
Postprint of acticle in IEEE Transactions on Software Engineering 37 (1): 109–125 (2011)

Semi-Proving: An Integrated Method for
Program Proving, Testing, and Debugging

Tsong Yueh Chen, Member, IEEE , T.H. Tse, Senior Member, IEEE , and Zhi Quan Zhou

Abstract—We present an integrated method for program proving, testing, and debugging. Using the concept of metamorphic relations,

we select necessary properties for target programs. For programs where global symbolic evaluation can be conducted and the constraint

expressions involved can be solved, we can either prove that these necessary conditions for program correctness are satisfied or identify all

inputs that violate the conditions. For other programs, our method can be converted into a symbolic-testing approach. Our method extrapolates

from the correctness of a program for tested inputs to the correctness of the program for related untested inputs. The method supports

automatic debugging through the identification of constraint expressions that reveal failures.

Index Terms—Software/program verification, symbolic execution, testing and debugging.

F

1 INTRODUCTION

The correctness of software has always been a major con-
cern of both researchers and practitioners. According to
Hailpern and Santhanam [37], the cost of proving, testing,
and debugging activities “can easily range from 50 to 75
percent of the total development cost.” Program proving
suffers from the complexity of the proofs and problems in
automation even for relatively simple programs. Program
testing therefore remains the most popular means of veri-
fying program correctness [6].

A fundamental limitation of program testing is the oracle
problem [55]. An oracle is a mechanism against which testers
can decide whether the outcome of the execution of a test
case is correct. An ideal oracle can “provide an unerring
pass/fail judgment” [5]. Unfortunately, an ideal oracle may
not necessarily be available or may be too difficult to
apply. For example, for programs handling complex nu-
merical problems, such as those solving partial differential

© 2011 IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Personal use of this material is permitted. Copyright
and all rights therein are retained by authors or by other copyright holders.
All persons copying this information are expected to adhere to the terms and
constraints invoked by each author’s copyright. In most cases, these works may
not be reposted without the explicit permission of the copyright holder. Permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.
This research is supported in part by the General Research Fund of the Research
Grants Council of Hong Kong (project no. 717308), a Discovery Grant of the
Australian Research Council (project no. DP 0771733), and a Small Grant of the
University of Wollongong.
T.Y. Chen is with the Faculty of Information and Communication Technologies,
Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. E-mail:
tychen@swin.edu.au.
T.H. Tse is with the Department of Computer Science, The University of Hong
Kong, Pokfulam, Hong Kong. E-mail: thtse@cs.hku.hk.
All correspondence should be addressed to Dr. Zhi Quan Zhou, School
of Computer Science and Software Engineering, University of Wollongong,
Wollongong, NSW 2522, Australia. E-mail: zhiquan@uow.edu.au.

equations, people may not be able to decide whether
the computed results of given inputs are correct [15]. In
cryptographic systems, very large integers are involved in
the public key algorithms. Practically, it is too expensive
to verify the computed results [53]. When testing a Web
search engine, it is practically impossible to decide whether
the returned results are complete [60]. In object-oriented
software testing, it is difficult to judge whether two objects
are observationally equivalent [12], [13].

The inability to obtain an ideal oracle, however, does not
mean that the relevant program cannot be tested. This is
because testers can often identify some necessary properties
of the program and verify the results of test case executions
against these properties. According to the survey by Baresi
and Young [5] and the practice of the software testing
community, necessary properties (including assertions em-
bedded in a program under test) may also be considered to
be a type of oracle. For instance, when testing numerical
programs, a frequently employed approach is to check
whether such programs satisfy certain expected identity
relations derived from theory. Take the program computing
ex as an example. A property that can be employed in
testing is ex × e−x = 1. This kind of identity relation was
extensively used to test numerical programs [20].

The techniques of program checker [7] and self-
testing/correcting [8], [47] also make intensive use of
expected identity relations of the target functions to
test programs and check outputs automatically and
probabilistically. To construct a self-tester/corrector, for
instance, the fundamental technique is to exploit the
properties that uniquely define the target function and to
test that the program satisfies these properties for random
inputs. Basically, two properties are checked, namely,
linear consistency and neighbor consistency [8], which
are identity relations among multiple executions of the
program.

Administrator
 HKU CS Tech Report TR-2009-10

2

In the area of fault tolerance, there is a closely related
technique called data diversity [3], which is based on the
novel idea of running the same program on reexpressed
forms of the original input to avoid the high cost of
developing multiple versions in N -version programming.
It was proposed from the perspective of fault tolerance
rather than fault detection, and since then it has only been
advocated as a fault tolerance technique. Consequently,
properties used in data diversity are intrinsically limited
to identity relations.

We note that the above methods do not address debug-
ging issues with regard to locating and correcting faults
in program code. In this paper, we present an integrated
method that covers proving, testing, and debugging. While
our approach can handle debugging on its own ground, it
can also be applied together with the techniques in related
work outlined above, so that when an identity relation in
data diversity/program checker/self-tester has been vio-
lated, the failed execution can be analyzed automatically
to reveal more information about the failure.

The idea of checking the expected properties of target
systems without being restricted to identity relations has
been employed in metamorphic testing [14] and the testing
of observational equivalence and nonequivalence of ob-
jects [13], [54]. In particular, we will explain metamorphic
testing here because some of its concepts will be adopted
in this paper. Suppose we run a set of test cases that
have been generated according to some test case selection
strategies. Metamorphic testing observes that even if the
executions do not result in failures, they still bear useful
information. Follow-up test cases should be constructed
from the original set of test cases with reference to se-
lected necessary properties of the specified function. Such
necessary properties of the function are called metamorphic
relations. They can be any expected relations (including but
not limited to identities) among the inputs and outputs
of more than one execution of the same program, rather
than the relations between the input and output in a single
execution. In a program P (a, b) computing the integral
of a function f from a to b, for example, the property∫ c

a
f(x) dx +

∫ b

c
f(x) dx =

∫ b

a
f(x) dx can be identified as

a metamorphic relation. The testing will involve three
executions, namely, P (a, c), P (c, b), and P (a, b). Even if
the correctness of an individual output is unknown, the
metamorphic relation can still be checked. If the computed
results of test cases do not satisfy the expected relation
after rounding errors have been taken into account, it will
indicate some defects in the program. We should note that
metamorphic relations are only necessary conditions and
hence may not be sufficient for program correctness. In any
case, this is a limitation of all program-testing methods and
will be further discussed in this paper. Follow-up studies
on metamorphic testing have been conducted in [33], [34].
The idea of metamorphic testing has also been applied
to fault-based testing [18] and the testing of pervasive
computing [10], Web services [11], and search engines [60].

Like other testing methods, metamorphic testing is lim-
ited by the inability of obtaining a reliable test set [40]. Even

when a program satisfies a given metamorphic relation
for all conceivable test cases, it remains unknown whether
the program satisfies this relation throughout the input
domain. Furthermore, if the given metamorphic relation
can indeed be proven for the program, can this result be
exploited further to establish an even higher confidence
on the correctness of the program or be combined with
conventional testing to improve test efficiency? On the other
hand, if a program does not satisfy a necessary property for
some test cases, how can we debug it automatically?

We address these problems by means of a semi-proving
method, which integrates program proving, testing, and
debugging. 1 This paper presents the development, imple-
mentation, and empirical evaluation of the method.

Using the concept of metamorphic relations, we select
necessary properties for the target program. Then, we per-
form symbolic executions [19], [21], [24], [45]. This is because
the output of a symbolic execution is more informative
than that of executing a concrete input, as a symbolic input
represents more than one element of the input domain. In
recent years, symbolic execution techniques have been stud-
ied intensively not only in software engineering, but also in
the areas of programming languages and high-performance
compilers [9], [25], [26], [27], [29], [36]. Sophisticated tech-
niques and automated tools for symbolic-analysis and path-
constraint simplifications have been developed to facilitate
more effective parallelism and optimization of programs.
They can support data structures ranging from arrays to
dynamically allocated complex data types [26]. Commercial
computer algebra systems available in the market, such
as MATHEMATICA [56], are being strengthened with more
and more powerful symbolic-computing abilities. In the
rest of this paper, we will use the term symbolic executions
to refer to the executions of selected paths with selected
symbolic inputs, and the term global symbolic evaluation for
the executions of all possible paths of the program with
symbolic inputs covering the entire input domain [19].

For programs where global symbolic evaluation can be
performed and the constraint expressions involved can
be solved, we can either prove that these necessary con-
ditions for program correctness are satisfied, or identify
all inputs that cause the violation of the conditions. The
failure-causing inputs will be represented by constraint
expressions instead of individual failure-causing inputs. For
programs that are too complex for global symbol evaluation
or constraint solvers, our approach can still be applied
as a symbolic-testing approach. The technique can also
be combined with concrete test cases to extrapolate the
correctness to related untested inputs. For all programs, the
diagnostic information generated for the detected failure
supports automatic debugging.

In Section 2, we will present the semi-proving method
and its features. In Section 3, we will present the empirical
evaluation results using the replace program, which is the
largest and most complex among the Siemens suite of
programs [41]. Also included will be a brief description of

1. A preliminary version of semi-proving was proposed in ISSTA
2002 [17].

3

the prototype implementation of our method. Section 4 will
discuss the limitations of our method and the treatments
to alleviate some of its problems. Section 5 compares our
method with related work. Section 6 will conclude the
paper.

2 OUR METHODOLOGY

2.1 Overview

Our method employs symbolic-evaluation and constraint
solving techniques [19], [22], [23], [26], [27], [29], [42], [44].
The procedure for semi-proving is outlined as follows:
Given a program P under test and a metamorphic relation
(MR), we first take a symbolic input vector I and conduct a
global symbolic evaluation of P on I . Let O1, O2, . . . , On be
the symbolic outputs and let Ci be the path condition of Oi

for i = 1, 2, . . . , n. For ease of presentation, we assume that
the given MR involves only two executions of P . According
to the MR, we generate a second symbolic input vector I ′,
on which a second global symbolic evaluation will be con-
ducted. Suppose the symbolic outputs are O′

1, O′
2, . . . , O′

m

under path conditions C ′
1, C ′

2, . . . , C ′
m, respectively. (Note

that m is not necessarily equal to n. For instance, if I
represents a single integer, and I ′ represents the absolute
value of I , any path condition related to negative input
numbers will not appear in C ′

1, C ′
2, . . . , C ′

m.) Then, for each
Ci (i = 1, 2, . . . , n) and C ′

j (j = 1, 2, . . . , m), we evaluate
the conjunction of Ci and C ′

j . If it is not a contradiction,
then we check whether the MR is satisfied under this
conjunction. If a violation is detected, it will be reported
and further debugging information will be generated.

We would like to illustrate various features of the semi-
proving methodology in the following sections. Section 2.2
will demonstrate how to apply semi-proving to prove
that the program satisfies the metamorphic relation for
the entire input domain. In Section 2.3, we will illustrate
how our method can be used to extrapolate from the
correctness of a program for tested symbolic inputs to the
correctness of the program for related symbolic inputs
that have not been tested. In Section 2.4, we will show
how our method can automatically detect program defects
by identifying all inputs for which the program fails to
satisfy the metamorphic relation. In Section 2.5, we will
explain how semi-proving supports automatic debugging.
In Section 2.6, we will discuss treatments for loops. In
Section 2.7, we will further discuss how to extrapolate from
the correctness of a program for tested concrete inputs to its
correctness for related concrete inputs that have not been
tested.

