

1

To appear in Proceedings of the 11th International Conference on Quality Software (QSIC 2011),

IEEE Computer Society Press, Los Alamitos, CA (2011)

On Practical Adequate Test Suites for

Integrated Test Case Prioritization and Fault Localization*

Bo Jiang

The University of Hong Kong

Pokfulam, Hong Kong

bjiang@cs.hku.hk

W. K. Chan
†

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract—An effective integration between testing and debugging

should address how well testing and fault localization can work

together productively. In this paper, we report an empirical study

on the effectiveness of using adequate test suites for fault

localization. We also investigate the integration of test case

prioritization and statistical fault localization with a postmortem

analysis approach. Our results on 16 test case prioritization

techniques and four statistical fault localization techniques show

that, although much advancement has been made in the last

decade, test adequacy criteria are still insufficient in supporting

effective fault localization. We also find that the use of branch-

adequate test suites is more likely than statement-adequate test

suites in the effective support of statistical fault localization.

Keywords—Debugging, testing, continuous integration

I. INTRODUCTION

Program testing detects the presence of faults in programs.
Simply knowing such presence is, however, inadequate:
Developers also want to debug the program, that is, to locate
the faults and fix them. Testing and debugging account for at
least 30% of the total effort of a typical project [1]. They

should be tightly integrated further to save costs.


How far does research advancement go by using some of
the state-of-the-art test case prioritization techniques to iden-
tify high priority test cases and use them to conduct statistical
fault localization? Previous studies have explored this integra-
tion problem [13]: If only a prefix of an ordered regression test
suite is selected for execution, the code coverage statistics on
the program under regression test achieved by different priori-

 © 2011 IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other copy-
right holders. All persons copying this information are expected to adhere to
the terms and constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission of the
copyright holder. Permission to reprint/republish this material for advertis-
ing or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

* This research is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project nos. 111410 and 717308)
and a Strategic Research Grant of City University of Hong Kong (project no.

7008039).

† Contact author.

tized strategies (such as random and greedy [7]) may be
different. Because statistical fault localization techniques
[2][10][17][18][22][25][26] may use their corresponding
execution statistics to pinpoint suspicious program entities,
understanding the tradeoff due to the use test case prioritiza-
tion strategies [7][8][12][16][20] on the effectiveness of fault
localization techniques is crucial to the cost-effective integra-
tion of testing and debugging processes.

Jiang et al. [13] studied the effectiveness of using the
prioritized test suites generated by different test case priori-
tization techniques in locating faults through statistical fault
localization techniques. In terms of relative mean percentage
of code examined to locate faults, they found that random
ordering and the additional greedy strategy using statement as
the code granularity level [7] can be less affected than the
clustering-based and total strategies.

What is the probability of obtaining a test suite that is both
adequate with respect to some testing criteria and effective
with respect to some fault localization techniques? In other
words, to what extent may we expect such an adequate test
suite to be effective in assisting developers in locating faults?
Can the list of suspicious statements that include the faulty (or
the most fault relevant) statements fit into a panel on an IDE
canvas easily providing that this suggestion is produced by a
test suite that is deemed effective?

In this paper, we study these questions. We report the
results of an empirical study that involves 16 test case
prioritization techniques and four statistical fault localization
techniques on 11 subject programs. We compare ART [12] and
Greedy [7] test case prioritization strategies. ART represents a
strategy that randomly selects test cases followed by resolving
randomness through a coverage measure, whereas Greedy
represents a strategy that selects test cases through a coverage
measure followed by resolving tie cases randomly. These two
strategies put opposite emphases on the same data available
for test case prioritization. Their aggregated results help offset
the ordering factor between random selection and coverage
data in test suite prioritization.

Both branch (a.k.a. all-edges) adequacy and statement
adequacy are practical coverage criteria, which can be
applicable to widely-used complex programs [4], and typical
code profiling tools such as gcov can measure such elements
that have been covered. We have conducted an experiment

Administrator
 HKU CS Tech Report TR-2011-10

2

over 262 faulty programs, each of which runs 1000 branch-
adequate test suites to reorder test cases; in turn, each
reordered test case has been used to locate faults by four fault
localization techniques individually. We have repeated the
same procedure by systematically varying a portion of each
reordered test suite.

Although many statistical fault localization research results
and achievements have been obtained in the past decade, our
results still show many surprises. First, branch-adequate test
suites achieve higher probabilities than statement-adequate test
suites in supporting effective fault localization. Nonetheless,
these two practical test adequacy techniques are still insuffi-
cient to equip existing statistical fault localization techniques
to be effective more often than not. Second, many existing test
case prioritization techniques do not effectively integrate with
the use of adequate test suites to assign the first priority to
those test cases that are useful for statistical fault localization,
even though the whole test suites are effective in locating
faults within a particular threshold, say 1%, of the code
examined. Third, but not the least, we observe that existing
fault localization techniques are still ineffective in suggesting
faulty statements within one debug screen in typical IDEs.
These point to the same direction that the current state of
integration between testing and debugging techniques are still
unsatisfactory.

A preliminary version [11] of this paper has reported part
of the results on the Siemens suite. This paper significantly
enhances the preliminary version by studying statement-
adequate test suites in additional to branch-adequate ones,
extending the study with a comparison between ART and
(Additional) Greedy, and reporting the results on a suite of
four UNIX programs.

The main contribution of this paper and its preliminary
version [11] is threefold: (1) It presents the first controlled
experiment to study the probability of obtaining a test suite
that is both adequate with respect to specific testing criteria
and effective with respect to specific fault localization tech-
niques. (2) It reports on how likely an average test case priori-
tization technique effectively supports an average statement-
level statistical fault localization technique. (3) It conducts a
regression analysis that shows that the mean effectiveness of
statistical fault localization techniques is still not scalable as
the size of a program increases.

