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Abstract—Dynamic service compositions pose new verification 

and validation challenges such as uncertainty in service 

membership. Moreover, applying an entire test suite to loosely 

coupled services one after another in the same composition can 

be too rigid and restrictive. In this paper, we investigate the 

impact of service selection on service-centric testing tech-

niques. Specifically, we propose to incorporate service selection 

in executing a test suite and develop a suite of metrics and test 

case prioritization techniques for the testing of location-aware 

services. A case study shows that a test case prioritization 

technique that incorporates service selection can outperform 

their traditional counterpart — the impact of service selection 

is noticeable on software engineering techniques in general and 

on test case prioritization techniques in particular. Further-

more, we find that points-of-interest-aware techniques can be 

significantly more effective than input-guided techniques in 

terms of the number of invocations required to expose the first 

failure of a service composition. 

Keywords—test case prioritization, location-based web ser-

vice, service-centric testing, service selection 

I. INTRODUCTION 

Location-based service (LBS) is indispensable in our 
digital life [20]. According to a keynote speech presented at 
ICWS 2008 [7], many interesting mobile web-based services 
can be developed on top of LBS [7]. In the social network 
application Loopt [8], for instance, we receive notifications 
whenever our friends are nearby, where each “friend” found 
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is known as a point of interest (POI) [9][18], a specific 
location that users may find useful or interesting. A faulty 
location-based service composition may annoy us if it 
erroneously notifies us the presence of a stranger in another 
city, or fails to notify us even if a friend is just in front of us. 
In this paper, we use the terms “composite service” and 
“service composition” interchangeably. 

After fixing a fault or modifying a service composition, it 
is necessary to conduct regression testing (i.e., retesting soft-
ware following the modification) to assure that such fixing or 
modifications do not unintentionally change the service 
composition. Test case prioritization permutes a set of test 
cases (known as a test suite) with the aim of maximizing a 
testing goal [17][24]. One popular goal used by researchers 
is the fault detection rate, which indicates how early the 
execution of a permuted test suite can expose regression 
faults [5][6][17][23]. Prioritization does not discard any test 
case, and hence does not compromise the fault detection 
capability of the test suite as a whole. 

Existing work [5][6][11][23] has studied code-coverage-
based techniques for test case prioritization. Such techniques 
use the heuristics that faster code coverage of the application 
under test may lead to a faster fault detection rate. However, 
coverage information is not available until the corresponding 
test cases have been executed on the application. These tech-
niques may approximate the required information using the 
coverage information achieved by the same test case on a 
preceding version of the application. However, such an 
approximation may be ineffective when the amount of code 
modification is large, which is the case for dynamic service 
composition. Furthermore, these techniques require 
instrumentation to collect the code coverage information. 
Nonetheless, such instrumentation often incurs significant 
execution overhead, which may prevent an LBS service from 
responding in a timely manner. 

When performing test case prioritization on cooperative 
services, many researchers assume that a service composi-
tion has already been formed. In the other words, cooperative 
services form a service composition through static binding 
rather than dynamic service selection. To perform regression 
testing on such statically bound composite services, existing 
techniques [13][14] usually execute all test cases on every 
possible service composition, which can be costly when the 
pool of candidate services is large. 
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We observe at least two technical challenges for a 
technique to support the testing of dynamic service composi-
tions: First, the exact service composition cannot be known 
until a dynamic service selection has been made. There is no 
guarantee that members in a previous service composition 
that executed a test case can be discovered and selected to 
form a service composition again for regression testing of the 
same test case. Second, the number of possible service com-
positions can be huge. Testing all combinations maximizes 
the fault detection capability but makes testing expensive. 
We argue that the testing of dynamic service compositions 
requires a low-cost and yet highly effective testing strategy. 
To address the first challenge, we bring in service selection 
into a test case prioritization technique. To address the 
second challenge, we optimize the technique by not 
selecting/binding a web service that has already been found 
to be faulty. 

The main contribution of the paper is threefold: (i) We 
propose a novel approach to integrating service selection and 
test case prioritization and formulate a family of black-box 
test case prioritization techniques. (ii) We empirically study 
the impact of service selection on the effectiveness of 
software engineering techniques in general and test case 
prioritization techniques in particular. (iii) We propose a 
suite of location-based metrics and evaluation metrics to 
measure the proximity/diversity between points of interests 
and locations in the test cases. 

