

1

Abstract—Statistical fault localization techniques find suspi-
cious faulty program entities in programs by comparing passed
and failed executions. Existing studies show that such tech-
niques can be promising in locating program faults. However,
coincidental correctness and execution crashes may make pro-
gram entities indistinguishable in the execution spectra under
study, or cause inaccurate counting, thus severely affecting the
precision of existing fault localization techniques. In this paper,
we propose a BlockRank technique, which calculates, con-
trasts, and propagates the mean edge profiles between passed
and failed executions to alleviate the impact of coincidental
correctness. To address the issue of execution crashes, Block-
Rank identifies suspicious basic blocks by modeling how each
basic block contributes to failures by apportioning their fault
relevance to surrounding basic blocks in terms of the rate of
successful transition observed from passed and failed execu-
tions. BlockRank is empirically shown to be more effective
than nine representative techniques on four real-life medium-
sized programs.

Keyword—fault localization; graph; social network analysis

I. INTRODUCTION

Fault localization is an activity in debugging. Many
statistical fault localization (SFL) techniques [1][16][18]
[19] contrast the program spectra of passed and failed
executions1 to predict the fault relevance of individual pro-
gram entities. They further construct lists of such program
entities in descending order of their estimated fault suspi-
ciousness. Programmer may follow the recommendation of
such lists to find faults [22]. Many empirical studies [1]
[15][18][19] show that this kind of semi-automatic fault

localization technique has good predictive ability for faults.
A vast majority of SFL techniques, such as Jaccard [1],

Value Replacement [14], Tarantula [15], CBI, [18], SOBER
[19], and DES [30], propose various coefficients to measure
the correlations between observed failures and the presence
or absence of individual program entities in the correspond-
ing program execution paths. Motivated by this feature,
other methodologies have been proposed [5][23] to remove
some available test executions with a view to improving the
sensitivity of the base techniques. Although the sensitivity
in differentiating program entities can be improved, the cor-
relation obtained may be inconsistent with the intentionally
omitted test executions (and hence not consistent with all
the given facts). Some techniques such as [24][25] consider
that simply counting the presence or absence of program
entities is merely a primary step, which can be further
optimized by proposing weighted coefficients.

Nonetheless, existing empirical studies (such as [15])
pointed out that faults in code regions that have been
popularly executed by both passed and failed executions are
hard to be located effectively. Indeed, an execution passing
through a program entity (such as a compound predicate in
the condition of an if-statement) may not trigger a failure
even if that program entity is faulty. This is generally known
as coincidental correctness [13]. As such, a measure of the
direct correlation between execution-based failures and the
coverage of individual program entities may not precisely
point out the faulty positions in programs.

Researchers have proposed techniques to alleviate the
issue of coincidental correctness. For instance, in order to
make the correlation assessment more precise, DES [30]
studies the atomic units of each program entity and differen-
tiates various sequences of such atomic units, which
essentially isolates some coincidental correctness scenarios.
Wang et al. [23] assess whether a particular fragment of an
execution is suspicious with respect to a predefined fault
pattern to determine whether the fragment should be
accessed by SFL techniques. CP [28] backward propagates
the measured correlation strengths to other program entities
based on a program dependency graph, and is empirically
evaluated to be promising. However, the accuracy of CP’s
model is affected by execution crashes (due, for example, to
null pointer assignments), which is a kind of failure such
that a chain of propagations stops at a block.

To appear in Proceedings of the 35th Annual International Computer Software and Applications Conference (COMPSAC 2011),
IEEE Computer Society Press, Los Alamitos, CA (2011)

Precise Propagation of Fault-Failure Correlations in Program Flow Graphs
*†

Zhenyu Zhang W. K. Chan T. H. Tse, Bo Jiang

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing, China
zhangzy@ios.ac.cn

Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Department of Computer Science
The University of Hong Kong

Pokfulam, Hong Kong
{thtse, bjiang}@cs.hku.hk

* © 2011 IEEE. This material is presented to ensure timely dissemination

of scholarly and technical work. Personal use of this material is permit-

ted. Copyright and all rights therein are retained by authors or by other

copyright holders. All persons copying this information are expected to

adhere to the terms and constraints invoked by each author’s copyright.

In most cases, these works may not be reposted without the explicit

permission of the copyright holder. Permission to reprint / republish this

material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained

from the IEEE.

† This research is supported in part by a grant from the Natural Science

Foundation of China (project no. 61003027), grants from the General Re-

search Fund of the Research Grants Council of Hong Kong (project nos.

111410 and 717308), and a strategic research grant from City University

of Hong Kong (project no. 7002673).

Administrator
 HKU CS Tech Report TR-2011-08

2

e2

e3

e1

e4

e5

b1

b2

b4

b3

In this paper, we propose a novel fault localization
technique, known as BlockRank, to alleviate the adversarial
effects of coincidental correctness and execution crashes in
statistical fault localization. Like CP, BlockRank first
computes the central tendency of the edge profiles [4][28]
for passed executions and that for the failed executions.
BlockRank next estimates the difference between these two
mean edge profiles by finding out the initial fault relevance
of each edge in the faulty program. It then transfers the
initial fault relevance of edges to their directly connected
basic blocks, back and forth and iteratively, by setting up an
equation set to apportion the fault relevance scores among
basic blocks. Finally, BlockRank sorts the basic blocks of
the program in descending order of their fault relevance and
maps the rankings of each basic block to its statements.

BlockRank is innovative in that if a basic block is
important in correlation to any observed failure, and a direct
incoming block of this basic block is its popular source of
entrance point, the importance of this particular incoming
block should indirectly correlate to the observed failure.
Therefore, a highly popular source (i.e., basic block) to a
highly fault-correlated basic block can reveal its fault relev-
ance even though this popular basic block has been heavily
executed by passed executions and rarely executed by failed
executions. Different from many existing techniques that
use vertex profiles to assess the correlation of individual

program entities to failures, BlockRank uses edge profiles to
express program executions and computes mean edge
profiles to alleviate the impact of coincidental correctness.
Moreover, unlike CP, BlockRank uses the observed
transition rates among blocks to handle execution crashes,
and models popularity using every such transition rate. Our
experiment shows that BlockRank is more effective than
Tarantula, Jaccard, Ochiai, SBI, CBI, SOBER, DES-CBI,
DES-SOBER, and CP on four real-life programs.