We organize the rest of paper as follows: Section II reviews
the test case prioritization techniques and fault localization
techniques used in our study. We present our controlled
experiment and its results in Section III. Section IV describes
related work followed by a conclusion in Section V.

II. BACKGROUND

This section describes the test case prioritization and fault
localization techniques involved in our study.

A. Test Case Prioritization Techniques

We follow [7] to organize the test case prioritization
techniques into two dimensions. The first dimension is
granularity, expressed in terms of statements, branches, and
functions. The second is prioritization strategy. We study

Greedy [7] and the ART [12] strategies. The Greedy strategy
can be further subdivided into the Total and Additional sub-
strategies. The ART strategy is reported in [12].

On one hand, ART represents a strategy that randomly
selects test cases followed by resolving the randomness among
the selected test cases through a coverage measure. On the
other hand, Greedy represents a strategy that selects test cases
through a coverage measure followed by resolving tie cases
randomly. We refer to these two ways to prioritize test cases
as the random-before-coverage (R2C) strategy, and the
coverage-before-random (C2R) strategy, respectively. Table 1
summarizes the techniques.

C2R strategy. When we combine the two Greedy sub-
strategies with the three granularities, we produce six
techniques: total statement (total-st), total branch (total-br),
total function (total-fn), additional statement (addtl-st),
additional branch (addtl-br), and additional function (addtl-
fn). All of them have been reported in [7].

TABLE 1. TEST CASE PRIORITIZATION TECHNIQUES.
 Ref Type/Name

Brief Descriptions

 T1 Random Random prioritization

G
re

ed
y

(C
2R

)
 Greedy

T2 total-st

Total statement

T3 total-fn Total function

T4 total-br Total branch

T5 addtl-st Additional statement

T6 addtl-fn Additional function

T7 addtl-br Additional branch

A
R

T
 (

R
2C

)

 ART

Level of

Coverage

Information

Test Set Distance

T8
ART-st-
maxmin

Statement
(T8-T10)

Maximize the minimum distance
between test cases

T9
ART-st-
maxavg

Maximize the average distance
between test cases

T10
ART-st-
maxmax

Maximize the maximum distance
between test cases

T11
ART-fn-
maxmin

Function
(T11-T13)

Maximize the minimum distance
between test cases

T12
ART-fn-
maxavg

Maximize the average distance
between test cases

T13
ART-fn-
maxmax

Maximize the maximum distance
between test cases

T14
ART-br-
maxmin

Branch
(T14-T16)

Maximize the minimum distance
between test cases

T15
ART-br-
maxavg

Maximize the average distance
between test cases

T16
ART-br-
maxmax

Maximize the maximum distance
between test cases

R2C Strategy. We adopt the ART strategy [12] to represent

the R2C strategy. The basic algorithm of ART prioritizes the
test cases by iteratively building a candidate set of test cases,
and then picks one test case out of the candidate set until all
the test cases in a given regression test suite have been
selected. To generate a candidate set of test cases, the
algorithm randomly adds the not-yet-selected test cases one by

3

one into the candidate set (which is initially empty) as long as
they can increase the code coverage achieved by the candidate
set. The algorithm then selects a test case from the candidate
set that maximizes the distance of the test cases from the
selected test cases. The distance between two test cases is
defined as the Jaccard distance between the coverage of the
program entities of the two test cases. By combining three
distance measures (average, minimum, and maximum) and the
three granularities, there are nine techniques: ART-st-
maxmin, ART-st-maxavg, ART-st-maxmax, ART-fn-
maxmin, ART-fn-maxavg, ART-fn-maxmax, ART-br-
maxmin, ART-br-maxavg, and ART-br-maxmax. All of
them have been reported in [12].

Optimization. Readers may be aware that the above
techniques have not been optimized. There are many ways to
optimize the coverage-bases measures, such as through hill-
climbing or genetic techniques. In the study reported in this
paper, we do not examine the effects of optimization.

B. Fault-Localization Techniques

We revisit the set of four statistical fault localization
techniques used in the study. Each technique computes the
suspiciousness of individual statements, followed by ranking
these statements according to their suspiciousness scores. One
of the techniques, namely Tarantula [14], further uses a tie-
breaker to resolve statements having the same suspiciousness
values so that they may be assigned different ranks. This set of
techniques were used in the experiment presented in [14].

Table 2 summarizes the fault localization techniques. In the
table, the function %failed is the percentage of failed test cases
that execute statement s (among all the failed test cases in the
test suite). The function %passed is similarly defined. The
function failed (passed, respectively) is the number of failed
(passed, respectively) test cases for which s is executed. The
variable totalfailed is the total number of failed test cases.

III. EXPERIMENT

In this section, we report the research questions and the
setup of the experimental study.

A. Research Questions

We have designed two research questions to examine the
more general questions stated in Section I.

RQ1: How likely does a practical test adequacy criterion
generate adequate test suites for a statistical fault localization
technique to locate faults effectively?

RQ2: To what extent may a test suite that is deemed
effective in locating faults be prioritized so that the test cases
having higher priority can be used for fault localization
techniques to locate faults effectively?

We choose branch coverage (all-edges) and statement
coverage to study RQ1 because they are practical criteria that
can be applied to industrial-strength programs [4]. Moreover,
many existing practical industrial-strength tools (such as
gcov) can provide profiling data for testers to determine
whether the coverage criteria have been achieved.

Answering RQ1 helps developers and researchers under-
stand the chances of producing effective test suites based on
practical test data adequacy criteria with respect to some of the
best and representative statistical fault localization techniques.
If the chance is high enough, developers can be more comfort-
able in using such adequate test suites to conduct regression
testing on their programs so that the test data can be helpful
for later and potential fault localization activities. However, if
the chance is not good, developers are provided with evidence
to support their actions to enhance their test suites for regres-
sion testing with a view to improving the chance of effective
fault localization.

