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Abstract—Statistical fault localization techniques find suspi-
cious faulty program entities in programs by comparing passed 
and failed executions. Existing studies show that such tech-
niques can be promising in locating program faults. However, 
coincidental correctness and execution crashes may make pro-
gram entities indistinguishable in the execution spectra under 
study, or cause inaccurate counting, thus severely affecting the 
precision of existing fault localization techniques. In this paper, 
we propose a BlockRank technique, which calculates, con-
trasts, and propagates the mean edge profiles between passed 
and failed executions to alleviate the impact of coincidental 
correctness. To address the issue of execution crashes, Block-
Rank identifies suspicious basic blocks by modeling how each 
basic block contributes to failures by apportioning their fault 
relevance to surrounding basic blocks in terms of the rate of 
successful transition observed from passed and failed execu-
tions. BlockRank is empirically shown to be more effective 
than nine representative techniques on four real-life medium-
sized programs.
 

Keyword—fault localization; graph; social network analysis 

I. INTRODUCTION 

Fault localization is an activity in debugging. Many 
statistical fault localization (SFL) techniques [1][16][18] 
[19] contrast the program spectra of passed and failed 
executions1 to predict the fault relevance of individual pro-
gram entities. They further construct lists of such program 
entities in descending order of their estimated fault suspi-
ciousness. Programmer may follow the recommendation of 
such lists to find faults [22]. Many empirical studies [1] 
[15][18][19] show that this kind of semi-automatic fault 

localization technique has good predictive ability for faults. 
A vast majority of SFL techniques, such as Jaccard [1], 

Value Replacement [14], Tarantula [15], CBI, [18], SOBER 
[19], and DES [30], propose various coefficients to measure 
the correlations between observed failures and the presence 
or absence of individual program entities in the correspond-
ing program execution paths. Motivated by this feature, 
other methodologies have been proposed [5][23] to remove 
some available test executions with a view to improving the 
sensitivity of the base techniques. Although the sensitivity 
in differentiating program entities can be improved, the cor-
relation obtained may be inconsistent with the intentionally 
omitted test executions (and hence not consistent with all 
the given facts). Some techniques such as [24][25] consider 
that simply counting the presence or absence of program 
entities is merely a primary step, which can be further 
optimized by proposing weighted coefficients. 

Nonetheless, existing empirical studies (such as [15]) 
pointed out that faults in code regions that have been 
popularly executed by both passed and failed executions are 
hard to be located effectively. Indeed, an execution passing 
through a program entity (such as a compound predicate in 
the condition of an if-statement) may not trigger a failure 
even if that program entity is faulty. This is generally known 
as coincidental correctness [13]. As such, a measure of the 
direct correlation between execution-based failures and the 
coverage of individual program entities may not precisely 
point out the faulty positions in programs. 

Researchers have proposed techniques to alleviate the 
issue of coincidental correctness. For instance, in order to 
make the correlation assessment more precise, DES [30] 
studies the atomic units of each program entity and differen-
tiates various sequences of such atomic units, which 
essentially isolates some coincidental correctness scenarios. 
Wang et al. [23] assess whether a particular fragment of an 
execution is suspicious with respect to a predefined fault 
pattern to determine whether the fragment should be 
accessed by SFL techniques. CP [28] backward propagates 
the measured correlation strengths to other program entities 
based on a program dependency graph, and is empirically 
evaluated to be promising. However, the accuracy of CP’s 
model is affected by execution crashes (due, for example, to 
null pointer assignments), which is a kind of failure such 
that a chain of propagations stops at a block. 
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In this paper, we propose a novel fault localization 
technique, known as BlockRank, to alleviate the adversarial 
effects of coincidental correctness and execution crashes in 
statistical fault localization. Like CP, BlockRank first 
computes the central tendency of the edge profiles [4][28] 
for passed executions and that for the failed executions. 
BlockRank next estimates the difference between these two 
mean edge profiles by finding out the initial fault relevance 
of each edge in the faulty program. It then transfers the 
initial fault relevance of edges to their directly connected 
basic blocks, back and forth and iteratively, by setting up an 
equation set to apportion the fault relevance scores among 
basic blocks. Finally, BlockRank sorts the basic blocks of 
the program in descending order of their fault relevance and 
maps the rankings of each basic block to its statements. 

BlockRank is innovative in that if a basic block is 
important in correlation to any observed failure, and a direct 
incoming block of this basic block is its popular source of 
entrance point, the importance of this particular incoming 
block should indirectly correlate to the observed failure. 
Therefore, a highly popular source (i.e., basic block) to a 
highly fault-correlated basic block can reveal its fault relev-
ance even though this popular basic block has been heavily 
executed by passed executions and rarely executed by failed 
executions. Different from many existing techniques that 
use vertex profiles to assess the correlation of individual 

program entities to failures, BlockRank uses edge profiles to 
express program executions and computes mean edge 
profiles to alleviate the impact of coincidental correctness. 
Moreover, unlike CP, BlockRank uses the observed 
transition rates among blocks to handle execution crashes, 
and models popularity using every such transition rate. Our 
experiment shows that BlockRank is more effective than 
Tarantula, Jaccard, Ochiai, SBI, CBI, SOBER, DES-CBI, 
DES-SOBER, and CP on four real-life programs. 

The main contribution of this work is twofold. First, it 
proposes a novel and precise propagation model of fault-
failure correlations. It points out a method to factor in both 
coincidental correctness and execution crashes. Second, it 
reports an experiment that verifies this innovative approach. 

The rest of the paper is organized as follows. Section II 
uses an example to motivate this work. Section III presents 
our technique, which is evaluated in Section IV. Section V 
reviews related work. Section VI concludes the paper. 