The main contribution of this work is twofold. First, it
proposes a novel and precise propagation model of fault-
failure correlations. It points out a method to factor in both
coincidental correctness and execution crashes. Second, it
reports an experiment that verifies this innovative approach.

The rest of the paper is organized as follows. Section II
uses an example to motivate this work. Section III presents
our technique, which is evaluated in Section IV. Section V
reviews related work. Section VI concludes the paper.

II. MOTIVATING EXAMPLE

A. Example Program

Part I of Fig. 1 shows a code excerpt from a faulty
version v2 of the program “schedule” (from SIR [10]). This

1 A failed execution means that a program execution reveals a failure (such

as an incorrect output or a crash). A passed execution is the opposite.

Part I Part IV

Block Statement
Execution Counts (Crashes) Tarantula Jaccard Ochiai SBI

t1 t2 t3 t'1 t'2 t'3 susp* r** susp r susp r susp r

b1 s1
if (block_queue) { 22 17 22 25 29 25 0.50 4 0.50 4 0.71 4 0.50 4

b2

s2

s3

s4

s5

 count = block_queue->mem_count + 1; /* fault */

 n = (int) (count*ratio);

 proc = find_nth(block_queue, n);

 if (proc) {

3 (0) 5 (0) 2 (0) 7 (0) 11 (2) 10 (4)

0.50 4 0.50 4 0.71 4 0.50 4

b3

s6

s7

s8

 block_queue = del_ele(block_queue, proc);

 prio = proc->priority;

 prio_queue[prio]

 = append_ele(prio_queue[prio], proc);

1 2 1 5 8 2

0.50 4 0.50 4 0.71 4 0.50 4

b4 s9 } } 22 17 22 25 27 21 0.50 4 0.50 4 0.71 4 0.50 4

Code examining effort to locate b2 (containing s2): 100% 100% 100% 100%

Part II Part V

Predicate

(also Condition)

 Evaluation Results (true:false) CBI SOBER DES-CBI DES-SOBER

t1 t2 t3 t'1 t'2 t'3 susp r susp r susp r susp r

p1 also c1 (at s1) In this example, each predicate happens to have only one

condition.

3:19 5:12 2:20 7:18 11:18 10:15 0.00 2 1.03 2 0.00 2 1.03 2

p2 also c2 (at s5) 1:2 2:3 1:1 5:2 8:1 2:4 0.00 2 4.17 1 0.00 2 4.17 1

Code examining effort to locate p2 (most close to s2): 100% 100% 100% 100%

Part III Part VI

Edge
 Execution Counts CP Our Method

t1 t2 t3 t'1 t'2 t'3 susp r susp r

e1 (b1→b4)

We add a dummy block b4 containing s9 to make a complete CFG.

19 12 20 18 18 15 0.00

0.00

e2 (b1→b2) 3 5 2 7 11 10 0.47 6.00

e3 (b2→b4) 2 3 1 2 1 4 0.12 0.33

e4 (b2→b3) 1 2 1 5 8 2 0.58 3.67

e5 (b3→b4) 1 2 1 5 8 2 0.88 3.67

 P(t1) = P(t2) P(t3) P(t'1) P(t'2) P(t'3)

* susp: suspiciousness computed for block/predicate/condition/edge

 b1 0.34 4 4.00 3

 b2 0.73 3 4.32 1

 b3 1.02 2 3.67 4

 b4 1.16 1 4.00 3

** r: ranking for block/predicate/condition/edge Code examining effort to locate b2 (containing s2): 75% 25%

Fig. 1. Faulty version v2 of program “schedule”.

3

code excerpt manages a process queue. It first computes the
index of a target process, and then moves it along priority
queues. There is a fault in statement s2, which causes the
program to generate an incorrect index n in s3. It may finally
lead to a program failure, or immediately crashes the
program execution when executing s4 (due to a null-pointer
error in the function call find_nth).

In this example, the two “if” statements s1 and s5 divide
the code excerpt into three basic blocks [5] b1, b2, and b3.

2
For ease of explanation, we add a dummy basic block b4 to
form a complete control-flow graph (CFG) [4] and assume
that each execution starts from b1 and ends at b4. The CFG
representing the code excerpt is shown in Part III of Fig. 1.
In this graph, each ellipse represents a basic block. We use
thick border to highlight b2 because it contains the fault. The
four basic blocks are connected via five control-flow edges
(e1, e2, e3, e4, and e5, shown as lines with arrows). Let us use
e1 as an illustration. It indicates that s1 has been evaluated to
be false in an execution, and b4 will be next executed.
Further, statements s1 and s5 contain predicates [18][19] p1
and p2, respectively, as shown in Part II of Fig. 1.

To demonstrate previous techniques and motivate our
approach, we randomly select three passed test cases (t1, t2,
and t3) and three failed test cases (t′1, t′2, and t′3) from the
test pool of the program “schedule” [10]. The execution
counts of the blocks, as well as the number of times that the
program crashes within b2, are shown in Part I of Fig. 1. The
evaluation results of the predicates and the frequencies of
the edges (that is, how many times each edge is exercised in
a program execution [28]) are shown in Parts II and III,
respectively, of Fig. 1. Let us take the gray column as an
example. It shows that blocks b1, b2, b3, and b4 are executed
22, 3, 1, and 22 times, respectively, for test case t1. The
numbers “3 (0)” mean that, in the three times when b2 is
executed, the program never crashes. Furthermore, during
these three times, the predicate p2 is evaluated as true and
false for twice and once, respectively. In the 22 times that b1
is executed, the predicate p1 is evaluated as true and false for
3 and 19 times, respectively. The frequencies of edges e1, e2,
e3, e4, and e5 with respect to the execution of t1 are 19, 3, 2,
1, and 1, respectively. We represent them as P(t1)
= . Following Ball
et al. [4], we refer to P(t1) as the edge profile of test case t1.
The other edge profiles P(t2), P(t3), P(t'1), P(t'2), and P(t'3)
can be similarly explained. Given a frequency relation
 , we define .

