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On Centroidal Voronoi Tessellation —
Energy Smoothness and Fast Computation

Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, Chenglei Yang

Centroidal Voronoi tessellation (CVT) is a fundamental geometric structure that finds many ap-
plications in computational science and engineering, including computer graphics. The prevailing
method for computing CVT is Lloyd’s method, which has linear convergence and is inefficient in
practice. Our goal is to develop efficient methods for CVT computation, justify the fast conver-
gence of these methods theoretically and demonstrate their superiority with experimental exam-
ples in various cases. Specifically, it is shown that the CVT energy function has C? smoothness
in convex domains and in most other commonly encountered domains with smooth density, cor-
recting the view in the literature that this function is non-smooth (that is, merely C° but not
CH). Due to its C? smoothness, it is therefore possible to minimize the CVT energy functions
using Newton-like optimization methods and expect fast convergence. We apply quasi-Newton
methods to computing CVT and demonstrate their faster convergence than Lloyd’s method and
their better robustness than the Lloyd-Newton method, a previous attempt at CVT computation
acceleration. The application of these results to surface remeshing in computer graphics is also
studied.

Key Words: centroidal Voronoi tessellation, constrained CVT, Lloyd’s method, triangular meshes,
remeshing, numerical optimization, quasi-Newton methods

1. INTRODUCTION

A centroidal Voronoi tessellation (CVT) is a special Voronoi tessellation of a compact domain in Euclidean
space by a set of seed points such that each seed point coincides with the centroid of its Voronoi cell. For
example, Figure 1(a) shows an ordinary Voronoi tessellation of a circular domain where the seeds do not
coincide with the centroids of the Voronoi cells, and Figure 1(b) shows a CVT of the same domain. CVT
provides optimal positions of seed points in the domain with respect to a given density function and is
therefore very useful in many fields, including optimal quantization, clustering, data compression, optimal
mesh generation, cellular biology, optimal quadrature, coverage control and geographical optimization, etc.
An excellent introduction to CVT in theory and applications can be found in [Du et al. 1999; Okabe et al.
2000].

CVT has recently been applied to mesh generation and geometry processing [Du and Gunzburger 2002;
Du and Wang 2003; Alliez et al. 2003; Alliez et al. 2005] and vector field visualization [Du and Wang
2004; McKenzie et al. 2005]. Peyré and Cohen [2004] extend CVT using geodesic metric on mesh surfaces.
Anisotropic CVT on surfaces is also considered by Du et al. [2003; 2005a] and Valette et al. [2004; 2008].
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Fig. 1. (a): An ordinary Voronoi tessellation of a circular domain with 7 seeds marked with black dots and the the centroids of the
Voronoi cells marked by small circles; (b): a CVT of the same domain with 7 seeds.

(b)

Equivalently, CVT can be defined by the critical points (that is, gradient vanishing points) of a certain CVT
energy function, which we will discuss in detail shortly. There are several outstanding problems with
CVT, such as computing a CVT with the globally minimal CVT energy and shape characterization of this
globally optimal CVT, as stipulated by Gersho’s conjecture [Gersho 1979]. The globally minimal CVT is
difficult to obtain because the CVT energy function is nonlinear and non-convex. Gresho’s conjecture in
2D has been proved by Toth [2001], asserting that in a globally optimal CVT the Voronoi cells away from
domain boundary approach to regular hexagons as the number of seeds tends to infinity [Gruber 2004].
Gersho’s conjecture is still open in nD, n > 3, though partial empirical results are available in 3D [Du and
Wang 2005b].

In the present paper we are interested in efficient CVT computation. The most popular method of CVT
computation is Lloyd’s method [Lloyd 1982]. The popularity of Lloyd’s method is due to its simplicity and
robustness — it decreases the CVT energy value monotonically. However, Lloyd’s method is inefficient — it
has only linear convergence and is extremely slow for practical applications.

The probabilistic method by MacQueen [1966] is another method for CVT computation, but is not widely
used in practice for its lack of computational advantage. For acceleration of CVT computation, Lloyd’s
method has been implemented in a multi-grid framework [Du and Emelianenko 2006] and MacQueen’s
method on a parallel platform [Ju et al. 2002].

Although CVT is naturally formulated as the solution to an optimization problem, there has been little
progress in efficient CVT computation beyond Lloyd’s method from the optimization point of view. This
is probably due to the complicated piecewise nature of the CVT energy function and the (wrong) belief that
this function is nonsmooth [Iri et al. 1984]. One notable previous attempt at accelerating CVT computation
is the Lloyd-Newton method [Du and Emelianenko 2006]. Since this method minimizes another function
different from the CVT energy function, it often produces undesirable CVTs corresponding unstable critical
points of the CVT energy function. We will analyze this in detail later in the paper.

