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Abstract—An effective integration between testing and debugging 

should address how well testing and fault localization can work 

together productively. In this paper, we report an empirical study 

on the effectiveness of using adequate test suites for fault 

localization. We also investigate the integration of test case 

prioritization and statistical fault localization with a postmortem 

analysis approach. Our results on 16 test case prioritization 

techniques and four statistical fault localization techniques show 

that, although much advancement has been made in the last 

decade, test adequacy criteria are still insufficient in supporting 

effective fault localization. We also find that the use of branch-

adequate test suites is more likely than statement-adequate test 

suites in the effective support of statistical fault localization. 

Keywords—Debugging, testing, continuous integration 

I. INTRODUCTION 

Program testing detects the presence of faults in programs. 
Simply knowing such presence is, however, inadequate: 
Developers also want to debug the program, that is, to locate 
the faults and fix them. Testing and debugging account for at 
least 30% of the total effort of a typical project [1]. They 

should be tightly integrated further to save costs.

 

How far does research advancement go by using some of 
the state-of-the-art test case prioritization techniques to iden-
tify high priority test cases and use them to conduct statistical 
fault localization? Previous studies have explored this integra-
tion problem [13]: If only a prefix of an ordered regression test 
suite is selected for execution, the code coverage statistics on 
the program under regression test achieved by different priori-
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tized strategies (such as random and greedy [7]) may be 
different. Because statistical fault localization techniques 
[2][10][17][18][22][25][26] may use their corresponding 
execution statistics to pinpoint suspicious program entities, 
understanding the tradeoff due to the use test case prioritiza-
tion strategies [7][8][12][16][20] on the effectiveness of fault 
localization techniques is crucial to the cost-effective integra-
tion of testing and debugging processes.  

Jiang et al. [13] studied the effectiveness of using the 
prioritized test suites generated by different test case priori-
tization techniques in locating faults through statistical fault 
localization techniques. In terms of relative mean percentage 
of code examined to locate faults, they found that random 
ordering and the additional greedy strategy using statement as 
the code granularity level [7] can be less affected than the 
clustering-based and total strategies. 

What is the probability of obtaining a test suite that is both 
adequate with respect to some testing criteria and effective 
with respect to some fault localization techniques? In other 
words, to what extent may we expect such an adequate test 
suite to be effective in assisting developers in locating faults? 
Can the list of suspicious statements that include the faulty (or 
the most fault relevant) statements fit into a panel on an IDE 
canvas easily providing that this suggestion is produced by a 
test suite that is deemed effective? 

In this paper, we study these questions. We report the 
results of an empirical study that involves 16 test case 
prioritization techniques and four statistical fault localization 
techniques on 11 subject programs. We compare ART [12] and 
Greedy [7] test case prioritization strategies. ART represents a 
strategy that randomly selects test cases followed by resolving 
randomness through a coverage measure, whereas Greedy 
represents a strategy that selects test cases through a coverage 
measure followed by resolving tie cases randomly. These two 
strategies put opposite emphases on the same data available 
for test case prioritization. Their aggregated results help offset 
the ordering factor between random selection and coverage 
data in test suite prioritization. 

Both branch (a.k.a. all-edges) adequacy and statement 
adequacy are practical coverage criteria, which can be 
applicable to widely-used complex programs [4], and typical 
code profiling tools such as gcov can measure such elements 
that have been covered. We have conducted an experiment 
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over 262 faulty programs, each of which runs 1000 branch-
adequate test suites to reorder test cases; in turn, each 
reordered test case has been used to locate faults by four fault 
localization techniques individually. We have repeated the 
same procedure by systematically varying a portion of each 
reordered test suite.  

Although many statistical fault localization research results 
and achievements have been obtained in the past decade, our 
results still show many surprises. First, branch-adequate test 
suites achieve higher probabilities than statement-adequate test 
suites in supporting effective fault localization. Nonetheless, 
these two practical test adequacy techniques are still insuffi-
cient to equip existing statistical fault localization techniques 
to be effective more often than not. Second, many existing test 
case prioritization techniques do not effectively integrate with 
the use of adequate test suites to assign the first priority to 
those test cases that are useful for statistical fault localization, 
even though the whole test suites are effective in locating 
faults within a particular threshold, say 1%, of the code 
examined. Third, but not the least, we observe that existing 
fault localization techniques are still ineffective in suggesting 
faulty statements within one debug screen in typical IDEs. 
These point to the same direction that the current state of 
integration between testing and debugging techniques are still 
unsatisfactory. 

A preliminary version [11] of this paper has reported part 
of the results on the Siemens suite. This paper significantly 
enhances the preliminary version by studying statement-
adequate test suites in additional to branch-adequate ones, 
extending the study with a comparison between ART and 
(Additional) Greedy, and reporting the results on a suite of 
four UNIX programs. 

The main contribution of this paper and its preliminary 
version [11] is threefold: (1) It presents the first controlled 
experiment to study the probability of obtaining a test suite 
that is both adequate with respect to specific testing criteria 
and effective with respect to specific fault localization tech-
niques. (2) It reports on how likely an average test case priori-
tization technique effectively supports an average statement-
level statistical fault localization technique. (3) It conducts a 
regression analysis that shows that the mean effectiveness of 
statistical fault localization techniques is still not scalable as 
the size of a program increases. 