B. Previous Techniques Revisited

In Part IV of Fig. 1, we show the effectiveness of four
statement-level techniques, Tarantula [15], Jaccard [1],
Ochiai [1], and SBI [26], on locating the fault in this code
excerpt. By applying Tarantula, we can compute the fault
relevance score [15][28] for each block and accordingly
compute the code examining effort to locate fault [26][29].
This effort is extensively used to evaluate the effectiveness

2 Each basic block consists of program statements that will share the same

execution count [30] in any execution, unless the program crashes (as in

the example of Fig. 1) or the system API exit is invoked.

of fault localization techniques in previous studies [26][27]
[29]. Similarly, the effectiveness of techniques Jaccard,
Ochiai, and SBI are also evaluated and shown in Part IV.
We observe from the results that none of the peer techniques
can locate the fault until all the code in the excerpt has been
examined (in the order of examination recommended by
each technique). This is because all blocks (and statements)
are exercised to the same extent by the set of the passed and
failed executions. In general, if a faulty is executed but no
failure is revealed (and consequently the test case is marked
as a passed test case), the phenomenon is known as coinci-
dental correctness [13] in testing. Coincidental correctness
makes the execution counts of program entities indistin-
guishable, and lowers the effectiveness of fault localization
techniques. Unfortunately, previous studies also show that
coincidental correctness occurs frequently in real-life
programs [23].

In Part V of Fig. 1, we show the effectiveness of two
predicate-based techniques (CBI [18] and SOBER [19]) and
two condition-based techniques (DES-CBI [30] and DES-
SOBER [30]) in locating the fault in this code excerpt.3 4
Here, we omit the tedious computation process and directly
show the code examining effort to locate the fault. Inter-
ested readers may follow the references to find the details of
these methods. CBI investigates whether a predicate is eva-
luated (to be true or false) [18] and ignores the detailed
evaluation results (such as how many times it is evaluated).
As a consequence, CBI and DES-CBI cannot distinguish
between the evaluation results of p1 and p2, and need 100%
code examining effort to locate the fault. SOBER uses
evaluation bias [19] to partially capture the execution
spectra of predicates, but inaccurately gives predicate p2 a
higher fault relevance score than p1. As such, SOBER and
DES-SOBER still need to examine 100% of all code to
locate the fault. The unsatisfactory results are also due to the
unexpected coincidental correctness issues.

In part VI of Fig. 1, we evaluate the technique CP [28].
CP lets the fault relevance scores of blocks propagate via
edges, so that they can be found by solving an equation set
containing fault relevance scores of both blocks and edges
(with the former unknown and the latter known). However,
the propagation model of CP cannot handle program crashes
(at t′2 and t′3), which stop the propagation of errors to any
other basic blocks, thus causing inaccurate result in this
example. Because of this problem, CP has to evaluate 75%
of all the code before the fault is located. As we will present
later, BlockRank alleviates this problem.

C. Motivating Our Approach

We first compute a mean edge profile [4][28] for all
the passed executions. It is a frequency relation showing a

3 Note that, in this example, each predicate happens to have only one

condition, so that the effectiveness of the each condition-based technique

is identical to that of its predicate-based counterpart (that is, the effective-

ness of DES-CBI is the same as that of CBI, and the effectiveness of

DES-SOBER is the same as that of SOBER).
4 After predicates have been assigned fault relevance scores, programmers

are suggested to follow a breath-first search (starting from predicates

having the highest fault relevance scores) to locate faults [22].

4

mean frequency of passed executions with respect to every

edge. In the motivating example,

Here, each arithmetic operation (such as addition and scalar
division) on the edge profiles represent the element-
wise operation of every individual entry in (see
Definition 1 in Section III.C). Similarly, we compute a
mean edge profile for all failed executions. In our

example,

 . Such mean edge profiles
stand for the execution spectra producing no failure and the
execution spectra correlating to failures, respectively. We

therefore use to calculate the increase from

 to , statistically modeling the net contribution to fail-
ures [28] by all branch transitions (that is, edges). In our

example,
 .

The five values in are used to calculate the fault
relevance scores of the basic blocks b1, b2, b3, and b4 by
equations (1)–(4):

 (1)

 (2)

 (3)

 (4)

Let us first take equation (1) to illustrate the basic idea.
We recall that in an execution, the execution of b1 can be
immediately followed by the execution of either e1 or e2. On
the other hand, b2 will only be reached directly from b1 via
the edge e2. An execution passing through b2 must also pass
through b1. As such, the fault relevance of b2 is deemed to
come from that of b1 due to the investigation on their spectra
in execution. Suppose that, when calculating the fault relev-
ance scores of b1 and b2, we find that the fault relevance of
b2 totally contributes to that of b1. On the other hand, b4 may
be reached from e1, e3, or e5. Hence, the fault relevance of b4
partially contributes to b1. We apportion the fault relevance
of b4 to b1 based on the edges from other blocks to b4. Block
b4 has three incoming edges e1, e3 and e5. From the edge

profile , the net contributes of these edges to failures are
0.00, 0.33, and 3.67, respectively. Since block b1 can
directly reach b4 only via e1, block b4 contributes

 of its fault relevance to block b1.

5 For each

block having outgoing edge(s) (namely, block b2 or b3) we
set up a formula similar to equations (2) and (3). Block b4
has no outgoing edge, and hence we use the sum of

frequencies in of all incoming edges to estimate its fault
relevance score, as in equation (4). Thus we obtain BR(b1) =

5 We also notice that the edge frequency of e1 in P∆ is 0, which means that

edge e1 is not relevant to the fault. Accordingly, b4 does not contribute to

b1.

4.00, BR(b2) = 4.00, BR(b3) = 3.67, and BR(b4) = 4.00. Here,
BR(bx) denotes the fault relevance score of block bx.

Because the execution of block b2 is observed to have
chances to crash, leading to abnormal execution termination
before reaching the block b3 or b4, we distinguish crashing
cases from non-crashing cases. The probability of b2 not
crashing is given by:

which computes the ratio of the number of times that the
outgoing edges of b2 are exercised in all executions to the
number of times that the incoming edges of b2 are exercised
in all executions (the values used in computation can be
obtained from Part III of Fig. 1). We further use equation (5)
to calibrate BR(b2) to BR'(b2):

 (5)

BR'(b2) is the weighted sum of fault relevance scores of b2
in crashing and non-crashing cases. In a non-crashing case,
the fault relevance score of b2 is calculated as BR(b2). In a
crashing case, because the execution of b2 must not be
transferred via any outgoing edge, the fault relevance score
is calculated as the sum of net contributions to failures (fre-

quencies in) of all its incoming edges, as in equation (6):

 (6)

The basic block b2 containing the faulty statement s2, is
given a highest fault relevance score BR'(b2) = 4.32 and
ranked the highest. As a result, BlockRank needs to examine
25% of all code to locate fault in the example of Fig. 1.