We make the following contributions in both theory and application for efficient CVT computation:

—it is shown that the piecewise CVT function is C? in a convex compact domain in 2D and 3D as well as other
commonly encountered situations with a sufficiently smooth (C?) density function;

—we accelerate CVT computation by applying quasi-Newton methods and show that these methods are
more efficient than Lloyd’s method and the Lloyd-Newton method [Du and Emelianenko 2006], as ex-
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pected due to the newly established C? smoothness of the CVT energy function;

—we develop an efficient quasi-Newton method for computing the constrained CVT on polyhedral sur-
faces for surface remeshing.

The plan for the remainder of the paper is as follows: in Section 2 we present the formulation of CVT prob-
lem and review the existing work on CVT computation. We show in Section 3 that the CVT energy function
with sufficiently smoothness density is C? in a convex domain in 2D/3D space and propose in Section 4
to use quasi-Newton methods to accelerate CVT computation and demonstrate its superior efficiency in
Section 5. In Section 6, we extend our smoothness analysis and fast method to CVT computation on mesh
surfaces in 3D, and show how it can be used for quality surface remeshing. We conclude the paper and
discuss the future research in Section 7.

2. BACKGROUND AND PREVIOUS WORK
2.1 CVT formulation

Let X = (x;)_, be an ordered set of n seeds in a connected compact region 0 C RN. The Voronoi region ();
of x; is defined as

Q= {xe Q| x—xl < [x—x, v #i}.

The Voronoi regions ();s of all the seeds form the Voronoi diagram (VD) of X. A natural assumption is that
any two seed points are distinct, i.e., x; # X;, Vi # j, for the Voronoi boundary consists of bisecting lines of
pairs of seeds and a bisecting line is not well defined for two identical seeds. Hence, we shall consider the
behavior of F(X) in I := {X € T|x; # x;, Vi # j}.

Let the domain Q be endowed with a density function p(x) > 0, which is assumed to be C?; therefore p(x)
is bounded, since () is closed; that is, sup, ., [o(x)| < 7 for some constant > 0. Then the centroid of €); is
given by

oo Jo, p(x)xdo
l fQi p(x)do ’
where do is the area differential.

DEFINITION 1. The Voronoi tessellation {);} is a centroidal Voronoi tessellation if x; = ¢;, i = 1,2,...,n,
that is, each seed coincides with the centroid of its Voronoi cell.

A CVT can also be defined from a variational point of view. Define F;(X) = [ e, p(x)||x — x;||*> do for each
seed x;. Then the CVT energy function F : Q"N — R is defined as [Du et al. 1999]

n

F0O = LX) = 1 [ o0l Pdr W

i=1

The term F; expresses the compactness (or inertia momentum) of the Voronoi cell (); associated with the
seed x;. This requirement for compactness is desirable in many applications. For instance, in sampling
theory, we can imagine that () represents a space that needs to be approximated (e.g., a color space of an
image) and that the seeds x; correspond to samples (e.g., the elements of a colormap). Minimizing the
energy F ensures that each sample x; is a representative of about the same amount of information in ().
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The gradient of F(X) is [Iri et al. 1984; Asami 1991; Du et al. 1999]:
ai
aX,’

co, P(x) do is the mass and ¢; the centroid of ();. With this expression for the gradient, it

= 2m;(x; — ¢;) (2)

where m; = [

is easy to see that a CVT corresponds to a critical point of the CVT function F(X), i.e., a point Xy where
the gradient of F(X) is zero. However, a critical point of F(X) may be unstable, that is, when it is a saddle
point. In practice, we prefer a CVT corresponding to a local minimizer of the CVT energy function, since it
represents a more compact Voronoi tessellation than a CVT given by an unstable critical point. Hence, we
have the following equivalent definition of CVT.

DEFINITION 2. A centroidal Voronoi tessellation of a compact domain Q with n seed points X = (x;)I_ is
the Voronoi tessellation given by the seeds Xo which is a critical point of the CV'T energy function F(X). Furthermore,
a CVT is called a stable CVT if X is a local minimizer of F(X), and it is called an optimal CVT if X is a global
minimizer of F(X).

For instance, the CVT of the rectangle shown in Figure 2(a) is unstable, as it corresponds to a saddle point
of F, where the Hessian has some negative eigenvalues. A stable CVT, whose Hessian is positive-definite,
is shown in Figure 2(b).

(@) (b)

Fig. 2. (a): An unstable CVT of 2 seeds in a rectangular domain; (b) a stable CVT, which is also an optimal CVT of the same domain.
Initialized with a slightly perturbed position from the unstable CVT, as shown in (a), Lloyd’s iteration will converge to the stable CVT
in (b).