We organize the rest of paper as follows: We first 
highlight a case study in Section II that has motivated us to 
propose our prioritization techniques. Then, we discuss our 
service-selection-aware test case prioritization techniques in 
Section III. We present our case study on a location-based 
web service in Section IV. Finally, we review related work in 
Section V, and conclude the paper in Section VI. 

II. MOTIVATING STUDY 

We motivate our work via an adapted location-based 
service composition City Guide as shown in Figure 1. It con-
sists of a set of main web services (denoted by    , i = 1, 
2, ..., n), each binding to a map service and a Case-Based 
Reasoning (CBR) service, which in turns binds to a data 
service. The main web services are registered in a UDDI 
registry. Each client of City Guide is written in Android run-
ning on a smart phone. Our example adapts the application to 
let the service-selection service receive a blacklist of service 
URLs. The service filters out these blacklisted services and 
selects a remaining     using its original approach. For 
instance, to select a web service, it applies GPS data to every 
discovered service and selects the one that produces the larg-
est number of POIs. 

On receiving GPS (i.e., location) data, a client binds itself 
to and invokes, say,    , to obtain the best-matched POIs 
(e.g., hotels) based on the given locations as well as user 
preferences kept by the client.     in turn invokes a map 
service using the user’s location and passes the map instance 
and user preference data to a CBR service. Each case in the 
case base (stored in data service) is described by the GPS 
locations, user preferences, and the identity of the best-
matched POI. The CBR service computes the similarity 

between a given query and the stored cases, and then replies 
to the client with a set of best-matched POIs. Service con-
sumers may confirm the returned POIs, which will be passed 
back to the CBR service and retained as a new case for future 
reasoning. 
 

WS nWS1

Communication Bus

WS i

CBR Service i Map Service iData Service i

Client 1 Client 2 Client n UDDISelection Service

 

Figure 1. Architecture of City Guide. 

In this scenario, services of each type may have multiple 
implementations. Moreover, each use of the City Guide 
application triggers a dynamic selection of concrete services 
of any kind followed by a dynamic formation of a service 
composition. However, a software service can be faulty. Our 
verification objective is to assure dynamically any service 
composition by using test cases that may dynamically be dis-
patched to verify the service composition. One may invoke 
all possible service compositions for all possible test cases, 
but such a simple approach incurs significant overheads. 

A. Service Selection 

Table I shows a test suite containing six ordered test 

cases                    and their fault detection capability on 
four faulty web services                   in City Guide. 
A cell marked as “failed” means that the execution of the 
service (row) over the test case (column) produces a failure; 
otherwise, the test case is deemed as successful. We are 
going to use the example to illustrate a problem of existing 
techniques in testing dynamic service compositions. 

TABLE I. TEST CASES AND THEIR RESULTS 

                   

       failed failed  

    failed failed  failed   

     failed failed    

        failed failed 
 

 
Traditional Regression Testing Techniques [17] can be 

ineffective in revealing faults in web services. For instance, 
test case prioritization techniques in [24] require each test 
case to be executed on every web service. To do so, a tech-

nique may, in the worst case, construct 24 (= 6  4) service 
compositions. However, as we have mentioned above, there 
is no guarantee that a given service is re-discoverable and 
bound to form a required service composition so as to apply 
the same test case again. Indeed, in City Guide, service dis-
covery and selection are performed by the application. It is 
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hard to apply traditional testing techniques to assure City 
Guide. 

Even if service compositions could be constructed, tradi-
tional techniques can still be ineffective. Let us consider a 
scenario: Initially, all four web services run    in turn and 
    is detected to be faulty. Since     has been shown to be 
faulty, it is undesirable to select it for follow-up service 
compositions. Subsequently, if    is run, only 3 services 
(   ,    , and    ) need to be invoked in turn. Following 
the same scheme, one may easily count that the numbers of 
service invocations for   ,   ,   , and    are 2, 2, 1, and 0. 
respectively, and the total number of service invocations is 
therefore 12. We observe that for all 12 invocations in the 
above scenario, only four (33%) reveal any fault. Hence, two 
third of the service invocations are wasted. 