We organize the rest of paper as follows: Section II reviews 
the test case prioritization techniques and fault localization 
techniques used in our study. We present our controlled 
experiment and its results in Section III. Section IV describes 
related work followed by a conclusion in Section V. 

II. BACKGROUND 

This section describes the test case prioritization and fault 
localization techniques involved in our study. 

A. Test Case Prioritization Techniques 

We follow [7] to organize the test case prioritization 
techniques into two dimensions. The first dimension is 
granularity, expressed in terms of statements, branches, and 
functions. The second is prioritization strategy. We study 

Greedy [7] and the ART [12] strategies. The Greedy strategy 
can be further subdivided into the Total and Additional sub-
strategies. The ART strategy is reported in [12]. 

On one hand, ART represents a strategy that randomly 
selects test cases followed by resolving the randomness among 
the selected test cases through a coverage measure. On the 
other hand, Greedy represents a strategy that selects test cases 
through a coverage measure followed by resolving tie cases 
randomly. We refer to these two ways to prioritize test cases 
as the random-before-coverage (R2C) strategy, and the 
coverage-before-random (C2R) strategy, respectively. Table 1 
summarizes the techniques. 

C2R strategy. When we combine the two Greedy sub-
strategies with the three granularities, we produce six 
techniques: total statement (total-st), total branch (total-br), 
total function (total-fn), additional statement (addtl-st), 
additional branch (addtl-br), and additional function (addtl-
fn). All of them have been reported in [7]. 

 

TABLE 1. TEST CASE PRIORITIZATION TECHNIQUES. 
 Ref Type/Name 

 
Brief Descriptions 

 T1 Random Random prioritization 

G
re

ed
y 

(C
2R

) 
 Greedy 

T2 total-st 

 

Total statement 

T3 total-fn Total function 

T4 total-br Total branch 

T5 addtl-st Additional statement 

T6 addtl-fn Additional function 

T7 addtl-br Additional branch 

A
R

T
 (

R
2C

) 

 ART 

Level of 

Coverage 

Information 

Test Set Distance 

T8 
ART-st-
maxmin 

Statement 
(T8-T10) 

Maximize the minimum distance 
between test cases 

T9 
ART-st-
maxavg 

Maximize the average distance 
between test cases 

T10 
ART-st-
maxmax 

Maximize the maximum distance 
between test cases 

T11 
ART-fn-
maxmin 

Function 
(T11-T13) 

Maximize the minimum distance 
between test cases 

T12 
ART-fn-
maxavg 

Maximize the average distance 
between test cases 

T13 
ART-fn-
maxmax 

Maximize the maximum distance 
between test cases 

T14 
ART-br-
maxmin 

Branch 
(T14-T16) 

Maximize the minimum distance 
between test cases 

T15 
ART-br-
maxavg 

Maximize the average distance 
between test cases 

T16 
ART-br-
maxmax 

Maximize the maximum distance 
between test cases 

 
R2C Strategy. We adopt the ART strategy [12] to represent 

the R2C strategy. The basic algorithm of ART prioritizes the 
test cases by iteratively building a candidate set of test cases, 
and then picks one test case out of the candidate set until all 
the test cases in a given regression test suite have been 
selected. To generate a candidate set of test cases, the 
algorithm randomly adds the not-yet-selected test cases one by 
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one into the candidate set (which is initially empty) as long as 
they can increase the code coverage achieved by the candidate 
set. The algorithm then selects a test case from the candidate 
set that maximizes the distance of the test cases from the 
selected test cases. The distance between two test cases is 
defined as the Jaccard distance between the coverage of the 
program entities of the two test cases. By combining three 
distance measures (average, minimum, and maximum) and the 
three granularities, there are nine techniques: ART-st-
maxmin, ART-st-maxavg, ART-st-maxmax, ART-fn-
maxmin, ART-fn-maxavg, ART-fn-maxmax, ART-br-
maxmin, ART-br-maxavg, and ART-br-maxmax. All of 
them have been reported in [12]. 

Optimization. Readers may be aware that the above 
techniques have not been optimized. There are many ways to 
optimize the coverage-bases measures, such as through hill-
climbing or genetic techniques. In the study reported in this 
paper, we do not examine the effects of optimization. 

B. Fault-Localization Techniques 

We revisit the set of four statistical fault localization 
techniques used in the study. Each technique computes the 
suspiciousness of individual statements, followed by ranking 
these statements according to their suspiciousness scores. One 
of the techniques, namely Tarantula [14], further uses a tie-
breaker to resolve statements having the same suspiciousness 
values so that they may be assigned different ranks. This set of 
techniques were used in the experiment presented in [14]. 

 

Table 2 summarizes the fault localization techniques. In the 
table, the function %failed is the percentage of failed test cases 
that execute statement s (among all the failed test cases in the 
test suite). The function %passed is similarly defined. The 
function failed (passed, respectively) is the number of failed 
(passed, respectively) test cases for which s is executed. The 
variable totalfailed is the total number of failed test cases. 

III. EXPERIMENT 

In this section, we report the research questions and the 
setup of the experimental study. 

A. Research Questions 

We have designed two research questions to examine the 
more general questions stated in Section I. 