II. MOTIVATING EXAMPLE 

A. Example Program 

Part I of Fig. 1 shows a code excerpt from a faulty 
version v2 of the program “schedule” (from SIR [10]). This 

  

1 A failed execution means that a program execution reveals a failure (such 

as an incorrect output or a crash). A passed execution is the opposite. 

Part I  Part IV 

Block Statement 
Execution Counts (Crashes)  Tarantula Jaccard Ochiai SBI 

t1 t2 t3 t'1 t'2 t'3 susp* r** susp r susp r susp r 

b1 s1 
if (block_queue) { 22 17 22 25 29 25  0.50  4 0.50  4 0.71 4 0.50 4 

b2 

s2 

s3 

s4 

s5 

   count = block_queue->mem_count + 1; /* fault */ 

   n = (int) (count*ratio); 

   proc = find_nth(block_queue, n); 

   if (proc) { 

3 (0) 5 (0) 2 (0) 7 (0) 11 (2) 10 (4) 

 

0.50  4 0.50  4 0.71 4 0.50 4 

b3 

s6 

s7 

s8 

      block_queue = del_ele(block_queue, proc); 

      prio = proc->priority; 

      prio_queue[prio] 

         = append_ele(prio_queue[prio], proc); 

1 2 1 5 8 2 

 

0.50  4 0.50  4 0.71 4 0.50 4 

b4 s9 } } 22 17 22 25 27 21  0.50  4 0.50  4 0.71 4 0.50 4 

Code examining effort to locate b2 (containing s2):   100% 100% 100% 100% 

Part II  Part V 

Predicate 

(also Condition) 

 Evaluation Results (true:false)  CBI SOBER DES-CBI DES-SOBER 

t1 t2 t3 t'1 t'2 t'3 susp r susp r susp r susp r 

p1 also c1 (at s1)   In this example, each predicate happens to have only one 

condition. 

3:19 5:12 2:20 7:18 11:18 10:15  0.00 2 1.03  2 0.00 2 1.03  2 

p2 also c2 (at s5) 1:2 2:3 1:1 5:2 8:1 2:4  0.00 2 4.17  1 0.00 2 4.17  1 

Code examining effort to locate p2 (most close to s2):   100% 100% 100% 100% 

Part III  Part VI 

Edge 
 Execution Counts  CP Our Method 

t1 t2 t3 t'1 t'2 t'3  susp r susp r 

e1 (b1→b4) 

 

We add a dummy block b4 containing s9 to make a complete CFG. 

19 12 20 18 18 15  0.00 

 

0.00 

 

e2 (b1→b2) 3 5 2 7 11 10  0.47 6.00 

e3 (b2→b4) 2 3 1 2 1 4  0.12 0.33 

e4 (b2→b3) 1 2 1 5 8 2  0.58 3.67 

e5 (b3→b4) 1 2 1 5 8 2  0.88 3.67 

 
 

                                   P(t1) =                                                   P(t2) P(t3) P(t'1) P(t'2) P(t'3) 
 

* susp: suspiciousness computed for block/predicate/condition/edge 

 b1 0.34 4 4.00 3 

 b2 0.73 3 4.32 1 

 b3 1.02 2 3.67 4 

 b4 1.16 1 4.00 3 

** r: ranking for block/predicate/condition/edge                                Code examining effort to locate b2 (containing s2):   75% 25% 

Fig. 1. Faulty version v2 of program “schedule”. 
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code excerpt manages a process queue. It first computes the 
index of a target process, and then moves it along priority 
queues. There is a fault in statement s2, which causes the 
program to generate an incorrect index n in s3. It may finally 
lead to a program failure, or immediately crashes the 
program execution when executing s4 (due to a null-pointer 
error in the function call find_nth). 

In this example, the two “if” statements s1 and s5 divide 
the code excerpt into three basic blocks [5] b1, b2, and b3.

2 
For ease of explanation, we add a dummy basic block b4 to 
form a complete control-flow graph (CFG) [4] and assume 
that each execution starts from b1 and ends at b4. The CFG 
representing the code excerpt is shown in Part III of Fig. 1. 
In this graph, each ellipse represents a basic block. We use 
thick border to highlight b2 because it contains the fault. The 
four basic blocks are connected via five control-flow edges 
(e1, e2, e3, e4, and e5, shown as lines with arrows). Let us use 
e1 as an illustration. It indicates that s1 has been evaluated to 
be false in an execution, and b4 will be next executed. 
Further, statements s1 and s5 contain predicates [18][19] p1 
and p2, respectively, as shown in Part II of Fig. 1. 

To demonstrate previous techniques and motivate our 
approach, we randomly select three passed test cases (t1, t2, 
and t3) and three failed test cases (t′1, t′2, and t′3) from the 
test pool of the program “schedule” [10]. The execution 
counts of the blocks, as well as the number of times that the 
program crashes within b2, are shown in Part I of Fig. 1. The 
evaluation results of the predicates and the frequencies of 
the edges (that is, how many times each edge is exercised in 
a program execution [28]) are shown in Parts II and III, 
respectively, of Fig. 1. Let us take the gray column as an 
example. It shows that blocks b1, b2, b3, and b4 are executed 
22, 3, 1, and 22 times, respectively, for test case t1. The 
numbers “3 (0)” mean that, in the three times when b2 is 
executed, the program never crashes. Furthermore, during 
these three times, the predicate p2 is evaluated as true and 
false for twice and once, respectively. In the 22 times that b1 
is executed, the predicate p1 is evaluated as true and false for 
3 and 19 times, respectively. The frequencies of edges e1, e2, 
e3, e4, and e5 with respect to the execution of t1 are 19, 3, 2, 
1, and 1, respectively. We represent them as P(t1) 
=                                      . Following Ball 
et al. [4], we refer to P(t1) as the edge profile of test case t1. 
The other edge profiles P(t2), P(t3), P(t'1), P(t'2), and P(t'3) 
can be similarly explained. Given a frequency relation 
       , we define             . 