Answering RQ2 helps us decide whether the effort on
prioritizing test cases is worthwhile and whether executing the
higher priority portion of the prioritized test cases may still
retain good fault localization effectiveness. If the finding is
positive, developers may be comfortable in using the test data
for fault localization. On the other hand, if the finding is nega-
tive, then additional test cases may be required so that the fault
localization effectiveness of the test suites will not be seriously
compromised.

B. Subject Programs and Test Suites
We use the Siemens suites and four UNIX programs as the

subject (see Table 3). We have downloaded them from SIR
[6]. The Siemens suite consists of seven small programs. Each
program comes with, among other files, a set of faulty
versions, a test pool, and a set of 1000 large branch-adequate
test suites and 1000 large statement-adequate test suites.
According to [6], each test case in every such brand-adequate
(statement-adequate, respectively) test suite is randomly
picked among test cases in the test pool that can cover the
same edge (statement, respectively).

However, only one test pool is available to each UNIX
program. We use this test pool to construct 1000 branch-
adequate test suites and 1000 statement-adequate test suites for
each UNIX program. More specifically, for each edge, we
randomly pick a test case that covers the edge. We note that
this is also the generation strategy used in the downloaded
large test suites for the Siemens suite [6].

TABLE 2. STATISTICAL FAULT LOCALIZATION TECHNIQUES.

Technique Ranking formula

Tarantula [14]

Tie-breaker:
max(%failed(s), %passed(s))

Adapted
Statistical
Bug Isolation
(SBI) [17]

Jaccard [2]

Ochiai [2]

4

TABLE 3. SUBJECT PROGRAMS.

Group Subject

No. of

Faulty

Versions

SLOC

Test

Pool

Size

No. of

Test

Suites

S
ie

m
en

s
S

ui
te

tcas 41 133137 1608 1000

schedule 9 291294 2650 1000

schedule2 10 261263 2710 1000

tot_info 23 272274 1052 1000

print_tokens 7 341342 4130 1000

print_tokens2 10 350354 4115 1000

replace 32 508515 5542 1000

U
N

IX
 P

ro
gr

am
s

flex

(2.4.7–2.5.4)
21 8571–10124 567

1000

1000

grep

(2.2–2.4.2)
17 8053–9089 809

1000

1000

gzip

(1.1.2–1.3)
55 4081–5159 217

1000

1000

sed

(1.18–3.02)
17 4756–9289 370

1000

1000

C. Metrics

To measure the fault localization effectiveness, we use the
metric Expense [10], which is defined by the equation

where the rank of a given statement is the sum of the number
statements that have higher suspiciousness values and the
number of statements that have the same or higher tiebreaker
values if their suspiciousness values are equal to that of the
given statement.

In practice, a developer may only have the patience to
walk through a small portion of the ranking list. As a result, a
high Expense value (such as 90%) may be useless for
debugging. A sequence of test cases with respect to a fault
localization technique and a given faulty program is said to be

-effective if the Expense value of using this sequence of test
cases by the fault localization technique on the faulty program

is strictly lower than the threshold value specified by .

We define the metric Fault Localization Successful

Percentage (FLSP) to be the ratio of the number of -effective
test suites in a test suite pool P over the size of the test suite
pool with respect to a fault localization technique and a
given faulty program, thus:

 
 and is 

D. Experimental Setup

We apply each test case prioritization technique (see Table
1) and each fault-localization technique (see Table 2) to every
test suite of every subject program. For every prioritized test
suite generated by each test case prioritization technique, we
repeated the above procedure using, in turn, the top 10%, 20%,
…, 90% of the ordered test suite. For each such portion of all
prioritized test suites applicable to every corresponding

subject, we collected the Expense values from all fault locali-
zation techniques, and computed the FLSP values.

We have carried out the experiment on a Dell PowerEdge
2950 server serving a Solaris UNIX system. We used gcc
version 4.4.1 as the C compiler. The server has two Xeon 5430
(2.66GHz, 4 core) processors with 4GB physical memory. We
follow [25] to remove those faulty versions that cannot detect
by any test case in the test pool as well as those that can be
detected by more than 20% of the test cases in the pool. We
used gcov to collect the execution statistics of every run.

To study RQ1, we use all the branch-adequate and
statement-adequate test suites for experimentation. For each
faulty version, we also removed those test suites that cannot
detect the fault because fault localization techniques require at
least one failed test case. We have also removed all the test
suites that cannot work with our platform. We pass the
execution statistics to all the four fault localization techniques
and follow [11] to measure their results in terms of FLSP on
all subject programs with three different fault localization
effectiveness threshold values (1%, 5%, and 10%). RQ2 is a
follow-up research question based on the results of RQ1. We
only use branch-adequate test suites for RQ2 to control the
scale of our empirical study. Similar to RQ1, we have
removed all test suites that contain no failed test cases as well
as all test suites that cannot work with our platform.

All the ART techniques are based on random selection.
Therefore, we follow [11] to repeat each of them 20 times to
obtain an average performance and to select 50 suites from the
available 1000 test suites for every Siemens or UNIX subject
program. Thus, we conducted a total 1000 prioritizations for
every ART technique. We then use MATLAB to perform
multiple comparisons by specifying a significance level of 5%
for analysis.

E. Data Analysis

1) Answering RQ1

We examine the effect of a fault localization technique to

locate faults in programs using a whole adequate test suite. As

a result, we need not differentiate among test case prioritiza-

tion techniques, as the test suites generated by them will have

the same fault localization results.