RQ1: How likely does a practical test adequacy criterion 
generate adequate test suites for a statistical fault localization 
technique to locate faults effectively? 

RQ2: To what extent may a test suite that is deemed 
effective in locating faults be prioritized so that the test cases 
having higher priority can be used for fault localization 
techniques to locate faults effectively? 

We choose branch coverage (all-edges) and statement 
coverage to study RQ1 because they are practical criteria that 
can be applied to industrial-strength programs [4]. Moreover, 
many existing practical industrial-strength tools (such as 
gcov) can provide profiling data for testers to determine 
whether the coverage criteria have been achieved. 

Answering RQ1 helps developers and researchers under-
stand the chances of producing effective test suites based on 
practical test data adequacy criteria with respect to some of the 
best and representative statistical fault localization techniques. 
If the chance is high enough, developers can be more comfort-
able in using such adequate test suites to conduct regression 
testing on their programs so that the test data can be helpful 
for later and potential fault localization activities. However, if 
the chance is not good, developers are provided with evidence 
to support their actions to enhance their test suites for regres-
sion testing with a view to improving the chance of effective 
fault localization. 

Answering RQ2 helps us decide whether the effort on 
prioritizing test cases is worthwhile and whether executing the 
higher priority portion of the prioritized test cases may still 
retain good fault localization effectiveness. If the finding is 
positive, developers may be comfortable in using the test data 
for fault localization. On the other hand, if the finding is nega-
tive, then additional test cases may be required so that the fault 
localization effectiveness of the test suites will not be seriously 
compromised. 

B. Subject Programs and Test Suites 
We use the Siemens suites and four UNIX programs as the 

subject (see Table 3). We have downloaded them from SIR 
[6]. The Siemens suite consists of seven small programs. Each 
program comes with, among other files, a set of faulty 
versions, a test pool, and a set of 1000 large branch-adequate 
test suites and 1000 large statement-adequate test suites. 
According to [6], each test case in every such brand-adequate 
(statement-adequate, respectively) test suite is randomly 
picked among test cases in the test pool that can cover the 
same edge (statement, respectively). 

However, only one test pool is available to each UNIX 
program. We use this test pool to construct 1000 branch-
adequate test suites and 1000 statement-adequate test suites for 
each UNIX program. More specifically, for each edge, we 
randomly pick a test case that covers the edge. We note that 
this is also the generation strategy used in the downloaded 
large test suites for the Siemens suite [6]. 

TABLE 2. STATISTICAL FAULT LOCALIZATION TECHNIQUES. 

Technique Ranking formula 

Tarantula [14] 

          

                      
 

Tie-breaker: 
max(%failed(s), %passed(s)) 

Adapted 
Statistical 
Bug Isolation 
(SBI) [17] 

           

                       
 

Jaccard [2]  
           

                        
 

Ochiai [2] 
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TABLE 3. SUBJECT PROGRAMS. 

Group Subject 

No. of 

Faulty 

Versions 

SLOC 

Test 

Pool 

Size 

No. of 

Test 

Suites 

S
ie

m
en

s 
S

ui
te

 

tcas 41 133137 1608 1000 

schedule 9 291294 2650 1000 

schedule2 10 261263 2710 1000 

tot_info 23 272274 1052 1000 

print_tokens 7 341342 4130 1000 

print_tokens2 10 350354 4115 1000 

replace 32 508515 5542 1000 

U
N

IX
 P

ro
gr

am
s 

flex 

(2.4.7–2.5.4) 
21 8571–10124 567 

1000 

1000 

grep  

(2.2–2.4.2) 
17 8053–9089 809 

1000 

1000 

gzip 

(1.1.2–1.3) 
55 4081–5159 217 

1000 

1000 

sed  

(1.18–3.02) 
17 4756–9289 370 

1000 

1000 
 

 

C. Metrics 

To measure the fault localization effectiveness, we use the 
metric Expense [10], which is defined by the equation 

         
                            

                                     
   

where the rank of a given statement is the sum of the number 
statements that have higher suspiciousness values and the 
number of statements that have the same or higher tiebreaker 
values if their suspiciousness values are equal to that of the 
given statement. 

In practice, a developer may only have the patience to 
walk through a small portion of the ranking list. As a result, a 
high Expense value (such as 90%) may be useless for 
debugging. A sequence of test cases with respect to a fault 
localization technique and a given faulty program is said to be 

-effective if the Expense value of using this sequence of test 
cases by the fault localization technique on the faulty program 

is strictly lower than the threshold value specified by . 

We define the metric Fault Localization Successful 

Percentage (FLSP) to be the ratio of the number of -effective 
test suites in a test suite pool P over the size of the test suite 
pool     with respect to a fault localization technique and a 
given faulty program, thus: 

            
            and   is              

    
 

D. Experimental Setup 

We apply each test case prioritization technique (see Table 
1) and each fault-localization technique (see Table 2) to every 
test suite of every subject program. For every prioritized test 
suite generated by each test case prioritization technique, we 
repeated the above procedure using, in turn, the top 10%, 20%, 
…, 90% of the ordered test suite. For each such portion of all 
prioritized test suites applicable to every corresponding 

subject, we collected the Expense values from all fault locali-
zation techniques, and computed the FLSP values.  