B. Previous Techniques Revisited 

In Part IV of Fig. 1, we show the effectiveness of four 
statement-level techniques, Tarantula [15], Jaccard [1], 
Ochiai [1], and SBI [26], on locating the fault in this code 
excerpt. By applying Tarantula, we can compute the fault 
relevance score [15][28] for each block and accordingly 
compute the code examining effort to locate fault [26][29]. 
This effort is extensively used to evaluate the effectiveness 

                                                           
2 Each basic block consists of program statements that will share the same 

execution count [30] in any execution, unless the program crashes (as in 

the example of Fig. 1) or the system API exit is invoked. 

of fault localization techniques in previous studies [26][27] 
[29]. Similarly, the effectiveness of techniques Jaccard, 
Ochiai, and SBI are also evaluated and shown in Part IV. 
We observe from the results that none of the peer techniques 
can locate the fault until all the code in the excerpt has been 
examined (in the order of examination recommended by 
each technique). This is because all blocks (and statements) 
are exercised to the same extent by the set of the passed and 
failed executions. In general, if a faulty is executed but no 
failure is revealed (and consequently the test case is marked 
as a passed test case), the phenomenon is known as coinci-
dental correctness [13] in testing. Coincidental correctness 
makes the execution counts of program entities indistin-
guishable, and lowers the effectiveness of fault localization 
techniques. Unfortunately, previous studies also show that 
coincidental correctness occurs frequently in real-life 
programs [23]. 

In Part V of Fig. 1, we show the effectiveness of two 
predicate-based techniques (CBI [18] and SOBER [19]) and 
two condition-based techniques (DES-CBI [30] and DES-
SOBER [30]) in locating the fault in this code excerpt.3 4 
Here, we omit the tedious computation process and directly 
show the code examining effort to locate the fault. Inter-
ested readers may follow the references to find the details of 
these methods. CBI investigates whether a predicate is eva-
luated (to be true or false) [18] and ignores the detailed 
evaluation results (such as how many times it is evaluated). 
As a consequence, CBI and DES-CBI cannot distinguish 
between the evaluation results of p1 and p2, and need 100% 
code examining effort to locate the fault. SOBER uses 
evaluation bias [19] to partially capture the execution 
spectra of predicates, but inaccurately gives predicate p2 a 
higher fault relevance score than p1. As such, SOBER and 
DES-SOBER still need to examine 100% of all code to 
locate the fault. The unsatisfactory results are also due to the 
unexpected coincidental correctness issues. 

In part VI of Fig. 1, we evaluate the technique CP [28]. 
CP lets the fault relevance scores of blocks propagate via 
edges, so that they can be found by solving an equation set 
containing fault relevance scores of both blocks and edges 
(with the former unknown and the latter known). However, 
the propagation model of CP cannot handle program crashes 
(at t′2 and t′3), which stop the propagation of errors to any 
other basic blocks, thus causing inaccurate result in this 
example. Because of this problem, CP has to evaluate 75% 
of all the code before the fault is located. As we will present 
later, BlockRank alleviates this problem. 

C. Motivating Our Approach 

We first compute a mean edge profile    [4][28] for all 
the passed executions. It is a frequency relation showing a 

                                                           
3 Note that, in this example, each predicate happens to have only one 

condition, so that the effectiveness of the each condition-based technique 

is identical to that of its predicate-based counterpart (that is, the effective-

ness of DES-CBI is the same as that of CBI, and the effectiveness of 

DES-SOBER is the same as that of SOBER). 
4 After predicates have been assigned fault relevance scores, programmers 

are suggested to follow a breath-first search (starting from predicates 

having the highest fault relevance scores) to locate faults [22]. 
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mean frequency of passed executions with respect to every 

edge. In the motivating example,    
                 

 
 

                                                      
Here, each arithmetic operation (such as addition and scalar 
division) on the edge profiles       represent the element-
wise operation of every individual entry in       (see 
Definition 1 in Section III.C). Similarly, we compute a 
mean edge profile    for all failed executions. In our 

example,     
    

       
       

  

 
                         

                              . Such mean edge profiles 
stand for the execution spectra producing no failure and the 
execution spectra correlating to failures, respectively. We 

therefore use          to calculate the increase from 

   to   , statistically modeling the net contribution to fail-
ures [28] by all branch transitions (that is, edges). In our 

example,                                             
          . 

The five values in    are used to calculate the fault 
relevance scores of the basic blocks b1, b2, b3, and b4 by 
equations (1)–(4): 

              
    

              
             (1) 

              
    

              
             (2) 

       
    

              
             (3) 

                           (4) 

Let us first take equation (1) to illustrate the basic idea. 
We recall that in an execution, the execution of b1 can be 
immediately followed by the execution of either e1 or e2. On 
the other hand, b2 will only be reached directly from b1 via 
the edge e2. An execution passing through b2 must also pass 
through b1. As such, the fault relevance of b2 is deemed to 
come from that of b1 due to the investigation on their spectra 
in execution. Suppose that, when calculating the fault relev-
ance scores of b1 and b2, we find that the fault relevance of 
b2 totally contributes to that of b1. On the other hand, b4 may 
be reached from e1, e3, or e5. Hence, the fault relevance of b4 
partially contributes to b1. We apportion the fault relevance 
of b4 to b1 based on the edges from other blocks to b4. Block 
b4 has three incoming edges e1, e3 and e5. From the edge 

profile   , the net contributes of these edges to failures are 
0.00, 0.33, and 3.67, respectively. Since block b1 can 
directly reach b4 only via e1, block b4 contributes 

    

              
 of its fault relevance to block b1.