This example motivates a novel approach that alleviates
the impacts from coincidental correctness and program
crashing. However, there are still many challenges with
such an approach. Apparently, readers may be interested in
the mathematical basis of the proposed approach. Further-
more, there are also practical issues. For example, what if a
loop exists in a control-flow graph so that the calculation of
BR(bx) in equations (1)–(4) may rely on the results of one
another? We will elaborate on our model in the next section.

III. OUR MODEL

A. Problem Settings

Let M denote a faulty program. T∪T' is a set of test

cases, where T = {t1, …, ti, …, tu} is the set of all passed test
cases and T ′ = {t′1, …, t′i, …, t′v} is the set of all failed test
cases. Our aim is to estimate the extent that each statement s
in M is related to faults. In this paper, we use the term fault
relevance score of s to denote such a value. We then sort the
statements into a list in the descending order of their fault
relevance scores thus calculated. In previous studies, such a
list is deemed useful to facilitate programmers in locating
faults in programs [22][26].

B. Preliminaries

1) Control flow graph

Following existing work [1][3], we use G(M) = E, B to
denote the control flow graph (CFG) [3] of a given program

5

M, where E = {e1, e2, …, em} is the set of control flow edges
of M, and B = {b1, b2, …, bn} is the set of basic blocks of M.
In particular, we use ei = edge(bi1, bi2) to denote an edge from
block bi1 pointing to block bi2. Edge ei is called an outgoing
edge of bi1 and an incoming edge of bi2. We say that bi1 is a
predecessor of bi2, and bi2 is a successor of bi1. We further

use the notation edges(bj, *) and edges(*, bj) to represent,
respectively, the set of outgoing and incoming edges of bj.

For example, Part III of Fig. 1 gives a CFG, in which
edges e1, e2, e3, e4, and e5 represent branch transitions, and
nodes b1, b2, b3, and b4 represent basic blocks. Edges e3 and
e4 are incoming edges of block b3. Block b3 is a successor of

b2 in relation to edge e4. The set edges(*, b4) stands for the
set of incoming edges of block b4, which is {b1, b2, b3}.

2) Edge Profile

The frequency of an edge [4][28] is the number of times
that the edge has been exercised in a program execution. In

this paper, we use (ei, tk) to denote the frequency relation
with respect to the execution of edge ei over a passed test

case tk. Similarly, (ei, t'k) is the frequency relation with
respect to the execution of ei over a failed test case t'k.

The frequency relation with respect to the execution of
all edges is represented using an edge profile. In this paper,
we also use the term edge profile of a test case to denote the
edge profile over the execution of a test case. For example,

the edge profile of a passed test case tk is P(tk) = {(e1, tk),
(e2, tk), …, (em, tk)}, where (ei, tk) is the frequency
relation with respect to the execution of edge ei over test
case tk. Similarly, the edge profile of a failed test case t'k is

P(t'k)={(e1, t'k), (e2, t'k), …, (em, t'k)}. In Fig. 1, for
instance, the edge profile for test case t1 is P(t1) = {e1 19,
e2 3, e3 2, e4 1, e1 1}.

3) PageRank

PageRank [21] is a link analysis technique to find
popular Web pages. It models the Internet as a directed
graph, where the nodes are the Web pages and the edges are
the links. PageRank assumes that a more popular page tends
to be more important and has more links towards it [21].
PageRank thus counts a link from page p to page q as a vote
(by p) on the importance of q. By analyzing the constructed
graph, it measures the importance of every page and accor-
dingly estimates the popularity of each web page as follows:
Let p be a page, F(p) be the set of pages that p has links to,
and B(p) be the set of pages having links to p. It uses PR(p)
to denote the ranking of a page p. PageRank assumes that
“highly linked pages should be regarded as more important
than pages being seldom linked” [21]. Therefore, a link to a
page is a vote of the importance of that page. PR(p) is
calculated by the formula:

Here, |F(q)| means the number of pages in the set F(q). The
argument d is a damping factor introduced to simulate the
probability that a user continues to browse pages via the
links. Only in such a scenario, the links contribute to the
popularity and Google ranks of their connected pages.

PageRank uses a magic number 0.85 for d, which is an
empirical value for search engines [21].

4) Inspirations

Infected program states may propagate via control-flow
edges during program execution. We can easily think of
using an execution transition via an edge to capture the
propagation of infected program states, and use the fre-
quency of an edge as “votes” to the fault relevance score of
the basic block that the edge points to. However, different
from the concepts in PageRank that counts the incoming
links to a page as votes to the importance of that page, in
our case, we let the outgoing edges of a block vote for the
fault relevance score of that block. This is because the root
cause of observed failures is the block from which the
infected program states propagate (as well as the outgoing
edges of that block).

Since a program may crash during the execution of some
basic blocks and that stops the propagation of infected
program states, we intuitively employ a damping factor to
simulate such a case. However, directly applying d = 0.85 in
fault localization has no scientific ground. In our work, we
do not use any magic number. We calculate the ratio of the
number of times the execution leaves a block to that of
entering that block, to estimate the probability of that block
propagating infected program states via its outgoing edges.

C. Our Model Proposal — BlockRank

Since we aim at ranking the basic blocks, our model is
named BlockRank, which is a three-stage process.
S1: Construct the suspicious edge profile. We use the edge
profile P(tk) of each passed test case tk for k = 1, 2, …, u to

compute the mean edge profile . In the same manner, we
compute the mean edge profile from the edge profile
P(t′k) for each failed test cases t′k for k = 1, 2, …, v. By

comparing with , we compute the suspicious edge

profile . S2: Calculate the fault relevance scores. In this
stage, BlockRank estimates how much each basic block is
fault-relevant by assigning a fault relevance score BR(bj) to
each of them. BR(bj) is computed as the sum of the fault
relevance scores related to two chances: (a) the chance that
the program terminates within the block bj (e.g., the basic
block bj involves an exit function call statement), and (b) the
chance that the program does not terminate within bj.
S3: Sort the basic blocks. BlockRank then sorts the basic
blocks in the descending order of their fault relevance
scores, and generates a list of basic blocks. After that, since
we have no further clue to prioritize the statements within
any block, the ranking of basic block will be assigned to the
ranking of every statement of the basic block. Developers
can examine the statements in the descending order of their
rankings to seek faults.

