Contact him 
at wkchan@cityu.edu.hk. 

T.H. Tse is a professor in computer science and director of The Software Engineering Group at 
The University of Hong Kong. His research interests include program testing, debugging, and 
analysis. Tse received a PhD from the London School of Economics. He is a fellow of the British 
Computer Society, the Institute for the Management of Information Systems, the Institute of 
Mathematics and its Applications, and the Hong Kong Institution of Engineers. Contact him at 
thtse@cs.hku.hk. 

 