5  For each 

block having outgoing edge(s) (namely, block b2 or b3) we 
set up a formula similar to equations (2) and (3). Block b4 
has no outgoing edge, and hence we use the sum of 

frequencies in    of all incoming edges to estimate its fault 
relevance score, as in equation (4). Thus we obtain BR(b1) = 

                                                           
5 We also notice that the edge frequency of e1 in P∆ is 0, which means that 

edge e1 is not relevant to the fault. Accordingly, b4 does not contribute to 

b1. 

4.00, BR(b2) = 4.00, BR(b3) = 3.67, and BR(b4) = 4.00. Here, 
BR(bx) denotes the fault relevance score of block bx. 

Because the execution of block b2 is observed to have 
chances to crash, leading to abnormal execution termination 
before reaching the block b3 or b4, we distinguish crashing 
cases from non-crashing cases. The probability of b2 not 
crashing is given by: 

      
                       

             
      

which computes the ratio of the number of times that the 
outgoing edges of b2 are exercised in all executions to the 
number of times that the incoming edges of b2 are exercised 
in all executions (the values used in computation can be 
obtained from Part III of Fig. 1). We further use equation (5) 
to calibrate BR(b2) to BR'(b2): 

                                          (5) 

BR'(b2) is the weighted sum of fault relevance scores of b2 
in crashing and non-crashing cases. In a non-crashing case, 
the fault relevance score of b2 is calculated as BR(b2). In a 
crashing case, because the execution of b2 must not be 
transferred via any outgoing edge, the fault relevance score 
is calculated as the sum of net contributions to failures (fre-

quencies in   ) of all its incoming edges, as in equation (6): 

           (6) 

The basic block b2 containing the faulty statement s2, is 
given a highest fault relevance score BR'(b2) = 4.32 and 
ranked the highest. As a result, BlockRank needs to examine 
25% of all code to locate fault in the example of Fig. 1. 

This example motivates a novel approach that alleviates 
the impacts from coincidental correctness and program 
crashing. However, there are still many challenges with 
such an approach. Apparently, readers may be interested in 
the mathematical basis of the proposed approach. Further-
more, there are also practical issues. For example, what if a 
loop exists in a control-flow graph so that the calculation of 
BR(bx) in equations (1)–(4) may rely on the results of one 
another? We will elaborate on our model in the next section. 

III. OUR MODEL 

A. Problem Settings 

Let M denote a faulty program. T∪T' is a set of test 

cases, where T = {t1, …, ti, …, tu} is the set of all passed test 
cases and T ′ = {t′1, …, t′i, …, t′v} is the set of all failed test 
cases. Our aim is to estimate the extent that each statement s 
in M is related to faults. In this paper, we use the term fault 
relevance score of s to denote such a value. We then sort the 
statements into a list in the descending order of their fault 
relevance scores thus calculated. In previous studies, such a 
list is deemed useful to facilitate programmers in locating 
faults in programs [22][26]. 

B. Preliminaries 

1) Control flow graph 

Following existing work [1][3], we use G(M) = E, B to 
denote the control flow graph (CFG) [3] of a given program 
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M, where E = {e1, e2, …, em} is the set of control flow edges 
of M, and B = {b1, b2, …, bn} is the set of basic blocks of M. 
In particular, we use ei = edge(bi1, bi2) to denote an edge from 
block bi1 pointing to block bi2. Edge ei is called an outgoing 
edge of bi1 and an incoming edge of bi2. We say that bi1 is a 
predecessor of bi2, and bi2 is a successor of bi1. We further 

use the notation edges(bj, *) and edges(*, bj) to represent, 
respectively, the set of outgoing and incoming edges of bj. 

For example, Part III of Fig. 1 gives a CFG, in which 
edges e1, e2, e3, e4, and e5 represent branch transitions, and 
nodes b1, b2, b3, and b4 represent basic blocks. Edges e3 and 
e4 are incoming edges of block b3. Block b3 is a successor of 

b2 in relation to edge e4. The set edges(*, b4) stands for the 
set of incoming edges of block b4, which is {b1, b2, b3}. 

2) Edge Profile 

The frequency of an edge [4][28] is the number of times 
that the edge has been exercised in a program execution. In 

this paper, we use (ei, tk) to denote the frequency relation 
with respect to the execution of edge ei over a passed test 

case tk. Similarly, (ei, t'k) is the frequency relation with 
respect to the execution of ei over a failed test case t'k. 

The frequency relation with respect to the execution of 
all edges is represented using an edge profile. In this paper, 
we also use the term edge profile of a test case to denote the 
edge profile over the execution of a test case. For example, 

the edge profile of a passed test case tk is P(tk) = {(e1, tk), 
(e2, tk), …, (em, tk)}, where (ei, tk) is the frequency 
relation with respect to the execution of edge ei over test 
case tk. Similarly, the edge profile of a failed test case t'k is 

P(t'k)={(e1, t'k), (e2, t'k), …, (em, t'k)}. In Fig. 1, for 
instance, the edge profile for test case t1 is P(t1) = {e1   19, 
e2   3, e3   2, e4   1, e1   1}. 