1) Constructing the Suspicious Edge Profile

In our model, for each program module, we construct an
individual CFG. We investigate how the edge frequencies
correlate to the failures by comparing the edge profiles of
passed executions with those of failed executions. Since the
number of passed executions may vary significantly from

6

the number of failed executions, it may not be systematic to
compare them directly. In our model, we normalize them
first before comparing them with each other. Thus, we
calculate two mean edge profiles, one for passed executions

and the other for failed executions, and use the notation P =

{(e1), 
(e2), ..., (em)} and P = {(e1), 

(e2), ...,

(em)} to denote them. The values (ei) in P and (ei) in

P are computed by:6






They represent the expected number of times that an edge is
exercised in a passed and a failed execution, respectively.
Another benefit is that using such mean values reduces the
bias effect from individual executions. To investigate the net
contribution of an edge to failures, we subtract the edge

frequencies in P from the corresponding edge frequencies

in P, since the former captures normal program behavior
while the latter can be seen as a mixture of observed abnor-
mal program behavior (failures) and unobserved abnormal
program behavior (coincidental correctness).

Definition 1. The suspicious edge profile is a frequency
relation such that each element relates an edge ei to its
frequency in the mean edge profile of the failed executions
minus its mean frequency in the mean edge profile of the

passed executions. Thus, P = { (e1),  (e2), …,  (em)},

where each 
 (ei) is given by:


  

The frequency of an edge ei in indicates the change in
the mathematical expectation of the number of times that the
edge ei is executed in a failed execution from that in a
passed execution. Thus, a larger means that the
edge ei has a greater frequency in the mean edge profile for
failed executions than that for passed executions. A smaller
 means the opposite. In the next section, we present

how different elements in may affect one another.

2) Calculating the Fault Relevance Scores

From the suspicious edge profile, we obtain the
difference in the expected edge frequency from passed
executions to failed executions. Such information holds the
clue to correlate a branch transition to failures. We further
use it to estimate the fault relevance score of each basic
block. To ease our reference, we use the notation BR(bj) to
represent the fault relevance score of a basic block bj.

Let us first discuss how a program execution transits
from one basic block to another. After executing a basic
block bj, the execution may transfer control to one of bj’s
successor basic blocks. Suppose bk is a successor basic
block of bj. The infected program states in bj may propagate

6 Here, we initialize the central tendency by the arithmetic mean so that we

can compare it with CP more directly.

to bk. We thus let the fault relevance of bk backwardly
contribute to the fault relevance of bj, to reflect the propaga-
tion. However, bk may have a number of incoming edges so
that the fault relevance of bk may contribute to a number of
predecessor basic blocks. We therefore use a fraction of the
fault relevance score BR(bk) of bk to contribute to the fault-
relevant score of bj. To determine the fraction, we compute
the sum of frequencies of the incoming edges of bk (i.e., the

edges in edges(*, bk)) in the suspicious edge profile (see
Definition 1), and compute the ratio of the frequency of this
particular edge(bj, bk) over the sum of all frequencies. This
ratio is given by:7

The fraction of the fault-relevant score that bk contributes to
bj is, therefore, the product of this ratio and the fault relev-
ance score of bk (that is,).

The basic block bj however may have a number of
successors. Therefore, we sum up such fractions from all
successors of bj as the fault relevance contributions from the
successors (if the execution can transit to the successors
after executing bj), as follows:

Sometimes, the execution of the statements in a basic
block may simply crash, throw an unhandled exception, or
invoke an exit function call. In our model, we do not
construct edges to connect such statements to the standalone
exit block. Because of the existence of such statements, a
program execution may leave a basic block (as what we
have described above), or cease any further branch transi-
tions after exercising bj (i.e., the program may have exited,
crashed or the execution may leave the current module and
execute statements of other program modules). We therefore
distinguish whether or not the infected program states of a
basic block may propagate to any of its successor basic
blocks via an outgoing edge. We model the chance that the
basic block propagates its infected program states to its
successor basic blocks via an outgoing edge by the value of
block transition rate.

Definition 2. The block transition rate T(bj) for j = 1, 2, ...,
n, is the probability of the program control flow continues to
transfer to other basic blocks in the same CFG after the
basic block bj has been executed. T(bj) is given by:

  

 
 

 (7)

In equation (7), the denominator captures the total
number of times (in both passed and failed executions) that
the program execution enters the basic block bj, from any

7 An exception is that the denominator in equation (10) may be zero. In that

case, we simply use zero as the result.

7

incoming edge. The numerator captures the total number of
times (in both passed and failed executions) that the
program execution leaves bj, from any outgoing edge. The
value of such a defined T(bj) is in the range of [0, 1]. The
higher the value of T(bj) is, the program execution has a
higher probability to transfer control to other basic blocks
on the same CFG after the basic block bj has been executed.

 (8)

Equation (8) calculates the fault relevance score for a
basic block bj. The term represents the amount

of fault relevance contributed from bj’s successor basic
blocks in case of successful block transition. The term

 represents the amount of fault relevance

of bj when the execution cannot transit to another basic
block after executing bj, where I(bj) is given by:

 (9)

In equation (9), I(bj) captures the amount of fault
relevance of bj in case of no block transition. In this scenario,
we cannot use the outgoing edges of bj to estimate this score
(since there is no transition to successor basic blocks). We
therefore use the sum of the frequencies of incoming edges
of bj in the suspicious edge profile to estimate the fault
relevance score I(bj). We recall that the frequency of an
edge in the suspicious edge profile represents the increase in
the execution frequency from a passed execution to a failed
execution. Thus, to find the suspiciousness of such bj, we
use the frequency values captured in the suspicious edge

profiles for the set of edges in
By applying equation (9) to set up an equation for each

basic block, we obtain an equation set. The number of equa-
tions in this set is equal to the number of basic blocks of the
program. By solving the equation set, we obtain the fault
relevance score for each basic block. Our model works
regardless of whether the CFG contain loops.8

3) Sorting the Basic Blocks

After obtaining the fault relevance score of each basic
block, we produce a ranking list of the basic blocks (from
all CFGs) in descending order of the fault relevance scores
associated with them. All statements not in any basic block
will be grouped under an additional block, which will be
appended to the above ranking list. It will have a lower fault
relevance score than any other block.