We have carried out the experiment on a Dell PowerEdge 
2950 server serving a Solaris UNIX system. We used gcc 
version 4.4.1 as the C compiler. The server has two Xeon 5430 
(2.66GHz, 4 core) processors with 4GB physical memory. We 
follow [25] to remove those faulty versions that cannot detect 
by any test case in the test pool as well as those that can be 
detected by more than 20% of the test cases in the pool. We 
used gcov to collect the execution statistics of every run. 

To study RQ1, we use all the branch-adequate and 
statement-adequate test suites for experimentation. For each 
faulty version, we also removed those test suites that cannot 
detect the fault because fault localization techniques require at 
least one failed test case. We have also removed all the test 
suites that cannot work with our platform. We pass the 
execution statistics to all the four fault localization techniques 
and follow [11] to measure their results in terms of FLSP on 
all subject programs with three different fault localization 
effectiveness threshold values (1%, 5%, and 10%). RQ2 is a 
follow-up research question based on the results of RQ1. We 
only use branch-adequate test suites for RQ2 to control the 
scale of our empirical study. Similar to RQ1, we have 
removed all test suites that contain no failed test cases as well 
as all test suites that cannot work with our platform.  

All the ART techniques are based on random selection. 
Therefore, we follow [11] to repeat each of them 20 times to 
obtain an average performance and to select 50 suites from the 
available 1000 test suites for every Siemens or UNIX subject 
program. Thus, we conducted a total 1000 prioritizations for 
every ART technique. We then use MATLAB to perform 
multiple comparisons by specifying a significance level of 5% 
for analysis. 

E. Data Analysis 

1) Answering RQ1 

We examine the effect of a fault localization technique to 

locate faults in programs using a whole adequate test suite. As 

a result, we need not differentiate among test case prioritiza-

tion techniques, as the test suites generated by them will have 

the same fault localization results.  

Table 4, Table 5, Table 6, and Table 7 show the mean 
number of effective suites averaged over all faulty versions for 
Siemens and UNIX programs on Tarantula, SBI, Jaccard, and 
Ochiai, respectively. The first row lists the threshold values 
used in the experiment. We use three threshold values to 
measure the effectiveness of fault localization results: 1%, 5%, 
and 10%. In other words, if a fault can be located by 
inspecting less than 1%, 5%, or 10% of the ranked list of 
suspicious statements, we consider the fault localization result 
to be useful for the respective scenarios. The threshold values 
divide the table into three groups. The second row shows two 
adequacy criteria (Br for branch adequacy and Stmt for 
statement adequacy) for each group. The rows that follow 
show the mean number of effective test suites for each 
program. (Note that the total number of test suites for each 
faulty version is 1000.) 
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TABLE 4. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR TARANTULA 

Threshold Value  = 1%  = 5%  = 10% 

Adequacy Criteria Br Stmt Br Stmt Br Stmt 

tcas 25 8 191 36 193 31 

replace 145 46 342 126 381 140 

tot_info 145 74 331 140 430 181 

schedule 14 1 169 52 243 61 

schedule2 0 0 35 5 107 11 

print_tokens 55 3 151 22 215 37 

print_tokens2 156 56 317 121 332 159 

grep 618 371 832 546 936 756 

sed 604 319 860 594 931 753 

flex 665 376 827 586 951 720 

gzip 674 395 843 516 945 711 

 

We study how branch-adequate test suites compare with 

statement-adequate test suites. We observe from Table 4 that 

for every subject program and for each threshold value, on 

average, the use of a branch-adequate test suite performs 

consistently better than a statement-adequate test suite. 

Moreover, this result is consistent with the other three fault 

localization techniques as shown in Table 5, Table 6, and 

Table 7. Branch adequacy subsumes statement adequacy in 

terms of test requirement, and the former empirically out-

performs the latter in terms of fault detecting ability. Our 

results show that branch-adequate test suites can also be more 

effective than statement-adequate test suites in supporting 

fault localization. 

TABLE 5. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR SBI 
Threshold Value  = 1%  = 5%  = 10% 