3) PageRank 

PageRank [21] is a link analysis technique to find 
popular Web pages. It models the Internet as a directed 
graph, where the nodes are the Web pages and the edges are 
the links. PageRank assumes that a more popular page tends 
to be more important and has more links towards it [21]. 
PageRank thus counts a link from page p to page q as a vote 
(by p) on the importance of q. By analyzing the constructed 
graph, it measures the importance of every page and accor-
dingly estimates the popularity of each web page as follows: 
Let p be a page, F(p) be the set of pages that p has links to, 
and B(p) be the set of pages having links to p. It uses PR(p) 
to denote the ranking of a page p. PageRank assumes that 
“highly linked pages should be regarded as more important 
than pages being seldom linked” [21]. Therefore, a link to a 
page is a vote of the importance of that page. PR(p) is 
calculated by the formula: 

                     
 

      
 

      

 

Here, |F(q)| means the number of pages in the set F(q). The 
argument d is a damping factor introduced to simulate the 
probability that a user continues to browse pages via the 
links. Only in such a scenario, the links contribute to the 
popularity and Google ranks of their connected pages. 

PageRank uses a magic number 0.85 for d, which is an 
empirical value for search engines [21]. 

4) Inspirations 

Infected program states may propagate via control-flow 
edges during program execution. We can easily think of 
using an execution transition via an edge to capture the 
propagation of infected program states, and use the fre-
quency of an edge as “votes” to the fault relevance score of 
the basic block that the edge points to. However, different 
from the concepts in PageRank that counts the incoming 
links to a page as votes to the importance of that page, in 
our case, we let the outgoing edges of a block vote for the 
fault relevance score of that block. This is because the root 
cause of observed failures is the block from which the 
infected program states propagate (as well as the outgoing 
edges of that block). 

Since a program may crash during the execution of some 
basic blocks and that stops the propagation of infected 
program states, we intuitively employ a damping factor to 
simulate such a case. However, directly applying d = 0.85 in 
fault localization has no scientific ground. In our work, we 
do not use any magic number. We calculate the ratio of the 
number of times the execution leaves a block to that of 
entering that block, to estimate the probability of that block 
propagating infected program states via its outgoing edges. 

C.  Our Model Proposal — BlockRank 

Since we aim at ranking the basic blocks, our model is 
named BlockRank, which is a three-stage process. 
S1: Construct the suspicious edge profile. We use the edge 
profile P(tk) of each passed test case tk for k = 1, 2, …, u to 

compute the mean edge profile   . In the same manner, we 
compute the mean edge profile    from the edge profile 
P(t′k) for each failed test cases t′k for k = 1, 2, …, v. By 

comparing    with   , we compute the suspicious edge 

profile   . S2: Calculate the fault relevance scores. In this 
stage, BlockRank estimates how much each basic block is 
fault-relevant by assigning a fault relevance score BR(bj) to 
each of them. BR(bj) is computed as the sum of the fault 
relevance scores related to two chances: (a) the chance that 
the program terminates within the block bj (e.g., the basic 
block bj involves an exit function call statement), and (b) the 
chance that the program does not terminate within bj. 
S3: Sort the basic blocks. BlockRank then sorts the basic 
blocks in the descending order of their fault relevance 
scores, and generates a list of basic blocks. After that, since 
we have no further clue to prioritize the statements within 
any block, the ranking of basic block will be assigned to the 
ranking of every statement of the basic block. Developers 
can examine the statements in the descending order of their 
rankings to seek faults. 

1) Constructing the Suspicious Edge Profile 

In our model, for each program module, we construct an 
individual CFG. We investigate how the edge frequencies 
correlate to the failures by comparing the edge profiles of 
passed executions with those of failed executions. Since the 
number of passed executions may vary significantly from 
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the number of failed executions, it may not be systematic to 
compare them directly. In our model, we normalize them 
first before comparing them with each other. Thus, we 
calculate two mean edge profiles, one for passed executions 

and the other for failed executions, and use the notation P = 

{(e1), 
(e2), ..., (em)} and P = {(e1), 

(e2), ..., 

(em)} to denote them. The values (ei) in P and (ei) in 

P are computed by:6 


          

 

 
           

 

   

 


           

 

 
         

   

 

   

 

They represent the expected number of times that an edge is 
exercised in a passed and a failed execution, respectively. 
Another benefit is that using such mean values reduces the 
bias effect from individual executions. To investigate the net 
contribution of an edge to failures, we subtract the edge 

frequencies in P from the corresponding edge frequencies 

in P, since the former captures normal program behavior 
while the latter can be seen as a mixture of observed abnor-
mal program behavior (failures) and unobserved abnormal 
program behavior (coincidental correctness). 

Definition 1. The suspicious edge profile    is a frequency 
relation such that each element relates an edge ei to its 
frequency in the mean edge profile of the failed executions 
minus its mean frequency in the mean edge profile of the 

passed executions. Thus, P  = { (e1),  (e2), …,  (em)}, 

where each 
 (ei) is given by: 


                              

The frequency of an edge ei in    indicates the change in 
the mathematical expectation of the number of times that the 
edge ei is executed in a failed execution from that in a 
passed execution. Thus, a larger          means that the 
edge ei has a greater frequency in the mean edge profile for 
failed executions than that for passed executions. A smaller 
         means the opposite. In the next section, we present 

how different elements in     may affect one another. 

2) Calculating the Fault Relevance Scores 

From the suspicious edge profile, we obtain the 
difference in the expected edge frequency from passed 
executions to failed executions. Such information holds the 
clue to correlate a branch transition to failures. We further 
use it to estimate the fault relevance score of each basic 
block. To ease our reference, we use the notation BR(bj) to 
represent the fault relevance score of a basic block bj. 