After we build up the rankings for basic blocks, we
proceed to assign rankings to statements. The ranking of a
statement is the sum of total number of statements in its
belonging basic block and total number of statements in the
basic blocks ranked before its belonging basic block [15].

IV. EMPIRICAL EVALUATION

A. Experimental Setup

8 In the case of loops, we iteratively solve the fault relevance scores [28].

To address convergence issue, one may adopt an upper bound (such as the

frequently used constant 200 [21]) as the maximum number of iterations.

1) Selection of Subject Programs

To evaluate our technique, we use four UNIX programs
as our subject programs. Their functionality can be found in
the SIR website [10]. Some of them are real-world programs
and have real-life scales. Each of them has many sequential
versions. They have been adopted to evaluate fault localiza-
tion techniques in previous work (such as [14][27][28]).
Both the programs and the associated test suites we use are
downloaded from SIR [10]. Table I shows their real-life
program version numbers, number of executable statements,
number of applicable faulty versions, and the number of test
cases. Let us take the program flex as an example. The real-
life versions used are in the range of flex-2.4.7 to flex-2.5.4.
Each of them has 8571 to 10124 lines of executable
statements. There are a total of 21 faulty versions finally
used in our experiment. All these faulty versions share a test
suite containing 567 test cases.

Following the documentation of SIR and previous work
[15][18][19], we exclude the faulty versions whose faults
cannot be revealed by any test case. It is because that both
our technique and the other peer techniques used in the
experiment [1][15][18][19] require the existence of failed
test cases. In addition, following the advice of the previous
work [11], if a faulty version comes with more than 20% of
all the test cases to be failed ones, we exclude it. Besides,
the faulty versions not supported by our experiment
environment (in which we use a Sun Studio C++ compiler)
are also excluded. Finally, all remaining 110 faulty versions
are selected in our experiment (listed out in Table I).

Following our previous study [19], we apply the whole
test suite as the input to individual subject programs.

2) Selection of Peer Techniques

In our experiment, we select nine representative tech-
niques to compare with. Tarantula, Jaccard, Ochiai, and
SBI are techniques that work at the statement level. CBI and
SOBER are techniques based on predicates. DES-CBI and
DES-SOBER are based on conditions. Another technique
CP is a propagation-based and uses edge profile information.
Our approach, BlockRank, uses edge profile information
and works at the statement level. Comparisons with the
above techniques will evaluate the effectiveness of Block-
Rank and give further insights.

3) Effectiveness Metrics

CBI and SOBER generate ranking lists, which contain all
predicate statements, and sort them in the descending order
of their fault relevance scores. In previous studies, the
metrics T-score [22] is used to evaluate the effectiveness of
these techniques. The metrics, T-score, uses program

TABLE I. STATISTICS OF SUBJECT PROGRAMS.

Program
Real-Life Version

Numbers
LOC

No. of Faulty

Versions

No. of

Test Cases

flex 2.4.7–2.5.4 857110124 21 567

grep 2.2–2.4.2 80539089 17 809

gzip 1.1.2–1.3 40815159 55 217

sed 1.18–3.02 47569289 17 370

Total 110

8

dependence graph to calculate the distance between program
statements. Starting from top-ranked predicate statements9
generated by CBI or SOBER, T-score conducts a breadth-
first search of all the statements for faults. The search
terminates when it encounters any faulty statement, and the
percentage of statements examined (out of all the state-
ments) is returned as the effectiveness [22]. The same
strategy is applied to DES-CBI and DES-SOBER [30].

On the other hand, Tarantula, Jaccard, Ochiai, SBI, CP,
and our method BlockRank output a ranking list containing
all statements, and the T-score metrics cannot be applied
directly. To evaluate their effectiveness, we simply check all
the statements in the ranking list in ascending order of their
rankings until a faulty statement is encountered. The percen-
tage of statements examined (out of all the statements) is
returned as the effectiveness of that technique. Note that,
statements in a tie case, which means statements of identical
rankings, are examined as a whole.

B. Results and Analysis

In this section, we report the results of the techniques.
The data indicated as Tarantula, Jaccard, Ochiai, SBI, CBI,
SOBER, DES-CBI, DES-SOBER, and CP are worked out
using the techniques described in their original papers [15],
[1], [1], [26], [18], [19], [30], [30], and [28], respectively.
The data indicated as BlockRank is our technique.

We first directly compare the overall effectiveness of the
techniques. Fig. 2 gives an overview of the effectiveness
results on the 110 faulty versions. Let us take the curve of
BlockRank as an example. The x-coordinate represents the

percentage of code examined; the y-coordinate represents
the percentage of faults located by BlockRank within the
given code examining effort specified by the x-coordinate.

9 Since it is reported that the top-5 t-score strategy achieves the highest

effectiveness for CBI and SOBER [19], we follow previous studies to

choose the top-5 t-score results to evaluate them. It means that we pick

the top five predicates in the ranked predicates list to start a breadth-first

search.

The curves of the other techniques can be similarly inter-
preted. All the ten curves start from the point (0%, 0%) and
finally reach the point (100%, 100%). Apparently, it reflects
the fact that no fault can be located when not examining any
code (0%), while all the faults can be located when all code
(100%) has been examined.

Let us focus on some checkpoints to compare the four
techniques. When 10% of the code is examined, BlockRank
can locate faults in 49% of the faulty versions. On the other
hand, CP, which is the best among the other techniques with
respect to this checkpoint, can locate 47% of the faults. The
other techniques, as well as the other checkpoints, can be
similarly explained. Since the curve of BlockRank is always
(except on the 90% checkpoint) above all the other curves, it
performs better than the other techniques.