2.2 Proving Metamorphic Relations

Semi-proving proposes the proving of selected necessary
properties for program correctness, expressed as metamor-
phic relations of the specified function. Fig. 1 shows a
program Med. It accepts three integers as input and returns
the median as output. The program is adapted from [50],
where it was used as a worst-case example to illustrate
the technique of constraint-based test case generation for

TABLE 1

Results of Global Symbolic Evaluation of Med (a, b, c)

Path Path Condition Result
P1: (1, 2, 3, 4, 11) C1: a < b < c b
P2: (1, 2, 3, 5, 6, 11) C2: b ≤ a < c a
P3: (1, 2, 3, 5, 11) C3: b < c ≤ a c
P4: (1, 2, 7, 8, 11) C4: c ≤ b < a b
P5: (1, 2, 7, 9, 10, 11) C5: c < a ≤ b a
P6: (1, 2, 7, 9, 11) C6: a ≤ c ≤ b c

TABLE 2

Results of Global Symbolic Evaluation of Med (a, c, b)

Path Path Condition Result
P ′

1
: (1, 2, 3, 4, 11) C′

1
: a < c < b c

P ′

2
: (1, 2, 3, 5, 6, 11) C′

2
: c ≤ a < b a

P ′

3
: (1, 2, 3, 5, 11) C′

3
: c < b ≤ a b

P ′

4
: (1, 2, 7, 8, 11) C′

4
: b ≤ c < a c

P ′

5
: (1, 2, 7, 9, 10, 11) C′

5
: b < a ≤ c a

P ′

6
: (1, 2, 7, 9, 11) C′

6
: a ≤ b ≤ c b

mutation testing. Let us use this example program to
illustrate how semi-proving proves metamorphic relations.

Let median denote the specification function for the pro-
gram Med. An obvious metamorphic relation is median (I) =
median (π (I)), where I is the tuple of parameters, and π (I)
is any permutation of I . For example, median (1, 2, 3) =
median (3, 1, 2). We would like to prove that the program
Med preserves this property for all elements in the input
domain.

We need some knowledge of the problem domain to
facilitate the proving process. From group theory [38], we
know that all of the permutations of I , together with the
compositions of permutations, form a permutation group. It
is also known that τ1 (a, b, c) = (a, c, b) and τ2 (a, b, c) =
(b, a, c) are generators of the permutation group. In other
words, any permutation of I can be achieved by com-
positions of the transpositions τ1 and τ2. For instance,
the permutation (b, c, a) can be achieved by applying τ2

followed by τ1 to the tuple (a, b, c). Hence, in order to
prove that Med (I) = Med (π (I)) for any input tuple I and
any permutation π of I , we need only prove two identities,
namely, Med (a, b, c) = Med (a, c, b) and Med (a, b, c) =
Med (b, a, c).

It is straightforward to conduct global symbolic evalu-
ation [19] on the program Med. Let the symbolic input be
(a, b, c), which represents any triple of integers. The results
are shown in Table 1. There are, altogether, six possible
execution paths. For any valid input, one and only one of
the six path conditions C1 to C6 will hold.

We recognize that we can directly prove or disprove this
simple program using the results of Table 1 since there is
an oracle for all the symbolic outputs. Nevertheless, we
would like to use the program to illustrate how to perform
semi-proving without assuming the knowledge about the
correctness of each individual output.

Let us apply the transformation τ1 to the initial symbolic
input (a, b, c) to obtain a follow-up symbolic input (a, c, b).
We will refer to the executions on the initial and follow-

4

int Med (int u, int v, int w) {
int med;

1 med = w;
2 if (v < w)
3 if (u < v)
4 med = v;

else {
5 if (u < w)
6 med = u; }

else
7 if (u > v)
8 med = v;

else {
9 if (u > w)
10 med = u; }
11 return med; }

Fig. 1. Program Med

int Med (int u, int v, int w) {
int med;

1 med = w;
2 if (v < w)
3 if (u < v)
4 med = v;

else {
5 if (u < w)
6 med = u; }

else
7 if (u > v)
8 med = v;

11 return med; }

Fig. 2. Program Med

up inputs as the initial execution and the follow-up execution,
respectively. The results of the follow-up global symbolic
evaluation of Med (a, c, b) are listed in Table 2.

Our target is to prove that Med (a, b, c) = Med (a, c, b) for
any input tuple (a, b, c). As indicated by Table 1, we need
to prove the metamorphic relation for six cases according
to the path conditions C1 to C6. Consider condition C1.
From Table 1, when condition C1 holds, the output of
Med (a, b, c) is the variable b. Table 2 shows that the output
of Med (a, c, b) is also b for paths P ′

3 and P ′
6, but not b for

paths P ′
1, P ′

2, P ′
4, and P ′

5. Thus, we need to know whether
P ′

1, P ′
2, P ′

4 and P ′
5 will be executed when C1 holds. In other

words, we need to check each of the combined conditions
“C1 and C ′

1,” “C1 and C ′
2,” “C1 and C ′

4,” and “C1 and
C ′

5.” We find that each of them is a contradiction. Thus,
Med (a, c, b) also returns the variable b when condition C1

holds.
Referring to Table 1 again, when condition C2 holds, the

output of Med (a, b, c) is the variable a. Table 2 shows that
the output of Med (a, c, b) is also a for paths P ′

2 and P ′
5,

but not for paths P ′
1, P ′

3, P ′
4, and P ′

6. We find that each
of the combined conditions “C2 and C ′

1,” “C2 and C ′
3,”

and “C2 and C ′
4” is a contradiction. Furthermore, when we

evaluate “C2 and C ′
6,” we obtain “a = b < c.” In other

words, although Med (a, b, c) returns the variable a and
Med (a, c, b) returns the variable b, both of them have the
same value. Hence, the metamorphic relation holds when
condition C2 is satisfied.

We can similarly prove that the results of Med (a, b, c)
and Med (a, c, b) are consistent with each other under the
conditions C3, C4, C5, and C6. Thus, we have proven that
Med (a, b, c) = Med (a, c, b) for any input tuple (a, b, c). In
the same way, we can prove the metamorphic relation for
transposition τ2, namely, that Med (a, b, c) = Med (b, a, c)
for any input tuple. According to group theory, therefore,
Med (I) = Med (π (I)) for any input tuple I and any
permutation π (I).

2.3 Extrapolation of Correctness for Symbolic Test

Cases

In the previous section, we illustrated how to prove that the
program is correct with respect to a selected metamorphic
relation. In situations where the correctness of some outputs

can be decided, such as special value cases, we can extrapo-
late from the correctness for tested inputs to the correctness
for related untested inputs. Let us, for instance, test the
program Med with a specific symbolic test case (x, y, z) such
that x ≤ z ≤ y. The output is z. We can, of course, easily
verify that z is a correct output. Hence, the program passes
this specific test. Having proven the metamorphic relation
in Section 2.2 and tested the correctness of the program
for one specific symbolic input, we can extrapolate that the
outputs of the program Med are correct for all other inputs
as follows: Suppose I = (a, b, c) is any triple of integers.
Let π (I) = (a′, b′, c′) be a permutation of I such that
a′ ≤ c′ ≤ b′. According to the result of the symbolic testing
above, Med (a′, b′, c′) = median (a′, b′, c′). The fact that
(a′, b′, c′) is simply a permutation of (a, b, c) implies that
median (a′, b′, c′) = median (a, b, c). Hence, Med (a′, b′, c′)
= median (a, b, c). On the other hand, it has been proven
that Med (a′, b′, c′) = Med (a, b, c). Therefore, Med (a, b, c)
= median (a, b, c). In this way, we have proven that the
outputs of Med (a, b, c) are correct for any input. In other
words, the correctness is extrapolated from tested symbolic
inputs to untested symbolic inputs.

When the test case is concrete rather than symbolic, our
approach can also be applied to extrapolate the correctness
of the program to related concrete inputs that have not been
tested. Details of semi-proving for concrete inputs will be
discussed in Section 2.7.

2.4 Identifying Program Faults through Metamorphic

Failure-Causing Conditions

In this section, we will show how a fault can be detected
by semi-proving. Suppose we remove statements 9 and 10
from the program Med to seed a missing path error 2, which is
generally considered as “the most difficult type of error to
detect by automated means” [50]. Let us denote the faulty
program by Med, as shown in Fig. 2. The global symbolic
evaluation results for the initial symbolic input (a, b, c) and
the follow-up symbolic input (a, c, b) are shown in Tables 3
and 4, respectively.

2. We appreciate that we should use the word “fault” instead of “error”
when discussing a missing path in a program. We will, however, continue
to use “missing path error” as a courtesy to the pioneers who coined
this phrase well before the IEEE Standard Glossary of Software Engineering
Terminology was published in 1990.

5

TABLE 3

Results of Global Symbolic Evaluation of Med (a, b, c)

Path Path Condition Result
P1: (1, 2, 3, 4, 11) D1: a < b < c b
P2: (1, 2, 3, 5, 6, 11) D2: b ≤ a < c a
P3: (1, 2, 3, 5, 11) D3: b < c ≤ a c
P4: (1, 2, 7, 8, 11) D4: c ≤ b < a b
P5: (1, 2, 7, 11) D5: c ≤ b and a ≤ b c

TABLE 4

Results of Global Symbolic Evaluation of Med (a, c, b)

Path Path Condition Result
P ′

1
: (1, 2, 3, 4, 11) D′

1
: a < c < b c

P ′

2
: (1, 2, 3, 5, 6, 11) D′

2
: c ≤ a < b a

P ′

3
: (1, 2, 3, 5, 11) D′

3
: c < b ≤ a b

P ′

4
: (1, 2, 7, 8, 11) D′

4
: b ≤ c < a c

P ′

5
: (1, 2, 7, 11) D′

5
: b ≤ c and a ≤ c b

A failure will be detected when condition D2 is being
checked. When D2 holds, the following expressions need
to be evaluated: (D2 and D′

1), (D2 and D′
3), (D2 and D′

4),
and (D2 and D′

5). While the first three are shown to be
contradictions, the fourth conjunction is satisfiable. It can
be simplified to “b < a < c or b = a < c.” Obviously,
when b = a < c, Med (a, b, c) = Med (a, c, b). When b <
a < c, however, Med (a, b, c) 6= Med (a, c, b) because a 6=
b. As a result, all input pairs satisfying “b < a < c” are
found to cause the failure. The expression “b < a < c”
is therefore called a Metamorphic Failure-Causing Condition
(MFCC). All MFCCs related to a given metamorphic relation
can be similarly identified. Note that, in general, MFCCs
are dependent on specific metamorphic relations and are
related to different faults.

It should be noted that, in conventional software testing
(including metamorphic testing), concrete failure-causing
inputs are identified but not the interrelationships among
them. Semi-proving, on the other hand, supports debugging
by providing explicit descriptions of the interrelationships
among metamorphic failure-causing inputs via MFCC. Com-
pared with concrete failure-causing inputs, such interrela-
tionships contain more information about the defects. This
is because constraint expressions like “b < a < c” (instead of
concrete inputs like “a = 0, b = −1, and c = 2”) represent
multiple (and, possibly, infinitely many) concrete failure-
causing inputs and reveal their characteristics.

