
Efficient Timestamped Event Sequence Anonymization

Reza Sherkat, Jing Li, Nikos Mamoulis

Department of Computer Science, University of Hong Kong

Pokfulam Road, Hong Kong

{rsherkat, jli, nikos}@cs.hku.hk

March 14, 2011

Abstract

With the rapid growth of applications which generate timestamped sequences (click streams, RFID
sequences, GPS trajectories), sequence anonymization becomes an important problem, if such data should
be published or shared. Existing trajectory anonymization techniques disregard the importance of time
or the sensitivity of events. This paper is the first, to our knowledge, thorough study on timestamped
event sequence anonymization. We propose a novel and tunable generalization framework tailored to
event sequences. We generalize timestamps using time intervals and events using a taxonomy which
models the domain semantics. We consider two scenarios: (i) sharing the data with a single receiver; in
this case, the receiver’s background knowledge is confined to a set of timestamps and time generalization
suffices, and (ii) sharing the data with multiple receivers; in this case, time generalization should be
combined with event generalization. For both cases, we propose appropriate anonymization methods
that prevent both user identification and event prediction. Extensive experiments confirm the efficiency
and the scalability of our techniques and demonstrate the quality of the produced anonymizations.

1 Introduction

Consider an Internet Service Provider (ISP), who collects logs of HTTP requests sent by users, along with
their IP addresses or any identifiers that users may provide to authenticate and to connect to Internet.
Fig. 1 depicts a sample of such click streams, corresponding to the browsing history of five users in time
interval [1–13]. For instance, click stream S1 visits Google at times 1 and 10. At the same time, online stores
and portals, which provide customized services (e.g. email, recommendations), can collect all timestamps
of user visits to their websites. For instance, Google can collect the timestamps shown in Fig. 1 (right),
which correspond to Google visits of the click streams shown in Fig. 1 (left). Gaining access to the click
stream data, collected by ISPs, enables a wide range of data analysis with social and commercial values.
For instance, sharing click streams with a search engine allows the engine to model user temporal behavior
using the aggregate frequency of visits to websites [10]. The model can be used to better align services, e.g.
search results and advertisements, towards identified emerging trends in users’ interests [5, 11, 21]. However,
sharing click streams can lead to serious privacy breaches, such as the notorious AOL privacy scandal [8],
even if the identification information of individuals (e.g. IP address or name) are removed from the published
data. We consider two practical scenarios in this paper:

Sharing with Single Receiver (SSR) - Assume that an ISP shares the click streams of Fig. 1 (left)
with Google. Despite masking the real identifiers with random ones in Fig. 1 (left), the timestamps of Google
visits can be used by Google to identify a user behind a sequence (sequence identification) and/or successfully
guess some of the remaining events of a user’s sequence (event prediction).1 For instance, Google knows that

1Disclaimer: We use company names to illustrate an example of possible adversaries in this paper. We do not imply here
that any real company has any malicious intentions for the use of their data.

1

Administrator
 HKU CS Tech Report TR-2011-02

ID QIDs

Sue 1,10

Tom 1,11

Rob 1,3,11

Ted 4,6

Joe 5

Figure 1: Click streams of five users collected by an ISP (left) and the timestamps collected by Google
(right)

(a) (b)

All

Internet/Computer Shopping

Social Networks Search Engines

Facebook Myspace Google Bing Ebay Seenit Amazon Ticketmaster

Auctions Entertainments

(c)

Figure 2: 2-anonymity and (1, 3
2)-diversity using time generalization (a) vs. event and time generalization

(b). URL taxonomy (c)

only Sue and S1 visited Google at time 1 and 10, thus sequence S1 can be associated to her. This association
ensures that she visited Bing at 3 and Amazon at 6 and 12. Although the time points that Tom visited
Google are not enough to associate him to one of S2 or S3, they provide enough evidence that he certainly
visited eBay during time range [7–8].

Timestamps can be used as quasi-identifiers (QIDs) to link a click stream provided by an ISP with a user
ID held by the receiver. A privacy breach happens if the receiver matches a user ID with less than k click
streams (k-anonymity [30]), or infers that the user visited a URL during any time interval of duration g with
a probability over 1

ℓ . We call the latter privacy requirement (g, ℓ)-diversity: an extension of the ℓ-diversity
model [24] to click streams. g represents the temporal aspect of sensitivity; intuitively, it makes sense to care
about the certainty of an event within only a restricted time interval that makes this certainty statistically
significant.

To prevent privacy breach through timestamp linkage, an ISP can anonymize data by replacing time
points with generalized intervals; we term this step time generalization. An anonymization for the click
streams of Fig. 1 (left) is presented in Fig. 2(a); only the time points corresponding to Google visits are
generalized (i.e., replaced by time intervals). For instance, sequence S1 visited Google during [1–3] and

2

Table 1: 2-anonymity using event and time generalization

T1 : (Search Engines, [1-3]), (Shopping, [5-8]), (All, [10-13])
T2 : (Search Engines, [1-3]), (Shopping, [5-8]), (All, [10-13])
T3 : (Search Engines, [1-3]), (Shopping, [5-8]), (All, [10-13])
T4 : (All,[1-2]), (Internet/Computer,[4-8]), (All,[10-13])
T5 : (All,[1-2]), (Internet/Computer,[4-8]), (All,[10-13])

[10–11]. In addition to the uncertainty introduced in the time points, the number of visits to Google within
each interval and each sequence is lost2. In Fig. 2(a) Sue can be linked, with equal probability, to S1, S2,
and S3 because these sequences match with her regarding the timestamps of Google visits. Tom matches
three sequences, two of them visited eBay during [7–8]. Thus, we infer that Tom visited eBay during [7–8]
with probability 2

3 . One can verify that Fig. 2(a) satisfies 2-anonymity and (1, 3
2)-diversity.

Sharing with Colluding Receivers (SCR) - The time generalization based technique we described
is meant for a single designated receiver. If the receiver decides to share its customized release with a third
party, privacy can be threatened by the third party. For instance, Bing can identify the user behind click
stream S1 and learn all URLs (and time) s/he visited, if Google shares the data in Fig. 2(a) with Bing. An
ideal anonymization scheme must prevent attacks initiated by any subset of colluding receivers. To achieve
this goal, we propose to reduce the certainty of both timestamps and URLs. We term this scheme time and
event generalization.

The background knowledge of colluding receivers is a set of subsequences containing their common knowl-
edge. For instance, if Google and Bing collude, the common background knowledge is at most3 B = {Bi}

5
i=1

where Bi is a sequence with all visits by Si in Fig. 1 (left) to Google or Bing. Fig. 2 (b) demonstrates an
anonymization which is provided to Google and Bing assuming that they share data. Not only the timestamp
of visits to Google and Bing are replaced by intervals, but also the URLs are replaced by Search Engine from
the taxonomy in Fig. 2(c). Any sub-sequence of Bi ∈ B matches with at least two sequences in Fig. 2(b).

In the extreme case, there is a risk that all parties collude, thus all timestamps and URLs need to be
generalized, as shown in Table 1. Each anonymized sequence is a set of (category, time-interval) pairs, where
categories are derived from the taxonomy in Fig. 2(c). Any sub-sequence of sequence Si in Fig. 1 (left)
matches with {Tj}

3
j=1 or {Tj}

5
j=4. Therefore, Table 1 is 2-anonymous.

In both SSR and SCR, one can find naive (legitimate) anonymizations, e.g. (ALL,[1-13]) for Fig. 1
(left). The naive solution reduces the utility of the anonymized data as the receiver does not learn any extra
information beyond the global time interval. Our objective is to minimize the data distortion along time
and event dimensions and at the same time fulfill the desired privacy model.

This paper is the first work, to our knowledge, which studies the anonymization of timestamped event
sequences using both time and event generalization. Although we adapt well-known anonymity models
[30, 24] to timestamped event sequences, there are fundamental differences to problems studied in previous
work, due to the lack of a fixed-length schema and a well-defined boundary between quasi-identifiers (QIDs)
and sensitive attributes (SA). First, in relational data, an attribute range (e.g. Age:[20-25]) blurs only one
attribute (Age) of each tuple, while in our setting there is more flexibility; an interval blurs a set of attributes
in terms of (event, time) pairs. For instance, (Search Engines,[1-3]) in Table 1 generalizes two clicks of S1

(i.e. (Google,1) and (Bing,3)) but one click of S2. We provide a tailored definition of information loss which
takes this flexibility into account. Second, the notion of SA in our setting is defined in relation with time
points, whereas often an attribute (e.g. disease) is traditionally deemed sensitive. We propose a flexible
privacy model which regards the sensitivity of event prediction along any time interval of a given length g.

Several works (surveyed in Sec. 2) have been proposed for trajectory anonymization to resist sequence
identification attacks. The solutions (1) ignore the time points of sequences [31, 2], (2) use time points only

2The representation might be augmented to encode click statistics, e.g. the average number of clicks in each interval.
3This is the extreme case in which the colluding parties match the timestamps, which they collect, with real users.

3

for grouping sequences but only generalize location [37], or (3) perform time and location generalization but
apply point suppression [27]. As we experimentally show, suppression reduces the utility of anonymized data
and it may be critical when false negatives are not acceptable. Furthermore, the sensitivity with respect
to the time dimension was not considered before. This renders existing methods vulnerable to (temporal)
event prediction attacks. We tackle this problem by directly including time in (g, ℓ)-diversity, which offers a
tunable privacy model with respect to both time and events (i.e. URLs). Our contributions are organized
as follows:

• In Sec. 3, we propose a novel generalization scheme for event sequences: we apply both time gener-
alization using time intervals and event generalization using event taxonomy. We propose a tunable
information loss measure to quantify data distortion, based on the importance of time granularity or
event diversity. We extend traditional privacy models to event sequences to model privacy for both
sequence identification and event prediction attacks.

• In Sec. 4, we propose efficient algorithms to speed up anonymization for SSR setting using (1) cost-
efficient lower bounds and compact summaries, (2) incremental index-based pruning, and (3) an effec-
tive hybrid approach to speed up our index based solution.

• In Sec. 5, we propose a partition-and-refine paradigm for SCR setting which uses: a novel taxonomy-
aware distance function for event multisets, and our techniques proposed for SSR setting.

• In Sec. 6, we conduct extensive experiments to evaluate the quality, utility, efficiency, and scalability
of our techniques on large-scale real and synthetic datasets from various domains.

Remark - In this paper, our discussion and examples are about click-stream data. However, our
framework and techniques apply directly to other domains as well. For instance, click streams can be
replaced with RFID sequences or trajectories, ISP with the Octopus company [1] or a central GPS tracker,
and receiver with stores with loyalty card or an observer in a road network, respectively.

2 Related Work

Anonymizing event sequences is a relatively new topic and has been mostly studied for trajectories (see [14]
for a brief survey).

Relational data anonymization - It has been shown that removing key identifiers from published data
does not provide a comprehensive privacy protection [30]. An attacker can join a subset of the attributes of
data, termed as quasi-identifiers, with published data to reveal the existence of an individual in the published
database or to find the value of sensitive attributes (SA) for an individual. An attacker can gain access to
quasi-identifiers from public databases, e.g. voters registration list, or other sources of information, e.g.
gossip. To protect privacy, a data provider transforms a database before making it available to third parties.
The transformation step might generalize values into less specific values [30], suppress some records [30],
perform perturbation by adding noise to data [6], or obfuscate the association between quasi-identifiers and
SA [35]. Several general models have been proposed to quantify data privacy. In k-anonymity [28], a tuple
must be indistinguishable in quasi-identifier space, among a set of k (or more) tuples called anonymization
group. However, k-anonymity is vulnerable to SA inference attack because there is no restriction on the
distribution of the SA in each anonymization group. In ℓ-diversity [24], the values of the SA must be well-
represented in each anonymization group. Partition-based anonymization may suffer from attribute inference
attack if a machine learning approach is used to learn associations between quasi-identifiers and SA [19].
To bound the probability of attribute inference attacks, in t-closeness [23] the distribution of SA in each
anonymization group must be close to the distribution of the SA in the original data.