Table 4, Table 5, Table 6, and Table 7 show the mean
number of effective suites averaged over all faulty versions for
Siemens and UNIX programs on Tarantula, SBI, Jaccard, and
Ochiai, respectively. The first row lists the threshold values
used in the experiment. We use three threshold values to
measure the effectiveness of fault localization results: 1%, 5%,
and 10%. In other words, if a fault can be located by
inspecting less than 1%, 5%, or 10% of the ranked list of
suspicious statements, we consider the fault localization result
to be useful for the respective scenarios. The threshold values
divide the table into three groups. The second row shows two
adequacy criteria (Br for branch adequacy and Stmt for
statement adequacy) for each group. The rows that follow
show the mean number of effective test suites for each
program. (Note that the total number of test suites for each
faulty version is 1000.)

5

TABLE 4. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR TARANTULA

Threshold Value  = 1%  = 5%  = 10%

Adequacy Criteria Br Stmt Br Stmt Br Stmt

tcas 25 8 191 36 193 31

replace 145 46 342 126 381 140

tot_info 145 74 331 140 430 181

schedule 14 1 169 52 243 61

schedule2 0 0 35 5 107 11

print_tokens 55 3 151 22 215 37

print_tokens2 156 56 317 121 332 159

grep 618 371 832 546 936 756

sed 604 319 860 594 931 753

flex 665 376 827 586 951 720

gzip 674 395 843 516 945 711

We study how branch-adequate test suites compare with

statement-adequate test suites. We observe from Table 4 that

for every subject program and for each threshold value, on

average, the use of a branch-adequate test suite performs

consistently better than a statement-adequate test suite.

Moreover, this result is consistent with the other three fault

localization techniques as shown in Table 5, Table 6, and

Table 7. Branch adequacy subsumes statement adequacy in

terms of test requirement, and the former empirically out-

performs the latter in terms of fault detecting ability. Our

results show that branch-adequate test suites can also be more

effective than statement-adequate test suites in supporting

fault localization.

TABLE 5. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR SBI
Threshold Value  = 1%  = 5%  = 10%

Adequacy Criteria Br Stmt Br Stmt Br Stmt

tcas 29 11 205 46 201 39

replace 152 48 353 134 388 154

tot_info 157 80 335 141 437 186

schedule 19 10 180 63 246 70

schedule2 0 0 38 15 109 16

print_tokens 61 5 153 35 215 43

print_tokens2 166 70 317 132 337 168

grep 690 306 831 595 952 742

sed 681 389 880 590 946 719

flex 678 306 860 541 940 754

gzip 611 324 818 548 953 759

TABLE 6. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR JACCARD

Threshold Value  = 1%  = 5%  = 10%

Adequacy Criteria Br Stmt Br Stmt Br Stmt

tcas 31 9 235 41 217 37

replace 42 24 206 36 207 33

tot_info 153 56 354 138 394 154

schedule 147 80 338 158 433 186

schedule2 31 13 180 69 256 69

print_tokens 0 0 36 11 109 11

print_tokens2 73 16 156 32 216 51

grep 693 306 844 512 920 687

sed 660 389 799 513 885 747

flex 685 306 805 510 903 705

gzip 670 324 852 568 915 695

TABLE 7. MEAN NUMBER OF EFFECTIVE TEST SUITES FOR OCHIAI

Threshold Value  = 1%  = 5%  = 10%

Adequacy Criteria Br Stmt Br Stmt Br Stmt

tcas 31 15 198 49 201 26

replace 163 46 349 130 388 148

tot_info 157 76 338 138 448 181

schedule 12 8 180 61 243 64

schedule2 0 0 48 20 115 9

print_tokens 56 9 160 29 231 39

print_tokens2 168 58 320 123 343 173

grep 615 306 842 595 900 722

sed 669 389 805 574 925 716

flex 666 306 824 517 894 712

gzip 698 324 834 503 944 709

We have further conducted hypothesis testing to confirm

that the use of a branch-adequate test suite is significantly
more effective than a statement-adequate test suite. In a recent
study [4], test suites with high branch coverage (95% on
average) have been shown to be generable in a fully automated
manner for complex programs. As such, we believe that the
use of branch-adequate test suites is more promising than
statement-adequate test suites for statistical fault localization.

0

100

200

300

400

500

600

700

800

900

0 3000 6000 9000 12000

N
o

. o
f

Li
n

e
s

Ex
am

in
e

d
 t

o
 L

o
ca

te
 t

h
e

 F
au

lt

Line of Code

Code Examined to Locate Fault

LOC=25

Linear (Code Examined to Locate Fault)

Fig. 1. Distribution of Expense vs. size of faulty programs.

The slope of the regression line is less than 0.013, indicating that branch- and
statement-adequate test suites are increasingly practical in supporting effective
statistical fault localization as the size of a faulty program increases.
Nonetheless, most data points are above the dotted line, indicating that a
typical 25-line screen in an IDE may be ineffective in displaying the code that
includes the faults.

To understand how to support fault localization better, Fig.
1 plots all the data points in the experiment, each of which
represents the Expense used to locate the fault in a program by
a fault localization technique with different program sizes
(measured in lines of code). The x-axis shows the lines of code
for all the Siemens and UNIX program versions while the y-
axis shows the number lines in the source code that need to be
examined to find a fault. Each dot represents the code needed
to locate a fault for a program with specific executable lines of
code, and the solid line is a linear regression line for these
dots, to show the trends of code examined to locate a fault.

Moreover, when using a fault localization tool, developers
may expect it to help them focus their attention on only a few

6

suspicious source code locations; otherwise, in practice, the
developers may lose patience and consider the tool ineffective.
A typical debug screen of an IDE (such as an Eclipse IDE or
Visual Studio IDE) is around 25 lines of code. By using this as
a reference, one can draw a horizontal dotted line (in red) as
shown in Fig. 1.

Interestingly, we find from Fig. 1 that the majority of the
dots are distributed above the (red) horizontal dotted line, and
the linear regression line is also positioned above the (red)
dotted line. This observation shows that, in general, fault
localization results based on existing adequate test suites
cannot help developers locate the fault within one screen of
the code view of a practical IDE.