Compared with metamorphic testing, our method has an-
other advantage in addition to its support of debugging: It
has a higher fault-detection capability. Generally speaking,
the inputs that exercise the failure paths (that is, the pair of
paths corresponding to the initial and follow-up executions
that reveal a violation of a metamorphic relation) may not
necessarily cause a failure. In other words, concrete test
cases in metamorphic testing may not detect a failure even
if they have executed such paths. On the other hand, semi-
proving guarantees the detection of the failure via symbolic
inputs that exercise these paths.

2.5 Debugging

In the previous section we have shown how MFCCs can be
automatically generated when a failure is detected. In this
section, we will illustrate how to use the generated MFCCs
to facilitate debugging.

According to Pezzè and Young [51], “Testing is concerned
with fault detection, while locating and diagnosing faults
fall under the rubric of debugging.” As is widely agreed
in the industry, “most of the effort in debugging involves
locating the defects” [37]. While we fully concur with
this observation, we would like to add that, in many
situations, a defect or fault may not be precisely localized to
particular statements, as a faulty program may be corrected
in many different ways. Hence, “locating the defects”
should not simply be interpreted as the identification of
faulty statements in a program. We have implemented a
verification and debugging system with a different focus.
Our system generates diagnostic information on the cause-
effect chain that leads to a failure.

2.5.1 Debugging Step 1: Selecting a Failure Path for

Analysis

For ease of presentation, let us assume that the MR involves
two executions, namely, an initial execution and a follow-
up execution. Once a violation of the MR is detected, at
least one of these two executions must be at fault. To
debug, details of both executions will be reported to the
user. The user may choose to instruct the debugger to
focus on a particular path. Otherwise the debugger will use
a heuristic approach as follows: Let the initial execution
path be A and the follow-up execution path be B. Our
verification system will continue to verify other paths of
the program with a view to identifying more violations of
the MR. After that, the debugger will compare paths A and
B against the paths involving other violations and calculate
the frequencies of occurrence for both A and B. Suppose, for
instance, that A involves more violations of the MR than B.
Then, our debugger will select A as the focus of debugging
and proceed to “Debugging Step 2.” We recognize that the
heuristic approach may not always correctly identify the
genuine failure path. Users, however, can always instruct
the debugger to move their focus to the other path if they
so prefer.

For the example related to Med (a, b, c) and Med (a, c, b)
as discussed in the last section, our debugger finds that
the initial execution (P2) involves a total of two violations
of the MR (as indicated in row 29 of the failure report in
Fig. 3), and the follow-up execution (P ′

5) involves a total of
four violations (as indicated in row 30 of the report.) The
latter has therefore been selected. This is indeed the genuine
failure path.

2.5.2 Debugging Step 2: Comparing Successful and Failed

Executions to Find the Cause of Failure

We define a metamorphic preserving condition (MPC) as a
condition under which a program satisfies a prescribed
metamorphic relation. When we identify an MFCC, a cor-
responding MPC can also be identified at the same time.

6

In Section 2.4, for instance, while “b < a < c” is detected
to be an MFCC, another constraint expression “b = a < c”
can be identified as the corresponding MPC. A violation of
an MR occurs because some input pairs satisfy an MFCC rather
than an MPC. Hence, if we compare these two conditions, the
difference can be considered as the trigger of the failure. This
trigger can supply us with more clues for the discovery of
the nature of the defect. In the simple case illustrated by our
example, our debugger finds that the difference between the
MFCC and the MPC involves the relationship between a and
b: It is b < a in MFCC, but is b = a in MPC.

Once the trigger is identified, the debugger will further
compare the two execution logs, including execution traces,
path conditions, and so on, and then report the differences
as a cause-effect chain that leads to the failure. The final
failure report for the Med example is shown in Fig. 3. It
was automatically generated by our debugger without the
need to interact with users. For the sake of presentation,
we have slightly modified the line numbers quoted by the
report so that they are consistent with those in Fig. 2.

Row 1 of Fig. 3 shows the symbolic input for an initial
execution (P2), consisting of v1 for u, v2 for v, and v3 for
w. We note that “1st run” printed in rows 1, 11, 25, 26, and
29 refers to the initial execution. Row 2 records execution
trace, that is, function Med is entered. Row 3 records that
a true branch is taken at statement 2 (which is “if (v <
w)”.) Row 4 reports that a new constraint is added into
the current path condition. The constraint is interpreted as
–v3 + v2 ≤ –1, or v2 < v3 as all inputs are integers. Rows 5
to 8 are interpreted similarly. Row 9 records that function
Med returns at statement 11. Row 10 prints the symbolic
value v1 returned by Med. Row 11 marks the end of the
initial execution.

Note that the words “2nd run” printed in rows 12, 24, 27,
28, 30, and 31 refers to the follow-up execution (P ′

5). Row 12
says that the symbolic input is v1 for u, v3 for v, and v2 for
w. Row 19 records that the symbolic output is v2. Row 20
reports that a failure is detected. Row 21 reports that the
expected output is v1, as this is the output of the initial
execution. Rows 22 and 23 report the trigger of the failure,
which is equivalent to v2 < v1 since all inputs are integers.
This means that out of all the inputs that exercise both the
initial and follow-up execution paths, some violate the MR
and others do not. The unique characteristic for any input
that violates the MR is v2 < v1. Therefore, testers need to
pay attention to this condition as it is not handled properly
by the program Med. In fact, this is exactly the root cause
of the failure, that is, overlooking the case when v2 < v1.

The reason why the follow-up execution instead of the
initial execution has been highlighted for debugging (as
shown in Fig. 3) is that our debugger detected that the
follow-up execution path involves four violations of the
MR, whereas the initial execution path involves two vio-
lations. This is reported in rows 29 and 30. In other words,
the statistics are aggregated from all violations of the MR,
although some of the violations are not shown in the figure.
Our debugger therefore considers the follow-up execution
to be more likely to be relevant to the failure, as reported

in row 31. More discussions about failure reports will be
given in Section 3. To assist in debugging, the debugger also
generates an example of a concrete failure-causing input,
as shown in rows 25 to 28, where rows 27 and 28 are
highlighted as they belong to the follow-up execution. In
fact, the follow-up execution is indeed the genuine failure
path.

Row 31 indicates that debugging should be focused on
the follow-up execution because, as reported in rows 29
and 30, violations of the MR occur more frequently in the
follow-up execution path than in the initial execution.

Note that the debugging message printed can further
provide a hint on how to correct the faulty statement. It
suggests the symbolic value of the expected output. Any
discrepancy from the symbolic value of the actual output
can be tracked down to individual symbols, which can be
mapped to individual program variables.

2.6 Dealing with Loops

Consider an example program Area (f, a, b, v) adapted
from [19] and shown in Fig. 4. For ease of presentation,
we will omit the fifth parameter errFlag of the program
Area in our discussion. It used the trapezoidal rule to
compute the approximate area bounded by the curve f(x),
the x-axis, and two vertical lines x = a and x = b. Any
area below the x-axis is treated as negative. According
to elementary calculus, Area (f, a, b, v) computes the area

from the integral
∫ b

a
f(x) dx if a ≤ b, and from −

∫ b

a
f(x) dx

if a > b. The computation uses v intervals of size |b − a|/v.
Let g(x) = f(x) + c, where c is a positive constant. From

elementary calculus, we know that if a ≤ b,
∫ b

a
g(x) dx =

∫ b

a
f(x) dx + c × (b − a), whereas if a > b,

∫ a

b
g(x) dx =

∫ a

b
f(x) dx+c×(a−b) giving −

∫ b

a
g(x) dx = −

∫ b

a
f(x) dx+c×

(a− b). Hence, we can identify the following metamorphic
relation for verification:

Area (g, a, b, v) = Area (f, a, b, v) + c × |b − a| (1)

where v ≥ 1. Note that “(b− a)” in the integration formula
has been changed to “|b − a|” according to the specifica-
tion of the program. Having identified the metamorphic
relation, we apply global symbolic-evaluation and loop-
analysis techniques introduced by Clarke and Richard-
son [19] to the program Area and obtain six categories
of execution paths for any initial input (f, a, b, v). The
paths, path conditions, and corresponding symbolic out-
puts are shown in Table 5. For path P3, the notation
(9, 10, 11, 12, 13)+ denotes multiple iterations of the sub-
path enclosed in brackets.

To prove the metamorphic relation (1), we also need to do
a follow-up global symbolic evaluation for Area (g, a, b, v).
Table 6 shows the evaluation results. If we compare Tables 5
and 6, we find that the two global symbolic evaluations
produce identical sets of paths and path conditions. The
only difference between the results is the symbolic values
of the variable area. This is because the change of the first
parameter from f to g does not affect the nature of the
execution paths.

7

1 [symbolic input of 1st run] v1, v2, v3

2 [trace] entry to Med()

3 [trace] true branch taken, line 2

4 [pc] -1 * v3 + 1 * v2 <= -1

5 [trace] false branch taken, line 3

6 [pc] 1 * v1 + -1 * v2 >= 0

7 [trace] true branch taken, line 5

8 [pc] -1 * v3 + 1 * v1 <= -1

9 [trace] return from Med(), line 11

10 [symbolic output] 1 * v1 + 0

11 -------- end of 1st run --------

12 [symbolic input of 2nd run] v1, v3, v2

13 [trace] entry to Med()

14 [trace] false branch taken, line 2

15 [pc] 1 * v3 + -1 * v2 >= 0

16 [trace] false branch taken, line 7

17 [pc] -1 * v3 + 1 * v1 <= 0

18 [trace] return from Med(), line 11

19 [symbolic output] 1 * v2 + 0

20 [debugging diagnosis] failure is detected for the above output

21 [debugging diagnosis] expected output is 1 * v1 + 0

22 [debugging diagnosis] trigger of failure is as follows:

23 -1 * v1 + 1 * v2 <= -1

24 -------- end of 2nd run --------

25 [example input of 1st run] 1, 0, 2

26 [example output of 1st run] 1

27 [example input of 2nd run] 1, 2, 0

28 [example output of 2nd run] 0

29 [frequency] path of 1st run occurs in violations of MR: 2 time(s)

30 [frequency] path of 2nd run occurs in violations of MR: 4 time(s)

31 [current debugging focus] 2nd run

Fig. 3. Failure Report for Program Med

/* Program Area uses the trapezoidal rule to compute the area of the region
enclosed by the curve f(x), the x-axis, and the vertical lines x = a and x = b. The
computation uses v intervals of size |b – a|/v. The variable “errFlag” will be set
to “true” if v is less than 1, and set to “false” otherwise. */

float Area(float (*f)(float), float a, float b, int v, bool & errFlag) {
float area;
float h; /* interval */
float x;
float yOld; /* value of f(x – h) */
float yNew; /* value of f(x) */

1 if (v < 1)
2 errFlag = true;

else {
3 errFlag = false;

4 area = 0;
5 if (a != b) {
6 h = (b – a) / v;
7 x = a;
8 yOld = (*f)(x);
9 while ((a > b && x > b) || (a < b && x < b)) {
10 x = x + h;
11 yNew = (*f)(x);
12 area = area + (yOld + yNew) / 2.0;
13 yOld = yNew;

}
14 area = area ∗ h;
15 if (a > b)
16 area = –area; } }
17 return area; }

Fig. 4. Program Area

Since there are six path conditions on either side of
relation (1), we need to verify the results for the 6 ×
6 = 36 combinations of conditions. Because the path
conditions are mutually exclusive, 30 of the combinations
are contradictions. Hence, we need to consider only six
combinations. Furthermore, path P6 is not relevant because
its path condition is “v < 1” but the selected metamorphic
relation applies to v ≥ 1. As a result, there are altogether
five combinations to be verified, namely, (P1, P ′

1), (P2, P ′
2),

(P3, P ′
3), (P4, P ′

4), and (P5, P ′
5). By (Pi, P ′

i), we mean that
the initial execution is on path Pi and the follow-up
execution is on path P ′

i .