Itemset anonymization - The concept of k-anonymity has been also extended to set-valued data
[32, 18]. An adversary’s background knowledge in km-anonymity [32] is confined to at most m items but
no such limit is imposed in set k-anonymity [18]. The common goal of [32, 18] is to ensure that, after
item generalizations, any itemset known to an adversary is supported by at least k itemsets in the published

4

data. The supporting itemsets may contain (possibly sensitive) items not already included in the background
knowledge. Furthermore, inside a support group, the distribution of the items missing from the background
knowledge may diverge significantly from the global distribution of the same items in the published database,
providing opportunities to missing item disclosure. This makes both approaches vulnerable to the infamous
SA inference attack [24].

String anonymization - Aggarwal et al. [3] propose a condensation based method: they group similar
strings and extract a statistical model from each group. The model captures the first and the second order
distribution of characters in original data and it is used to produce - and consequently publish - pseudo-data
with the same statistical distribution as the original strings. This property is desirable for aggregate data
analysis, e.g. forming classifiers. However, the published strings are not truthful to the original strings. Due
to favorable properties of sketches for sparse and high-dimensional data, sketch based techniques have been
used [4] for privacy preserving data mining on text and transactional data. In particular, a family of sketches
[7] has been applied to derive anonymous representation of data in [4]. A number of primitive data mining
operations e.g. dot product and Euclidean distance can be estimated using sketches. However, estimating a
complicated causality predicate can be quite complex on sketch representation.

Trajectory anonymization - Ref. [31] studies trajectory anonymization when the adversaries have
disjoint and controlled sub-trajectories of the trajectories in the database to publish. One release is provided
to all receivers. A privacy breach occurs if an adversary infers the location for a trajectory with a certainty
above a threshold. This is similar to our (g, ℓ)-diversity model when the time gap g takes an infinitely large
value. For RFID sequences, Fung et al. [13] applied global suppression to produce anonymization with larger
utility when a taxonomy is not available or using the taxonomy incurs a large information loss (e.g due to
sparse quasi-identifiers).

The common focus of trajectory anonymization in [2, 37, 27] is to protect published data against sequence
identification attacks. Ref. [2] clusters trajectories that are similar along their entire time span. A regular
sampling rate is assumed for all trajectories, which are generalized by spatial translation. Since all points of
trajectories are regarded as quasi-identifiers, there is no notion of sensitive location in [2]. Thus, there is no
protection against event prediction attack. In [37], the quasi-identifiers of trajectories are a set of time points
for each trajectory and each trajectory can have a different set of quasi-identifiers (QIDs). The adversary
may have any subset of time points designated as QID for each trajectory. Anonymization groups (AGs) are
formed by imposing a symmetric constraint on the attack graph to prevent sequence identification attack
using location generalization. However, the trajectories in the same group may pass via the same location
at close timestamps, which makes this approach vulnerable to event prediction attacks.

A combination of point generalization and suppression is practiced in [27]. Each AG is generalized as
a set of spatial and temporal intervals. Multiple sequence alignment is employed to find the optimal set of
intervals for each AG. There are two limitations to this approach. First, each interval, extracted from a set
of trajectories in the same AG, must cover exactly one point of each trajectory in the group. Thus, point
suppression is inevitable if trajectories in the same group are of different length. Second, finding the optimal
generalization for each anonymization group requires multiple sequence alignment which is NP-complete
[34]. To address these two limitations, we relax the exactly one requirement of Ref. [27] into at least one
(Strong Coverage property in Sec. 3.1). We achieve two important benefits from this relaxation, with no
impact on privacy. (1) the optimal set of intervals for each AG can be found in polynomial time (Lemma 1),
and (2) the generalization does not suffer from point suppression as each point will be always represented
by one interval in our approach. Furthermore, we study both sequence identification and event prediction
attacks in this paper.

3 Data Model and Problem Setting

Let E be the space of all possible events, e.g. the set of all URLs. The database D is a collection of

timestamped event sequences. Each sequence S = {(ei, ti)}
|S|
i=1 in D is a set of |S| timestamped events. Each

pair (e, t) ∈ S denotes the participation of S in event e ∈ E at timestamp t. The background knowledge of
a receiver is a database B of timestamped event sequences. We assume that B is subsumed by D, i.e. each

5

Sb ∈ B must be a subsequence of (at least) one sequence in D but corresponds to only one sequence Si ∈ D.
The sequences in B are used as QIDs. We assume that only the timestamps of events in Er ⊆ E are collected
by receiver(s). E.g. Er = {Google} in the SSR example of introduction and E = Er in the extreme case of
the SCR setting. The set Er imposes a constraint on each sequence Sb ∈ B; ∀(e, t) ∈ Sb, e ∈ Er.

3.1 Generalization model and information loss

To anonymize D, we follow a partition-based approach [30]. We divide D into non-overlapping partitions
P4 called anonymization groups (AGs). We generalize the sequences in each group independently, and
publish the generalized sequences as D∗

P . While forming the groups depends mostly on the privacy model
(as described in Sec. 3.3), the generalization step is often independent from the partitioning step and it
mostly focuses on (1) the indistinguishability of data in the QID space, and (2) the amount of information
loss in each group.

3.1.1 Generalization model

We generalize each timestamp using a time interval and each event using a category from a taxonomy (e.g.
Fig. 2(c)), only for event pairs (e, t) where e ∈ Er. To improve data utility, we opt for local recoding; we do
generalizations on the granularity of each AG. We represent a set of sequences S in the same AG using a set

of intervals I = {(ci, [si − ei])}
|I|
i=1, where ci is a category and [si − ei] is a time interval, si ≤ ei. We enforce

the following property on S and I:

Property 1 (Strong Coverage (SC)) Let the set of intervals IS represent the AG S. Each interval (ci,
[si − ei]) ∈ IS must cover at least one (e, t) from each sequence in S if e ∈ Er; e is under category ci and
t ∈ [si–ei]. There is no sequence in S with pair (e, t) which is not covered by any pair in IS if e ∈ Er.

Violating SC has two drawbacks: (1) not generalizing (at least) one timestamp of sequence S ∈ S may
cause a direct identification of S, and (2) having an interval which does not cover (at least) one timestamp
of S indicates a fake event participation for S, i.e. publishing wrong data. Note that the interval set
In = {(All, [minS∈S start(S)−maxS∈S end(S)])} satisfies the SC property, where start(S) and end(S) are,
respectively, the smallest and the largest timestamp of S. Thus, there is at least one set of intervals for each
AG that satisfies the SC property.

3.1.2 Information loss

We start by defining data distortion of a single interval along the time and event dimensions. Then, we
expand this measure to a set of intervals. Finally, we define our information loss measure CP in Eq. 3. For
sequence S we define the interval data distortion regarding the pair I = (ci, [si − ei]) as:

IDD(S, I) =
wt · ILt(S, I) + we · ILe(S, I)

wt + we
. (1)

The weights wt and we, respectively, capture the relative importance of time and event uncertainty. We
assume that the weights are non-negative and wt + we > 0. ILt(S, I) is the normalized data distortion due
to generalizing the timestamps of (e, t) pairs in S using the time interval of I. ILt(S, I) is defined as:

ILt(S, I) =
(ei − si)

maxS∈D end(S) − minS∈D start(S)
.

ILe(S, I)
def
= |ci|/|E| is the normalized distortion due to generalizing event ej using category ci, ∀(ej , tj) ∈ S

s.t. si ≤ tj ≤ ei. |ci| is the number of events in taxonomy under ci. IDD combines the distortions along
time and event dimensions into a single measure with a maximum value of one. A smaller value of IDD(S, I)

4The set P = {S1, . . . ,S|P|} is a partitioning of D if (1) ∪
|P|
i=1

Si = D, and (2) Si ∩ Sj = ∅ for any 1 ≤ i < j ≤ |P|.

6

is more desirable and indicates a good representation for S within the time range of I. For a set of sequences
S, we integrate IDD to quantify the distortion due to generalizing sequences of S using I:

IL(S, I) =

∑

I∈I

∑

S∈S |SI | · IDD(S, I)
∑

S∈S |S|
(2)

where SI = {(e, t) ∈ S|si ≤ t ≤ ei}. Finally, we define our metric of goodness (homogeneity) for a set of
sequences as follows:

CP (S) = min
∀I

{
IL(S, I)

}
. (3)

Lemma 1 CP (S) can be computed in polynomial time.

Proof 1 Let TS = {ti}
|TS |
i=1 be the set of timestamps in sequences of S and i < j ⇔ ti < tj. Let n = |TS |.

For ti < tj, let Si,j be the set of sequences induced from S by removing all (e, t) pairs in every sequence
S ∈ S if t < ti or t > tj. [ti–tj] is not feasible for S ([ti, tj] ≁ S), if for (at least) one sequence S ∈ S, no
(e, t) pair exists in S where ti ≤ t ≤ tj. We define Er:

Er(S, I) =







∞ ∃ (ci, [si − ei]) ∈ I, [si − ei] ≁ S
∑

I∈I

∑

S∈S |SI | · IDD(S, I) otherwise

An interval I∗ which minimizes Er also minimizes CP . Let I∗
1,k be the interval that (1) covers the time

points ti|
k
i=1 and (2) Er(Si,j , I

∗
1,k) = min

∀I
Er(Si,j , I). One can verify that the following recursive equation

holds for Er:
Er(S1,n, I∗

1,n) = min
1<k<n

{Er(S1,k, I∗
1,k) + Er(Sk+1,n, I∗

k+1,n)},

Therefore, Er (similarly CP) can be optimized efficiently using dynamic programming in O
(
n2lmin(|S| log lavg+

log n)
)

time using dynamic programming, where lavg (lmin) is the avg. (min.) length of sequences in S.

We use CP to quantify the amount of uncertainty which is introduced by anonymizing D using parti-
tioning P into D∗

P :

NCP (D,P) =

∑

S∈P |S| · CP (S)

|D|
(4)

which is a normalized measure of distortion and is in range [0 − 1].

3.2 Privacy model and problem setting

We consider two types of attacks, sequence identification and event prediction. For the first attack, we use
the traditional k-anonymity [30] as follows: no adversary can associate any sequence in B with less than k
sequences in D∗

P . To quantify the risk of event prediction attack, we extend the ℓ-diversity model [24] to
event sequences. First, we provide a formal definition for event prediction probability. For a set of sequences
S, the probability of observing event e ∈ E − Er during time interval T in any sequence of S is defined as:

P(e, T |S) = |{S∈S | ∃ (e,ti)∈S, ti∈T }|
|S| .

Example 1 In Fig. 2(a), let S1 = {Si}
3
i=1 and S2 = {Sj}

5
j=4. P(ebay, [6 − 9] | S1) = 2

3 and P(ebay, [1 −

3] | S2) = 1
2 .

Definition 1 ((g, ℓ)-diversity) Let Er ⊆ E be the set of events monitored by the receiver(s). Let P be a
partitioning of D. P satisfies (g, ℓ)-diversity if P(e, Tg|S) ≤ 1

ℓ for any event e ∈ E − Er, any time interval
Tg of length g, and any set S ∈ P.