Our analysis above is preliminary, and the aim of this
analysis is not to completely answer whether existing IDEs
can effectively present information on statistical fault localiza-
tion results to developers. However, the finding does raise
interesting questions for future work: Can we define test
adequacy criteria that will likely construct test suites for
effective fault localization that fit for one screen? Moreover,
what information can fit into the code view on one screen to
support effective fault localization (for practical adequate test
suites)? Alternatively, what kinds of advances in human-
computer interaction (such as screen design) will support
effective fault localization of large applications?

Moreover, we find from Fig. 1 that the slope of the
regression line is close to 0.013, and the line meets the y-axis
at y = 95. In other words, the equation for the regression line
is y = 0.013x + 95. It indicates that there are certain overheads
in locating faults from programs of small sizes. The slope of
the line (0.013) is small but larger than 0.01, which indicates a
minimum of 1% of the code must be examined on average
[24]. We observe that, in the literature, the use of 1% as the
threshold is frequently reported in experiments that evaluate
the effectiveness of statistical fault localization techniques.
Interestingly, this benchmark requirement cannot be met on
average even for the idealized scenarios that we have studied
in this paper.

Our results indicate that existing practical test adequacy
criteria are still unlikely to generate test suites to support
effective statistical fault localization.

2) Answering RQ2

We have conducted a postmortem analysis on the integra-
tion results. Owing to the large number of possible criteria to
specify whether an integration is effective, we use three

different threshold Expense values, namely  = 0.01, 0.05, and
0.10, as the criteria to deem a test suite to be effective. They
represent the cases that developers need to examine up to 1%,
5%, and 10% of the code in order to find the faults if they
follow the ranks of the statements. We will leave the analysis
of different factors such as strategies and coverage granularity
levels to be reported in future work.

a) Small-Scale Programs

Subfigures (a), (c), and (e) of Fig. 2 show the correspond-
ing results. In each of the subfigures, the x-axis indicates

different percentages of a test suite used for fault localization
while the y-axis indicates the FLSP values for a test case
prioritization technique to locate faults by examining up to the
threshold percentage of code.

We observe from Fig. 2 (a) that, by inspecting the top 1%
of the ranked list of statements, the median FLSP value of a
test suite is 8% if we prioritize and execute the top 10% of a
test suite for fault localization, which is very low. Even if we
increase the percentage of test suite to 100%, the median of
the percentages of effective test suites is still less than 14%.
The result indicates that it is quite impractical to assume that
the faults will be in the few (say, 1 to 5) top-ranked lines of
source code.

From Fig. 2 (a), (c), and (e), we observe that if a higher
percentage of an original test suite is used for fault
localization, the percentage of effective test suites increases.
However, the increase is gradually less noticeable when the
percentage of the test suite used reaches 60%. In particular
given a code inspection range of 1%, the use of 60% of the
prioritized test cases for the fault localization already achieves
a FLSP value of 13%, whereas the use of all the remaining
40% of test cases will increase the percentage value to 14%
only. We observe similar trends for code inspection ranges of
5% to 10% in Fig. 2 (c), and (e), respectively.

We have conducted ANOVA analysis to compare their
mean FLSPs. The analysis results consistently reject the null
hypothesis that the use of different percentages (namely, 10%,
20%, … , 100%) of the same ordered test suites has the same
FLSP values at a significance level of 5%. To see what
percentages of test suites differ from one another in terms of
FLSP, we have further conducted the multiple comparisons
procedure to find how different percentages of test suites
differ significantly from one another at a significance level of
5%. Subfigures (b), (d), and (f) of Fig. 2 show the results. The
solid lines not intersected by the two vertical lines represent
the percentages of test suites whose means differ significantly
from the use of 60% of the suite for fault localization, while
the gray lines represent the percentages of test suites compara-
ble to the use of 60% of the suites for fault localization.

From subfigures (b) and (d) of Fig. 2, we observe that
executing 60% of a test suite has no significant difference
from executing the entire test suite. If we relax the code
examination range to 10% of the code for the Siemens suite, as
shown in Fig. 2 (f), there will be a significant difference. It
indicates that developers should have an estimate on the
amount of code they can afford to examine so that a test case
prioritization technique can use it as a reference to determine
the portion of test suites to be executed.

a) Medium-Scale Programs

We have also conducted a postmortem analysis on the
integration study for UNIX programs. Subfigures (a), (c), and
(e) of Fig. 3 show the corresponding results. In these
subfigures, the x-axis indicates different percentages of a test
suite used for fault localization while the y-axis indicates the
FLSP values for a test case prioritization technique to locate
faults by examining up to the threshold percentage of code.

7

We observe from Fig. 3 (a) that, by inspecting the top 1%
of the ranked list of statements, the median FLSP value is 47%
if we prioritize and execute the top 10% of a test suite for fault
localization, which is much higher than that for the Siemens
programs. Even if we increase the percentage of test suite to
100%, the median FLSP value is still under 65%. Although
developers are willing to examine up to 5% (10%, respectively)
of the code, Fig. 3 (c) and (e) still show that there is less than
65% (73%, respectively) of the chance that the top 10% of test
cases can assist them in locating faults effectively. The results
show that developers should not greedily start fault localiza-
tion based on a small percentage (10% in the above discus-
sion) of the whole test suite.

The data show that there are two strategies to alleviate this
problem. First, we observe across Fig. 3 (a), (c), and (e) that,
since the corresponding bars among the three plots increase in
terms of their y-values, if developers are willing to put in more
effort to examine the code, the effort may be worthwhile.
Second, on each plot in Fig. 3 (a), (c), and (e), when a higher
percentage of an original test suite is used for fault
localization, the percentage of effective test suite increases
remarkably. The results suggest that, if the preferred code
examination range is fixed, the use of a higher percentage of
test cases can be a good choice. It seems to us that this second
strategy provides hints to answer the follow-up question in
RQ1 that, in order to fit the code in supporting effective fault
localization on one code-view screen, the use of a smaller
adequate test suite for such testing-debugging integration may

be a viable research direction. (However, the study on this
aspect is not within the scope of this paper).