Consider the combination (P3, P ′
3). Under their path

conditions, the following computations are made:

Area (g, a, b, v) − Area (f, a, b, v)

=
“

(f(a) + c) / 2.0 + (f(b) + c) / 2.0

+

v−1
X

i=1

(f(a − a × i/v + b × i/v) + c)
”

× (a/v − b/v)

−
“

f(a) / 2.0 + f(b) / 2.0

+

v−1
X

i=1

f(a − a × i/v + b × i/v)
”

× (a/v − b/v)

= (2c/2 + c × (v − 1)) × (a − b) / v

= c × (a − b) = c × |b − a|.

8

TABLE 5

Results of Global Symbolic Evaluation of Area (f, a, b, v)

Path Path Condition area

P1: (1, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17)

v = 1 and a > b [f(a) / 2.0 + f(b) / 2.0] × (a − b)

P2: (1, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 17)

v = 1 and a < b [f(a) / 2.0 + f(b) / 2.0] × (b − a)

P3: (1, 3, 4, 5, 6, 7, 8, (9, 10,
11, 12, 13)+, 14, 15, 16, 17)

v > 1 and a > b and ke = v,
where ke = min {k ∈ N : k > 1
and − b + k × (b − a) / v + a ≤ 0}

[f(a) / 2.0 + f(b) / 2.0
+

P

v−1

i=1
f(a − a × i/v + b × i/v)]

×(a/v − b/v)

P4: (1, 3, 4, 5, 6, 7, 8, (9, 10,
11, 12, 13)+, 14, 15, 17)

v > 1 and b > a and ke = v,
where ke = min {k ∈ N : k > 1
and − b + k × (b − a) / v + a ≥ 0}

[f(a) / 2.0 + f(b) / 2.0
+

P

v−1

i=1
f(a − a × i/v + b × i/v)]

×(b/v − a/v)

P5: (1, 3, 4, 5, 17) v ≥ 1 and a = b 0
P6: (1, 2, 17) v < 1 undefined

TABLE 6

Results of Global Symbolic Evaluation of Area (g, a, b, v)

Path Path Condition area

P ′

1
: (1, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17)
v = 1 and a > b

[(f(a) + c) / 2.0 + (f(b) + c) / 2.0]
×(a − b)

P ′

2
: (1, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 17)
v = 1 and a < b

[(f(a) + c) / 2.0 + (f(b) + c) / 2.0]
×(b − a)

P ′

3
: (1, 3, 4, 5, 6, 7, 8, (9,

10, 11, 12, 13)+, 14, 15, 16,
17)

v > 1 and a > b and ke = v,
where ke = min {k ∈ N : k > 1
and − b + k × (b − a) / v + a ≤ 0}

[(f(a) + c) / 2.0 + (f(b) + c) / 2.0
+

P

v−1

i=1
(f(a − a × i/v + b × i/v) + c)]

×(a/v − b/v)

P ′

4
: (1, 3, 4, 5, 6, 7, 8, (9, 10,

11, 12, 13)+, 14, 15, 17)

v > 1 and b > a and ke = v,
where ke = min {k ∈ N : k > 1
and − b + k × (b − a) / v + a ≥ 0}

[(f(a) + c) / 2.0 + (f(b) + c) / 2.0
+

P

v−1

i=1
(f(a − a × i/v + b × i/v) + c)]

×(b/v − a/v)

P ′

5
: (1, 3, 4, 5, 17) v ≥ 1 and a = b 0

P ′

6
: (1, 2, 17) v < 1 undefined

In the last step, c × (a − b) = c × |b − a| because the path
condition is a > b. Hence, relation (1) holds for (P3, P ′

3).
Proceeding this way, all the five combinations can be
verified. Thus, the program Area satisfies the selected meta-
morphic relation for any valid input.

Similarly, we can prove the following metamorphic
relations that correspond to the mathematical formulas∫ b

a
[f1(x) + f2(x)] dx =

∫ b

a
f1(x) dx +

∫ b

a
f2(x) dx and

∫ b

a
λ f(x) dx = λ

∫ b

a
f(x) dx, respectively:

Area (g, a, b, v) = Area (f1, a, b, v) + Area (f2, a, b, v) (2)

where g(x) = f1(x) + f2(x) and v ≥ 1.

Area (g, a, b, v) = λ Area (f, a, b, v) (3)

where g(x) = λ f(x) for some constant λ and v ≥ 1.

2.7 Extrapolation of Correctness for Concrete Test

Cases

Geller [28] proposed a strategy to use test data as an
aid in proving program correctness. The basic idea is to
prove a program in two steps: First, show that the program
meets its specification for a sample test case. Then, prove
the computed output of the program and the function
defined by the specification “are perturbed in the same
fashion” as the values of the input are perturbed (which can
be considered as a special kind of metamorphic relation.)

In this way, the program can satisfy the generalization
assertion, which generalizes “from the value produced by
the program for some given test value to a larger domain.”
In the conclusion section, Geller pointed out that “A great
deal of work remains to be done in the area of using test
data to prove program correctness. . . . Many additional
theorems could be proven, . . . to be used in generalizing
from specific test data to a larger domain.”

We find that metamorphic relations are ideal properties
to support the generalization assertion. Consider the pro-
gram Area, for example. We have proven relations (1), (2),
and (3) in Section 2.6. To further verify the program, let
f1, f2, . . . , fn be n functions of x, where n ≥ 1. We can test
the program Area using n concrete test cases (f1, a0, b0, v0),
(f2, a0, b0, v0), . . . , (fn, a0, b0, v0), where a0, b0, and v0

are constants. Suppose the program successfully passes
these concrete test cases (otherwise a failure is detected
and the testing can stop.) Let g be any function that
can be expressed as a linear combination of f1, f2, . . . , fn

and a constant, that is, g(x) = λ1 f1(x) + λ2 f2(x) + . . . +
λn fn(x) + λn+1, where λ1, λ2, . . . , λn+1 are real constants.
Then, according to the three relations we have proven, the
output of the program for the test case (g, a0, b0, v0) must
satisfy the following relation:

Area (g, a0, b0, v0)

= λ1 Area (f1, a0, b0, v0) + λ2 Area (f2, a0, b0, v0)

+ . . . + λn Area (fn, a0, b0, v0) + λn+1 |b0 − a0|

9

If the results of the program are correct for the test cases
f1(x), f2(x), . . . , fn(x), it implies that the program is also
correct for g(x). Since λ1, λ2, . . . , λn+1 can take any real
values, our method has indeed established the correctness
of the results for infinitely many inputs (that is, g) based on
finitely many concrete test cases (that is, f1, f2, . . . , fn.)

3 A CASE STUDY ON THE SIEMENS PROGRAM

replace

We have implemented our method to verify programs
written in C. The implemented system consists of two
major components: The first component supports symbolic
executions and the second supports the verification of meta-
morphic relations. For the first component, the techniques
and tools introduced by Sen et al. [52] have been employed
to systematically explore the symbolic execution tree using
a depth-first search strategy. We found this to be an effective
approach to dealing with loops and arrays. Where infinite
loops may be encountered, users can set an upper bound
for the depth of the search so that the latter can always
terminate. For the second component, users need to specify
the expected metamorphic relations in terms of embedded
C code in the test driver. For example, if the program under
test is a function named int testme(int a, int b), where a and
b are integer parameters, and the expected metamorphic
relation is testme(a, b) == testme(b, a), then the main
body of the code that users need to write to specify the
metamorphic relation is as follows:

generateSymbolicInput(a);

generateSymbolicInput(b);

verify(testme(a, b) == testme(b,a));

3.1 The Subject Program

We studied the Siemens suite of programs [41] 3 as candidate
subjects for our empirical evaluation. The Siemens
suite consists of seven programs, namely, print tokens,
print tokens2, replace, schedule, schedule2, tcas, and tot info.
As pointed out by Liu et al. [49], the replace program is
the largest and most complex among the seven programs,
and covers the most varieties of logic errors. Thus, we
conducted an empirical evaluation of our techniques using
the replace program. This program has 563 lines of C code
(or 512 lines of C code excluding blanks and comments)
and 20 functions. It has 32 faulty versions in the suite.

The replace program performs regular expression match-
ing and substitutions. It receives three input parameters.
The first parameter is a regular expression. Note that it is
not a regular expression as usually defined in theoretical
computer science, but the Unix version with typographic
and extended properties. The second parameter is a string
of text, and the third is another string of text. For any
substring(s) of the third parameter that matches (that is,
is an instance of) the regular expression, the program will

3. The Siemens suite of programs used in our experiments was
downloaded from http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/.

replace it by the second parameter. For example, if the first
parameter is 'ab[cde]f*[

∧gh]i', the second is 'xyz',
and the third is '8abdffffxiyes', then the program
will produce the output '8xyzyes'. This is because the
substring 'abdffffxi' matches the regular expression
'ab[cde]f*[

∧gh]i' and is therefore replaced by 'xyz'.

3.2 The Metamorphic Relations

Our method verifies the subject program through metamor-
phic relations. We appreciate that it is unlikely for a single
MR to detect all the faults. We have therefore identified
four MRs that are quite different from one another with a
view to detecting various faults. Finding good MRs requires
knowledge of the problem domain, understanding of user
requirements, as well as some creativity. These MRs are
identified according to equivalence and nonequivalence
relations among regular expressions. They are described
below.

MR1: The intuition behind MR1 is that, given the text
'ab', replacing 'a' with 'x' is equivalent to replacing
non-'b' with 'x'. The syntax of the former is replace 'a'

'x' 'ab' while the syntax of the latter is replace '[∧b]' 'x' 'ab'.
For both executions, the output will be 'xb'. The following
description gives more details of MR1.

Let pat
1

be a simple regular expression that represents
(1) a single character such as 'a', or (2) a range of
characters in the form of '[x-z]'. The end-of-line symbol
'$' can be added to the end of a regular expression. For the
initial test case, the first parameter is pat

1
; the second is char,

which is an arbitrary character; and the third is text1text2
(concatenation of text1 and text2), where text1 and text2 are
strings such that

• text1 or text2 matches pat
1
, and

• if text1 (text2, respectively) matches pat
1
, then text2

(text1, respectively) or any of its nonempty substrings
does not match pat

1
.