Adequacy Criteria Br Stmt Br Stmt Br Stmt 

tcas 29 11 205 46 201 39 

replace 152 48 353 134 388 154 

tot_info 157 80 335 141 437 186 

schedule 19 10 180 63 246 70 

schedule2 0 0 38 15 109 16 

print_tokens 61 5 153 35 215 43 

print_tokens2 166 70 317 132 337 168 

grep 690 306 831 595 952 742 

sed 681 389 880 590 946 719 

flex 678 306 860 541 940 754 

gzip 611 324 818 548 953 759 

TABLE 6. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR JACCARD 

Threshold Value  = 1%  = 5%  = 10% 

Adequacy Criteria Br Stmt Br Stmt Br Stmt 

tcas 31 9 235 41 217 37 

replace 42 24 206 36 207 33 

tot_info 153 56 354 138 394 154 

schedule 147 80 338 158 433 186 

schedule2 31 13 180 69 256 69 

print_tokens 0 0 36 11 109 11 

print_tokens2 73 16 156 32 216 51 

grep 693 306 844 512 920 687 

sed 660 389 799 513 885 747 

flex 685 306 805 510 903 705 

gzip 670 324 852 568 915 695 

TABLE 7. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR OCHIAI 

Threshold Value  = 1%  = 5%  = 10% 

Adequacy Criteria Br Stmt Br Stmt Br Stmt 

tcas 31 15 198 49 201 26 

replace 163 46 349 130 388 148 

tot_info 157 76 338 138 448 181 

schedule 12 8 180 61 243 64 

schedule2 0 0 48 20 115 9 

print_tokens 56 9 160 29 231 39 

print_tokens2 168 58 320 123 343 173 

grep 615 306 842 595 900 722 

sed 669 389 805 574 925 716 

flex 666 306 824 517 894 712 

gzip 698 324 834 503 944 709 

 
We have further conducted hypothesis testing to confirm 

that the use of a branch-adequate test suite is significantly 
more effective than a statement-adequate test suite. In a recent 
study [4], test suites with high branch coverage (95% on 
average) have been shown to be generable in a fully automated 
manner for complex programs. As such, we believe that the 
use of branch-adequate test suites is more promising than 
statement-adequate test suites for statistical fault localization. 
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Fig. 1. Distribution of Expense vs. size of faulty programs. 

The slope of the regression line is less than 0.013, indicating that branch- and 
statement-adequate test suites are increasingly practical in supporting effective 
statistical fault localization as the size of a faulty program increases. 
Nonetheless, most data points are above the dotted line, indicating that a 
typical 25-line screen in an IDE may be ineffective in displaying the code that 
includes the faults. 

To understand how to support fault localization better, Fig. 
1 plots all the data points in the experiment, each of which 
represents the Expense used to locate the fault in a program by 
a fault localization technique with different program sizes 
(measured in lines of code). The x-axis shows the lines of code 
for all the Siemens and UNIX program versions while the y-
axis shows the number lines in the source code that need to be 
examined to find a fault. Each dot represents the code needed 
to locate a fault for a program with specific executable lines of 
code, and the solid line is a linear regression line for these 
dots, to show the trends of code examined to locate a fault. 

Moreover, when using a fault localization tool, developers 
may expect it to help them focus their attention on only a few 
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suspicious source code locations; otherwise, in practice, the 
developers may lose patience and consider the tool ineffective. 
A typical debug screen of an IDE (such as an Eclipse IDE or 
Visual Studio IDE) is around 25 lines of code. By using this as 
a reference, one can draw a horizontal dotted line (in red) as 
shown in Fig. 1. 

Interestingly, we find from Fig. 1 that the majority of the 
dots are distributed above the (red) horizontal dotted line, and 
the linear regression line is also positioned above the (red) 
dotted line. This observation shows that, in general, fault 
localization results based on existing adequate test suites 
cannot help developers locate the fault within one screen of 
the code view of a practical IDE. 

Our analysis above is preliminary, and the aim of this 
analysis is not to completely answer whether existing IDEs 
can effectively present information on statistical fault localiza-
tion results to developers. However, the finding does raise 
interesting questions for future work: Can we define test 
adequacy criteria that will likely construct test suites for 
effective fault localization that fit for one screen? Moreover, 
what information can fit into the code view on one screen to 
support effective fault localization (for practical adequate test 
suites)? Alternatively, what kinds of advances in human-
computer interaction (such as screen design) will support 
effective fault localization of large applications?  

Moreover, we find from Fig. 1 that the slope of the 
regression line is close to 0.013, and the line meets the y-axis 
at y = 95. In other words, the equation for the regression line 
is y = 0.013x + 95. It indicates that there are certain overheads 
in locating faults from programs of small sizes. The slope of 
the line (0.013) is small but larger than 0.01, which indicates a 
minimum of 1% of the code must be examined on average 
[24]. We observe that, in the literature, the use of 1% as the 
threshold is frequently reported in experiments that evaluate 
the effectiveness of statistical fault localization techniques. 
Interestingly, this benchmark requirement cannot be met on 
average even for the idealized scenarios that we have studied 
in this paper. 

Our results indicate that existing practical test adequacy 
criteria are still unlikely to generate test suites to support 
effective statistical fault localization.  

2) Answering RQ2 

We have conducted a postmortem analysis on the integra-
tion results. Owing to the large number of possible criteria to 
specify whether an integration is effective, we use three 

different threshold Expense values, namely  = 0.01, 0.05, and 
0.10, as the criteria to deem a test suite to be effective. They 
represent the cases that developers need to examine up to 1%, 
5%, and 10% of the code in order to find the faults if they 
follow the ranks of the statements. We will leave the analysis 
of different factors such as strategies and coverage granularity 
levels to be reported in future work. 

a) Small-Scale Programs 

Subfigures (a), (c), and (e) of Fig. 2 show the correspond-
ing results. In each of the subfigures, the x-axis indicates 

different percentages of a test suite used for fault localization 
while the y-axis indicates the FLSP values for a test case 
prioritization technique to locate faults by examining up to the 
threshold percentage of code. 

We observe from Fig. 2 (a) that, by inspecting the top 1% 
of the ranked list of statements, the median FLSP value of a 
test suite is 8% if we prioritize and execute the top 10% of a 
test suite for fault localization, which is very low. Even if we 
increase the percentage of test suite to 100%, the median of 
the percentages of effective test suites is still less than 14%. 
The result indicates that it is quite impractical to assume that 
the faults will be in the few (say, 1 to 5) top-ranked lines of 
source code. 