Let us first discuss how a program execution transits 
from one basic block to another. After executing a basic 
block bj, the execution may transfer control to one of bj’s 
successor basic blocks. Suppose bk is a successor basic 
block of bj. The infected program states in bj may propagate 

                                                           
6 Here, we initialize the central tendency by the arithmetic mean so that we 

can compare it with CP more directly. 

to bk. We thus let the fault relevance of bk backwardly 
contribute to the fault relevance of bj, to reflect the propaga-
tion. However, bk may have a number of incoming edges so 
that the fault relevance of bk may contribute to a number of 
predecessor basic blocks. We therefore use a fraction of the 
fault relevance score BR(bk) of bk to contribute to the fault-
relevant score of bj. To determine the fraction, we compute 
the sum of frequencies of the incoming edges of bk (i.e., the 

edges in edges(*, bk)) in the suspicious edge profile (see 
Definition 1), and compute the ratio of the frequency of this 
particular edge(bj, bk) over the sum of all frequencies. This 
ratio is given by:7 

               
 

              

                     

 

The fraction of the fault-relevant score that bk contributes to 
bj is, therefore, the product of this ratio and the fault relev-
ance score of bk (that is,                ). 

The basic block bj however may have a number of 
successors. Therefore, we sum up such fractions from all 
successors of bj as the fault relevance contributions from the 
successors (if the execution can transit to the successors 
after executing bj), as follows: 

                    
                         

 

Sometimes, the execution of the statements in a basic 
block may simply crash, throw an unhandled exception, or 
invoke an exit function call. In our model, we do not 
construct edges to connect such statements to the standalone 
exit block. Because of the existence of such statements, a 
program execution may leave a basic block (as what we 
have described above), or cease any further branch transi-
tions after exercising bj (i.e., the program may have exited, 
crashed or the execution may leave the current module and 
execute statements of other program modules). We therefore 
distinguish whether or not the infected program states of a 
basic block may propagate to any of its successor basic 
blocks via an outgoing edge. We model the chance that the 
basic block propagates its infected program states to its 
successor basic blocks via an outgoing edge by the value of 
block transition rate. 

Definition 2. The block transition rate T(bj) for j = 1, 2, ..., 
n, is the probability of the program control flow continues to 
transfer to other basic blocks in the same CFG after the 
basic block bj has been executed. T(bj) is given by: 

      
                                           

                     
                      

  (7) 

In equation (7), the denominator captures the total 
number of times (in both passed and failed executions) that 
the program execution enters the basic block bj, from any 

                                                           
7 An exception is that the denominator in equation (10) may be zero. In that 

case, we simply use zero as the result. 
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incoming edge. The numerator captures the total number of 
times (in both passed and failed executions) that the 
program execution leaves bj, from any outgoing edge. The 
value of such a defined T(bj) is in the range of [0, 1]. The 
higher the value of T(bj) is, the program execution has a 
higher probability to transfer control to other basic blocks 
on the same CFG after the basic block bj has been executed. 

                                   (8) 

Equation (8) calculates the fault relevance score for a 
basic block bj. The term             represents the amount 

of fault relevance contributed from bj’s successor basic 
blocks in case of successful block transition. The term 

                represents the amount of fault relevance 

of bj when the execution cannot transit to another basic 
block after executing bj, where I(bj) is given by: 

              
             

 (9) 

In equation (9), I(bj) captures the amount of fault 
relevance of bj in case of no block transition. In this scenario, 
we cannot use the outgoing edges of bj to estimate this score 
(since there is no transition to successor basic blocks). We 
therefore use the sum of the frequencies of incoming edges 
of bj in the suspicious edge profile to estimate the fault 
relevance score I(bj). We recall that the frequency of an 
edge in the suspicious edge profile represents the increase in 
the execution frequency from a passed execution to a failed 
execution. Thus, to find the suspiciousness of such bj, we 
use the frequency values captured in the suspicious edge 

profiles for the set of edges in              
By applying equation (9) to set up an equation for each 

basic block, we obtain an equation set. The number of equa-
tions in this set is equal to the number of basic blocks of the 
program. By solving the equation set, we obtain the fault 
relevance score for each basic block. Our model works 
regardless of whether the CFG contain loops.8 

3) Sorting the Basic Blocks 

After obtaining the fault relevance score of each basic 
block, we produce a ranking list of the basic blocks (from 
all CFGs) in descending order of the fault relevance scores 
associated with them. All statements not in any basic block 
will be grouped under an additional block, which will be 
appended to the above ranking list. It will have a lower fault 
relevance score than any other block. 

After we build up the rankings for basic blocks, we 
proceed to assign rankings to statements. The ranking of a 
statement is the sum of total number of statements in its 
belonging basic block and total number of statements in the 
basic blocks ranked before its belonging basic block [15]. 

IV. EMPIRICAL EVALUATION 

A. Experimental Setup 

                                                           
8 In the case of loops, we iteratively solve the fault relevance scores [28]. 

To address convergence issue, one may adopt an upper bound (such as the 

frequently used constant 200 [21]) as the maximum number of iterations. 

1) Selection of Subject Programs 

To evaluate our technique, we use four UNIX programs 
as our subject programs. Their functionality can be found in 
the SIR website [10]. Some of them are real-world programs 
and have real-life scales. Each of them has many sequential 
versions. They have been adopted to evaluate fault localiza-
tion techniques in previous work (such as [14][27][28]). 
Both the programs and the associated test suites we use are 
downloaded from SIR [10]. Table I shows their real-life 
program version numbers, number of executable statements, 
number of applicable faulty versions, and the number of test 
cases. Let us take the program flex as an example. The real-
life versions used are in the range of flex-2.4.7 to flex-2.5.4. 
Each of them has 8571 to 10124 lines of executable 
statements. There are a total of 21 faulty versions finally 
used in our experiment. All these faulty versions share a test 
suite containing 567 test cases. 

Following the documentation of SIR and previous work 
[15][18][19], we exclude the faulty versions whose faults 
cannot be revealed by any test case. It is because that both 
our technique and the other peer techniques used in the 
experiment [1][15][18][19] require the existence of failed 
test cases. In addition, following the advice of the previous 
work [11], if a faulty version comes with more than 20% of 
all the test cases to be failed ones, we exclude it. Besides, 
the faulty versions not supported by our experiment 
environment (in which we use a Sun Studio C++ compiler) 
are also excluded. Finally, all remaining 110 faulty versions 
are selected in our experiment (listed out in Table I). 