7

Informally, no receiver, using the anonymized data can associate an event which is not monitored by the
receiver to any sequence with a certainty over 1/ℓ within any time interval of length g. Parameter g gives
time an equal importance as event identifiers when modeling the sensitivity of events. Thus, an event is not
deemed sensitive only because it is in a set of sensitive events. If an adversary finds about an event but does
not know its approximate timestamp, we do not consider this a privacy leakage. Def. 1 is flexible; as long
as for any time window Tg the adversary is confused for the event participation of a sequence, we consider
the anonymized data privacy preserving. In the extreme case, Er = E, un-known receivers may perform
matching based on the identifiers (thus B = D). In this case, there is no gain in anonymization beyond
k-anonymity. Otherwise, (g, ℓ)-diversity ensures that the certainty of an adversary about event participation
for any event in E − Er is bounded by 1

ℓ in any time interval of duration g or less.

Lemma 2 (Monotonicity of (g, ℓ)-diversity) For two non-overlapping sets S1 and S2, any event e and
time interval Tg:

P(e, Tg|S1 ∪ S2) ≤ max
{
P(e, Tg|S1), P(e, Tg|S2)

}
.

Proof 2 Without loss of generality let P1 ≥ P2 where:

P1 = P(e, Tg|S1) = n1

|S1|
, and P2 = P(e, Tg|S2) = n2

|S2|
.

Thus (n1 + n2) =
(
P1 · |S1| + P2 · |S2|

)
≤

(
|S1| + |S2|

)
· P1. Because S1 and S2 are non-overlapping, the

following holds:

P(e, Tg|S1 ∪ S2) =
n1 + n2

|S1 ∪ S2|
≤ P1 = max{P1, P2}.

Problem 1 Given the event set Er ⊆ E, find a partitioning P of database D, such that:

• The information loss (i.e. NCP (D,P)) is minimized, and

• P satisfies the desired privacy model (i.e. k-anonymity or (g, ℓ)-diversity).

3.3 Baseline: A constraint-aware partitioning

Problem 1 is NP-hard. If all sequences have the same length (greater than one), our problem reduces to
microdata anonymity [25]. In k-anonymity, any partitioning algorithm (e.g. [36]) can be used to find
partitions. In our experiments, we observed that these partitions may violate (g, ℓ)-diversity. Inspired by
COP-COBWEB [33], we propose Baseline (Alg. 1) to partition D into anonymization groups (AGs), such
that each group fulfills the desired privacy model (i.e. k-anonymity or (g, ℓ)-diversity).

COP-COBWEB is a hierarchical clustering algorithm, which supports instance-level constraints. An
instance-level constraint between objects o1 and o2 does not allow two clusters C1 and C2 that contain these
two objects to be merged. In our setting, if any cluster of P has at least k sequences, then a partitioning P
fulfills k-anonymity. Thus, we do not need to define any constraint between clusters in k-anonymity, except
for the size of clusters. For (g, ℓ)-diversity, we define an instance-level constraints as follows:

Definition 2 (constraints in (g, ℓ)-diversity) Let clusters C1 and C2 be non-overlapping clusters, and
|C1| < ℓ and |C2| < ℓ. If

(
e ∈ E −Er

∧
(e, t1) ∈ S1 ∈ C1

∧
(e, t2) ∈ S2 ∈ C2

∧
|t1 − t2| ≤ g

)
, then we say that

C1 and C2 violate an instance-level constraint, which is denoted as (C1, C2) ∈ Con6= following [33].

Intuitively, when (C1, C2) ∈ Con6= and C1 , C2 are merged into C1,2, P
(
e, [t1 − t2] |C1,2

)
≥ 2

|C1,2|
> 1

ℓ ;

i.e. a violation of (g, ℓ)-diversity unless C1,2 is merged later with another cluster. In Baseline we apply
a greedy heuristic. In the first step, each sequence is assigned to a single cluster inside clusters group C.
While C is not empty, we pick a cluster Ci ∈ C at random. If Ci violates an instance level constraint with
all clusters in C, we move Ci to the result set P to be processed later. Else, we find cluster Cj ∈ C s.t.
CP (Ci ∪ Cj) is minimum and Cj does not violate an instance-level constraint with Ci. We term this step
NN(Ci). If Ci ∪ Cj has size at least k (ℓ) in k-anonymity ((g, ℓ)-diversity), we move the merged cluster to

8

Algorithm 1 Baseline (Dataset D, Privacy model M)

1: Set τ to k if M is k-anonymity and to ℓ if M is (g, ℓ)-diversity
/* Step 1: find the list of clusters → P */

2: Set Ci = {Si}
|D|
i=1, set C = {Ci}

|D|
i=1, and set P = {}

3: while C is not empty do
4: Let Ci be a random cluster in C and Cj = NN(Ci, C, M, TRUE)
5: if Cj is empty then remove Ci from C and add it to P
6: else
7: Remove Cj from C and merge it with Ci to make a new Ci

8: if |Ci| ≥ τ then remove Ci from C and add it to P

/* Step 2) merging under-filled clusters */

9: for each cluster Ci ∈ P with less than τ sequences do
10: repeat
11: Cj = NN

(
Ci, P, M, FALSE

)

12: Remove Cj from P and merge it with Ci to a make new cluster
13: until Ci has at least τ sequences and satisfies privacy model M

14: return P
15: function NN(cluster Ci, cluster set C, privacy model M, boolean verify)
16: Set minDist = ∞ and Ck = {}
17: for each cluster Cj in C do
18: if verify and (Ci, Cj) ∈ Con6= then skip Cj ⊲ According to M
19: else if minDist > CP (Ci ∪ Cj) then
20: Set Ck = Cj and minDist = CP (Ci ∪ Cj)

21: return Ck

P. Else, we put the merged cluster back into C. In the second step, each under-filled cluster Ci ∈ P is
iteratively merged with its nearest clusters in P, by calling NN(Ci), until all privacy constraints are satisfied.
The monotonicity of k-anonymity ([30]) and (g, ℓ)-diversity (Lemma 2) ensure that Baseline always finds
a partitioning that meets the desired privacy model. In the extreme case, if only grouping all sequences into
a single group fulfills the desired privacy model, the algorithm finds this grouping.

4 Optimizations for SSR

The search for the closest cluster to Ci in terms of CP , i.e. NN(Ci), is the bottleneck of Baseline. An
exhaustive search to find NN(Ci) requires O(N) computation of information loss and loading disk resident
sequences, where N is the number of active clusters in C or P. We investigate two directions for performance
improvement: (1) to speed up NN using an index, and (2) to reduce the number of NN calls using a heuristic.
On the first direction, in Sec. 4.1, we propose summaries for clusters and fast to compute lower bounds for
information loss. We then illustrate how the summaries and the lower bounds are used to boost NN in
Sec. 4.2. In the second direction, in Sec. 4.3 we propose a heuristic which uses the distribution of timestamps
in sequences as a clue to (indirectly) reduce the number of NN calls. As we consider the SSR setting,
only the timestamps of events monitored by the receiver(s) contribute to information loss. Thus, we extract
summaries only from these timestamps. We later (in Sec. 5) use the techniques that we develop in this
section as a module for the SCR setting.

4.1 Cluster summaries and lower bounds

Intuitively, if the lower bound of CP (Ci∪Ck) is greater than CP (Ci∪Cj), then cluster Ci is definitely closer
to Cj than to Ck and evaluating CP (Ci ∪ Ck) is redundant. In this section, we briefly (see Appendix A

9

for detail) introduce two summaries, cluster fingerprint and cluster extent, and three lower bounds for
information loss, Dfp, DExtent, and DLB . How the summaries and lower bounds are used to speed up NN
is the subject of Sec. 4.2.

• I. Cluster fingerprint - A cluster fingerprint maps the timestamps of each cluster into a bitmap
with b buckets. Each bucket represents a time interval which determines the resolution of the bucket, in
terms of the number and the distribution of timestamps a bucket can capture. Fingerprints have three
key properties. (1) they are compact, thus they can be stored in main memory. (2) when two clusters
merge, the fingerprint of the new cluster can be computed by fast bit-wise operators. (3) Dfp(Ci, Cj),
the distance between the fingerprints of two clusters Ci and Cj , provides a lower bound of CP (Ci∪Cj)
in O(b) time.

• II. Cluster extent - A cluster extent represents a set of clusters as a minimum bounding rect-
angle (MBR). A cluster extent has three properties which make it useful for batch pruning. (1)
DExtent(Ci, EC), the distance of cluster Ci and extent EC , can be used to find a lower bound of
CP (Ci ∪ Cj) for cluster Ci and any cluster represented by extent EC . (2) DExtent is computed more
efficiently, compared to CP . (3) cluster extents can be organized by an index structure to guide pruning
process (Sec. 4.2).

• III. Cluster-level lower bound - We propose a simple greedy heuristic to efficiently find a lower
bound for CP (Ci ∪ Cj). Assume that only two sequences R and S are in Ci ∪ Cj . Each timestamp t
in R must fall inside at least one interval (due to the SC property) when CP (Ci ∪ Cj) is computed.
The distortion of timestamp t in R is at least |t − nearest(t, S)|, where nearest(t, S) is the closest
timestamp of sequence S to t. By induction, we can aggregate this loss to find DLB as another lower
bound of CP .

4.2 Indexing clusters to boost NN search

We propose an index structure for clusters and an incremental search algorithm to speed up NN search.
We organize clusters using the R-Tree [16] structure as follows: the internal nodes of the index are cluster
extents. The cluster extent for the root node represents all clusters organized by the index. A leaf node
keeps the extents of clusters along with the list of identifiers of clusters covered by that node. We store
cluster fingerprints in the main memory. We observed a negligible space overhead for fingerprints in our
experiments. The overhead can be tuned to available memory.

We extend the the multi-step nearest neighbor search [29] as FastNN (Alg. 2). Given cluster Ci as
query, our algorithm works as follows. A list of visited objects is kept in a heap along with a distance for
each object. An object can be a cluster extent, a cluster, or a fingerprint. First, we push to the heap the
cluster extent of the root node and DExtent(Ci, root) as distance. While the heap is not empty, we deheap an
object p and process it based on the type of p. 1.a) If p is a cluster extent, we push to the heap every cluster
extent q that is covered by p, along with DExtent(Ci, q). 1.b) If p is a leaf node, we add the fingerprint of
each cluster q covered by p to the heap along with Dfp(p, q). (2) If p is a fingerprint, we load the sequences
of cluster p into cluster Cp, and push Cp along with DLB(Ci ∪ Cp) to the heap. 3.a) If p is deheaped as a
cluster for the first time, we push it back to the heap with CP (Ci ∪ p). 3.b) Cluster p is returned as the
closest cluster to Ci if this is the second time that p is deheaped as an object of type cluster.

4.3 Hybrid partitioning to reduce NN calls

Indexing improves Baseline by improving the performance of NN. In this section, we take an orthogonal
approach and propose a data driven heuristic to reduce the number of NN calls. The method we propose
here can still benefit from FastNN. The main idea (Alg. 3) is to partition data into two regions, namely
A and B. We apply a fast partitioning method (e.g. [15]) on region A and Baseline on region B, and
integrate the results.