Suppose text1 matches pat
1
. Then, for the follow-up test

case, the first parameter is '[∧
text2]'

4 The second and
third parameters remain unchanged. The expected relation
between the initial and follow-up executions is that their
outputs should be identical.

When text2 matches pat
1
, the treatment is similar.

MR2: Let char be a single character. MR2 observes that
the expressions 'char' and '[char]' are equivalent with
the exception of a few special cases (for example, '?' is
not equivalent to '[?]' — the former is a wildcard but
the latter represents the question mark.) Hence, replacing
'char' by a string is equivalent to replacing '[char]'

by the same string. For example, the outputs of replace

'a' 'x' 'abc' and replace '[a]' 'x' 'abc' should be identical;
the outputs of replace 'a*' 'x' 'aa' and replace '[a]*' 'x' 'aa'

should be identical; and, for the wildcard character '?',
the outputs of replace '?*' 'x' 'aa' and replace '[∧]*' 'x' 'aa'

should be identical.

4. Some special characters, such as '@', will have different meanings
in text2. For instance, if text2 consists of '@t', it means the character '@'
followed by the character 't'. However, if text2 consists of '@@t', it
means the character '@' followed by a tab.

10

MR3 makes use of a particular regular expression '?*',
where '?' is a wildcard character and '*' means the
Kleene closure. Therefore, '?*' will match the entire input
string. For instance, the outputs of replace '?*' 'x' 'ab' and
replace 'ab' 'x' 'ab' should be identical. Further, the outputs
of replace '?*' 'x' 'ab' and replace '?*' 'y' 'ab' should not be
equal because 'x' 6= 'y'.

MR4 makes use of equivalence properties of regular
expressions that involve square brackets. For example,
'[ABC]' is equivalent to any of its permutations, such
as '[BCA]' and '[CBA]'; '[2-5]' is equivalent to
'[2345]'; '[0-z]' is equivalent to '[0123 . . . xyz]',
that is, the set of all characters whose ASCII values are
between '0' and 'z', inclusive; replace '[0–z]' 'x' '09' is
equivalent to replace '[0–9]' 'x' '09'; and so on.

3.3 Results of Experiments

We have made the following minor changes to the source
code of the replace program for the purpose of facilitat-
ing the experiments: (1) We rename the original “main”
function so that it is no longer the main function of the
program. This is because the main function of the updated
program is the test driver and the original main function is
called by the test driver. (2) We bypass the getline function,
which reads input from the keyboard. We replace it by a
function that generates symbolic input. (3) Similarly, we
also revise the output function fputc so that it can print
symbolic output. In the experiments, the symbolic inputs
we generate are fixed-sized arrays that represent strings of
characters.

The results of the experiments are summarized in Table 7,
where version 0 is the base program and versions 1 to 32 are
faulty versions (created by Siemens researchers by manual
injection of faults into the base program [41].) If an MR
detects a failure for a version, then we place the statistical
data regarding the source code and the failure report in the
corresponding table cell. The experimental results will be
explained in more detail in Section 3.4.

Table 7 shows that, out of the 32 faulty versions, MR1
detected failures for 18 versions, and MR2, MR3, and MR4
detected failures for 16, 8, and 10 versions, respectively.

For version 8, its failure can be detected directly during
the initial execution. This is because when the first input
parameter is in the form of a letter followed by '**'

(such as 'b**'), version 8 will terminate abnormally. A
failure is therefore revealed without the need to refer to
any metamorphic relation.

For version 19, the fault lies in the getline function, which
reads input from the keyboard. Since we have replaced this
function with another one in our experiments to generate
symbolic input, any fault in getline cannot be detected.

For version 15, no failure was detected using the four
metamorphic relations we defined. The difference between
version 15 and version 0 is that when the first input
parameter is '', the former will consider it to be an empty
string, whereas the latter will take it as an illegal pattern
and terminate. Such failures due to the mishandling of
degenerate inputs cannot be revealed in the absence of a

design specification and are unrelated to the metamorphic
relations in question.

Table 7 shows that different MRs demonstrate different
fault-detection capabilities: MR1 detects the largest number
of faults, and MR3 the smallest. However, we also observe
that different MRs are complementary to one another. For
example, although the overall performance of MR3 was the
worst, it is the only MR violated by versions 3 and 4. We
can see from Table 7 that, apart from version 8, each MR has
detected violations that have not been detected by others,
and none of the faulty versions violate all the MRs.

The above observations suggest that even the best MR
may not be able to uncover all faults and, therefore, we
should try to employ more than one MR for verifying
programs.

On the other hand, as different MRs have different fault-
detection capabilities, it is an important and challenging
task to investigate how to prioritize MRs, especially if there
are many of them. It is beyond the scope of this paper
to study MR prioritization. Nevertheless, we note that if
the initial and follow-up executions are very different (say,
exercising very different paths), the chance of violating an
MR will be relatively higher. This observation is not only
consistent with our previous results reported in [16], but
also consistent with the intuition about the effectiveness of
coverage testing: The higher the coverage is, the better the
fault-detection capability will be.

Apart from the perspective of fault-detection capabilities,
another perspective toward the prioritization of MRs is that
different users may rank different MRs higher according
to their needs. Some users may use only part of the
functionality offered by the program or a proper subset of
the input domain. Some MRs may therefore be essential
to some users but less important to others. Consider a
program calculating the sine function, for instance. The
periodic property sin(2nπ + x) = sinx is essential for
electrical engineers, as they often use the program to
compute the waveform of the AC circuit, which exhibit
periodicity. These engineers would therefore select the
periodic property for the entire real domain as an important
MR to verify the program. On the other hand, surveyors
may not use the periodic property often. Instead, they
may be more interested in other properties of sine, such
as sin(π − x) = sin x. Such a prioritization approach can
be considered to be based on the perspective of reliability,
where usage profiles are taken into consideration.

3.4 Experience of Applying the Debugging Technique

In our verification system, the source code of any program
under test is instrumented using a program instrumentor
prior to compilation, so that an execution trace can be
collected. When a violation of a metamorphic relation
occurs, a failure report will be generated in two steps. First,
details of the initial and follow-up executions are recorded.
Then, diagnostic details are added.

Fig. 5 shows a typical failure report, generated by our
debugger for version 14 of the replace program verified
against MR1. In line 370 of version 14, a subclause “&&

11

TABLE 7

Results of Experiments

Each filled table cell indicates that the corresponding version detects the violation of the corresponding MR.
Format of each filled table cell: no. of highlighted lines of source code / total no. of lines of source code;

no. of highlighted rows in failure report / total no. of rows in failure report

version MR1 MR2 MR3 MR4
0
1 58/512=11%; 35/338=10% 20/512=4%; 11/201=5% 42/512=8%; 32/993=3%
2 58/508=11%; 37/340=11% 42/508=8%; 32/993=3%
3 63/512=12%; 46/350=13%
4 10/512=2%; 5/108=5%
5 45/512=9%; 43/319=13% 45/512=9%; 59/629=9%
6 63/512=12%; 56/399=14% 63/512=12%; 56/932=6%
7 20/512=4%; 13/167=8% 20/512=4%; 13/167=8%
8 28/512=5%; 16/315=5% 28/512=5%; 16/315=5% 28/512=5%; 16/315=5% 28/512=5%; 16/315=5%
9 42/511=8%; 24/288=8% 42/511=8%; 24/365=7%

10 20/512=4%; 180/248=73%
11 42/512=8%; 24/288=8% 42/512=8%; 24/365=7%
12 26/512=5%; 128/490=26%
13 56/515=11%; 44/463=10% 56/515=11%; 44/406=11%
14 52/512=10%; 31/231=13%
15
16 20/512=4%; 13/167=8% 20/512=4%; 13/167=8%
17 33/512=6%; 19/310=6% 33/512=6%; 19/359=5%
18 58/512=11%; 32/284=11% 28/512=5%; 30/187=16%
19
20 33/512=6%; 19/298=6% 33/512=6%; 19/347=5%
21 12/512=2%; 6/168=4%
22 44/511=9%; 26/262=10% 66/511=13%; 49/520=9%
23 33/512=6%; 19/380=5% 33/512=6%; 19/429=4%
24 55/511=11%; 51/447=11%
25 53/512=10%; 49/437=11%
26 44/512=9%; 68/474=14% 67/512=13%; 95/794=12%
27 20/512=4%; 10/187=5% 25/512=5%; 11/53=21%
28 20/512=4%; 13/121=11%
29 20/512=4%; 13/222=6%
30 20/512=4%; 13/188=7% 20/512=4%; 13/167=8%
31 58/512=11%; 33/327=10% 28/512=5%; 30/187=16%
32 63/512=12%; 39/619=6%

(!locate(lin[*i], pat, j+1))” that should have been included
in the if-condition is omitted by the programmer. We have
run this version on the 5,542 test cases provided by the
Siemens suite, compared the outputs against those of the
base program (version 0), and found that 137 out of the
5,542 outputs are different.

In Fig. 5, the symbolic input vector for the initial exe-
cution is printed in rows 1, 2, and 3, where each of v1,
v2, v3, and v4 represents a single character, and v1 is the
first parameter, v2 is the second, and the concatenation
of v3 and v4 is the third. Because of space limit, certain
rows have been omitted. Each “symbolic output” printed
in the report corresponds to a single character. For instance,
rows 105 and 130 report that the first output character has
an ASCII value equal to that of input v2, and the second
output character has an ASCII value equal to that of input
v4. (If a symbolic output expression is “4 * v2 + 5 *
v3”, for example, it means that the output character has
an ASCII value equal to 4 × v2 + 5 × v3, where v2 and
v3 represent the ASCII values of the input characters.) An
example of a concrete input vector of the initial execution
(referred to as “1st run”) is given in row 276, where v1, v2,
v3, and v4 take the concrete values of '@', 'A', '@', and
'B', respectively. The resultant concrete output is given in

row 277, where the first output character is 'A' (which
corresponds to v2) and the second output character is 'B'
(which corresponds to v4.)

Rows 136, 137, and 138 print the symbolic values of the
input vector for the follow-up execution (referred to as
“2nd run.”) The first parameter is '[∧v4]'. If v4 takes
a concrete value of 'b', for instance, then this parameter
will be '[∧b]'. The second and third parameters remain
the same as the initial execution. The symbolic values of the
first and second output characters are printed in rows 229
and 263, respectively. Row 264 reports that a failure is
detected. Rows 266 and 267 further identify the trigger
of failure to be “1 * v4 + -1 * v2 ! = 0”, that is, a
failure will occur when v4 6= v2. It means that, when v4

= v2, the initial and follow-up execution paths will not
violate the MR. This diagnostic message therefore reminds
users to pay attention to the condition v4 6= v2 (which is
indeed the condition under which the output goes wrong.)
Row 278 gives an example of a concrete input vector for the
follow-up execution, and this is indeed a failure-causing
input. The system further finds that the initial execution
path has not been involved with any other failure, but the
follow-up execution path has appeared in another failure,
as reported in rows 280 and 281. The system therefore

12

1 [symbolic input of 1st run] v1

2 [symbolic input of 1st run] v2

3 [symbolic input of 1st run] v3 v4

4 [trace] entry to main(), line 523

... ...

103 [trace] false branch taken, line 468

104 [pc] 1 * v2 != -1

105 [symbolic output] 1 * v2 + 0

... ...