From Fig. 2 (a), (c), and (e), we observe that if a higher 
percentage of an original test suite is used for fault 
localization, the percentage of effective test suites increases. 
However, the increase is gradually less noticeable when the 
percentage of the test suite used reaches 60%. In particular 
given a code inspection range of 1%, the use of 60% of the 
prioritized test cases for the fault localization already achieves 
a FLSP value of 13%, whereas the use of all the remaining 
40% of test cases will increase the percentage value to 14% 
only. We observe similar trends for code inspection ranges of 
5% to 10% in Fig. 2 (c), and (e), respectively. 

We have conducted ANOVA analysis to compare their 
mean FLSPs. The analysis results consistently reject the null 
hypothesis that the use of different percentages (namely, 10%, 
20%, … , 100%) of the same ordered test suites has the same 
FLSP values at a significance level of 5%. To see what 
percentages of test suites differ from one another in terms of 
FLSP, we have further conducted the multiple comparisons 
procedure to find how different percentages of test suites 
differ significantly from one another at a significance level of 
5%. Subfigures (b), (d), and (f) of Fig. 2 show the results. The 
solid lines not intersected by the two vertical lines represent 
the percentages of test suites whose means differ significantly 
from the use of 60% of the suite for fault localization, while 
the gray lines represent the percentages of test suites compara-
ble to the use of 60% of the suites for fault localization. 

From subfigures (b) and (d) of Fig. 2, we observe that 
executing 60% of a test suite has no significant difference 
from executing the entire test suite. If we relax the code 
examination range to 10% of the code for the Siemens suite, as 
shown in Fig. 2 (f), there will be a significant difference. It 
indicates that developers should have an estimate on the 
amount of code they can afford to examine so that a test case 
prioritization technique can use it as a reference to determine 
the portion of test suites to be executed. 

a) Medium-Scale Programs 

We have also conducted a postmortem analysis on the 
integration study for UNIX programs. Subfigures (a), (c), and 
(e) of Fig. 3 show the corresponding results. In these 
subfigures, the x-axis indicates different percentages of a test 
suite used for fault localization while the y-axis indicates the 
FLSP values for a test case prioritization technique to locate 
faults by examining up to the threshold percentage of code. 
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We observe from Fig. 3 (a) that, by inspecting the top 1% 
of the ranked list of statements, the median FLSP value is 47% 
if we prioritize and execute the top 10% of a test suite for fault 
localization, which is much higher than that for the Siemens 
programs. Even if we increase the percentage of test suite to 
100%, the median FLSP value is still under 65%. Although 
developers are willing to examine up to 5% (10%, respectively) 
of the code, Fig. 3 (c) and (e) still show that there is less than 
65% (73%, respectively) of the chance that the top 10% of test 
cases can assist them in locating faults effectively. The results 
show that developers should not greedily start fault localiza-
tion based on a small percentage (10% in the above discus-
sion) of the whole test suite. 

The data show that there are two strategies to alleviate this 
problem. First, we observe across Fig. 3 (a), (c), and (e) that, 
since the corresponding bars among the three plots increase in 
terms of their y-values, if developers are willing to put in more 
effort to examine the code, the effort may be worthwhile. 
Second, on each plot in Fig. 3 (a), (c), and (e), when a higher 
percentage of an original test suite is used for fault 
localization, the percentage of effective test suite increases 
remarkably. The results suggest that, if the preferred code 
examination range is fixed, the use of a higher percentage of 
test cases can be a good choice. It seems to us that this second 
strategy provides hints to answer the follow-up question in 
RQ1 that, in order to fit the code in supporting effective fault 
localization on one code-view screen, the use of a smaller 
adequate test suite for such testing-debugging integration may 

be a viable research direction. (However, the study on this 
aspect is not within the scope of this paper). 

We have also conducted ANOVA analysis to compare the 
mean FLSPs. The analysis results consistently reject the null 
hypothesis that the use of different percentages of test suites 
has the same FLSP values at a significance level of 5%. We 
further conducted the multiple comparisons procedure to find 
how different percentages of the same ordered test suites differ 
significantly from one another at a significance level of 5%. 
Subfigures (b), (d), and (f) of Fig. 3 show the results. The solid 
lines not intersected by the two vertical lines represent those 
percentages of test suites whose means differ significantly 
from the use of 100% of the suite for fault localization, while 
the gray lines represents those percentages of test suites com-
parable to the use of 100% of the suites for fault localization. 

From subfigure (b) of Fig. 3, we observe that only when 
executing more than 60% of a test suite will there be no signifi-
cant difference from executing the entire test suite in terms of 
FLSP. If we relax the code examination range to 5% and 10% 
of the code as shown in subfigures (d) and (f) of Fig. 3, we still 
have the same results. It shows that, for UNIX programs, 
around 60% percentage of the test suite should be used to 
obtain fault localization effectiveness comparable to the use of 
the whole test suite. The results indicate that, by using smaller 
test suites, developers should prepare themselves that the fault 
localization effectiveness are extremely likely be decreased. 
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Fig. 2. The chance of test case prioritization techniques supporting effective fault localization for Siemens programs. 