10

Algorithm 2 FastNN(cluster Ci, cluster index R)

1: Initialize an empty heap H
2: Push

(
H, root,DExtent(Ci, root), Extent

)
⊲ root: the root node of R

3: while H is not empty do
4: Pop an object from H into p
5: if type of object p is Extent then
6: for each entry q in cluster extent p do
7: if p is a leaf node then Push(H, q,Dfp(Ci, q), FP)
8: else Push

(
H, q,DExtent(Ci, q), Extent

)

9: else if type of object p is FP then
10: Load time sequences for cluster p into Cp

11: if (Ci, Cp) /∈ Con6= then Push
(
H, Cp,DLB(Ci, Cp), LB

)

12: else if cluster p is de-heaped for the 1st time then
13: Push

(
H, p, CP (Ci ∪ p), CP

)

14: else return p ⊲ cluster p is de-heaped for the 2nd time

15: return { } ⊲ (Ci, Ck) ∈ Con6= for all clusters Ck

Algorithm 3 Hybrid(Dataset D, Privacy model M)

1: (DA,DB) = AssignRegions(D) ⊲ (Sec. 4.3)
2: PA = FastCluster(DA) ⊲ Using E.g.[15]
3: for any cluster C in PA that violates model M do
4: Remove C from PA and add all its sequences to DB

5: PB = Baseline(DB , M) ⊲ Alg. 1
6: return PA ∪ PB ⊲ Merge PA and PB

4.3.1 Intuition

Fig. 3 shows a mapping of time sequences into points in 2D space (recall that our focus is the SSR setting).
The coordinates correspond to the first and the last timestamp of each sequence. A Hilbert index (hIndex)
is assigned to each sequence as follows: the space is divided into cells using a regular grid. The index of
each cell on the Hilbert space filling curve [26] is assigned as hIndex(S) for any sequence S that has its end
timestamps in the cell.

A 2-anonymous grouping of sequences using Baseline is shown in Fig. 3. We refer to the area close to
the diagonal line in the 2D space as region A and the top-left corner as region B. We describe shortly how
to assign sequences to each region. Through experiments on real and synthetic data we observed that for
sequences in region A (S1, S2, and S3) the difference between hIndex is correlated with the information
loss of the corresponding cluster. This is intuitive because sequences in region A tend to have close start
and end time points and a relatively small variance in time point values. As we get into region B, the
end points of sequences get far apart and the diversity of timestamps increases. No consistent correlation
is observed between the closeness of hIndex of two sequences and the information loss in region B. For
instance, |hIndex(S4)-hIndex(S5)| < |hIndex(S4)-hIndex(S7)|, but S4 is grouped with S7. We observed
that a majority of sequences in region A are clustered with sequences in the same region. Thus, an ordering
of sequences in region A based on hIndex, instead of information loss, should bring closer all sequences that
may fall in the same cluster. We cluster sequences in region A using a fast heuristic (described later) and
run Baseline only for sequences in region B.

11

ID timestamps hIndex region
S1 57,67 39 A
S2 53,57 34 A
S3 41,50 32 A
S5 18,40,74 22 B
S6 7,32,64 20 B
S4 18,65 23 B
S7 17,55 18 B

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Start time

E
nd

 ti
m

e S
7

S
6

S
5

S
4 S

3

S
2

S
1

Figure 3: Mapping sequences to 2D (start, end) space

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

lower bound moving average

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

CP moving average

Figure 4: Pairwise DLB and CP for 100 sequences, the sequences assigned to region B are marked by *.

4.3.2 Assigning sequences to regions

We sort sequences by hIndex. We assign sequence Si to region A if CP ({Si−1, Si}) <
∑N

i=1 CP ({Si−1, Si})/N
or |Si| = 1, where N = |D|. Else, Si is assigned to region B. For S1 we compute CP ({S1, S2}). This heuris-
tic needs O(N) evaluations of information loss, which is computationally expensive when either N or the
average length of sequences is large. Fig. 4 shows CP and lower bound DLB evaluated for 100 sequences in
a real dataset, sorted by hIndex. The sequences which are assigned to region B are marked by star. We
observe that not only CP is correlated with DLB , but also the region assignment based on DLB in Fig. 4
seems to be correlated with the region assignment based on CP . Thus, we use DLB to speed up the region
assignment step of Hybrid.

4.3.3 Clustering region A

We need to find a grouping of sequences such that each group has at least τ and at most 2τ − 1 members
and the information loss for each group is minimized. Recall that τ = k in k-anonymity and τ = ℓ in
(g, ℓ)-diversity. Due to the correlation observed between the difference in the hIndex of sequences and the
information loss in region A, we use a dynamic programming algorithm [15] to find an optimal grouping
in O(τ · NA) time where NA is the size of region A. In k-anonymity, all clusters found can be finalized
unless when NA < k. In this case we process all sequences in region A with the sequences in region B.
Since during dynamic programming we only check the QID part of sequences, (g, ℓ)-diversity may not hold
for some clusters. For each cluster, the violation can be checked by moving a sliding window over all time
and event pairs in the cluster. For each window there must be only one participation for each event type.
This probe can be done in O(g · nc) time, where nc is the number of event pairs of cluster C. If a cluster
satisfies (g, ℓ)-diversity, it is finalized. Otherwise, the sequences of this cluster will be handled together with

12

Algorithm 4 PR(Dataset D, Privacy model M)

1: Set τ to k if M is k-anonymity and to ℓ if M is (g, ℓ)-diversity
2: Set C to a cluster containing all sequences of D
3: P = Partition(C, τ) ⊲ start the recursive drill down
/* resolve privacy violations of clusters in P*/
4: for each cluster Ci ∈ P that violates privacy model M do
5: repeat
6: Find cluster Cj ∈ P with smallest CP (Ci ∪ Cj)
7: Remove Cj from P and merge it into Ci

8: until Ci satisfies privacy constraints

9: return P
/* splitting along the event dimension */

10: function Partition(cluster C, τ)
11: if C has less than 2τ sequences then return {C}

12: Pick a random sequence S1 from C
13: Find sequence S2 ∈ C with the largest distance from S1

14: Set cluster C1 = {S1} and cluster C2 = {S2}
15: for each sequence Si in C do
16: if Si is closer to S1 than to S2 then add Si to C1

17: else Add Si to C2

18: return Refine(C1, τ) ∪ Refine(C2, τ)

/* Splitting along the time dimension*/

19: function Refine(cluster C, τ)
20: Set κ = ⌊|C|/2⌋
21: Split C to κ-anonymous clusters C1, C2 ⊲ Baseline and FastNN

22: return Partition(C1, τ) ∪ Partition(C2, τ)

all sequences in region B by Baseline.

5 Optimizations for SCR

We propose a greedy top-down heuristic to derive AGs, based on the construction step of kd-trees [12]. We
recursively reduce the information loss; each time along either the event dimension or the time dimension.
To speed up our approach, we take advantage of (1) our optimizations for SSR setting (Sec. 4), and (2) our
fast-to-compute taxonomy-based distance, described in Sec. 5.2.

5.1 Top-down partition and refinement

We give an overview of our approach (Alg. 4). First, all sequences are assigned to a single cluster. This
cluster is passed to Partition, which consequently triggers a series of recursive calls. (1) Partition splits
the cluster into two smaller ones based on the similarity of events (described in Sec. 5.2) and ignoring the
timestamps. Each of the split clusters is then passed for further processing to Refine. (2) Refine splits
each cluster into two smaller ones based on the similarity of timestamps and ignoring events. Then, it calls
Partition for each split cluster. (3) We stop further partitioning (refinement) of a cluster if it has less than
2τ sequences, where τ = k in k-anonymity and ℓ in (g, ℓ)-diversity. In this case, we add the cluster to the set
of clusters waiting to be finalized. (4) We use the same heuristic as the second step of Baseline to resolve
the privacy violations of clusters, if any, by merge to finalize the AG.

Intuitively, Refine reduces information loss along the time dimension only. Thus, we use the optimiza-
tions of SSR (Sec. 4) to speed up the refinement step. Partition focuses on the event dimension. It splits

13

a cluster C into two smaller ones C1 and C2 as follows. First, it picks a random sequence S1 ∈ C and finds
sequence S2 ∈ C with the largest distance to S1. Every sequence in C which is closer to S1 than to S2 is
assigned into C1. Other sequences are assigned to C2. As a distance metric for sequences, we can use CP
with wt = 0 (note: our focus is event similarity). However, CP is expensive to compute. Thus, we propose
a fast to compute alternative to CP which regards event taxonomy.

5.2 eventDist: A fast taxonomy-based distance

We slightly modify each sequence by removing the order of events in each sequence. This produces a dis-
tance measure for sequences that captures the diversity of events w.r.t. a taxonomy, and the frequency

distribution of events. From sequence S, we derive multiset MS = {(ei, fi)}
|MS |
i=1 where fi = |{t|(ei, t) ∈ S}|

is the frequency of event ei in sequence S. For instance, the multiset of sequence S1 in Fig. 1 (left) is
{(Google,2),(Bing,1),(Amazon,2)}.

Several set similarity measures have been proposed in the literature, e.g. the Jaccard coefficient and
the cosine measure. However, these measures ignore the semantics of an application domain modeled by a
taxonomy. The similarity of two multisets M1 = {(Facebook,1), (Myspace,1),(Google,1),(eBay,1),(Seenit,1)}
and M2 = {(Bing,1), (Facebook,2),(Amazon,1)} must capture not only the number of common events (i.e.
Facebook) but also the number of events under the same categories (e.g. Google and Bing) which are both
under Search Engines.

We propose eventDist as the minimum cost of using the categories in the taxonomy to make the events
of the two multisets equal. For multiset M and category ci in the event taxonomy, let n(M, ci) be the sum of
the frequency of events in M that are covered by ci. We set n(M, ci) = ∞ if M has no event under category
ci. Let |ci| be the number of events under category ci.

Definition 3 (Cost of Match) The cost of matching two multisets A and B, given the set of categories

C = {ci}
|C|
i=1 is:

cost(A,B, C) =
P

ci∈C
|ci|·

(
n(A,ci)+n(B,ci)

)

|E|·
(

P

(e,f)∈A f +
P

(e,f)∈B f
) .

Example 2 Let c1 = Social networks, c2 = Search engines, c3 = Shopping, and c4 = Amazon for the
taxonomy of Fig. 2(c). For M1, n(M1, c1) = 2, n(M1, c3) = 2, and n(M1, c4) = ∞. For M2, n(M2, c1) = 2,
n(M2, c2) = 1, and n(M2, c4) = 1. Thus, cost(M1,M2, {ci}

3
i=1) = 25

72 , cost(M1,M2, {ci}
4
i=1) = ∞.

Definition 4 (Computing Event Distance) For two sequences S1 and S2,

eventDist(S1, S2) = min
∀C∈2H

{
cost

(
M(S1),M(S2), C

)}
,

where M(S) is the multiset of sequence S and H is the taxonomy.

Finding eventDist is in fact an optimization problem. An exhaustive approach requires 2nodes(H) exami-
nation for all possible subset of nodes in taxonomy H to find best C. However, some checkings are redundant
and can be pruned effectively by branch and bound using: (1) an ordered list of events in multisets, and
(2) the structure imposed by taxonomy H. To efficiently compute eventDist, we first assign an id to each
event in E by performing a depth-first traversal on H (the numbers under URLs in Fig. 5). We then re-
present each multiset using an ordered list of event ids. For instance, M1 = {(Facebook,1), (Myspace,1),

(Google,1), (eBay,1), (Seenit,1)} and M2 = {(Bing,1), (Facebook,2), (Amazon,1)}, respectively,
becomes {(1,1), (2,1), (3,1), (5,1), (6,1)} and {(1,2), (4,1), (7,1)}. We use Alg. 5 to prune the search space
for optimal set of nodes using the taxonomy H and the order of event as a yardstick. We use a running
example to convey the intuition behind Alg. 5.