New Idea. We illustrate our new idea with a testing strat-
egy that potentially reduces the number of service invoca-
tions. Let us revisit the test case execution scenario in the last 
paragraph. For each test case, we invoke only one service, 
chosen by the selection service that maintains a blacklist of 
services shown to be faulty. The list is initially empty. A 
technique passes the blacklist to the service-selection service, 
which discovers all four web services and picks     to be 
invoked because it is not blacklisted. Unfortunately, the first 
test case   does not reveal any fault in    . The technique 
then applies the second test case. It passes the latest blacklist 
to the service-selection service, which also discovers all four 
web services (i.e., all services that have not been shown to be 
faulty) and resolves to choose     for   . This invocation for 
test case    reveals that     is faulty. Hence, the technique 
adds     to the blacklist. The technique repeats the above 
procedure with     for   ,     for   ,     for   , and     
for    in turn. Noticeably, the total number of service invoca-
tions drops to 6. Our insight is that service selection has an 
impact on the effective application of a testing and analysis 
technique. 

B. POI Proximity 

The effectiveness of a test suite in detecting the presence 
of a fault in web services can be further improved by using 
test case prioritization [13][14]. Figure 2 shows a fault in the 
computation of location proximity in City Guide, in which a 
multiplication operator is mistakenly replaced by a division 
operator [12]. Two test cases are shown in Figure 3. Each 
time when the web services recommend three hotels, the 
client chooses the closest one as the best hotel, which, 
together with user’s GPS location, will be added as a new 
case in the case base for future reasoning and query. 

public class GpsLocationProximity { 

   public double compute(Gps loc1, Gps loc2) { 

      //... 

      double t = Math.sin(dLat/2) * Math.sin(dLat/2) 

               + Math.cos(lat1) / Math.cos(lat2) 

         // Bug, should be: 

         //    + Math.cos(lat1) * Math.cos(lat2) 

         * Math.sin(dLong/2) * Math.sin(dLong/2); 

      //... 

   } 

} 

Figure 2. Faulty code with wrong operator 

 

Figure 3. Test cases with different POI coverage 

Consider test case #1, where the user’s locations are 
close to the POIs. The correct distances of POIs #7 and #9 
from the third GPS location (114.1867, 22.2812) are 
0.2569 km and 0.2545 km, respectively, and POI #9 is the 
closest. However, the distances computed by the faulty code 
are 0.2570 km and 0.2704 km, respectively, and POI #7 
becomes the closest POI. Although the fault only incurs a 
marginal error in the distance calculation, the small differ-
ence seriously affects future POI results because the user will 
mistakenly confirm a POI that is not optimal. As a result, test 
case #1 exposes a failure. 

On the contrary, test case #2 does not reveal any failure. 
Although the distance is wrongly computed whenever the 
function is called, it leads only to a small error because the 
locations are always far away from any POIs, which does not 
affect the POI ranking. As a result, POIs #1, #2, and #3 are 
always ranked as closest. 

The above example shows that the closer a GPS location 
sequence is in relation to the POIs, the more effective can be 
the sequence for detecting faults in location-based web 
services. To achieve better regression testing effect, we 
propose several POI-aware test case prioritization techniques 
in Section III. 

III. SERVICE-CENTRIC TESTING TECHNIQUE 

Based on Section II, we now present how we address the 
technical challenges. The first challenge is addressed by in-
corporating service selection into test case prioritization. For 
our service-centric testing technique, a test suite is executed 
only once. During the execution, the binding between the 
client and the other web services is dynamic. In particular, 
for each round of execution, the client program passes a 
blacklist to a service-selection service, which returns a 
selected service for the former service to construct a service 
composition (see Figure 4). Hence, test cases in the test suite 
will not necessarily be bound to the same web service, and 
more than one web service can be tested by each run of the 
same test suite. 

Our service-centric testing technique is formulated as 
follows. Suppose that                   is an ordered test set 

provided by a non-service-centric test case prioritization 
technique (such as in [10][14][17]), and        is a service 
selection function, which accepts a blacklist   of services 
and a set of candidate services  , and returns a service from 
the set    . Let    be the blacklist obtained before 

executing the test case    and let    be an empty set. A 

service-centric testing technique will set         if the test 
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case    does not reveal a failure and set                   

if    reveals a failure from executing the service composition 

constructed from using         over the test case   . 
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Figure 4. Our service-centric testing technique. 

We next present how we address the second technical 
challenge for testing location-aware service compositions. In 
the rest of this section, we will introduce five proposed 
techniques using five different metrics: sequence variance 
(Var), centroid distance (CDist), polyline entropy (Entropy), 
polyline distance (PDist), and POI coverage (PCov). 