The chance of having all the branch-adequate test suites to support effective fault localization is not good. The use of a smaller portion of prioritized test 

suites does not support effective fault localization either. 
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To conclude, we can answer RQ2 that the chance of test 
case prioritization techniques to support effective fault localiza-
tion is higher on medium-scale programs than on small-scale 
programs. Furthermore, similar to small scale programs, 
around 60% of the test suite should be used for medium-scale 
programs to make the selected part of the test suite as effective 
as the whole suite. 

F. Threats to Validity 

We have used seven Siemens programs, four UNIX 
programs, and their faulty versions as our subjects. The use of 
other faulty programs can result in different coverage patterns 
for failed test executions and passed test executions, which 
may result in different suspiciousness values assigned to the 
program statements. Although the set of faults did not 
represent all possible faults, using them to conduct compari-
sons among techniques published in existing work is useful for 
researchers to compare results across different papers and 
experiments. Moreover, we have used the adequate test suites 
provided by the SIR repository and generated the branch-
adequate and statement-adequate test suites for the UNIX 
programs. The use of other adequacy test suites may provide 
other results. We will leave the analysis and reporting of such 
test suites in future work. 

In any case, our subjects have been widely used in existing 
test case prioritization, statistical fault localization, and unit 
testing research. Moreover, branch-adequate test suites have 
been frequently used in the experiments of testing and debug-
ging papers. We believe that they have used these subjects in 
their experiments on good grounds with practical considera-
tions. The results of our experiment complemented their 

findings on these artifacts and facilitated comparison across 
publications. 

In our experiment, we have excluded some faulty versions 
and test cases available from SIR. There are a few reasons. 
The foremost reason is that, in our testing framework for the 
experiment, it uses gcov, which is a popular and freely 
available tool, to collect the branch execution profile of each 
non-crashed execution. For crashed executions, gcov cannot 
provide coverage data. The techniques in our experiment, 
however, require coverage data in order to operate. Conse-
quently, we have excluded these test cases from the data 
analysis. As we have reported, our experimental environment 
is a UNIX server running SUN OS. The C compiler provided 
by the underlying platform is also provided by SUN. Some 
versions cannot be compiled. This is a kind of platform 
dependence issue and we have also removed these versions to 
minimize their impact. 

Another reason for us to exclude some faulty version from 
the data analysis is that we follow previous papers on test case 
prioritization to conduct the experiment to exclude any version 
whose failures can be detected by more than 20% of the test 
cases in the test pool. The choice of this threshold poses a 
threat to this study. Nonetheless, this practice has been widely 
used in the test case prioritization experiments. The use of this 
threshold facilitates a comparison between this work and 
existing publications. A way to address this threat could be to 
conduct a larger experiment to vary this threshold from 0% to 
100% systematically, and observe the effect. The effort to 
conduct this experiment and the corresponding data analysis 
are, however, not affordable to us. We have, therefore, 
excluded this aspect from our current experiment. 

 
(a) Expense < 1% 

 
(c) Expense < 5% 

 
(e) Expense < 10% 

P
e
rc

e
n

ta
g

e
 o

f 
T
e
s
t 

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

35% 40% 45% 50% 55% 60% 65% 70% 75%

Click on the group you want to test

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

 
(b) Expense < 1% 

P
e
rc

e
n

ta
g

e
 o

f 
T
e
s
t 

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Click on the group you want to test

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

 
(d) Expense < 5% 

P
e
rc

e
n

ta
g

e
 o

f 
T
e
s
t 

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

65% 70% 75% 80% 85% 90% 95% 100%

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

 
(f) Expense < 10% 

Fig. 3. The chance of test case prioritization techniques supporting effective fault localization for UNIX programs 
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Another concern about the study may be the nature of the 
test suites. We have used the test suites provided by SIR. They 
may not be representative in the sense that some test cases 
important to statistical fault localization may not be available. 
On the other hand, test case prioritization and fault localization 
are becoming mature and hence a common ground for 
comparison is necessary. To strike a balance between the use 
of more test suites and the comparability with a large body of 
published work, we have chosen the latter option in this study. 
In RQ1, we have 1000 branch-adequate and 1000 statement-
adequate test suites for each subject program. They provide us 
enough data points to compile statistical results shown in the 
paper. For RQ2, we would like to highlight that the results are 
based on one small test pool per subject program. Readers 
should not overly generalize the results. For some subject 
programs, the requirement of having branch-adequate test 
suites may still be too demanding. For instance, almost all the 
subject programs used in the experiment reported in [4] did 
not come with test suites that are branch adequate. We leave 
this practical consideration as future work. 

In this study, owing to time and resource constraints, we 
have only evaluated the random, the coverage-based Greedy, 
and the white-box ART-based test case prioritization tech-
niques. Although they are among the best general test case 
prioritization techniques studied in previous work, they have 
not been optimized. The use of optimized versions or other 
variants of these strategies as well as the use of other strategies 
may produce different results. 