Example 3 Fig. 5 reproduces the same taxonomy of Fig. 2(c), with node labels replaced by πi,j for brevity,
and the frequency of events are not shown for brevity. To find the distance of multisets M1 and M2, we

14

Algorithm 5 EventDist(Multiset A, Multiset B, Node π)

1: if both A and B are empty then return 0 ⊲ Equal multisets

2: if either A or B is empty then return ∞ ⊲ Either one (not both)

3: if π is a leaf node then return Cost
(
A,B, π

)
⊲ Case 1 (Def. 3)

4: Set sp to the maximum event Id in LeftSubTree(π) ⊲ sp : split point
5: Split A using sp into two non-overlapping multisets A1 and A2

6: Split B using sp into two non-overlapping multisets B1 and B2

7: if both A1 and B1 are empty then ⊲ Case 2.a
8: return EventDist

(
A2, B2,RightSubTree(π)

)

9: if both A2 and B2 are empty then ⊲ Case 2.b
10: return EventDist

(
A1, B1,LeftSubTree(π)

)

11: if any one of A1, A2, B1, or B2 is empty then ⊲ Case 3
12: return Cost

(
A,B, π

)
⊲ Using Def. 3

13: c1 = EventDist
(
A1, B1,LeftSubTreeleft(π)

)

14: c2 = eventDist
(
A2, B2,RightSubTree(π)

)

15: return (c1 + c2) ⊲ Case 4

start from the root node π4,1 and split M1 into M1,1 = {1, 2, 3} and M1,2 = {5, 6} using sp = 4 as the split
point of π4,1. This is because only the nodes in the left sub-tree of π4,1 can be applied to both M1,1 and
M2,1. Likewise, only the nodes in the right sub-tree of π4,1 can be applied to both M1,2 and M2,2 = {7}.
Thus, we need to recursively call eventDist (Case 4 of Alg. 5); once with M1,1, M2,1, and π3,1 and once with
M1,2, M2,2, and π3,2. In the first recursive call, shown in Fig. 5, there are two branches. The first branch
evaluates the distance between {1, 2} and {1, 1}. There are two nodes under π2,1. π1,1 applies to splits
{1} and {1, 1}. Applying π1,2 does not unify {1, 2} and {1, 1}. Thus, we roll-back and try the next closest
map, i.e. π2,1 which makes {1, 2} and {1, 1} equal. Thus, we commit the cost of applying π2,1 in the total
cost (Case 3) and roll-back again. The second branch passes {3} and {4} to node π2,2. Again, the split at
π2,2 level creates empty multisets (Case 3). Thus, we include the cost of applying π2,2 on {3} and {4} and
return. The second recursive call considers the node π3,2 and multisets M1,2 and M2,2 mentioned earlier.
The split point of π3,2 is 6 and splitting M1,2 and M2,2 at π3,2 would generate at least one empty multiset
on each branch. This means considering the branch under π3,2 will not find any node which makes M1,2

and M2,2 equal and indeed π3,2 is the best node. This ends the second round of recursive calls and returns
with cost(M2,1,M2,2, π3,2), which consequently returns 25

72 as eventDist(M1,M2). In summary, to find the
optimal set of nodes π∗ = {π2,1, π2,2, π3,2}, we examined π∗ ∪ {π4,1, π3,1} and pruned other redundant nodes
(under the line in Fig. 5). Thus, we return cost(M1,M2, π

∗) as the eventDist of sequences corresponding
to multisets M1 and M2.

Alg. 5 can be extended when the taxonomy is not a binary tree and the fan-out of each node ni is d(ni).

Each node has d(ni) − 1 ordered split points. We split A and B, respectively, into Ai|
d(ni)
i=1 and Bi|

d(ni)
i=1 . If

for every 1 ≤ i ≤ d(πi), either Ai and Bi are both empty or Ai and Bi are both non-empty, A and B must
be split recursively (similar to Case 4 of Alg. 5) and the total cost must be returned. In this case, if both Ai

and Bi are not empty, the cost is evaluated by passing Ai, Bi, and the node corresponding to the ith child.
Else, this is similar to Case 3, we use mapping ni for A and B and return its cost (line 12). For a leaf node,
we return the cost of applying the the leaf node (Case 1 of Alg. 5). Alg. 5 computes the distance in a time
linear to the number of events of the multisets. In the AOL dataset (Sec. 6), the taxonomy of URLs has
only four levels and fits in main memory.

Lemma 3 (Computing Event Distance) For two sequences A and B, an event taxonomy of height h
and maximum fan-out d, eventDist(A,B) can be computed in O(|A| + |B| + nhd) time, where n is the
maximum number of distinct events in A and B.

15

{1,2,3}, {1,1, 4} {5,6}, {7}

{1,2}, {1,1} {3}, {4}

{3}, { } { }, {4}

{5,6}, { } { }, {7}

{1} , {1,1} {2}, { }

{1,2,3,5,6}, {1,1, 4,7}

1,8
 :{8} -> [8-8]1,7 1,4

1,2
1,6 1,5

1,3 1,1

 : (1-2)
2,1

2,2

: (3-4) : (5-6)
2,3

2,4
: (7-8)

3,1
: (1-4)

3,2
: {5,6,7,8}->[5-8]

(1) (2) (3) (4) (6) (7) (8)(5)

 : (1-8)
4,1

Figure 5: Pruning taxonomy nodes for eventDist

Table 2: Methods used in experimental study

Method Description

TA Trajectory Anonymization algorithm [27]
SA Symmetric Anonymization algorithm [37]
HN Baseline(Alg. 1)
HI HN with the optimizations of Sec. 4.1, 4.2
HY HN with the optimizations of Sec. 4.3
HL HY if all sequences are assigned to region A
ET Our greedy top-down heuristic of Sec. 5

Proof 3 Alg. 5 splits multisets using binary search. In the extreme case, it makes a recursive call at each
step (Case 4) except for the last one. The length of each multiset is divided by two on average in each call.

Thus, the number of binary search is
∑⌊log2 |A|⌋

i=1 2i · log2
|A|
2i ≈ 2|A| − log2(|A|) − 2 which makes the search

time O
(
|A| + |B|

)
in average. Let n be the maximum number of distinct events in A or B. In the extreme

case, Alg.5 assigns a leaf category (at height h) to each event, making the cost of traversing to O(hdn). This
is because at each step, for a balanced taxonomy of height h and a maximum fan-out d, a loop is required to
split A and B into d(πi) ≤ d splits. Thus, the total time complexity of Alg. 5 is O(|A| + |B| + hdn).

6 Experimental Evaluation

We present the result of an empirical evaluation of our algorithms on real and synthetic data. We compare
efficiency, information loss, reduction in computations and disk access, as well as the quality of the generated
anonymizations. Table 2 summarizes the methods used in our empirical study.

6.1 Datasets

Table 3 summarizes the datasets used in our experimental study:

AOL - Contains the query log of users during three months in 2006. This dataset has been mainly used
to study the anonymization of query logs using keyword generalization [18]. Each record indicates either a
search or a URL visit. After data cleaning, there were 521,692 click streams. We considered two scenarios:
First, AOL shares data with a search engine or a website (SSR setting). We picked Yahoo and Flickr as
candidates because the average number of visits to these websites per sequence is among the largest and the
smallest values, respectively. Thus, Er ={Yahoo} and Er ={Flickr}, respectively, in datasets Yahoo and

16

Table 3: Summary of datasets used for evaluations

property Flickr Yahoo Mixed Oldenburg Worldcup

No. of Sequences 6,919 33.4K 243.4K 11,571 19.4K
Size of region A 6,074 25.4K 159.1K 8,060 15.6K
Max. length 54 867 8.6K 186 685
Avg. length 1.2 3.8 4.9 7.0 14.3
(e, t) pairs 1.5M 5.6M 14.8M 0.5M 6.2M
|E| 37.6K 451.8K 1.4M 635 19K

Flickr. Second, AOL shares data with a number of parties that might exchange (SCR). We extract dataset
Mixed from AOL, and set Er = {Google, Yahoo, MySpace, eBay, Amazon, Wikipedia}. Fig. 6 presents
a closer look at the distribution of time points, the number of clicks, and the number of URLs for this dataset.

Oldenburg - Contains synthetic data generated using Brinkhoff’s traffic data generator [9] for the city
of Oldenburg with parameters set to their default values. We discretized the city map using a uniform grid
with 1,024 cells and assigned an identifier to each cell. If a trajectory contains a point in a grid cell we
consider a visit to the corresponding cell at the timestamp of visit. For each cell, we compute the number
of trajectory visits to the cell and consider the scenario where a store, with several branches in the city,
records visit times of customers. We considered a controller that monitored the top 10 locations in terms of
the number of visits. Out of 25K trajectories created by the data generator, we picked the trajectories that
visited any of the monitored locations. Fig. 7 presents a closer look at the distribution of time points, the
number of locations, and the number of trajectories for this dataset.

Worldcup98 - Contains the access log to World Cup 1998 web site5 with 2,140,622 click streams. We
considered sharing click streams with a party that collects timestamps of visiting one random URL in the
last week of the tournament during which the site experienced a large number of visits. We excluded URLs
visited by almost all users, as these pages may correspond to the homepage or navigational links and we did
not regard them as sensitive. Fig. 8 presents a closer look at the distribution of time points, the number of
clicks, and the number of URLs for this dataset.

6.2 Settings of experiments

We implemented algorithms in C. Experiments were conducted on a machine with a dual core 3Ghz CPU,
2GB RAM, running Linux Fedora 12. The index for clusters was implemented using R-Tree6 with a fan-out
of 100 and 4K pages. We stored sequences in a B-Tree index with sequence id as key. Each fingerprint was
4 bytes. All fingerprints were stored in main memory. In SSR experiments, we set we = 0 and in SCR
experiments, we set we = wt = 1.

6.3 Building a taxonomy for URLs

We extracted the category of URLs in AOL dataset by sending queries to Alexa7 in October 2009. One of
three cases happens for each URL: (1) Alexa has the category of the URL, (2) Alexa returns a list of similar
URLs, and (3) Alexa has no entry. In case 1, e.g. for Facebook, Alexa returned
Computers/Internet/On the Web/Online Communities/Social Networking as the longest category. We
only consider the first four categories from the longest category returned by Alexa for the URL. We organize
URLs, based on four categories, into a taxonomy. In case 2, a URL is assigned to the category which is
shared among its similar URLs. In case 3, the URL is assigned to the Miscellaneous category, which includes

5http://ita.ee.lbl.gov/html/contrib/WorldCup.html
6http://www2.research.att.com/∼marioh/spatialindex/
7http://www.alexa.com

17

10
0

10
1

10
2

10
3

10
40

20

40

60

80

100

Length of time span (minutes)

%
 o

f u
se

rs

(a)

10
0

10
1

10
2

10
3

10
4

10
50

20

40

60

80

100

No. of clicks

%
 o

f u
se

rs

(b)

10
0

10
1

10
2

10
3

10
4

10
50

20

40

60

80

100

No. of URLs

%
 o

f u
se

rs

(c)

10
0

10
1

10
2

10
3

10
4

10
50

20

40

60

80

100

No. of clicks

%
 o

f U
R

Ls

(d)

Figure 6: AOL dataset; frequency distribution of time span of click-streams vs. number of users (a), length
of click-streams vs. number of users (b), number of distinct URLs vs. number of users (c), and number of
clicks vs. number of URLs (d); all x-axis are in log-scale.

10
0

10
1

10
2

10
30

20

40

60

80

100

Length of time span (minutes)

%
 o

f u
se

rs

(a)

10
0

10
1

10
2

10
30

20

40

60

80

100

No. of clicks

%
 o

f u
se

rs

(b)

10
0

10
1

10
20

20

40

60

80

100

No. of URLs

%
 o

f u
se

rs

(c)

1 5 10 15 20 25 32
1

5

10

15

20

25

32

.