We categorize our proposed techniques as either input-
guided or POI-aware. For the former category, we apply the 
concept of test case diversity as discussed in [2]. Indeed, our 
previous work [22] has demonstrated that the more diverse a 
context sequence is, the more effective they will be in fault 
detection. For location-based services, the input-guided tech-
niques prioritize a test suite in descending order of the 
diversity of locations in test cases. For the latter category, 
following our observation in Section II, POI-aware tech-
niques prioritize test cases that are closer to POIs or cover 
more POIs. 

We first formulate some concepts for ease of discussion. 
Let                be a test suite with   test cases. Each 
test case                  is a sequence of GPS locations. 

Every GPS location                   is an ordered couple of 

real numbers representing the longitude and latitude of a 
location. POIs are a set                of   GPS loca-
tions. Each POI is also denoted by an ordered couple 
               . The objective is to prioritize   into an 
ordered test sequence                  , where              

is a permutation of          .  
In our proposed techniques, the test sequence   is 

determined by sorting the test cases    in   according to the 
value of the quantitative metric   over   . This can be 
described as a sorting function            . Typically, a 
sorting function is defined either in ascending order           
or descending order           . Moreover, our proposed 
techniques use different quantitative metrics to guide the 
sorting progress to obtain a desirable value of a goal function 
              , which indicates how well   scores with 

respect to  . Without loss of generality, let us assume that a 
larger value of   indicates a better satisfaction of   by     is 
either a POI-aware metric         or an input-guided metric 

       The following subsections describe our proposed tech-
niques in more detail. 

A. Sequence Variance (Var) 

Sequence variance is an input-guided metric to measure 
the variations in a sequence. It is defined as the second-order 
central moment of the sequence: 

 
       

 

   
        

 

           

  

where                  denotes a test case and              

is the centroid of all GPS locations in the sequence. Intui-
tively, a larger variance indicates more diversity, and hence 
the sorting function                    is used for this tech-

nique. 

B. Polyline Entropy (Entropy) 

A test case                  consists of a sequence of 

GPS locations. If we plot these locations in a two-
dimensional coordinate system and connect every two 
consecutive locations with a line segment, we obtain a poly-
line with     vertices and       segments. Polyline entropy is 
a metric gauging the complexity of such a polyline. We 
adapt this metric from the concept of entropy of a curve. 

The entropy of a curve comes from the thermodynamics 
of curves developed by Mendès France [15] and Dupain [4]. 
Consider a finite planar curve   of length   . Let    be the 
convex hull of  , and    be the length of   ’s boundary. Let 
  be a random line, and    be the probability that   
intersects with   at   points, as illustrated in Figure 5. 
According to [15], the entropy of the curve is given by 

 
              

 

   

 (1)  

By the classical computation in [15], one can easily obtain 
(see refs. [4][15]) the function      that computes the 
entropy of a planar curve   as 

 
         

   

  
    

We follow the concept of entropy of a curve in [4][15] 
and compute the entropy of a test case using the function 

 
               

   

  
    

where    is the length of the polyline represented by  , and    
is the boundary length of the convex hull of the polyline. A 
test case with higher entropy contains a more complex 
polyline. We sort the test cases in descending order of their 
entropies, that is, we use                       . 

 

Figure 5. Illustration of the number of intersect points. 

n=4
n=3
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C. Centroid Distance (CDist) 

Centroid distance represents the distance from the 
centroid of a GPS location sequence to the centroid of the 
POIs. Because POI information is used in the computation, 
centroid distance is a POI-aware metric. It directly measures 
how far a test case is from the centroid of the POIs. We 
formulate this metric as 

                     

where            is the centroid of all POIs. The sorting 
function used with CDist is                      . 

D. Polyline Distance (PDist) 

Similar to Entropy, we may regard each test case as a 
polyline whose vertices are GPS locations. The polyline 
distance measures the mean distance from all POIs to this 
polyline. Let           denote the distance from a POI 
             to a polyline                   The polyline 

distance PDist(t, P) of a test case   is give by 
 

           
                      

   
   

Similar to CDist, we use                       as the 

sorting function for PDist. 

E. POI Coverage (PCov) 

POI coverage evaluates the impact of POIs on each test 
case. To compute the PCov value of a test case  , we first 
compute the distance            from each POI    to the 
polyline represented by  . Then, we use a threshold value   
to classify whether a POI is covered by the polyline, by 
checking whether the distance            is no greater than  . 
Hence, the PCov metric is given by 

 
                        

           

   

where 
 

         
           
           

    

Here, we use the sorting function                      . 
 