Following our previous study [19], we apply the whole 
test suite as the input to individual subject programs. 

2) Selection of Peer Techniques 

In our experiment, we select nine representative tech-
niques to compare with. Tarantula, Jaccard, Ochiai, and 
SBI are techniques that work at the statement level. CBI and 
SOBER are techniques based on predicates. DES-CBI and 
DES-SOBER are based on conditions. Another technique 
CP is a propagation-based and uses edge profile information. 
Our approach, BlockRank, uses edge profile information 
and works at the statement level. Comparisons with the 
above techniques will evaluate the effectiveness of Block-
Rank and give further insights. 

3) Effectiveness Metrics 

CBI and SOBER generate ranking lists, which contain all 
predicate statements, and sort them in the descending order 
of their fault relevance scores. In previous studies, the 
metrics T-score [22] is used to evaluate the effectiveness of 
these techniques. The metrics, T-score, uses program 

TABLE I. STATISTICS OF SUBJECT PROGRAMS. 

Program 
Real-Life Version 

Numbers 
LOC 

No. of Faulty 

Versions 

No. of 

Test Cases 

flex 2.4.7–2.5.4 857110124 21 567 

grep 2.2–2.4.2 80539089 17 809 

gzip 1.1.2–1.3 40815159 55 217 

sed 1.18–3.02 47569289 17 370 

Total 110  
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dependence graph to calculate the distance between program 
statements. Starting from top-ranked predicate statements9 
generated by CBI or SOBER, T-score conducts a breadth-
first search of all the statements for faults. The search 
terminates when it encounters any faulty statement, and the 
percentage of statements examined (out of all the state-
ments) is returned as the effectiveness [22]. The same 
strategy is applied to DES-CBI and DES-SOBER [30]. 

On the other hand, Tarantula, Jaccard, Ochiai, SBI, CP, 
and our method BlockRank output a ranking list containing 
all statements, and the T-score metrics cannot be applied 
directly. To evaluate their effectiveness, we simply check all 
the statements in the ranking list in ascending order of their 
rankings until a faulty statement is encountered. The percen-
tage of statements examined (out of all the statements) is 
returned as the effectiveness of that technique. Note that, 
statements in a tie case, which means statements of identical 
rankings, are examined as a whole. 

B. Results and Analysis 

In this section, we report the results of the techniques. 
The data indicated as Tarantula, Jaccard, Ochiai, SBI, CBI, 
SOBER, DES-CBI, DES-SOBER, and CP are worked out 
using the techniques described in their original papers [15], 
[1], [1], [26], [18], [19], [30], [30], and [28], respectively. 
The data indicated as BlockRank is our technique. 

We first directly compare the overall effectiveness of the 
techniques. Fig. 2 gives an overview of the effectiveness 
results on the 110 faulty versions. Let us take the curve of 
BlockRank as an example. The x-coordinate represents the 

percentage of code examined; the y-coordinate represents 
the percentage of faults located by BlockRank within the 
given code examining effort specified by the x-coordinate. 

                                                           
9 Since it is reported that the top-5 t-score strategy achieves the highest 

effectiveness for CBI and SOBER [19], we follow previous studies to 

choose the top-5 t-score results to evaluate them. It means that we pick 

the top five predicates in the ranked predicates list to start a breadth-first 

search. 

The curves of the other techniques can be similarly inter-
preted. All the ten curves start from the point (0%, 0%) and 
finally reach the point (100%, 100%). Apparently, it reflects 
the fact that no fault can be located when not examining any 
code (0%), while all the faults can be located when all code 
(100%) has been examined. 

Let us focus on some checkpoints to compare the four 
techniques. When 10% of the code is examined, BlockRank 
can locate faults in 49% of the faulty versions. On the other 
hand, CP, which is the best among the other techniques with 
respect to this checkpoint, can locate 47% of the faults. The 
other techniques, as well as the other checkpoints, can be 
similarly explained. Since the curve of BlockRank is always 
(except on the 90% checkpoint) above all the other curves, it 
performs better than the other techniques. 

To give a better understanding to the statistics of overall 
effectiveness for these techniques, we next use Table II to 
list the mean values of the effectiveness of locating faults 
(in the row “mean”) for the 110 faulty versions, as well as 
their standard deviations (in the row “stdev”). At the same 
time, since some previous studies (such as [19]) suggest that 
the top 20% code examining range is more important than 
other ranges, we also show the results of the studied 
techniques at the 5%, 10%, 15%, and 20% checkpoints (that 
is, with 5% intervals for code examining effort). For the 
upper four rows, a larger number means better effectiveness, 
while for the lower two rows, the smaller the better. We use 
a bold font to highlight the best technique for each test. For 
example, when up to 5% of the code is examined, 
BlockRank and CP can locate faults in 39% of all faulty 
versions, thus outperforming the others. BlockRank is the 
unique winner for 10%, 15%, and 20% of average code 
examining effort. It shows that BlockRank gives the best 
results among the studied techniques from these viewpoints. 
Such an observation consolidates our impression from Fig. 2. 
On the other hand, BlockRank achieves the smallest 
standard deviation among all techniques. It means that 
BlockRank has a more stable effectiveness than the other 
techniques in locating faults from the studied subjects. 

 

Fig. 2. Overall effectiveness comparison. 
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C. Threats to Validity 

Internal validity is related to the risk of having 

confounding factors to affect the experimental results. A key 

factor is whether our experiment platform is correctly built. 