(d)

Figure 7: Oldenburg dataset; frequency distribution of time span vs. number of trajectories (a), locations
vs. number of trajectories (b), number of distinct locations vs. number of trajectories (c), and density of
locations in grid by the number of trajectory visits, darkness proportional with number of visits (d), all
axis in log-scale except (d).

10
0

10
1

10
2

10
3

10
40

20

40

60

80

100

Length of time span (minutes)

%
 o

f u
se

rs

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
60

20

40

60

80

100

No. of clicks

%
 o

f u
se

rs

(b)

10
0

10
1

10
2

10
3

10
40

20

40

60

80

100

No. of URLs

%
 o

f u
se

rs

(c)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
70

20

40

60

80

100

No. of clicks

%
 o

f U
R

Ls

(d)

Figure 8: Woldcup98 dataset; frequency distribution of time span of click-streams vs. number of users
(a), length of click-streams vs. number of users (b), number of distinct URLs vs. number of users (c), and
number of clicks vs. number of URLs (d); all x-axis are in log-scale.

18

Table 4: Suppression, fp and fn, changing k on Oldenburg

TA [27] HN (Alg.1) SA [37]
k Suppression fn fp fp fp

2 6.29 % 0.03 0.18 0.23 0.37
5 25.76 % 0.07 0.25 0.54 0.66

10 32.74 % 0.09 0.25 0.55 0.73
20 37.56 % 0.09 0.27 0.74 0.74

typos and un-popular URLs. By this method, we could build a taxonomy of height four with 45, 383 nodes,
maximum fan-out of 128 (avg. 3), and 884K categorized URLs (case 1 or 2) from 1.6M URLs.

6.4 Results

6.4.1 Comparison with related work

Except TA [27] and SA [37], our approach is not comparable to previous works (e.g. [2, 31]) as they ignore
time points both in forming groups and anonymization. We stress that the anonymized data produced by
HN conforms with the symmetric requirement of SA; each AG of HN is a complete bipartite graph, thus the
induced attack graph [37] is symmetric. To make a comparison independent of the underlying anonymization
methods, we measured false positive (fp) and false negative (fn) ratios on k-anonymized data (i.e. same
privacy level) produced by HN, TA, and SA. The ratios reflect the accuracy of count queries (e.g. used
in complex spatio-temporal pattern queries [17]). We picked Oldenburg because TA performs geometric
transformations on spatial coordinates. We divided the time, x, and y coordinates into intervals of equal
length. A combination of temporal and spatial dimensions provided the query workload Q. For dataset D and
anonymized data D∗, let nHits(q,D) and nHits(q,D∗), respectively, be the number of unique trajectories
in D and D∗ that pass the spatial range of query q ∈ Q, during q’s time range. The ratios fp and fn are
defined as:

fp(D
∗) =

∣
∣ {q | q ∈ Q, nHits(q,D∗) > nHits(q,D)}

∣
∣

|Q |
,

fn(D∗) =

∣
∣ {q | q ∈ Q, nHits(q,D∗) < nHits(q,D)}

∣
∣

∣
∣{q | q ∈ Q, nHits(q,D) > 0}

∣
∣

.

Both fp and fn are in range [0, 1] and a smaller value is favorable for both ratios. We observed that fn = 0
for both HN and SA. In Table 4, we observe that TA has the smallest fp ratio, because it has compact
intervals; each interval has one time point from each sequence. Still, TA has the drawback of false negatives
due to suppression. SA has the largest fp ratio even though it does not perform time generalization for
two reasons. (1) In SA, each AG is formed initially by finding k − 1 closest sequences to a single sequence.
The AG can get biased towards a single sequence. However, in HN each AG is found iteratively: an AG
is initialized to a single sequence and in an iterative process, it is merged with the sequence closest to the
current AG. (2) The symmetric merging of AGs in SA generates larger AGs in an attempt to maintain the
attack graph symmetric. This results into more data distortion in form of larger fp. HN is the best approach
when false negatives are not acceptable.

6.4.2 Evaluation of SSR setting

In k-anonymity (Fig. 9), we observe that the information loss is very small for all methods (less than 6%).
The running time increases monotonically with k as more comparisons and disk accesses are required to form
larger AGs. In Flickr, HL is very close to HN in terms of information loss (i.e. NCP) as the average length
of QIDs is relatively small (1.2 clicks/user) and the percentage of sequences that fall into region A is high.
Thus, a fast heuristic in 2D space produces results with the same quality as HN. HY (in Flickr) benefits

19

4 8 12 16 20 24 28 32
0

0.02

0.04

0.06

k

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(a) NCP , Flickr

4 8 12 16 20 24 28 32
0

0.05

0.1

k

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(b) NCP , Yahoo

4 8 12 16 20 24 28 32
10

−2

10
−1

10
0

10
1

10
2

k

T
im

e
(S

ec
)

HN HI HY HL

(c) Time, Flickr

4 8 12 16 20 24 28 32
10

−1
10

0
10

1
10

2
10

3
10

4

k

T
im

e
(S

ec
)

HN HI HY HL

(d) Time, Yahoo

Figure 9: k-anonymity changing k

HN HI HY HL HN HI HY HL HN HI HY HL HN HI HY HL
10

210
310
410
510
610
710
810
9

C
om

pu
ta

tio
ns

CP LB Extent FP

↓ Flickr ↑ ↓ Yahoo ↑ ↓ Oldenburg ↑ ↓ Worldcup ↑

HN HI HY HL HN HI HY HL HN HI HY HL HN HI HY HL
10

310
410
510
610
710
810
9

D
is

k
ac

ce
ss

Load−Sequence Read−Index Write−Index

Figure 10: Computations and disk accesses, k-anonymity (k = 16)

from partitioning and runs ten times faster than HI without a significant drop in information loss (NCP).
For Yahoo, HL runs significantly faster than other methods. The average length of QIDs in Yahoo is larger
than Flickr. We observe a large difference between information loss of HL and HN in Yahoo. However, HY
makes a balance; it provides an improvement in running time over HI and the information loss of HY is very
close to HN. In Flickr and Yahoo, HI runs up to an order of magnitude faster than HN as the index and
FastNN reduce the number of CP computations by almost four orders of magnitude and the number of
disk accesses by more than one order of magnitude (Fig. 10), which explains the observed improvement of
running time for HY (Fig. 9). HI and HY have two overheads: creating index (I/O) and evaluating lower
bounds (CPU). However, the lower bounds are very efficient to compute and both HI and HY benefit from
the index. HL scans the data once for sorting and once for finding AGs at an I/O cost which is three to four
orders of magnitude smaller than HN.

In (g, ℓ)-diversity, again we observe that the information loss is very small for all datasets. The anonymiza-
tion cost grows with ℓ due to an increase in group size, which is directly related to the increase of information
loss. We observed a very similar pattern that we had observed before in k-anonymity, in terms of informa-
tion loss and relative performance of HN, HY, and HL, in all datasets except Oldenburg in which we see a
unification of HI, HL, and HY (Fig. 11). We noticed that the distribution of locations is dense in Oldenburg.
Many locations, mostly in the center of the map, were visited by a large number of sequences during a small
time interval (see Fig. 7d). These sequences are candidates for (g, ℓ)-diversity violations. In HL and HY,
these sequences are handled by HI. Fig. 12 confirms this pattern; HL and HY make the same number of CP
computations as HI.

20

4 8 12 16 20 24 28 32
0

0.05

0.1

l

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(a) NCP , Oldenburg

4 8 12 16 20 24 28 32
10

0

10
1

10
2

10
3

l

T
im

e
(S

ec
)

HN HI HY HL

(b) Time, Oldenburg

Figure 11: (g, ℓ)-diversity for Oldenburg, changing ℓ (g = 1 hour)

HN HI HY HL HN HI HY HL HN HI HY HL HN HI HY HL
10

210
310
410
510
610
710
810
9

C
om

pu
ta

tio
ns

CP LB Extent FP

↓ Flickr ↑ ↓ Yahoo ↑ ↓ Oldenburg ↑ ↓ Worldcup ↑

HN HI HY HL HN HI HY HL HN HI HY HL HN HI HY HL
10

310
410
510
610
710
810
9

D
is

k
ac

ce
ss

Load−Sequence Read−Index Write−Index

Figure 12: Computations and disk accesses, (g, ℓ)-diversity, ℓ = 16, g = 1 hour

6.4.3 The utility of anonymized data

To measure the usefulness of the anonymized data, we considered temporal prediction queries: A receiver
that collects timestamps of URL A wants to find the distribution of visits for click streams within w time
units of visits to URL A, (e.g. Google may want to know the probability that one visits Amazon after
5 minutes of visiting Google, or conversely, the probability that one visits Bing 5 minutes before visiting
Google). Let Po and Pa be the probability distribution of events in the original and the anonymized data,
respectively. To measure the closeness of the two distributions, we use the Kullback-Leibler Divergence [22]
as it has been acknowledged as a representative metric in the data anonymization literature [20]:

DKL(Pa, Po) =
∑

event

Po(event) log
Po(event)

Pa(event)
.

DKL is zero for identical distributions and a smaller value denotes a more distribution preserving anonymiza-
tion. We observed that DKL increases with ℓ (Fig. 13a). This is expected because AGs get larger and it
becomes harder to predict the event participation - (url, time) pair - for each user in a group due to the
added diversity. These trends are in line with the trend observed for information loss (not reported). Again,
HL has the largest DKL among other methods (DKL is the same for HN and HI).

Increasing g adds more grouping constraints. This has two impacts in Fig. 13b: (1) In HN and HI, the
number of candidate sequences to merge with a cluster reduces when g increases. This reduces the number
of required computations and hence the running time. (2) For HY and HL, there will be more (g, ℓ)-diversity
violations in larger intervals; more clusters become infeasible and will be passed to HI. Thus the running

21

4 8 12 16 20 24 28 32

0.4

0.5

0.6

0.7

l

K
L−

D
iv

er
ge

nc
e

HI HY HL

(a) DKL

1 min. 1 hr. 1 day 100 hrs
10

0

10
2

10
4

g

T
im

e
(s

ec
)

HN HI HY HL

(b) Time

1 min. 1 hr. 1 day 100 hrs
0

0.1

0.2

0.3

g

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(c) NCP

Figure 13: (g, ℓ)-diversity in Yahoo changing ℓ while g = 1 hour (a) and changing g while ℓ = 16 (b) and (c)

Table 5: KL-Divergence changing w , g = 1 hour, ℓ = 16

Dataset 1 minute 1 hour 1 day 1 week 1 month

Flickr 1.680 0.670 0.327 0.147 0.049
Yahoo 2.100 0.628 0.316 0.102 0.027
Oldenburg 1.179 0.018 0.017 0.017 0.017
Worldcup 0.407 0.058 0.010 0.002 0.002

time of HL and HY converge to HI. In terms of information loss (Fig. 13c), it seems hat greedily checking
constraints locally (as in HN and HI) does not always yield the best AG.

The distribution of Pa gets closer to Po when w takes larger values (Table 5). This indicates that while
the anonymized data fulfills the desired privacy model, the anonymized data is more useful for predicting
long term trends.

6.4.4 Evaluation of SCR setting

We compared HI with ET on a sample of AOL dataset with 5K sequences, where Er = E8. The avg. length
of sequences is 72. Because ET intentionally provides more privacy coverage, it incurs a larger information
loss, as observed in Table. 6. Besides, it takes longer to anonymize data using ET. Because ET may generalize
every time point of sequences, we observe a relatively larger information loss vs. HI, compare information
loss with Flickr/Yahoo in Fig. 9. Another factor for the large information loss in ET is the sporadic nature
of click times combined with the large diversity of URLs. Even though ET uses the progressive clustering,
its running time is higher than HI due to calling eventDist for partitioning.