We summarize all the proposed techniques in Table II. 

TABLE II. SUMMARY OF PROPOSED TECHNIQUES 

Acronym Type Description 

Var 

Input-guided 

Sort in descending order of the variance of 
the GPS location sequence 

Entropy 
Sort in descending order of the entropy of 
the polyline represented by each test case 

CDist 

POI-aware 

Sort in ascending order of the distance 
between the centroid of the GPS locations 
and the centroid of the POIs 

PDist 
Sort in ascending order of the mean distance 
from the POIs to the polyline 

PCov 
Sort in descending order of the number of 
POIs covered by each test case 

 

IV. CASE STUDY 

In this section, we evaluate the effectiveness of our 
black-box testing prioritization techniques for location-based 
web services through a case study. 

A. Research Questions 

In this section, we present our research questions. 

RQ1: Is the proposed service-centric testing technique 
significantly more cost-effective than traditional non-service-
centric techniques? The answer to this question will tell us 
whether incorporating services selection will have an impact 
on the effectiveness of software engineering techniques in 
general and test case prioritization techniques in particular. 

RQ2: Is the diversity of locations in test cases a good 
indicator for early detection of failures? The answer to this 
question will tell us whether prioritization techniques based 
on the diversity of locations in test cases can be promising. 

RQ3: Is the proximity of locations in test cases in 
relation to POIs a good indicator for early detection of 
failures? The answer to this question will tell us whether test 
case prioritization techniques based on such proximity is 
heading towards a right direction. 

B. Subject Pool of Web Services 

In the experiment, we used a realistic location-based 
service composition City Guide, which contains 3289 lines 
of code. (This will be the only subject used in our empirical 
study, as the implemented codes of other backend services 
are not available to us.) 

We treat the given City Guide as a “golden version”. We 
used MuClipse [12] to generate a pool of faulty web services 
and followed the procedure in [12] to eliminate mutants that 
are unsuitable for testing experiments. All the remaining 35 
faulty web services constituted our subject pool. We applied 
our test pool (see Section IV.E) to these faulty web services. 
Their average failure rate is 0.0625. 

C. Experimental Environment 

We conduct the experiment on a Dell PowerEdge 1950 
server running Solaris UNIX and equipped with 2 Xeon 
X5355 (2.66Hz, 4 core) processors and 8GB memory. 

D. Effectiveness Metrics 

Some previous work uses the average percentage of fault 
detection (APFD) [6] as the metric to evaluate the effective-
ness of a test case prioritization technique. However, the 
APFD value depends on test suite size. For example, append-
ing more test cases to an ordered test suite will jack up the 
probability to a value quite close to 1. Hence, it is undesira-
ble to use APFD when test suites are large, but regression 
test suites in many industrial settings are usually large in size. 

We propose to use another metric, the Harmonic Mean 
(HM), which is independent of the test suite size. HM is a 
standard mathematical average that combines different rates 
(which, in our case, is the rate of detecting individual faults) 
into one value. Let   be a test suite consisting of n test cases 
and F be a set of m faults revealed by  . Let     be the first 
test case in the reordered test suite   of   that reveals fault  . 
Then, the harmonic mean of    is given by 
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We also propose to use another measure to evaluate the 
cost of detecting each fault. As service invocations can be 
expensive, a technique should aim at lowering the number of 
service invocations for failure detection. Suppose the number 
of service invocations for detecting fault   is    . We propose 
the use the harmonic mean of   , given by 

 
      

 

 
   

 
 
   

   
 
   

  
 

Although both      and      measure the fault detec-
tion rate,      is arguably more accurate than      because 
     reflects the actual number of service execution needed 
to reveal an average fault, whereas      reflects the number 
of test cases executed to reveal a fault. The latter ignores the 
possible dynamic binding of services and is an indirect meas-
ure of the testing effort. 

E. Experiment and Discussions 

As introduced in Section II, our subject program City 
Guide is a location-based service composition. We used a 
regression test pool containing 2000 test cases, each of which 
was a GPS location sequence. For each test case, we used the 
POIs returned by the golden version over the last location in 
a test case as the test oracle. We used the POIs extracted 
from the test oracles to populate the case base. 