To give a better understanding to the statistics of overall
effectiveness for these techniques, we next use Table II to
list the mean values of the effectiveness of locating faults
(in the row “mean”) for the 110 faulty versions, as well as
their standard deviations (in the row “stdev”). At the same
time, since some previous studies (such as [19]) suggest that
the top 20% code examining range is more important than
other ranges, we also show the results of the studied
techniques at the 5%, 10%, 15%, and 20% checkpoints (that
is, with 5% intervals for code examining effort). For the
upper four rows, a larger number means better effectiveness,
while for the lower two rows, the smaller the better. We use
a bold font to highlight the best technique for each test. For
example, when up to 5% of the code is examined,
BlockRank and CP can locate faults in 39% of all faulty
versions, thus outperforming the others. BlockRank is the
unique winner for 10%, 15%, and 20% of average code
examining effort. It shows that BlockRank gives the best
results among the studied techniques from these viewpoints.
Such an observation consolidates our impression from Fig. 2.
On the other hand, BlockRank achieves the smallest
standard deviation among all techniques. It means that
BlockRank has a more stable effectiveness than the other
techniques in locating faults from the studied subjects.

Fig. 2. Overall effectiveness comparison.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

p
er

ce
n

ta
g

e
o
f

fa
u

lt
s

lo
ca

te
d

percentage of code examined

Tarantula
Ochai
Jaccard
SBI
CBI
SOBER
DES_CBI
DES_SOBER
CP
BlockRank

9

C. Threats to Validity

Internal validity is related to the risk of having

confounding factors to affect the experimental results. A key

factor is whether our experiment platform is correctly built.

In our implementation, the algorithms of related techniques

strictly adhere to those published in the literature. SIR

reports the distribution of passed and failed test cases [10].

It confirms that the fault matrix of the faulty versions of

subject programs can be platform dependent.
We use four UNIX programs, as well as their associated

test suites in the experiment. All these programs are real-
world programs of real-life sizes, and they have been used
by other researchers to verify their debugging research [14]
[27][28]. A further comparison of our approach with other
techniques, using other subjects, with other programming
languages (other than C), or with real faults may further
strengthen the external validity of our empirical study.
Besides, although our technique ideally works in a manner
of locating one fault each time before moving to another, the
use of real-life multi-fault programs in evaluation may con-
solidate the empirical results.

We use different measures to evaluate the results of
different techniques. Statement-level techniques (such as
Tarantula) produce the ranking lists of statements, while
predicate/condition-based techniques (such as CBI) give the
ranking lists of predicate statements. We follow [19] and
[26] to use T-score to evaluate the former, and another
metric to evaluate the latter. Previous studies have reported
that T-score may have limitations (see [8], for example), but
we are not aware of other representative metrics that have
been extensively used to evaluate those techniques.

V. RELATED WORK

Comparing program executions of a faulty program
over passed test cases and failed test cases is a frequently
used fault localization strategy. Related fault localization
techniques can be classified into different groups according
to their working levels. Tarantula [15], CBI [18], and
SOBER [19] have been discussed in Section I. In the sequel,
we review other techniques.

There are statement-level techniques, which contrast
program execution spectra of statements in passed and
failed execution, and employ heuristics to estimate the
extent that a statement is related to faults. Naish et al. [20]
give a summary to this kind of technique. CBI [18] and
SOBER [19] find suspicious predicates. Zhang et al. [29]

propose to use non-parametric hypothesis testing to improve
such predicate-based techniques. DES-CBI [30] and DES-
SOBER [30] work on a finer-level program entity, namely
conditions, to locate faults. CP [28] is another technique that
captures the propagation of infected program states among
basic blocks in order to locate faults. In Sections I and II, we
have introduced these techniques.

Delta Debugging [8] isolates failed inputs, produces
cause effect chains, and locates the root causes of failures. It
considers a program execution (of a failed test case) as a
sequence of program states, each inducing the next one,
until the failure is reached. Predicate switching [27] is
another technique to locate a fault by checking the execution
state. It switches a predicate’s decision at execution time to
alter the original control flow of a failed execution, aiming
at producing a correct output. If correct output is found, the
technique then further searches from the switched predicate
to locate a fault through backward or forward slicing (or
both). Delta Debugging uses additional data-flow informa-
tion rather than the above coverage-based techniques. Con-
sequently, we do not compare with it in this paper.

Le and Soffa [17] make use of path profile information
to investigate the correlation of multiple faults in a faulty
program. Jones et al. [16] further use Tarantula to explore
how to cluster test cases to debug a faulty program in
parallel. Baudry et al. [5] observe that some groups of
statements (collectively known as dynamic basic blocks) are
always executed by the same set of test cases. They use a
bacteriologic approach to find a subset of the test set to
maximize the number of dynamic basic blocks to further
optimize Tarantula. Liblit et al. [18] further adapt CBI to
handle compound Boolean expressions, and show that these
expressions exhibit complex behaviors from the statistical
fault localization perspective. Zhang et al. [30] study the
issues on the granularity of program entity. They observe
that the short-circuit rule in a program may significantly
affect the effectiveness of fault localization techniques. The
experimental result in Section IV appears to confirm this
observation for our subject programs. Nonetheless, more
statistical analysis on the data is required.

Clause and Orso [7] propose a technique to support
debugging of field failures. It can help recording,
reproducing and minimizing failing executions and is useful
for developers to debug field failures in house. Csallner and
Smaragdakis [9] present a hybrid analysis tool for bug
finding. Using dynamic analysis, static analysis and
automatic test cases generation based on the analysis results
to locate faults; their paper reports a promising result. It will
be interesting to know how our technique can be integrated
with their analysis tool.

Gupta et al. [12] propose to narrow down slices using a
forward dynamic slicing approach. Zhang et al. [27]
integrate the forward and the standard dynamic slicing
approaches for debugging. Since these techniques are based
on slicing, we do not compare them with the coverage-based
techniques in this paper. Wong et al. [24] propose heuristics
to synthesize a code-coverage-based method for use in fault
localization. The impact of such heuristics to our technique
is interesting but is beyond the scope of the present paper.

TABLE II. STATISTICS OF OVERALL EFFECTIVENESS

T
a

ra
n

tu
la

J
a

cc
a

rd

O
ch

ia
i

S
B

I

C
B

I

S
O

B
E

R

D
E

S
-C

B
I

D
E

S
-S

O
B

E
R

C
P

B
lo

ck
R

a
n

k

5% 30% 30% 30% 30% 12% 1% 7% 5% 39% 39%
10% 40% 41% 41% 41% 23% 10% 16% 10% 47% 49%
15% 55% 55% 55% 55% 27% 16% 17% 16% 58% 59%
20% 66% 66% 66% 66% 29% 24% 27% 22% 65% 67%
mean 20% 20% 20% 20% 41% 43% 43% 43% 18% 17%
stdev 24% 24% 24% 24% 28% 24% 27% 24% 21% 20%

10

Chen et al. [6] apply PageRank to construct explicit links
to connect suspicious program entities. Their approach can-
not handle those faults that are not obviously suspicious,
while the present paper aims to find such kind of fault
effectively. To address coincidental correctness, Wang et al.
[23] develop fault patterns for identifying suspicious execu-
tion fragments for fault localization.