We have also conducted ANOVA analysis to compare the
mean FLSPs. The analysis results consistently reject the null
hypothesis that the use of different percentages of test suites
has the same FLSP values at a significance level of 5%. We
further conducted the multiple comparisons procedure to find
how different percentages of the same ordered test suites differ
significantly from one another at a significance level of 5%.
Subfigures (b), (d), and (f) of Fig. 3 show the results. The solid
lines not intersected by the two vertical lines represent those
percentages of test suites whose means differ significantly
from the use of 100% of the suite for fault localization, while
the gray lines represents those percentages of test suites com-
parable to the use of 100% of the suites for fault localization.

From subfigure (b) of Fig. 3, we observe that only when
executing more than 60% of a test suite will there be no signifi-
cant difference from executing the entire test suite in terms of
FLSP. If we relax the code examination range to 5% and 10%
of the code as shown in subfigures (d) and (f) of Fig. 3, we still
have the same results. It shows that, for UNIX programs,
around 60% percentage of the test suite should be used to
obtain fault localization effectiveness comparable to the use of
the whole test suite. The results indicate that, by using smaller
test suites, developers should prepare themselves that the fault
localization effectiveness are extremely likely be decreased.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6%

8%

10%

12%

14%

16%

P
e
r
c
e
n

ta
g

e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

Percentage of Test Suite Used

(a) Expense < 1%

20%

25%

30%

35%

40%

45%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

Percentage of Test Suite Used

(c) Expense < 5%

20%

25%

30%

35%

40%

45%

50%

55%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Test Suite Used

P
e
r
c
e
n

ta
g

e
 o

f
E

ff
e
c
ti

v
e
 T

e
st

 S
u

it
e

(e) Expense < 10%

8% 9% 10% 11% 12% 13% 14% 15% 16%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Click on the group you want to test

3 groups have means significantly different from %60 suite

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

 U
s

e
d

Percentage of Effective Test Suite
(b) Expense < 1%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
4 groups have means significantly different from %60

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Percentage of Effective Test Suite

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

 U
s

e
d

(d) Expense < 5%

25% 30% 35% 40% 45% 50%

6 groups have means significantly different from %60

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Percentage of Effective Test Suite

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

 U
s

e
d

(f) Expense < 10%

Fig. 2. The chance of test case prioritization techniques supporting effective fault localization for Siemens programs.

The chance of having all the branch-adequate test suites to support effective fault localization is not good. The use of a smaller portion of prioritized test

suites does not support effective fault localization either.

8

To conclude, we can answer RQ2 that the chance of test
case prioritization techniques to support effective fault localiza-
tion is higher on medium-scale programs than on small-scale
programs. Furthermore, similar to small scale programs,
around 60% of the test suite should be used for medium-scale
programs to make the selected part of the test suite as effective
as the whole suite.

F. Threats to Validity

We have used seven Siemens programs, four UNIX
programs, and their faulty versions as our subjects. The use of
other faulty programs can result in different coverage patterns
for failed test executions and passed test executions, which
may result in different suspiciousness values assigned to the
program statements. Although the set of faults did not
represent all possible faults, using them to conduct compari-
sons among techniques published in existing work is useful for
researchers to compare results across different papers and
experiments. Moreover, we have used the adequate test suites
provided by the SIR repository and generated the branch-
adequate and statement-adequate test suites for the UNIX
programs. The use of other adequacy test suites may provide
other results. We will leave the analysis and reporting of such
test suites in future work.

In any case, our subjects have been widely used in existing
test case prioritization, statistical fault localization, and unit
testing research. Moreover, branch-adequate test suites have
been frequently used in the experiments of testing and debug-
ging papers. We believe that they have used these subjects in
their experiments on good grounds with practical considera-
tions. The results of our experiment complemented their

findings on these artifacts and facilitated comparison across
publications.

In our experiment, we have excluded some faulty versions
and test cases available from SIR. There are a few reasons.
The foremost reason is that, in our testing framework for the
experiment, it uses gcov, which is a popular and freely
available tool, to collect the branch execution profile of each
non-crashed execution. For crashed executions, gcov cannot
provide coverage data. The techniques in our experiment,
however, require coverage data in order to operate. Conse-
quently, we have excluded these test cases from the data
analysis. As we have reported, our experimental environment
is a UNIX server running SUN OS. The C compiler provided
by the underlying platform is also provided by SUN. Some
versions cannot be compiled. This is a kind of platform
dependence issue and we have also removed these versions to
minimize their impact.

Another reason for us to exclude some faulty version from
the data analysis is that we follow previous papers on test case
prioritization to conduct the experiment to exclude any version
whose failures can be detected by more than 20% of the test
cases in the test pool. The choice of this threshold poses a
threat to this study. Nonetheless, this practice has been widely
used in the test case prioritization experiments. The use of this
threshold facilitates a comparison between this work and
existing publications. A way to address this threat could be to
conduct a larger experiment to vary this threshold from 0% to
100% systematically, and observe the effect. The effort to
conduct this experiment and the corresponding data analysis
are, however, not affordable to us. We have, therefore,
excluded this aspect from our current experiment.