6.4.5 Scalability evaluation

Fig. 14 summarizes scalability evaluations for k-anonymity; we got very similar results for (g, ℓ)-diversity.
All our algorithms scale better than HN (Fig. 14a), which has a quadratic scalability. Except for HL, the
information loss is relatively small (under 10%) for all methods (Fig. 14b). HL is the fastest but it has a
larger information loss. HI is an order of magnitude faster than HN and HY is 10%-20% faster than HI with
a slightly larger information loss but almost equal DKL (Fig. 14c). HI offers the same quality as HN but
runs significantly faster. Data density increases with the number of sequences. Thus, the sequences in each
group become more similar and the information loss decreases monotonically for all methods (Fig. 14b).

8the set of all URLs

22

Table 6: time vs. event & time generalization (wt = we = 1)

Time (Sec) Information loss
k=2 k=5 k=10 k=20 k=2 k=5 k=10 k=20

HI 63.7 145.5 234.3 372.7 0.72 0.84 0.88 0.90
ET 121.1 263.8 398.5 565.9 0.81 0.89 0.92 0.94

10 50 100 150 200 240
0

24
48
72
96

120
144
168

N (x 1,000)

T
im

e
(H

ou
rs

)

HN HI HY HL

(a) Time

10 50 100 150 200 240
0

0.1

0.2

N (x 1,000)

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(b) NCP

10 50 100 150 200 240
0.3

0.4

0.5

0.6

0.7

0.8

N (x 1,000)

K
L−

D
iv

er
ge

nc
e

HI HY HL

(c) DKL

10 50 100 150 200 240
0.01

0.1

1

10

100

N (x 1,000)

M
em

or
y

(M
B

)

HI−IN HI−FP HY−IN HY−FP

(d) Memory usage

Figure 14: Scalability of k-anonymity in Mixed (k = 16)

This trend is consistent with the trend in DKL; the distribution of events in anonymized data gets closer to
the general distribution. HL is the fastest method, but has a larger information loss. HY and HI have the
same data distortion as HN in Fig. 14b.

We next measure the overhead of HI and HY (Fig. 14d); HI and HY require an index for clusters and
memory to store fingerprints. In Fig. 14d, we use HI-IN and HY-IN to refer to the size of index (on disk)
for HI and HY, respectively. Similarly HI-FP and HY-FP refer to the storage space (in main memory) for
cluster fingerprints for HI and HY, respectively. HY has a smaller space requirement than HI, because HY
only indexes sequences in region B. The space for fingerprints is under 1MB for 240K sequences with over
14M (event, time) pairs. This indicates that HI and HY are practical for large datasets with a relatively
small resource overhead.

6.5 Summary of experimental evaluations

• Under the same privacy model, our algorithm is superior to existing techniques, in terms of an inde-
pendent measure, when false negatives are not acceptable.

• The information loss is very small in SSR setting. However, due to the increased privacy level of SCR,
the information loss can be very large.

• In both k-anonymity and (g, ℓ)-diversity, our proposed improvements (HI, HL, and HY) produce
anonymizations with the same quality as the baseline method (HN). HL is very fast but incurs a
larger information loss for long sequences (e.g. in Yahoo). When sequence length is small (e.g. Flickr),
we did not observe a large drop in quality for HL. HI provides the same information loss as HN but
much faster (an order of magnitudes).

• Data distribution may degenerate HL and HY into HI (e.g. in (g, ℓ)-diversity for Oldenburg). The
existence of a large number of constraints may render our heuristics, except for HI, ineffective.

• Our methods scale well with input size N , HI is expected to be O(N log N) in average, and the resource
overhead (main memory and disk) of our methods are relatively small.

23

7 Conclusions and Future Work

We extended traditional privacy models to event sequences and introduced a novel anonymization based
on time and event generalization. We proposed index-based algorithms, compact summaries, and effective
lower bounds to speed up anonymization. On the way, we also proposed a natural distance function for
multisets which uses domain semantics modeled by a taxonomy. Our experiments show the efficiency of our
algorithms, the quality of anonymizations, and the scalability of our methods.

In the future, we will focus on the problem of event inference attacks in a setting where an association
between time and sensitive events can be learned from the published data. Evaluating the utility of the
anonymized data in data mining domain is another interesting direction for future work.

References

[1] The octopus company. http://www.octopus.com.hk.

[2] O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for anonymity in moving objects
databases. In ICDE, 2008.

[3] C. C. Aggarwal and P. S. Yu. On anonymization of string data. In SDM, 2007.

[4] C. C. Aggarwal and P. S. Yu. On privacy-preservation of text and sparse binary data with sketches. In
SDM, 2007.

[5] E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user interaction models for predicting web
search result preferences. In SIGIR, 2006.

[6] R. Agrawal and R. Srikant. Privacy-preserving data mining. SIGMOD Records, 29(2), 2000.

[7] N. Alon, , Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
In STOC, 1996.

[8] M. Barbaro and T. Zeller. A face is exposed for aol searcher no. 4417749. The New York Times, 2006.

[9] T. Brinkhoff. Generating traffic data. IEEE Data Engineering Bulletin, 26(2), 2003.

[10] M. Deshpande and G. Karypis. Selective markov models for predicting web page accesses. ACM TOIT,
4(2), 2004.

[11] G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine click data from past
observations. In SIGIR, 2008.

[12] J. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Softw., 3, 1977.

[13] B. Fung, M. M. Cao, B. Desai, and H. Xu. Privacy protection for RFID data. In SAC, 2009.

[14] G. Ghinita. Private queries and trajectory anonymization: a dual perspective on location privacy.
Transactions on Data Privacy, 2(1), 2009.

[15] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization with low information loss.
In VLDB, 2007.

[16] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD, 1984.

[17] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras. Complex spatio-temporal pattern queries.
In VLDB, 2005.

24

[18] Y. He and J. F. Naughton. Anonymization of set-valued data via top-down, local generalization. PVLDB,
2(1), 2009.

[19] D. Kifer. Attacks on privacy and definetti’s theorem. In SIGMOD, 2009.

[20] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In SIGMOD, 2006.

[21] Y. Koren. Collaborative filtering with temporal dynamics. Communications of ACM, 53(4), 2010.

[22] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22(1),
1951.

[23] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity. In
ICDE, 2007.

[24] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. ℓ-diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

[25] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS, 2004.

[26] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties of the
hilbert space-filling curve. IEEE TKDE, 13(1), 2001.

[27] M. E. Nergiz, M. Atzori, Y. Saygin, and B. Güç. Towards trajectory anonymization: a generalization-
based approach. Transactions on Data Privacy, 2(1), 2009.

[28] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing information. In
PODS, 1998.

[29] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In SIGMOD, 1998.

[30] L. Sweeney. k-anonymity: a model for protecting privacy. Intl. J. of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5), 2002.

[31] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of trajectories. In MDM, 2008.

[32] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization of set-valued data.
PVLDB, 1(1), 2008.

[33] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In ICML, 2000.

[34] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Computational Biology, 1(4),
1994.

[35] X. Xiao and Y. Tao. Anatomy: simple and effective privacy preservation. In VLDB, 2006.

[36] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based anonymization using local
recoding. In KDD, 2006.

[37] R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, and W. H. Wang. Anonymizing moving objects: how to
hide a mob in a crowd? In EDBT, 2009.

25

A Summaries and lower bounds

Because we consider the SSR setting, in this section by sequence we mean an ordered set of timestamps,
(e.g. those in Fig. 1-right).

Definition 5 (Cluster fingerprint) A fingerprint maps the timestamps of each cluster into a bitmap of
length b.

We divide the general time span T into b buckets of length |b| = (max(T) − min(T))/b each. Let Bi

denote the fingerprint corresponding to cluster Ci and let Bi[r], 1 ≤ r ≤ b, be the bit at index r of Bi. We
set Bi[r] to one if there exists at least one timestamp t in any sequence of Ci such that r · |b| > t ≥ (r−1) · |b|,
otherwise Bi[r] = 0 is set to zero. At least one bit of Bi must be set to one because Ci is non-empty. The
minimum generalization of each timestamp in a cluster can be estimated from the relative position of the
bits that are set to one in fingerprints. For fingerprint B and location r, 1 ≤ r ≤ b,

mg(B, r)
def
=







0, if B[r] is set to one

arg min
1≤s≤b , B[s]=1

|r − s| − 1 otherwise

Intuitively, mg(B, r) yields the number of bits set to zero between location r and the closest location s in B
which is also set to one. When B[r] is set to one, the closest location to r is itself and the number of 0-bits
is zero. The minimum information loss of a timestamp which is mapped to location r can be estimated from
mg(B, r) and the bucket length.

Lemma 4 Let B1 and B2 be the fingerprints for clusters C1 and C2, respectively. Let B[r], 1 ≤ r ≤ b, be
one when B[r] is zero and zero otherwise. Dfp(B1, B2) defined as

∑

1≤r≤b

B1[r]
V

B2[r]

mg(B2, r) +
∑

1≤r≤b

B1[r]
V

B2[r]

mg(B1, r)

b ·
∑

S∈C1∪C2
|S|

(5)

provides a lower bound for CP (C1 ∪ C2) in O(b) time.

Proof 4 Let timestamp s1 in cluster C1 be mapped to bucket r1 in B1 and s2 be the closest timestamp
to s1 in cluster C2. Let s2 be mapped to bucket r2 in B2. Because there are mg(B2, r1) zero bits in B2

between s1 and the bucket of its closest timestamp, the minimum information loss when s1 is generalized to
interval [s1–s2] is at least |b| · mg(B2, r1). To find the minimum information loss for generalizing s2, we
need to find the closest timestamp to s2 as it can be different from s1 but the same argument applies. If
both B1[r] and B2[r] are set to one, the smallest generalization of s1 and s2 happens when s1 = s2, making
minLoss(s1, C1 ∪C2) = minLoss(s2, C1 ∪C2) = 0. But when B1[r] 6= B2[r], the minimum information loss
can be greater than zero. Therefore,

Dfp(B1, B2) =
∑

1≤r≤b

B1[r]
V

B2[r]

mg(B2, r) +
∑

1≤r≤b

B1[r]
V

B2[r]

mg(B1, r)

b ·
∑

S∈{C1∪C2}

|S|
≤

∑

S∈C1∪C2

∑

t∈S

minLoss(t, C)

b · |b|
︸ ︷︷ ︸

|maxT −minT |

·
∑

S∈{C1∪C2}

|S|
= DLB(C1 ∪ C2).

26

where T is the global time interval. To establish the proof, later in Eq. 9 we define minLoss and prove in
Lemma 7 that DLB provides a lower bound of CP .

Definition 6 (Cluster Extent) The cluster extent EC is a compressed representation for a set of clusters

C = {Ck}
|C|
k=1. EC has the following features:

s1(EC) = min
Ck∈C

start(Ck) s2(EC) = max
Ck∈C

start(Ck)

e1(EC) = min
Ck∈C

end(Ck) e2(EC) = max
Ck∈C

end(Ck)

c1(EC) = min
Ck∈C

{
∑

S∈Ck

|S|} c2(EC) = max
Ck∈C

{
∑

S∈Ck

|S|}

l1(EC) = min
Ck∈C

|{t | t ∈ S ∈ Ck, s2(EC) < t < e1(EC)}|

l2(EC) = max
Ck∈C

|{t | t ∈ S ∈ Ck, s2(EC) < t < e1(EC)}|

where start(Ck) = min
S∈Ck

start(S), end(Ck) = max
S∈Ck

end(S).