130 [symbolic output] 1 * v4 + 0

... ...

134 [trace] return from main(), line 554

135 -------- end of 1st run --------

136 [symbolic input of 2nd run] [^v4]

137 [symbolic input of 2nd run] v2

138 [symbolic input of 2nd run] v3 v4

139 [trace] entry to main(), line 523

140 [trace] false branch taken, line 527

141 [trace] entry to getpat(), line 249

... ...

209 [trace] switch, line 347

210 [trace] case NCCL, line 369

211 [trace] true branch taken, line 370

212 [pc] 1 * v3 != 10

213 [trace] true branch taken, line 378

214 [trace] return from omatch(), line 384

... ...

228 [trace] false branch taken, line 468

229 [symbolic output] 1 * v2 + 0

230 [debugging diagnosis] output has

 been normal up to this point

231 [trace] false branch taken, line 467

232 [trace] return from putsub(), line 479

233 [trace] false branch taken, line 498

234 [trace] true branch taken, line 491

235 [trace] entry to amatch(), line 422

236 [trace] true branch taken, line 427

237 [trace] false branch taken, line 428

238 [trace] entry to omatch(), line 332

239 [trace] false branch taken, line 337

240 [trace] entry to in_pat_set(), line 181

241 [trace] return from in_pat_set(),

line 182

242 [trace] false branch taken, line 341

243 [trace] switch, line 347

244 [trace] case NCCL, line 369

245 [trace] true branch taken, line 370

246 [pc] 1 * v4 != 10

247 [trace] true branch taken, line 378

248 [trace] return from omatch(), line 384

249 [trace] false branch taken, line 448

250 [trace] entry to patsize(), line 391

251 [trace] entry to in_pat_set(), line 181

252 [trace] return from in_pat_set(), line 182

253 [trace] false branch taken, line 393

254 [trace] switch, line 397

255 [trace] case NCCL, line 404

256 [trace] return from patsize(), line 413

257 [trace] false branch taken, line 427

258 [trace] return from amatch(), line 454

259 [trace] true branch taken, line 494

260 [trace] entry to putsub(), line 462

261 [trace] true branch taken, line 467

262 [trace] false branch taken, line 468

263 [symbolic output] 1 * v2 + 0

264 [debugging diagnosis] failure is detected for the above output

265 [debugging diagnosis] expected output is 1 * v4 + 0

266 [debugging diagnosis] trigger of failure is as follows:

267 1 * v4 + -1 * v2 != 0

268 [trace] false branch taken, line 467

269 [trace] return from putsub(), line 479

270 [trace] false branch taken, line 498

271 [trace] false branch taken, line 491

272 [trace] return from subline(), line 504

273 [trace] return from change(), line 518

274 [trace] return from main(), line 554

275 -------- end of 2nd run --------

276 [example input of 1st run] '@' 'A' '@B'

277 [example output of 1st run] 'AB'

278 [example input of 2nd run] '[^B]' 'A' '@B'

279 [example output of 2nd run] 'AA'

280 [frequency] path of 1st run occurs in violations of MR:

 1 time(s)

281 [frequency] path of 2nd run occurs in violations of MR:

 2 time(s)

282 [current debugging focus] 2nd run

Fig. 5. Failure Report for Version 14 of the replace Program (where certain rows have been omitted owing to space limit)

suggests users to pay attention to the follow-up execution,
as printed in row 282. The system further identifies that
the output has been normal up to row 229, but goes wrong
in row 263. Therefore, row 230 reports that “output has

been normal up to this point”, and rows 231 to 263
are highlighted because they constitute the portion of the
execution directly leading to the failure. In fact, the failure
is caused by the event reported in row 245: “[trace]
true branch taken, line 370” — a correct execution
should take a false instead of a true branch at this decision
point. Row 265 further reports that the expected symbolic
value of the output in row 263 should be “1 * v4 +

0”, which is the symbolic value produced by the initial
execution (in row 130.)

Based on the highlighted debugging information in Fig. 5,
our debugger further highlights a total of 52 lines of
source code for inspection. These lines of code are not
shown in this paper. Version 14 has a total of 512 lines of
source code excluding blanks and comments. The number
of highlighted lines of source code can be greater than the
number of highlighted rows in the failure report as multiple
lines of source code may be executed (and highlighted)
between two rows in the failure report. We can go on to
employ program slicing techniques (see, for example, [2],
[46]) to further exclude statements having no impact on the
output value reported in row 263. In this way, the focus of

debugging will be further narrowed down. Such a program
slicing component, however, has not been incorporated
into our current system owing to resource limits and also
because this component is not the focus of our present
research project.

It has been found that for each of the 52 failures reported
in Table 7, the user can always identify the root cause of
the failure using the highlighted debugging information of
the failure report. Furthermore, for each of the 52 failures,
two different percentages are computed and reported in
Table 7 as indicators of the debugging effort. The first is the
source line percentage (SLP), which represents the number
of highlighted lines of source code divided by the total
number of lines of the source code. The second is the
failure report percentage (FRP), which represents the number
of highlighted rows in the failure report divided by the
total number of rows in the failure report. It should be
noted that the number of rows of a failure report varies,
depending on the user’s configuration that specifies the
types of information to be printed. In any case, for a
nontrivial program, the main content of a failure report is
the execution trace (that is, the rows starting with “[trace].”)
For ease of comparison, therefore, we count only this type
of row when calculating FRP. Hence, for the failure report
shown in Fig. 5, its total number of rows is counted as 231,
of which 31 are highlighted (namely, rows 231 to 245 and

13

rows 247 to 262.)
To summarize the 52 filled cells of Table 7, the SLP values

range from 2 percent (minimum) to 13 percent (maximum)
with a mean of 7 percent. The FRP values range from 3
percent (minimum) to 73 percent (maximum) with a mean
of 10 percent. The highest FRP (73 percent) is reached when
version 10 is verified against MR4. We find that, although
this percentage is high, the highlighted rows are indeed a
genuine cause-effect chain: The fault in the program has
caused many additional iterations of a loop body and,
therefore, a long list of execution traces within the loop
body have been highlighted. The number of source lines
highlighted, on the other hand, is quite small (SLP = 4%.)
The second largest FRP (26 percent) occurs when version 12
is verified against MR4. This is also due to iterations of a
loop. In fact, the 128 rows of highlighted execution traces
involve only 16 unique rows, and the number of source
lines highlighted is also small (SLP = 5%.) It can be
concluded that the experimental results shown in Table 7
demonstrate that our debugging technique can effectively
reduce users’ debugging effort.

4 LIMITATIONS AND POTENTIAL REMEDIES

The underlying toolset that supports semi-proving is global
symbolic evaluation and symbolic execution. We recognize
that fully automated global symbolic evaluation and con-
straint solving may not necessarily be realized for any
arbitrary program, especially for those involving complex
loops, arrays, or pointers. In such situations, we can more
effectively conduct semi-proving on a selected set of paths
to achieve specific coverage criteria, or to verify specific
critical paths. In this situation, semi-proving becomes a
symbolic-testing approach, that is, testing with symbolic
inputs. Note that, in this situation, we will need to set
an upper bound for the search in the symbolic execution
tree. The value of such an upper bound depends on the
testing resources available. This value directly affects the
cost-effectiveness of the method and may be difficult to
decide. Setting such an upper bound will also limit the
fault-detection capability of our method when the fault can
only be detected at a deeper level of the symbolic execution
tree. This is, however, a general problem faced by any
verification method based on symbolic executions.

Another limitation of symbolic-execution-based
approaches is the complexity of path conditions. To
alleviate this problem, a dynamic approach that combines
both symbolic and concrete executions has been developed
(see Godefroid et al. [32] and Sen et al. [52].) When some
symbolic expressions cannot be handled by the constraint
solver, the CUTE tool [52], for instance, will replace a
symbolic value in the expression with a concrete value
so that the complexity of the expression can always be
under control. This approach has also been applied to the
testing of dynamic Web applications written in PHP [4]. A
weakness of this strategy is that it sacrifices generality for
scalability.

When there are a large number of paths to verify, the
efficiency of symbolic-execution-based approaches is also

a concern. There are, however, algorithms and tools that
tackle such tasks more efficiently. The Java PathFinder
model checker [1], [44], for example, uses a backtracking
algorithm to traverse the symbolic execution tree instead
of starting from scratch for every symbolic execution.

To achieve higher scalability for large software appli-
cations, it has been proposed by Godefroid [31] to use
summaries, generated by symbolic execution, to describe
the behavior of each individual function of the program
under test. Whenever a function is called, the instrumented
program under test will check whether a summary for that
function is already available for the current calling context.
This algorithm is functionally equivalent to DART [32] but
can be much more efficient for large applications.

We would like to point out that, although symbolic
execution can provide higher confidence of the correctness
of programs than concrete executions, it may need to
have caveats when used to prove program properties. To
verify a division function, for instance, a metamorphic
relation can be identified as (a/b) × (b/c) = (a/c). If
“b==0” does not appear in path conditions of the division
function, some symbolic executors may “prove” that this
metamorphic relation is satisfied without warning the user
that b must take a nonzero value. Our method should
therefore be used in conjunction with other techniques
that check safety properties, such as those for detecting
data overflow/underflow and memory leak (see [30], for
instance.)

Another limitation of our method is the availability
of metamorphic relations. The first category of programs
amenable to metamorphic relations that one can think of
is, of course, numerical programs. However, metamorphic
relations also widely exist for many programs that do not
involve numerical inputs. The replace program in our case
study, for instance, involves only strings of characters as
inputs. Zhou et al. [60] have identified a number of meta-
morphic relations to test Web search engines. In pervasive
computing [10] and Web services [11], metamorphic rela-
tions have also been identified and employed for software
testing.

For the purpose of debugging, a limitation of our method
is that multiple execution paths are involved. While heuris-
tic approaches do exist to help identify genuine failure
paths, users may have to inspect all the execution paths
in worst case scenarios.

Another limitation in debugging is the identification of
the trigger of the failure, which is obtained by calculat-
ing the difference between the two conditions MFCC and
MPC. The computation of the difference is nontrivial and
sometimes may not be done automatically. It should also be
noted that different MRs may generate different MFCCs and
MPCs. Even for the same MR, there can be more than one
MPC. As a result, different triggers may be generated for the
same fault. On the other hand, each of these triggers will
provide clues for the discovery of the nature of the fault. It
is worthwhile to conduct future research on the usefulness
of various triggers.

14

5 COMPARISONS WITH RELATED WORK

As semi-proving is an integrated method for testing, prov-
ing, and debugging, we will compare it with related work
along the lines of these three topics.

5.1 Testing

While semi-proving finds its basis from metamorphic test-
ing, the former has incorporated many new features that
have never been considered by the latter.