(a) Expense < 1%

(c) Expense < 5%

(e) Expense < 10%

P
e
rc

e
n

ta
g

e
 o

f
T
e
s
t

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

35% 40% 45% 50% 55% 60% 65% 70% 75%

Click on the group you want to test

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(b) Expense < 1%

P
e
rc

e
n

ta
g

e
 o

f
T
e
s
t

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Click on the group you want to test

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(d) Expense < 5%

P
e
rc

e
n

ta
g

e
 o

f
T
e
s
t

S
u

it
e
 U

s
e
d

Percentage of Effective Test Suite

65% 70% 75% 80% 85% 90% 95% 100%

5 groups have means significantly different from 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(f) Expense < 10%

Fig. 3. The chance of test case prioritization techniques supporting effective fault localization for UNIX programs

9

Another concern about the study may be the nature of the
test suites. We have used the test suites provided by SIR. They
may not be representative in the sense that some test cases
important to statistical fault localization may not be available.
On the other hand, test case prioritization and fault localization
are becoming mature and hence a common ground for
comparison is necessary. To strike a balance between the use
of more test suites and the comparability with a large body of
published work, we have chosen the latter option in this study.
In RQ1, we have 1000 branch-adequate and 1000 statement-
adequate test suites for each subject program. They provide us
enough data points to compile statistical results shown in the
paper. For RQ2, we would like to highlight that the results are
based on one small test pool per subject program. Readers
should not overly generalize the results. For some subject
programs, the requirement of having branch-adequate test
suites may still be too demanding. For instance, almost all the
subject programs used in the experiment reported in [4] did
not come with test suites that are branch adequate. We leave
this practical consideration as future work.

In this study, owing to time and resource constraints, we
have only evaluated the random, the coverage-based Greedy,
and the white-box ART-based test case prioritization tech-
niques. Although they are among the best general test case
prioritization techniques studied in previous work, they have
not been optimized. The use of optimized versions or other
variants of these strategies as well as the use of other strategies
may produce different results.

In drawing a comparison, we use the Expense metric as
well as the FLSP metric. The use of other metric may produce
different results. The former metric has been widely used to
evaluate statistical fault localization techniques. It, however,
only represents one way of how developers may use the
ranked list of statements and makes an assumption that any
fault on each visited statement can be identified correctly. The
time taken to visit such a statement and the precision of the
fault identification has not been captured by this metric. The
FLSP metric is built on top of the Expense metric. Owing to
the limitation of the Expense metric, the effort to reveal a fault
measured by the FLSP metric does not totally reflect the effort
of developers to use the generated ranked list of statements to
perform debugging. Readers are advised to interpolate the
results of the experiment carefully.

IV. RELATED WORK

Apart from the 16 test case prioritization techniques and
the 4 fault localization techniques in Section II, there are many
studies on integrating different testing and/or debugging
techniques.

For instance, Wong and colleagues proposed an approach
to combining test suite minimization and prioritization to
select cases based on the cost per additional coverage [22][23].
Baudry et al. [3] used a bacteriologic approach to generate test
suites that aim at maximizing the number of dynamic basic
blocks to make the fault localization more effective. Yu and
colleagues examined the effect of test suite reduction on fault
localization [24]. Their studies found that test suite reduction
does have an impact on the effectiveness of fault localization
techniques. However, they neither studied test case prioritiza-

tions nor the extent of reductions that may lead to effective
fault localizations similar to what we report in this paper.

Jiang et al. [13] examined the integration of test case
prioritization and fault localization. They found that test case
prioritization has an impact on the effectiveness of fault locali-
zation techniques and many existing prioritization techniques
are no better than random ordering. However, they did not
study to what extent test case prioritizations may generate test
suites that existing fault localization techniques may use to
locate faults effectively. Gonzalez-Sanchez et al. [9] proposed
a new test case prioritization approach that maximizes the
improvement of the diagnostic information per test. Their
results showed that their technique could reduce the overall
testing and debugging cost in some scenarios. They did not
examine the effect of adequate test suites on fault localization
techniques, however.

There are abundant studies on test case prioritization
techniques. Srivastava and Thiagarajan [21] developed a
binary matching technique to compute the changes in pro-
grams at the basic block level and prioritize test cases to cover
maximally the affected program changes. Li et al. [16] eva-
luated various search algorithms for test cases prioritization.
Leon et al. [15] also proposed failure-pursuit sampling tech-
niques. Their failure-pursuit sampling uses one-per-cluster
sampling to select the initial sample and, if a failure is found,
its k nearest neighbors are selected and checked. If additional
failures are found, the process will be repeated.

There are also studies on fault localization techniques that
are closely related to the four techniques used in our experi-
ment. For instance, Cleve and Zeller [5] proposed delta
debugging, which automatically isolates failure-inducing in-
puts, produces cause-effect chains, and finds the faults.
Renieris and Reiss [19] found that the use of the execution
trace difference between a failed run and its nearest passed
neighbor run is more effective than using other pairs for fault
localization. Jeffrey et al. proposed a value-profile based
approach to ranking program statements according to their
likelihood of being faulty [10]. Zhang et al. [26] proposed to
differentiate the short-circuit evaluations of individual predi-
cates in individual program statements and produce one set of
evaluation sequences per predicate for fault localization.
Zhang et al. [25] proposed to use a network propagation
approach to address the issue of coincidental correctness that
may occur in test executions.

Because our study is an integration of test case prioritiza-
tion techniques and fault localization techniques, the experi-
ment will grow tremendously when we evaluated more fault
localization techniques. We have, therefore, focused this work
on the four most typical fault localization techniques in our
study to make the empirical study manageable without losing
representativeness.

V. CONCLUSION

Program debugging can be initiated even though testing
only produces partial test results. This leads to the problem of
selecting and executing some test cases before executing
others, and whether the executed test cases with test results
can effectively help debugging.

10

Fault localization is one of the major tasks in debugging.
Our work has shown that existing and practical test suite
adequacy criteria are still insufficient in the effective support
of statistical fault localization techniques.