In our implementation, the algorithms of related techniques 

strictly adhere to those published in the literature. SIR 

reports the distribution of passed and failed test cases [10]. 

It confirms that the fault matrix of the faulty versions of 

subject programs can be platform dependent. 
We use four UNIX programs, as well as their associated 

test suites in the experiment. All these programs are real-
world programs of real-life sizes, and they have been used 
by other researchers to verify their debugging research [14] 
[27][28]. A further comparison of our approach with other 
techniques, using other subjects, with other programming 
languages (other than C), or with real faults may further 
strengthen the external validity of our empirical study. 
Besides, although our technique ideally works in a manner 
of locating one fault each time before moving to another, the 
use of real-life multi-fault programs in evaluation may con-
solidate the empirical results. 

We use different measures to evaluate the results of 
different techniques. Statement-level techniques (such as 
Tarantula) produce the ranking lists of statements, while 
predicate/condition-based techniques (such as CBI) give the 
ranking lists of predicate statements. We follow [19] and 
[26] to use T-score to evaluate the former, and another 
metric to evaluate the latter. Previous studies have reported 
that T-score may have limitations (see [8], for example), but 
we are not aware of other representative metrics that have 
been extensively used to evaluate those techniques. 

V. RELATED WORK 

Comparing program executions of a faulty program 
over passed test cases and failed test cases is a frequently 
used fault localization strategy. Related fault localization 
techniques can be classified into different groups according 
to their working levels. Tarantula [15], CBI [18], and 
SOBER [19] have been discussed in Section I. In the sequel, 
we review other techniques. 

There are statement-level techniques, which contrast 
program execution spectra of statements in passed and 
failed execution, and employ heuristics to estimate the 
extent that a statement is related to faults. Naish et al. [20] 
give a summary to this kind of technique. CBI [18] and 
SOBER [19] find suspicious predicates. Zhang et al. [29] 

propose to use non-parametric hypothesis testing to improve 
such predicate-based techniques. DES-CBI [30] and DES-
SOBER [30] work on a finer-level program entity, namely 
conditions, to locate faults. CP [28] is another technique that 
captures the propagation of infected program states among 
basic blocks in order to locate faults. In Sections I and II, we 
have introduced these techniques. 

Delta Debugging [8] isolates failed inputs, produces 
cause effect chains, and locates the root causes of failures. It 
considers a program execution (of a failed test case) as a 
sequence of program states, each inducing the next one, 
until the failure is reached. Predicate switching [27] is 
another technique to locate a fault by checking the execution 
state. It switches a predicate’s decision at execution time to 
alter the original control flow of a failed execution, aiming 
at producing a correct output. If correct output is found, the 
technique then further searches from the switched predicate 
to locate a fault through backward or forward slicing (or 
both). Delta Debugging uses additional data-flow informa-
tion rather than the above coverage-based techniques. Con-
sequently, we do not compare with it in this paper. 

Le and Soffa [17] make use of path profile information 
to investigate the correlation of multiple faults in a faulty 
program. Jones et al. [16] further use Tarantula to explore 
how to cluster test cases to debug a faulty program in 
parallel. Baudry et al. [5] observe that some groups of 
statements (collectively known as dynamic basic blocks) are 
always executed by the same set of test cases. They use a 
bacteriologic approach to find a subset of the test set to 
maximize the number of dynamic basic blocks to further 
optimize Tarantula. Liblit et al. [18] further adapt CBI to 
handle compound Boolean expressions, and show that these 
expressions exhibit complex behaviors from the statistical 
fault localization perspective. Zhang et al. [30] study the 
issues on the granularity of program entity. They observe 
that the short-circuit rule in a program may significantly 
affect the effectiveness of fault localization techniques. The 
experimental result in Section IV appears to confirm this 
observation for our subject programs. Nonetheless, more 
statistical analysis on the data is required. 

Clause and Orso [7] propose a technique to support 
debugging of field failures. It can help recording, 
reproducing and minimizing failing executions and is useful 
for developers to debug field failures in house. Csallner and 
Smaragdakis [9] present a hybrid analysis tool for bug 
finding. Using dynamic analysis, static analysis and 
automatic test cases generation based on the analysis results 
to locate faults; their paper reports a promising result. It will 
be interesting to know how our technique can be integrated 
with their analysis tool. 

Gupta et al. [12] propose to narrow down slices using a 
forward dynamic slicing approach. Zhang et al. [27] 
integrate the forward and the standard dynamic slicing 
approaches for debugging. Since these techniques are based 
on slicing, we do not compare them with the coverage-based 
techniques in this paper. Wong et al. [24] propose heuristics 
to synthesize a code-coverage-based method for use in fault 
localization. The impact of such heuristics to our technique 
is interesting but is beyond the scope of the present paper. 

TABLE II. STATISTICS  OF OVERALL EFFECTIVENESS 
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stdev 24% 24% 24% 24% 28% 24% 27% 24% 21% 20% 
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Chen et al. [6] apply PageRank to construct explicit links 
to connect suspicious program entities. Their approach can-
not handle those faults that are not obviously suspicious, 
while the present paper aims to find such kind of fault 
effectively. To address coincidental correctness, Wang et al. 
[23] develop fault patterns for identifying suspicious execu-
tion fragments for fault localization. 

VI. CONCLUSION 

In this paper, we have proposed BlockRank, a new 
statistical fault localization technique to address the issues 
of coincidental correctness and execution crash. Its main 
idea is to use the popularity of incoming basic blocks as the 
basis to recursively correlate observed failures to the in-
coming basic block, and handle severe errors that crash the 
program. An empirical study has shown that the technique is 
more effective than existing techniques. 

Future work includes the investigation of other versatile 
program execution information (such as path profile) for 
link analysis to support fault localization, and the extension 
of our model to concurrent programs. 
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