VI. CONCLUSION

In this paper, we have proposed BlockRank, a new
statistical fault localization technique to address the issues
of coincidental correctness and execution crash. Its main
idea is to use the popularity of incoming basic blocks as the
basis to recursively correlate observed failures to the in-
coming basic block, and handle severe errors that crash the
program. An empirical study has shown that the technique is
more effective than existing techniques.

Future work includes the investigation of other versatile
program execution information (such as path profile) for
link analysis to support fault localization, and the extension
of our model to concurrent programs.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Proceedings of the Testing:
Academic and Industrial Conference: Practice And Research Tech-
niques (TAICPART-MUTATION 2007), pages 89–98. IEEE Computer
Society, Los Alamitos, CA, 2007.

[2] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical
debugging using compound Boolean predicates. In Proceedings of the
2007 ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2007), pages 5–15. ACM, New York, NY, 2007.

[3] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow.
In Proceedings of the 1st International Workshop on Automated and
Algorithmic Debugging (AADEBUG 1993), volume 749 of Lecture
Notes in Computer Science, pages 206–222. Springer, London, UK,
1993.

[4] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path
profiling: the showdown. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL 1998), pages 134–148. ACM, New York, NY, 1998.

[5] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for
efficient fault localization. In Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), pages 82–91.
ACM, New York, NY, 2006.

[6] I.-X. Chen, C.-Z. Yang, T.-K. Lu, and H. Jaygarl. Implicit social
network model for predicting and tracking the location of faults. In
Proceedings of the 32nd Annual International Computer Software
and Applications Conference (COMPSAC 2008), pages 136–143.
IEEE Computer Society, Los Alamitos, CA, 2008.

[7] J. Clause and A. Orso. A technique for enabling and supporting
debugging of field failures. In Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007), pages 261–270.
IEEE Computer Society, Los Alamitos, CA, 2007.

[8] H. Cleve and A. Zeller. Locating causes of program failures. In
Proceedings of the 27th International Conference on Software
Engineering (ICSE 2005), pages 342–351. ACM, New York, NY,
2005.

[9] C. Csallner and Y. Smaragdakis. DSD-crasher: a hybrid analysis tool
for bug finding. In Proceedings of the 2006 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2006),
pages 245–254. ACM, New York, NY, 2006.

[10] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled expe-
rimentation with testing techniques: an infrastructure and its potential
impact. Empirical Software Engineering, 10 (4): 405–435, 2005.

[11] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky.
Selecting a cost-effective test case prioritization technique. Software
Quality Control, 12 (3): 185–210, 2004.

[12] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using
failure-inducing chops. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2005), pages 263–272. ACM, New York, NY, 2005.

[13] R. M. Hierons. Avoiding coincidental correctness in boundary value
analysis. ACM Transactions on Software Engineering and
Methodology, 15 (3): 227–241, 2006.

[14] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value
replacement. In Proceedings of the 2008 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2008),
pages 167–178. ACM, New York, NY, 2008.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), pages 273–282. ACM, New York, NY,
2005.

[16] J. A. Jones, M. J. Harrold, and J. F. Bowring. Debugging in parallel.
In Proceedings of the 2007 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2007), pages 16–26. ACM,
New York, NY, 2007.

[17] W. Le and M. L. Soffa. Path-based fault correlations. In Proceedings
of the 18th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (SIGSOFT 2010/FSE-18), pages 307–316.
ACM, New York, NY, 2010.

[18] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2005), pages 15–26. ACM, New York, NY, 2005.

[19] C. Liu, L. Fei, X. Yan, S. P. Midkiff, and J. Han. Statistical
debugging: a hypothesis testing-based approach. IEEE Transactions
on Software Engineering, 32 (10): 831–848, 2006.

[20] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-
based software diagnosis. ACM Transactions on Software Engineer-
ing and Methodology, to appear. Available at http://www.cs.mu.oz.au
/~lee/papers/model/paper.pdf.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank cita-
tion ranking: bringing order to the web. Stanford InfoLab Publication
1999-66. Stanford University, Palo Alto, CA, 1999. Available at
http://dbpubs.stanford.edu/pub/1999-66.

[22] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (ASE 2003), pages 30–39. IEEE
Computer Society, Los Alamitos, CA, 2003.

[23] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming
coincidental correctness: coverage refinement with context patterns to
improve fault localization. In Proceedings of the 31st International
Conference on Software Engineering (ICSE 2009), pages 45–55.
IEEE Computer Society, Los Alamitos, CA, 2009.

[24] W. E. Wong, V. Debroy, and B. Choi. A family of code coverage-
based heuristics for effective fault localization. Journal of Systems
and Software, 83 (2): 188–208, 2010.

[25] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai. Effective fault
localization using code coverage. In Proceedings of the 31st Annual
International Computer Software and Applications Conference
(COMPSAC 2007), volume 1, pages 449–456. IEEE Computer
Society, Los Alamitos, CA, 2007.

[26] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the
effects of test-suite reduction on fault localization. In Proceedings of
the 30th International Conference on Software Engineering (ICSE
2008), pages 201–210. ACM, New York, NY, 2008.

[27] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. In Proceedings of the 28th International

11

Conference on Software Engineering (ICSE 2006), pages 272–281.
ACM, New York, NY, 2006.

[28] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing
propagation of infected program states. In Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC 2009/FSE-17), pages 43–52. ACM,
New York, NY, 2009.

[29] Z. Zhang, W. K. Chan, T. H. Tse, Y. T. Yu, and P. Hu. Non-
parametric statistical fault localization. Journal of Systems and Soft-
ware, 84 (6): 885–905, 2011.

[30] Z. Zhang, B. Jiang, W. K. Chan, and T. H. Tse. Debugging through
evaluation sequences: a controlled experimental study. In Proceed-
ings of the 32nd Annual International Computer Software and
Applications Conference (COMPSAC 2008), pages 128–135. IEEE
Computer Society, Los Alamitos, CA, 2008.