Intuitively, a cluster extent represents a set of clusters as a minimum bounding rectangle (MBR) with
four features: start time, end time, total number of timestamps, and the number of timestamps between
the latest first timestamp and the earliest last timestamp. A cluster extent EC can derive a lower bound of
CP (Ci∪Ck) for Ci and any Ck ∈ C depending on the overlap of Ci and EC ; depending on l1(EC) and l2(EC).

1. No overlap if l2(EC) is zero - Finding the minimum generalization of each timestamp in Ci and
any cluster covered by EC is straightforward. If end(Ci) ≤ s1(EC), since each timestamp in Ci must be
included in one interval that covers a timestamp of a sequence in cluster Ck ∈ C, the information loss of
each timestamp in Ci is at least s1(EC) − start(Ci), if all timestamps of Ck are at start(Ck). But the last
timestamp of Ck is not before e1(EC). Thus, the smallest interval which covers all time points of Ci and Ck

is the range [start(Ci)–e1(EC)]. A similar argument applies if start(Ci) ≥ e2(EC).

Lemma 5 For cluster Ci and cluster extent EC corresponding to C = {Ck}
|C|
k=1, if end(Ci) ≤ s1(EC) then

DExtent(Ci, EC) =
e1(EC) − start(Ci)

maxS∈D end(S) − minS∈D start(S)

provides a lower bound for minCk∈C CP (Ci ∪ Ck). Likewise, if start(Ci) ≥ e2(EC) then DExtent(Ci, EC) is
defined as:

DExtent(Ci, EC) =
end(C) − s2(EC)

maxS∈D end(S) − minS∈D start(S)
.

Proof 5 Consider the case start(Ci) > e2(EC) first; the case where end(Ci) < s1(EC) is very similar.
Because the intervals in I must cover every timestamp of both Ci and Ck ∈ C, only one interval is possible
else the intervals would overlap. The length of this single interval is at least end(Ci) − s2(EC). We must
show that for any cluster Ck ∈ C, DExtent(Ci, EC) is no more than CP (Ci ∪Ck); this is because for cluster
Ck the optimum interval is [start(Ck)–end(Ci)] and its information loss is at least end(Ci) − s2(EC), by
definition of s2(EC).

2. Possibly overlap if l1(EC) > 0 - For a timestamp t and sequence S ∈ Ck ∈ C, let nearest(t, S) be
a timestamp in which is closest to t. For a timestamp t in a sequence of cluster Ci, if t is in range1 =
[s1(EC), s2(EC)], then nearest(t, S) could be the same as t. Thus, the minimum information loss for
any timestamp in range1 could be zero. The same argument applies to range2 = [e1(EC), e2(EC)].
The only ranges with possibly non-zero loss are outside the range [s1(EC), e2(EC)], or inside range3 =
[s2(EC), e1(EC)], provided that there is no timestamp in range3 for any Ck ∈ C.

27

Lemma 6 For cluster extent EC corresponding to C = {Ck}
|C|
k=1 let the range MEC

=
(
s2(EC), e1(EC)

)
.

For cluster Ci, let Ci ∩ MEC
be the set of timestamps of cluster Ci which are inside the range MEC

. If the
timespan of cluster Ci overlaps with extent EC , then DExtent(Ci, EC) defined as

D1 + D2 + D3
(

maxS∈D end(S) − minS∈D start(S)
)(

c2(EC) +
∑

S∈Ci
|S|

)

provides a lower bound for minCk∈C CP (Ci ∪ Ck), where

D1 = |{t | t ∈ S ∈ Ci, t < s1(EC)}| ·
(
s1(EC) − start(Ci)

)
,

D2 = |{t | t ∈ S ∈ Ci, t > e2(EC)}| ·
(
end(Ci) − e2(EC)

)

are the information loss of the timestamps of cluster Ci before s1(EC) and after end(EC), respectively, and
D3 as

D3 =

{

0 ∃ Ck ∈ C, Ck

⋂
MEC

6= ∅

min
(
D1

3,D
2
3

)
otherwise

provides a lower bound to the information loss of the timestamps of cluster Ci in range MEC
, where D1

3 and
D2

3 are:

D1
3 =

∣
∣ Ci ∩ MEC

∣
∣ · (max

t∈Ci∩MEC

t − s2(EC))

D2
3 =

∣
∣ Ci ∩ MEC

∣
∣ · (e1(EC) − min

t∈Ci∩MEC

t).

Proof 6 Because c2(EC) = maxCk∈C{
∑

S∈Ck
|S|},

∑

S∈Ci∪C

|S| ≤
(∑

S∈Ci

|S| + c2(EC)
)

. (6)

There are three possible generalization for timestamp t ∈ Ci. i) When t < s1(EC) every timestamp of Ci

in this range is covered by a single interval, otherwise the intervals would overlap. The shortest interval
which also covers one timestamp of a cluster in C is I1 = [start(Ci), s1(EC)]. Similarly, when t > e2(EC),
the shortest interval which covers t and one timestamp of any cluster in C is I2 = [e2(EC), end(Ci)]. ii)
When Ci overlaps with either the start range or the end range of an extent; either [s1(EC), s2(EC)] or
[e1(EC), e2(EC)]. The nearest timestamp to t in any cluster of C could be the same timestamp as t in the
extreme case, resulting into an interval of length zero and consequently a zero information loss. iii) When t is
in range MEC

= (s2(EC), e1(EC)) and there is no timestamp in any cluster of EC in this range, an interval
which contains all timestamps of Ci in this range and at least one timestamp from a cluster in C must pick
the candidate timestamp from s2(EC) or e1(EC). The interval will be I1

3 = [s2(EC),maxt∈C∩MEC
t] in the

former case and I2
3 = [mint∈C∩MEC

t, e1(EC)] in the latter case. By definition

CP (Ci ∪ Ck, I) =

∑

S∈Ci∪Ck

∑

I∈I

IDD(S, I)

(maxT −minT) ·
∑

S∈Ci∪Ck
|S|

(7)

where T is the global time interval. Replacing I(t) in Eq.7 with either of I1, I2, or I1
3 which are derived

by assuming a greedy nearest neighbor approach to form intervals, and assuming that I1
3 has a smaller

28

information loss than I2
3 and that C has no timestamp in range MEC

yields:

∑

S∈Ci∪Ck

∑

I∈I

IDD(S, I) ≥ (8)

|Ci ∩ I1| ·
(

s1(EC) − start(Ci)
)

+ // D1

|Ci ∩ I2| ·
(

end(Ci) − ee(EC)
)

+ // D2

|Ci ∩ I1
3 | ·

(

max
t∈Ci∩MEC

t − s2(EC)
)

// D1
3.

replacing the nominator of Eq.7 with R.H.S of Eq.8, which is a smaller value, and replacing
∑

S∈Ci∪Cj
|S|

of Eq.7 with R.H.S of Eq.6, which is a larger value, establishes the proof if there is no cluster Ck ∈ C that
overlaps with MEC

, i.e. l2(EC) is zero. Otherwise, there are timestamps of Ck in MEC
and the minimum

information loss happens when all time points in Ci ∪MEC
) are generalized using an interval of zero length.

Cluster-level lower bound - For two clusters Ci and Cj , let Ci,j = Ci ∪Cj for short. If Ci,j has only
two sequences S and R, the minimum generalization of timestamp t in sequence S is at least |t−nearest(t, R)|,
where nearest(t, R) is the closest timestamp of sequence R to t. The idea can be generalized when |Ci,j | > 2
to compute a lower bound for the minimum information loss of timestamp t as follows:

minLoss(t, S, Ci,j) = max
R ∈ Ci,j/S

∣
∣ t − nearest(t, R)

∣
∣. (9)

Lemma 7 For clusters Ci and Cj, DLB(Ci, Cj) defined as:

∑

S∈Ci,j

∑

t∈S minLoss(t, S, Ci,j)
(

maxT −minT

)

·
∑

S∈Ci,j
|S|

(10)

provides a lower bound for CP (Ci ∪Cj) in O(ns · nt) where ns (nt) is the number of sequences(timestamps)
in cluster Ci,j, where T is the global time interval.

Proof 7 For any timestamp t, let It = (ct, [st−et]) be the interval in I that covers timestamp t. Clearly, (et−
st) ≥ minLoss(s,G), and there is no other interval It′ = (ct′ , [st′ −et′]) such that (et−st) < minLoss(s,G).
Thus, replacing minLoss(s,G) for (et−st) in the definition of ILt(S, I) provides the minimum value of ILt,
and IDD, IL, and consequently CP .

29

4 8 12 16 20 24 28 32
0

0.02

0.04

0.06

k

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(a) Flickr

4 8 12 16 20 24 28 32
10

−2

10
−1

10
0

10
1

10
2

k

T
im

e
(S

ec
)

HN HI HY HL

(b) Flickr

4 8 12 16 20 24 28 32
0

0.05

0.1

l

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(c) Flickr

4 8 12 16 20 24 28 32
10

−2

10
0

10
2

l

T
im

e
(S

ec
)

HN HI HY HL

(d) Flickr

4 8 12 16 20 24 28 32
0

0.05

0.1

k

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(e) Yahoo

4 8 12 16 20 24 28 32
10

−1
10

0
10

1
10

2
10

3
10

4

k

T
im

e
(S

ec
)

HN HI HY HL

(f) Yahoo

4 8 12 16 20 24 28 32
0

0.05

0.1

l

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(g) Yahoo

4 8 12 16 20 24 28 32
10

−1
10

0

10
2

10
3

l

T
im

e
(S

ec
)

HN HI HY HL

(h) Yahoo

4 8 12 16 20 24 28 32
0

0.01

0.02

k

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(i) Oldenburg

4 8 12 16 20 24 28 32

10
−1

10
0

10
1

10
2

k

T
im

e
(S

ec
)

HN HI HY HL

(j) Oldenburg

4 8 12 16 20 24 28 32
0

0.05

0.1

l

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(k) Oldenburg

4 8 12 16 20 24 28 32
10

0

10
1

10
2

10
3

l

T
im

e
(S

ec
)

HN HI HY HL

(l) Oldenburg

4 8 12 16 20 24 28 32
0

0.01

0.02

k

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(m) Worldcup

4 8 12 16 20 24 28 32

10
0

10
1

10
2

10
3

10
4

10
5

k

T
im

e
(S

ec
)

HN HI HY HL

(n) Worldcup

4 8 12 16 20 24 28 32
0

0.05

0.1

l

In
fo

rm
at

io
n

lo
ss

HN HI HY HL

(o) Worldcup

4 8 12 16 20 24 28 32

10
2

10
3

10
4

l

T
im

e
(S

ec
)

HN HI HY HL

(p) Worldcup

Figure 15: k-anonymity and (g, ℓ)-diversity changing k and ℓ. Fixed: g = 1 hour in (g, ℓ)-diversity

4 8 12 16 20 24 28 32
0.4

0.5

0.6

0.7

l

K
L−

D
iv

er
ge

nc
e

HI HY HL

(a) Flickr

4 8 12 16 20 24 28 32

0.4

0.5

0.6

0.7

l

K
L−

D
iv

er
ge

nc
e

HI HY HL

(b) Yahoo

4 8 121620242832
0

0.02

0.04

l

K
L−

D
iv

er
ge

nc
e

HI HY HL

(c) Oldenburg

4 8 12 16 20 24 28 32
0

0.1

0.2

l

K
L−

D
iv

er
ge

nc
e

HI HY HL

(d) Worldcup

Figure 16: KL-Divergence for (g, ℓ)-diversity changing ℓ. Fixed: g = w = 1 hour

30