We proposed five prioritization metrics: Var, Entropy, 
CDist, PDist, and PCov. Together with random ordering, 
therefore, there are six techniques, each of which can be 
combined with service selection (denoted by service-centric) 
or be used alone (denoted by non-service-centric). Thus, 
there are twelve techniques in total. To show the average 
performance of our techniques on different test suites, we 
randomly constructed 50 test suites from the test pool. Each 
test suite contained 1024 test cases. Each technique was 
evaluated on all test suites to obtain an average. In the 
experiment, each service-centric technique used the adapted 
service-selection service of City Guide to implement  (see 
Section III for details). 

We compute the      distribution for all techniques, 
and group the results into two box-and-whisker plots 
(Figures 6 (a) and (c)) depending on whether a technique is 
service-centric. For each plot, the x-axis represents the 
prioritization metric used (or random ordering) and the y-axis 
represents the      distributions for all test suites. The 
horizontal lines in the boxes indicate the lower quartile, 
median, and upper quartile values. If the notches of two 
boxes do not overlap, then the median values of the two 
groups differ at a significance level of 5%. Similarly, we 
calculate the      distribution and draw two plots as shown 
in Figures 6 (b) and (d), where the y-axis represents the      
distribution for all test suites. 

For service-centric techniques, we also conduct multiple 
comparison analysis [11] to find those techniques whose 
means differ significantly from others. The distributions of 
     and      values for each technique are shown in 
Figures (e) and (f), respectively, as a horizontal line with a 
dot in the center, which denotes the mean value. If the lines 
corresponding to two techniques do not overlap, then their 
mean values are different at a significance level of 5%. 

1) Answering RQ1. By comparing Figures 6 (b) and (d), 
we observe that service selection remarkably reduces the 
number of service invocations. Take the metric Var as an 
example. The service-centric technique that incorporates 
service selection achieves 126.88 in terms of the median 
    . However, the median      for the non-service-
centric counterpart is 270.97. Thus, service selection leads 
to a 53.18% reduction of service invocations, which is an 
encouraging improvement. Similarly, the reductions for 
random ordering, Entropy, CDist, PDist, and PCov are 
24.24%, 0.51%, 29.69%, 40.61%, and 23.88%, respectively. 
The average improvement is 28.69%, which is significant. 
On the other hand, the variance is large. 

Comparing Figures 6 (a) and (c), we observe that the 
number of test cases that exposes a fault increases from using 
a non-service-centric version to a service-centric version of 
the same technique. However, as discussed in the last sub-
section,      is more accurate and the improvement of 
     through service selection is large. It further indicates 
that the use of traditional idea to count test cases as an effec-
tiveness metric for service-oriented testing may not be 
helpful. 

Hence, we can answer RQ1 that the proposed service-
centric techniques are, on average, significantly more cost-
effective in detecting faults than the non-service-centric 
counterparts. 

2) Answering RQ2. We observe from Figures 6 (a), (b), 
(e), and (f) that, in general, the two input-guided techniques 
are significantly more effective than random ordering. In 
particular, we see from Figure 6 (b) that the median      
values of Var and Entropy are 126.88 and 149.58, respec-
tively, and the median      value of random ordering is 
176.83. From Figure 6 (f), the mean      values of random 
ordering, Var, and Entropy are 182.24, 141.79, and 144.54, 
respectively. These figures indicate that, compared with 
random ordering, Var or Entropy has the potential to reduce 
the average number of service invocations. Moreover, Var 
outperforms Entropy in that Var leads to fewer service 
invocations than Entropy. Hence, we can answer RQ2 that 
the diversity of locations in test cases can be a good indica-
tor to guide test case prioritization to detect failures earlier 
than random ordering. 

3) Answering RQ3. We observe from the box-and-
whisker plots in Figures 6 (a) and (b) that the three POI-
aware techniques (CDist, PDist, and PCov) are significantly 
better than random ordering and the two input-guided 
techniques (Var and Entropy) at a significance level of 5%. 

If we further examine the results of multiple comparisons 
[11] in Figures 6 (e) and (f), there is no overlap of POI-aware 
techniques with Var, Entropy, or random ordering in the 
respective notches. It indicates that the POI-aware techniques 
can be more effective than Var, Entropy, and random order-
ing in terms of mean values at a significance level of 5%. 
Among all techniques, CDist is the most effective metric to 
guide test case prioritization and the difference between 
CDist and each of other techniques is statistically significant. 
Moreover, based on Figure 6 (d), CDist achieves 78.4 in 
terms of the mean     , which is substantially smaller than 



7 

that of random ordering (176.83). Based on the analysis, the 
proximity of locations in test cases in relation to POIs can be 
promising in guiding the detection of failures in location-
based web services. 