It appears to us that the notion of using adequacy as a
criterion to stop the testing effort may have adverse effects on
fault localization effectiveness. We have also found that
branch-adequate test suites are significantly better than
statement-adequate test suites in effectively supporting fault
localization. Furthermore, we have conducted an analysis of
existing fault localization techniques and have found that they
still ineffectively rank faulty statements within a (small)
debugging panel in typical IDEs. When branch-adequate test
suites are used by existing test case prioritization techniques to
identify higher priority test cases with the aim of supporting
effective fault localization, we have found that the saving is
not impressive. The results have shown that there are still
large gaps in integrating various kinds of testing and
debugging techniques so that they can be used by developers
under one roof.

Test adequacy criteria are important because they define
when to stop testing amid an infinite number of possible test
cases in the input domain. Random testing can be effectively
used, say, to crash test a program. We believe that random
testing and adequacy testing are useful for different purposes.
As a result, our paper focuses on the impact of adequate test
suites on fault localization. It will be interesting to study other
useful and practical testing techniques and resolve their
effective integration. It will also be interesting to study
reliability testing and its integration with program debugging.

VI. REFERENCE

[1] The economic impacts of inadequate infrastructure for software testing.

Final Report. National Institute of Standards and Technology, Gaithers-
burg, MD, 2002. Available at http://www.mel.nist.gov/msid/sima/

sw_testing_rpt.pdf.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Proceedings of the Testing:

Academic and Industrial Conference: Practice And Research

Techniques (TAICPART-MUTATION 2007), pages 89–98. IEEE
Computer Society Press, Los Alamitos, CA, 2007.

[3] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for

efficient fault localization. In Proceedings of the 28th International

Conference on Software Engineering (ICSE 2006), pages 82–91. ACM
Press, New York, NY, 2006.

[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In

Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI 2008), pages 209–224. USENIX

Association, Berkeley, CA, 2008.

[5] H. Cleve and A. Zeller. Locating causes of program failures. In Proceed-

ings of the 27th International Conference on Software Engineering
(ICSE 2005), pages 342–351. ACM Press, New York, NY, 2005.

[6] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experi-

mentation with testing techniques: an infrastructure and its potential

impact. Empirical Software Engineering, 10 (4): 405–435, 2005.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. IEEE Transactions on

Software Engineering, 28 (2): 159–182, 2002.

[8] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky.

Selecting a cost-effective test case prioritization technique. Software
Quality Control, 12 (3): 185–210, 2004.

[9] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, and A. J. C. van Gemund.

Prioritizing tests for software fault localization. In Proceedings of the

10th International Conference on Quality Software (QSIC 2010), pages
42–51. IEEE Computer Society Press, Los Alamitos, CA, 2010.

[10] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value

replacement. In Proceedings of the 2008 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2008), pages 167–
178. ACM Press, New York, NY, 2008.

[11] B. Jiang and W. K. Chan. On the integration of test adequacy: test case

prioritization and statistical fault localization. The 1st International

Workshop on Program Debugging in China (IWPDC 2010), in
Proceedings of the 10th International Conference on Quality Software

(QSIC 2010), IEEE Computer Society Press, Los Alamitos, CA, pages

377–384, 2010.

[12] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive random test
case prioritization. In Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2009), pages

233–244. IEEE Computer Society Press, Los Alamitos, CA, 2009.

[13] B. Jiang, Z. Zhang, T. H. Tse, and T. Y. Chen. How well do test case
prioritization techniques support statistical fault localization. In Proceed-

ings of the 33rd Annual International Computer Software and Applica-

tions Conference (COMPSAC 2009), volume 1, pages 99–106. IEEE
Computer Society Press, Los Alamitos, CA, 2009.

[14] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test informa-

tion to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), pages 467–477.

ACM Press, New York, NY, 2002.

[15] D. Leon, W. Masri, and A. Podgurski. An empirical evaluation of test

case filtering techniques based on exercising complex information flows.
In Proceedings of the 27th International Conference on Software

Engineering (ICSE 2005), pages 412–421. ACM Press, New York, NY,

2005.

[16] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression
test case prioritization. IEEE Transactions on Software Engineering, 33

(4): 225–237, 2007.

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable

statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation

(PLDI 2005), ACM SIGPLAN Notices, 40 (6): 15–26, 2005.

[18] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical

model-based bug localization. In Proceedings of the Joint 10th
European Software Engineering Conference and 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering

(ESEC 2005/FSE-13), ACM SIGSOFT Software Engineering Notes, 30
(5): 286–295, 2005.

[19] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor

queries. In Proceedings of the 18th IEEE International Conference on

Automated Software Engineering (ASE 2003), pages 30–39. IEEE
Computer Society Press, Los Alamitos, CA, 2003.

[20] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test

cases for regression testing. IEEE Transactions on Software

Engineering, 27 (10): 929–948, 2001.

[21] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in
development environment. In Proceedings of the 2002 ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA

2002), ACM SIGSOFT Software Engineering Notes, 27 (4): 97–106,
2002.

[22] W. E. Wong, V. Debroy, and B. Choi. A family of code coverage-based

heuristics for effective fault localization. Journal of Systems and

Software, 83 (2): 188–208, 2010.

[23] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of
effective regression testing in practice. In Proceedings of the 8th

11

International Symposium on Software Reliability Engineering (ISSRE

1997), pages 264–274. IEEE Computer Society Press, Los Alamitos,

CA, 1997.

[24] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the effects

of test-suite reduction on fault localization. In Proceedings of the 30th

International Conference on Software Engineering (ICSE 2008), pages
201–210. ACM Press, New York, NY, 2008.

[25] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing

propagation of infected program states. In Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (ESEC 2009/FSE-17), pages 43–52. ACM Press, New
York, NY, 2009.

[26] Z. Zhang, B. Jiang, W. K. Chan, T. H. Tse, and X. Wang. Fault

localization through evaluation sequences. Journal of Systems and

Software, 83 (2): 174–187, 2010.