Semi-proving uses symbolic inputs and hence entails
nontrivial effort in its implementation, whereas metamor-
phic testing uses concrete inputs and is therefore much
easier to implement. Semi-proving, however, has unique
advantages. First, not all inputs that exercise a failure path
may necessarily cause a failure. Among all the inputs that
exercise the failure paths in the program Med discussed
in Sections 2.4 and 2.5, for instance, only those satisfying
the trigger cause a failure. Whether or not a concrete
test case meets the trigger condition is purely by chance.
On the other hand, semi-proving guarantees the detection
of the failure. Second, if the program under test is cor-
rect, metamorphic testing with concrete inputs can only
demonstrate that the program satisfies the metamorphic
relation for the finite set of tested inputs. Semi-proving,
on the other hand, can demonstrate the satisfaction of the
metamorphic relation for a much larger set of inputs, which
may be an infinite set. This gives a higher confidence.
Furthermore, semi-proving can be further combined with
conventional testing to extrapolate the correctness of the
program to related untested inputs. Third, when a failure
is detected, semi-proving will provide diagnostic informa-
tion for debugging in terms of constraint expressions, but
metamorphic testing does not have this capability.

5.2 Proving

A method has been developed by Yorsh et al. [57] to
combine testing, abstraction, and theorem proving. Using
this method, program states collected from executions of
concrete test cases are generalized by means of abstractions.
Then, a theorem prover will check the generalized set
of states against a coverage criterion and against certain
safety properties. When the check is successful, the safety
properties are proven.

A common ground between this method and ours is that
both methods attempt to verify necessary properties for
program correctness. The properties of interest, however,
are very different between the two approaches. Yorsh et al.’s
method [57] verifies safety properties such as the absence of
memory leaks and the absence of null pointer dereference
errors. On the other hand, semi-proving is interested in
metamorphic relations, which are more relevant to logic
errors [48], [49]. Logic errors seldom cause memory abnor-
malities like memory access violations, segmentation faults,
or memory leaks. Instead, they produce incorrect outputs.
Furthermore, the safety properties discussed by Yorsh et
al. [57] are at the coding level, but metamorphic relations
are usually identified from the problem domain. Verifying

metamorphic relations and verifying safety properties are
therefore complementary to each other — this has been
discussed previously. Second, the objectives of the two
methods are different. Yorsh et al.’s method [57] “is oriented
towards finding a proof rather than detecting real errors,”
and “does not distinguish between a false error and a
real error.” On the other hand, semi-proving is intended
for both proving properties and detecting errors, and any
error detected by semi-proving is a real error. There is no
false error in semi-proving. Furthermore, although both
Yorsh et al.’s method and semi-proving combine testing
and proving, this is done in different senses. The former
enhances testing (with concrete inputs) to the proof of safety
properties. Semi-proving extrapolates testing (with concrete
or symbolic inputs) to the correctness of the program for
related untested inputs.

Gulavani et al. [35] proposed an algorithm “SYNERGY,”
which combines testing and proving to check program
properties. SYNERGY unifies the ideas of counterexample-
guided model checking, directed testing [32], and partition
refinement. According to Gulavani et al. [35], the SYNERGY
algorithm can be more efficient in constructing proofs of
correctness for programs with the “diamond” structure of
if-then-else statements, compared with the algorithm used
in DART [32]. 5 This is because the goal of SYNERGY is
different from that of other testing methods: It does not
attempt to traverse the execution tree; instead, it attempts
to cover all abstract states (equivalence classes.) Therefore,
SYNERGY does not need to enumerate all the paths.

Our method, on the other hand, does not involve ab-
straction. It adopts symbolic-analysis and symbolic ex-
ecution techniques, and more information is generated
for debugging when a failure is detected. We note that
metamorphic relations are a type of property different from
safety properties conventionally discussed in the literature,
and MRs involve outputs of multiple executions of a
program under test. As program output is affected by
almost every part of its code, the efficiency of applying
abstraction to the verification of metamorphic relations is
unclear, but worth investigation in future research.

5.3 Debugging

Zeller and Hildebrandt [59] proposed a Delta Debugging
algorithm that transforms a failure-causing input into a
minimal form that can still fail the program. This is done
by continuously narrowing down the difference between
failure-causing and non-failure-causing inputs. Zeller [58]
further developed the Delta Debugging method by exam-
ining “what’s going on inside the program” during the
execution. He considered the failed execution as a sequence
of program states, and only part of the variables and
values in some of the states are relevant to the failure. He
proposed isolating these relevant variables and values by
continuously narrowing the difference in program states in
successful and failed executions. This narrowing process

5. The time complexity of the depth-first search algorithm used in our
implementation is similar to that of DART.

15

was conducted by altering the runtime program states and
then assessing the outcomes of the altered executions.

Although our debugging approach also compares suc-
cessful and failed executions, it is very different from
the above techniques. Suppose we are given a program
P (x, y) and two test cases t1 : (x = 3, y = 5) and
t2 : (x = 3, y = 2). Suppose P computes correctly for
t1 but fails for t2. Zeller’s method [58] would isolate y = 2
as relevant to the failure because the program fails after
altering y from 5 to 2. We observe, however, that concrete
values may not necessarily show the root cause of a failure
in many situations. The failure of program P , for example,
may not be relevant only to the variable y and the value
“2,” but pertinent to some relation between both variables
x and y, such as when x > y. In this way, test cases
like t3 : (x = 6, y = 5) will also show a failure. Our
approach therefore identifies a set of failure-causing inputs
in terms of constraint expressions that provide additional
information about the characteristics of the defect. Another
difference is that their methods assume the existence of
a “testing function” that can tell whether a test result
is “pass,” “fail,” or “unresolved.” This testing function
is similar to an automated oracle. For many problems,
however, such a function is not available. For instance,
the outputs of a program that computes the sine function
cannot be categorized into “pass” or “fail” automatically
unless there is a testing function that correctly computes the
sine function. On the other hand, by making reference to
metamorphic relations, our method can be applied in such
situations.

He and Gupta [39] introduced an approach to both
locating and correcting faulty statements in a program
under test. The approach combines ideas from correctness
proving and software testing to locate a likely erroneous
statement and then correct it. It assumes that a correct
specification of the program under test is given in terms
of preconditions and postconditions. It also assumes that
only one statement in the program under test is at fault.
Using the concept of path-based weakest precondition, the
notions of a hypothesized program state and an actual program
state at every point along the failure path (execution trace)
are defined. He and Gupta’s algorithm [39] traverses the
failure path and compares the states at each point to
detect evidence for a likely faulty statement. Such “evidence”
will emerge if a predicate representing the actual program
states is less restrictive than the predicate representing the
hypothesized program states. The algorithm then generates
a modification to the likely faulty statement. The modified
program is then tested using all existing test cases.

The above method requires that the program under test
contain “a single error statement” and that the precondi-
tions and postconditions be given in terms of first order
predicate logic. The experiments conducted by He and
Gupta [39] were on a small scale, with a limited number of
error types. We observe that, as metamorphic relations can
be used as a special type of postcondition, there is potential
for the above method to be combined with semi-proving to
locate and correct faults. This will be an interesting topic

for future research.
Our debugging technique is also different from the ap-

proach developed by Jones et al. [43]. Their approach is to
design and assign a probability to each statement of the
program to indicate how likely it is that this statement is at
fault. This is a probabilistic approach and does not look into
the cause of the failure. Our approach, on the other hand,
looks into the cause-effect chain that leads to the failure.

6 CONCLUSION

We have presented an integrated method for proving,
testing, and debugging. First, it proves that the program
satisfies selected program properties (that is, metamorphic
relations) throughout the entire input domain or for a
subset of it. When combined with concrete test cases,
our method may also enable us to extrapolate from the
correctness of a program for the concrete test cases to
the correctness of the program for related untested inputs.
Second, our method is also an automatic symbolic-testing
technique. It can be used to test selected program paths.
It employs both black-box (functional) knowledge from the
problem domain for selecting metamorphic relations and
white-box (structural) knowledge from program code for
symbolic execution. As a result, subtle faults in software
testing, such as the missing path errors, can be better tack-
led. Third, our method also supports automatic debugging
through the identification of constraints for failure-causing
inputs.

The implementation and automation of semi-proving
is also relatively easier than conventional program prov-
ing techniques. This is because metamorphic relations are
weaker than program correctness and hence they can be
easier to prove.

For future research, apart from the topics highlighted in
relevant places in Sections 4 and 5, we will also study the
effectiveness of different metamorphic relations for different
types of faults.

7 ACKNOWLEDGMENTS

The authors are grateful to Willem Visser for his helps
and discussions on symbolic execution techniques using
the Java PathFinder model checker [1], [44]. They are also
grateful to Giovanni Denaro and his group for provid-
ing the symbolic execution tool SAVE [21]. They would
like to thank Joxan Jaffar and Roland Yap for providing
a constraint solver [42]. They would also like to thank
Bernhard Scholz and Phyllis Frankl for their information
and discussions on symbolic-evaluation techniques.

REFERENCES

[1] Java PathFinder Home Page. http://babelfish.arc.nasa.gov/trac/jpf,
2010.

[2] H. Agrawal, J.R. Horgan, S. London, and W.E. Wong,
“Fault localization using execution slices and dataflow tests,”
Proceedings of the 6th International Symposium on Software
Reliability Engineering (ISSRE ’95), pp. 143–151. Los Alamitos,
CA: IEEE Computer Society, 1995.

16

[3] P.E. Ammann and J.C. Knight, “Data diversity: an approach
to software fault tolerance,” IEEE Transactions on Computers,
vol. 37, no. 4, pp. 418–425, 1988.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M.D. Ernst, “Finding bugs in dynamic web applications,”
Proceedings of the 2008 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2008), pp. 261–272.
New York, NY: ACM, 2008.

[5] L. Baresi and M. Young, “Test oracles,” Technical Report CIS-
TR01-02, Department of Computer and Information Science,
University of Oregon, Eugene, OR, 2001.

[6] B. Beizer, Software Testing Techniques. New York, NY: Van
Nostrand Reinhold, 1990.

[7] M. Blum and S. Kannan, “Designing programs that check
their work,” Proceedings of the 31st Annual ACM Symposium
on Theory of Computing (STOC ’89), pp. 86–97. New York, NY:
ACM, 1989. Also Journal of the ACM, vol. 42, no. 1, pp. 269–
291, 1995.

[8] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing / correcting
with applications to numerical problems,” Proceedings of the
22nd Annual ACM Symposium on Theory of Computing (STOC
’90), pp. 73–83. New York, NY: ACM, 1990. Also Journal of
Computer and System Sciences, vol. 47, no. 3, pp. 549–595, 1993.

[9] B. Burgstaller, B. Scholz, and J. Blieberger, Symbolic Analysis of
Imperative Programming Languages, Lecture Notes in Computer
Science, vol. 4228, pp. 172–194. Berlin, Germany: Springer,
2006.

[10] W.K. Chan, T.Y. Chen, H. Lu, T.H. Tse, and S.S. Yau,
“Integration testing of context-sensitive middleware-based
applications: a metamorphic approach,” International Journal
of Software Engineering and Knowledge Engineering, vol. 16,
no. 5, pp. 677–703, 2006.

[11] W.K. Chan, S.C. Cheung, and K.R.P.H. Leung, “A metamor-
phic testing approach for online testing of service-oriented
software applications,” International Journal of Web Services
Research, vol. 4, no. 2, pp. 60–80, 2007.

[12] H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen, “In black and
white: an integrated approach to class-level testing of object-
oriented programs,” ACM Transactions on Software Engineering
and Methodology, vol. 7, no. 3, pp. 250–295, 1998.