F. Summary 

Our empirical results provide a piece of evidence that 
service selection does carry impacts on the effectiveness of 
software engineering techniques. According to the case study, 
on average, it helps improve the effectiveness of test case 
prioritization to assure web services remarkably. 

We also observe that use of the proximity/diversity of 
locations is promising in guiding a testing technique to detect 
failures in location-based web services notably and is signifi-
cantly more cost-effective than random ordering. Further-
more, the use of the locations of POIs captured by test cases 
can be more effective than using test inputs only. On 
average, POI-aware techniques detects the first failure of 
each fault in a location-based web service by invoking web 
services much fewer number of times than random ordering 
of test cases. 

Owing to the probabilistic nature of service selection in 
City Guide, some faults may fail to be exposed. Encoura-
gingly, we observe empirically that a fault is missed by 

random ordering in just one test suite out of 50, and none of 
the other techniques fail to expose any fault using any test 
suite. 

We have repeated our experiment on smaller test suites 
and found that, although the use of a smaller test suite tends 
to miss more faults, the total number of missed faults is still 
small. For example, for test suites of size 256, on average, 
our proposed techniques detect at least 80% of all faults. 
Owing to the page limit, we do not include the detailed 
results on smaller test suites in this paper. 

V. RELATED WORK 

Many existing test case prioritization techniques are 
coverage-based. For instance, Wong et al. [23] propose to 
combine test suite minimization and test case prioritization to 
select test cases based on the additional cost per additional 
coverage requirement. Srivastava et al. [19] propose to 
compare different program versions at machine code level 
and then prioritize test cases to cover the modified parts of 
the program maximally. Walcott et al. [21] propose a time-
aware prioritization technique based on a generic technique 
to permute test cases under given time constraints. Li et al. 
[11] propose to apply evolutionary algorithms for test case 
prioritization with the goal of increasing the coverage rate. 
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Figure 6. Experimental results. 
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Researchers have also investigated the challenges in 
regression testing of service-oriented applications. Mei et al. 
[14] propose a hierarchy of test case prioritization techniques 
for service-oriented applications by considering different 
levels of services including business process, XPath, and 
WSDL specifications. In [13][14], they also study the prob-
lem of black-box test case prioritization of service-oriented 
applications based on the coverage information of WSDL 
tags. Different from their work that explore XML message 
structure exchanged between services to guide prioritization, 
we utilize the distributions of location and POI information 
to guide prioritization and do not need to analyze commu-
nication messages, which are linked to location-based soft-
ware cohesively. 

Adaptive random testing [2][3] improves the perfor-
mance of random test case generation by evenly spreading 
test cases across the input domain. Jiang et al. [10] proposed 
a family of adaptive random test case prioritization 
techniques that spread the coverage achieved by any prefix 
of a prioritized sequence of test cases as evenly as possible to 
increase the fault detection rate. 

Locations-based web service is a popular application that 
can benefit both mobile network operators and end users 
[16]. There are many standards [1] and techniques for 
location-based web services. In future work, one may 
generalize our techniques so that they will be applicable to a 
broader range of location-based web services. 

VI. CONCLUSION 

The testing of dynamic service compositions must solve 
the problem that a dynamically selected service may not be 
selected and bound in another execution of the same test 
case. Moreover, the number of possible service compositions 
can be huge. Both problems need to be addressed by non-
traditional testing ideas and the understanding of the impact 
of service selection on software engineering techniques is 
vital. 

To tackle these two issues, we have proposed to integrate 
service selection in test case prioritization to support regres-
sion testing. Furthermore, we have also proposed a family of 
black-box service-centric test case prioritization techniques 
that guide the prioritization based on Point of Interest (POI) 
information. Our case study on a medium-sized location-
based web service City Guide has shown that service selec-
tion significantly improves the effectiveness of regression 
testing. The result demonstrates that service selection has a 
large impact on the effectiveness of software engineering 
techniques in general and test case prioritization techniques 
in particular. Moreover, POI-aware prioritization techniques 
are much more effective than random ordering. The experi-
ment has also shown that the use of proximity or diversity of 
locations, particularly the POI-aware properties, can be 
promising in cost-effectively detecting failures in location-
based web services. Our future work includes incorporating 
advanced service selection strategies to a wider class of soft-
ware engineering techniques. 
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