In drawing a comparison, we use the Expense metric as 
well as the FLSP metric. The use of other metric may produce 
different results. The former metric has been widely used to 
evaluate statistical fault localization techniques. It, however, 
only represents one way of how developers may use the 
ranked list of statements and makes an assumption that any 
fault on each visited statement can be identified correctly. The 
time taken to visit such a statement and the precision of the 
fault identification has not been captured by this metric. The 
FLSP metric is built on top of the Expense metric. Owing to 
the limitation of the Expense metric, the effort to reveal a fault 
measured by the FLSP metric does not totally reflect the effort 
of developers to use the generated ranked list of statements to 
perform debugging. Readers are advised to interpolate the 
results of the experiment carefully. 

IV. RELATED WORK 

Apart from the 16 test case prioritization techniques and 
the 4 fault localization techniques in Section II, there are many 
studies on integrating different testing and/or debugging 
techniques.  

For instance, Wong and colleagues proposed an approach 
to combining test suite minimization and prioritization to 
select cases based on the cost per additional coverage [22][23]. 
Baudry et al. [3] used a bacteriologic approach to generate test 
suites that aim at maximizing the number of dynamic basic 
blocks to make the fault localization more effective. Yu and 
colleagues examined the effect of test suite reduction on fault 
localization [24]. Their studies found that test suite reduction 
does have an impact on the effectiveness of fault localization 
techniques. However, they neither studied test case prioritiza-

tions nor the extent of reductions that may lead to effective 
fault localizations similar to what we report in this paper.  

Jiang et al. [13] examined the integration of test case 
prioritization and fault localization. They found that test case 
prioritization has an impact on the effectiveness of fault locali-
zation techniques and many existing prioritization techniques 
are no better than random ordering. However, they did not 
study to what extent test case prioritizations may generate test 
suites that existing fault localization techniques may use to 
locate faults effectively. Gonzalez-Sanchez et al. [9] proposed 
a new test case prioritization approach that maximizes the 
improvement of the diagnostic information per test. Their 
results showed that their technique could reduce the overall 
testing and debugging cost in some scenarios. They did not 
examine the effect of adequate test suites on fault localization 
techniques, however. 

There are abundant studies on test case prioritization 
techniques. Srivastava and Thiagarajan [21] developed a 
binary matching technique to compute the changes in pro-
grams at the basic block level and prioritize test cases to cover 
maximally the affected program changes. Li et al. [16] eva-
luated various search algorithms for test cases prioritization. 
Leon et al. [15] also proposed failure-pursuit sampling tech-
niques. Their failure-pursuit sampling uses one-per-cluster 
sampling to select the initial sample and, if a failure is found, 
its k nearest neighbors are selected and checked. If additional 
failures are found, the process will be repeated. 

There are also studies on fault localization techniques that 
are closely related to the four techniques used in our experi-
ment. For instance, Cleve and Zeller [5] proposed delta 
debugging, which automatically isolates failure-inducing in-
puts, produces cause-effect chains, and finds the faults. 
Renieris and Reiss [19] found that the use of the execution 
trace difference between a failed run and its nearest passed 
neighbor run is more effective than using other pairs for fault 
localization. Jeffrey et al. proposed a value-profile based 
approach to ranking program statements according to their 
likelihood of being faulty [10]. Zhang et al. [26] proposed to 
differentiate the short-circuit evaluations of individual predi-
cates in individual program statements and produce one set of 
evaluation sequences per predicate for fault localization. 
Zhang et al. [25] proposed to use a network propagation 
approach to address the issue of coincidental correctness that 
may occur in test executions.  

Because our study is an integration of test case prioritiza-
tion techniques and fault localization techniques, the experi-
ment will grow tremendously when we evaluated more fault 
localization techniques. We have, therefore, focused this work 
on the four most typical fault localization techniques in our 
study to make the empirical study manageable without losing 
representativeness. 

V. CONCLUSION 

Program debugging can be initiated even though testing 
only produces partial test results. This leads to the problem of 
selecting and executing some test cases before executing 
others, and whether the executed test cases with test results 
can effectively help debugging.  
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Fault localization is one of the major tasks in debugging. 
Our work has shown that existing and practical test suite 
adequacy criteria are still insufficient in the effective support 
of statistical fault localization techniques.  

It appears to us that the notion of using adequacy as a 
criterion to stop the testing effort may have adverse effects on 
fault localization effectiveness. We have also found that 
branch-adequate test suites are significantly better than 
statement-adequate test suites in effectively supporting fault 
localization. Furthermore, we have conducted an analysis of 
existing fault localization techniques and have found that they 
still ineffectively rank faulty statements within a (small) 
debugging panel in typical IDEs. When branch-adequate test 
suites are used by existing test case prioritization techniques to 
identify higher priority test cases with the aim of supporting 
effective fault localization, we have found that the saving is 
not impressive. The results have shown that there are still 
large gaps in integrating various kinds of testing and 
debugging techniques so that they can be used by developers 
under one roof. 

Test adequacy criteria are important because they define 
when to stop testing amid an infinite number of possible test 
cases in the input domain. Random testing can be effectively 
used, say, to crash test a program. We believe that random 
testing and adequacy testing are useful for different purposes. 
As a result, our paper focuses on the impact of adequate test 
suites on fault localization. It will be interesting to study other 
useful and practical testing techniques and resolve their 
effective integration. It will also be interesting to study 
reliability testing and its integration with program debugging. 
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