[13] H.Y. Chen, T.H. Tse, and T.Y. Chen, “TACCLE: a methodology
for object-oriented software testing at the class and cluster
levels,” ACM Transactions on Software Engineering and
Methodology, vol. 10, no. 1, pp. 56–109, 2001.

[14] T.Y. Chen, S.C. Cheung, and S.M. Yiu, “Metamorphic testing:
a new approach for generating next test cases,” Technical
Report HKUST-CS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, Hong
Kong, 1998.

[15] T.Y. Chen, J. Feng, and T.H. Tse, “Metamorphic testing of
programs on partial differential equations: a case study,”
Proceedings of the 26th Annual International Computer Software
and Applications Conference (COMPSAC 2002), pp. 327–333. Los
Alamitos, CA: IEEE Computer Society, 2002.

[16] T.Y. Chen, D.H. Huang, T.H. Tse, and Z.Q. Zhou, “Case
studies on the selection of useful relations in metamorphic
testing,” Proceedings of the 4th Ibero-American Symposium
on Software Engineering and Knowledge Engineering (JIISIC
2004), pp. 569–583. Madrid, Spain: Polytechnic University of
Madrid, 2004.

[17] T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Semi-proving: an
integrated method based on global symbolic evaluation and
metamorphic testing,” Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2002), pp. 191–195. New York, NY: ACM, 2002.

[18] T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Fault-based testing
without the need of oracles,” Information and Software

Technology, vol. 45, no. 1, pp. 1–9, 2003.

[19] L.A. Clarke and D.J. Richardson, “Symbolic evaluation
methods: implementations and applications,” Computer
Program Testing, B. Chandrasekaran and S. Radicchi (editors),
pp. 65–102. Amsterdam, The Netherlands: Elsevier, 1981.

[20] W.J. Cody, Jr. and W. Waite, Software Manual for the Elementary
Functions. Englewood Cliffs, NJ: Prentice Hall, 1980.

[21] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzè, “Using
symbolic execution for verifying safety-critical systems,”
Proceedings of the Joint 8th European Software Engineering
Conference and 9th ACM SIGSOFT International Symposium on
Foundation of Software Engineering (ESEC 2001/FSE-9), pp. 142–
151. New York, NY: ACM, 2001.

[22] R.A. DeMillo and A.J. Offutt, “Constraint-based automatic
test data generation,” IEEE Transactions on Software Engineer-
ing, vol. 17, no. 9, pp. 900–910, 1991.

[23] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,”
Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science, vol. 4963, pp. 337–340.
Berlin, Germany: Springer, 2008.

[24] L.K. Dillon, “Using symbolic execution for verification of
Ada tasking programs,” ACM Transactions on Programming
Languages and Systems, vol. 12, no. 4, pp. 643–669, 1990.

[25] T. Fahringer and A. Požgaj, “P3T+: a performance estimator
for distributed and parallel programs,” Scientific Programming,
vol. 8, no. 2, pp. 73–93, 2000.

[26] T. Fahringer and B. Scholz, “A unified symbolic evaluation
framework for parallelizing compilers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 11, pp. 1105–1125,
2000.

[27] T. Fahringer and B. Scholz, Advanced Symbolic Analysis for
Compilers: New Techniques and Algorithms for Symbolic Program
Analysis and Optimization, Lecture Notes in Computer Science,
vol. 2628. Berlin, Germany: Springer, 2003.

[28] M. Geller, “Test data as an aid in proving program
correctness,” Communications of the ACM, vol. 21, no. 5,
pp. 368–375, 1978.

[29] M.P. Gerlek, E. Stoltz, and M. Wolfe, “Beyond induction
variables: detecting and classifying sequences using a
demand-driven SSA form,” ACM Transactions on Programming
Languages and Systems, vol. 17, no. 1, pp. 85–122, 1995.

[30] P. Godefroid, M.Y. Levin, and D.A. Molnar, “Active property
checking,” Proceedings of the 8th ACM International Conference
on Embedded Software (EMSOFT 2008), pp. 207–216. New York,
NY: ACM, 2008.

[31] P. Godefroid, “Compositional dynamic test generation,”
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL
2007), pp. 47–54. New York, NY: ACM, 2007.

[32] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed
automated random testing,” Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2005), pp. 213–223. New York, NY:
ACM, 2005.

[33] A. Gotlieb, “Exploiting symmetries to test programs,”
Proceedings of the 14th International Symposium on Software
Reliability Engineering (ISSRE 2003), pp. 365–374. Los
Alamitos, CA: IEEE Computer Society, 2003.

[34] A. Gotlieb and B. Botella, “Automated metamorphic testing,”
Proceedings of the 27th Annual International Computer Software
and Applications Conference (COMPSAC 2003), pp. 34–40. Los
Alamitos, CA: IEEE Computer Society, 2003.

[35] B.S. Gulavani, T.A. Henzinger, Y. Kannan, A.V. Nori, and
S.K. Rajamani, “SYNERGY: a new algorithm for property
checking,” Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT
2006/FSE-14), pp. 117–127. New York, NY: ACM, 2006.

17

[36] M.R. Haghighat and C.D. Polychronopoulos, “Symbolic
analysis for parallelizing compilers,” ACM Transactions on
Programming Languages and Systems, vol. 18, no. 4, pp. 477–
518, 1996.

[37] B. Hailpern and P. Santhanam, “Software debugging, testing,
and verification,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12,
2002.

[38] M. Hall, Jr., The Theory of Groups. Providence, RI: AMS
Chelsea, 1999.

[39] H. He and N. Gupta, “Automated debugging using path-
based weakest preconditions,” Fundamental Approaches to
Software Engineering (FASE 2004), Lecture Notes in Computer
Science, vol. 2984, pp. 267–280. Berlin, Germany: Springer,
2004.

[40] W.E. Howden, “Reliability of the path analysis testing
strategy,” IEEE Transactions on Software Engineering, vol. SE-
2, no. 3, pp. 208–215, 1976.

[41] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experi-
ments on the effectiveness of dataflow- and controlflow-based
test adequacy criteria,” Proceedings of the 16th International
Conference on Software Engineering (ICSE ’94), pp. 191–200. Los
Alamitos, CA: IEEE Computer Society, 1994.

[42] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap,
“The CLP(R) language and system,” ACM Transactions on
Programming Languages and Systems, vol. 14, no. 3, pp. 339–
395, 1992.

[43] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” Proceedings of the 24th
International Conference on Software Engineering (ICSE 2002),
pp. 467–477. New York, NY: ACM, 2002.

[44] S. Khurshid, C.S. Păsăreanu, and W. Visser, “Generalized
symbolic execution for model checking and testing,”
Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2003). Warsaw, Poland, 2003.

[45] J. King, “Symbolic execution and program testing,” Commu-
nications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[46] B. Korel and J. Rilling, “Application of dynamic slicing
in program debugging,” Proceedings of the 3rd International
Workshop on Automatic Debugging (AADEBUG ’97), pp. 43–58.
Linkping, Sweden, 1997.

[47] R.J. Lipton, “New directions in testing,” Proceedings of the
DIMACS Workshop on Distributed Computing and Cryptography,
pp. 191–202. American Mathematical Society, Providence, RI,
1991.

[48] C. Liu, L. Fei, X. Yan, S.P. Midkiff, and J. Han, “Statistical
debugging: a hypothesis testing-based approach,” IEEE
Transactions on Software Engineering, vol. 32, no. 10, pp. 831–
848, 2006.

[49] C. Liu, X. Yan, and J. Han, “Mining control flow
abnormality for logic error isolation,” Proceedings of the
6th SIAM International Conference on Data Mining (SDM
2006). Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2006.

[50] A.J. Offutt and E.J. Seaman, “Using symbolic execution to
aid automatic test data generation,” Systems Integrity, Software
Safety, and Process Security: Proceedings of the 5th Annual
Conference on Computer Assurance (COMPASS ’90), pp. 12–21.
Los Alamitos, CA: IEEE Computer Society, 1990.

[51] M. Pezzè and M. Young, Software Testing and Analysis: Process,
Principles, and Techniques. New York, NY: Wiley, 2008.

[52] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit
testing engine for C,” Proceedings of the Joint 10th European
Software Engineering Conference and 13th ACM SIGSOFT
International Symposium on Foundation of Software Engineering
(ESEC 2005/FSE-13), pp. 263–272. New York, NY: ACM, 2005.

[53] T.H. Tse, T.Y. Chen, and Z.Q. Zhou, “Testing of large

number multiplication functions in cryptographic systems,”
Proceedings of the 1st Asia-Pacific Conference on Quality Software
(APAQS 2000), pp. 89–98. Los Alamitos, CA: IEEE Computer
Society, 2000.

[54] T.H. Tse, F.C.M. Lau, W.K. Chan, P.C.K. Liu, and C.K.F. Luk,
“Testing object-oriented industrial software without precise
oracles or results,” Communications of the ACM, vol. 50, no. 8,
pp. 78–85, 2007.

[55] E.J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, 1982.

[56] S. Wolfram, The Mathematica Book. Wolfram Media, 2003.

[57] G. Yorsh, T. Ball, and M. Sagiv, “Testing, abstraction,
theorem proving: better together!,” Proceedings of the 2006
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2006), pp. 145–156. New York, NY: ACM,
2006.

[58] A. Zeller, “Isolating cause-effect chains from computer
programs,” Proceedings of the 10th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT
2002/FSE-10), pp. 1–10. New York, NY: ACM, 2002.

[59] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software Engi-
neering, vol. 28, no. 2, pp. 183–200, 2002.

[60] Z.Q. Zhou, T.H. Tse, F.-C. Kuo, and T.Y. Chen, “Automated
functional testing of Web search engines in the absence
of an oracle,” Technical Report TR-2007-06, Department of
Computer Science, The University of Hong Kong, Hong
Kong, 2007.

Tsong Yueh Chen received the BSc and MPhil
degrees from The University of Hong Kong, the MSc
degree and DIC from Imperial College London, and
the PhD degree from The University of Melbourne.
He is currently the chair professor of software engi-
neering and the director of the Centre for Software
Analysis and Testing at Swinburne University of
Technology, Australia. His research interests include
software testing, debugging, software maintenance,
and software design. He is a member of the IEEE.

T.H. Tse received the PhD degree in information
systems from the London School of Economics. He
is a professor in computer science at The University
of Hong Kong. He was a visiting fellow at the
University of Oxford. His current research interest
is in program testing, debugging, and analysis. He
is the steering committee chair of QSIC and an
editorial board member of the Journal of Systems
and Software, Software Testing, Verification and
Reliability, and Software: Practice and Experience.
He is a fellow of the British Computer Society, a

fellow of the Institute for the Management of Information Systems, a fellow
of the Institute of Mathematics and its Applications, and a fellow of the Hong
Kong Institution of Engineers. He was decorated with an MBE by The Queen
of the United Kingdom. He is a senior member of the IEEE.

Zhi Quan Zhou received the BSc degree in com-
puter science from Peking University, China, and
the PhD degree in software engineering from The
University of Hong Kong. He is currently a lecturer
in software engineering at the University of Wol-
longong, Australia. His research interests include
software testing, debugging, software maintenance,
symbolic analysis, and quality assessment of Web
search engines.