Since in a CVT each seed x; coincides with the centroid of its Voronoi cell ();, we have

- fQip(x)de
o Jo, p(x) do

This is a system of nonlinear equations, since the boundaries of any Voronoi diagram (VD) cell (); are
determined by all the seeds x;.

Vi, X; =¢C

®)

The fact that a CVT is a critical point of F naturally leads us to Lloyd’s method for computing CVT [Lloyd
1982]. Lloyd’s method is a fixed-point iteration that simply consists of iteratively moving all the seeds to
the centroids of their Voronoi cells, respectively. Its convergence to a CVT was proved in some particular
cases by Du et al. [1999; 2006]. They showed that besides being a fixed-point iteration that solves Equa-
tion (3), Lloyd’s method can be understood as a gradient descent method that always decreases the energy
F without step-size control [Du et al. 1999]. The same type of analysis can be applied to the discrete k-means
algorithm for clustering [Ostrovsky et al. 2006].
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So far, we have seen two equivalent definitions of CVT, from two different points of view.

—Variational characterization : CVT is a critical point of the energy F in Equation (1). In many applications
a stable CVT is desirable, rather than just a CVT given by an unstable critical point, since a stable CVT
provides more compact Voronoi cells. It is these stable CVTs that we aim to compute in the present paper.

—Geometric characterization : CVT is a solution of a system of non-linear equations expressing that each
seed x; coincides with the centroid of its cell ¢; (Equation (3)). The Lloyd-Newton method [Du and
Emelianenko 2006] is based on directly solving this system of equations; as a consequence, it often pro-
duces an unstable CVT. We will analyze this method and compare it with our new methods in detail later
in Section 5.2.

The distinction between these two points of view is at the heart of our approach. From the variational point
of view, Lloyd’s algorithm is a gradient descent method, with linear rate of convergence. We will show
how fully studying CVT computation from this variational point of view will lead us to faster methods
than Lloyd’s method.

2.2 Variational point of view

To go beyond Lloyd’s method, we consider computing CVT by minimizing the CVT energy function F with
a quasi-Newton method. It is well known that a faster convergence rate can be obtained by using higher-
order methods (e.g., Newton method and its variants). However, due to the believed lack of smoothness of
F and the apparent complexity in computing Hessian for a large-scale CVT problem, there have been few
successful attempts in the literature in this direction [Iri et al. 1984; Du and Emelianenko 2006].

Minimizing the piecewise-defined CVT energy function F is a numerical optimization problem with several
unconventional aspects about the structure and continuity of F, as we will explain. Newton iteration for
non-linear optimization uses a 2"¥-order approximation of F :

F(X+6x) = F*(éx) = F(X) + 0x VF + 3(6x Hox)

where éx denotes a small displacement from X, VF denotes the gradient of F, and H is the Hessian. Newton
iteration finds the step vector dx that minimizes the “model function” F*(dx) as follows :

solve Hdx = —VF(X)
X — X+ 0y

As can be seen, since it uses second-order derivatives, Newton method has a chance to work only if F is
at least C? [Nocedal and Wright 2006]. Newton method is not suitable for large-scale problems due to its
costly computation of the full Hessian. Therefore, in practice, one often uses quasi-Newton methods to deal
with large-scale problems.

Despite the recent result [Cortés et al. 2005] that the CVT function F is C!, a major impediment to the
development of fast Newton-like methods for CVT computation is the lack of understanding about the
smoothness of F; for instance, it has long been believed [Iri et al. 1984] that F is nonsmooth, that is, it is
C? but not C!. In contrast, we will show that F is almost always C2. More specifically, F is C? in any
convex domain in 2D and 3D with C? smooth density. When the domain is non-convex, it is still C? in
most cases except for some cases rarely encountered in practice where it becomes C!. Furthermore, these
results carry over to the constrained CVT problem on mesh surfaces. This newly established smoothness of
F provides the necessary justification in our investigation on developing efficient quasi-Newton methods
for accelerating CVT computation.
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Before entering the heart of the matter, we need to explain why studying the continuity of F is a difficult
problem. If one wants to evaluate F and its derivatives for a specific value of the set of variables X = (x;)_;,
it is necessary to construct the Delaunay triangulation of the vertices defined by X (i.e. all the seeds), then
evaluate the integrals over each cell of its dual Voronoi diagram (see Equation (1)) and differentiate them.
The expression of these integrals is rather complicated, since the vertices of the integration domains (); are
the circumcenters of the Delaunay simplices.

Now suppose that we move one of the vertices to change the combinatorial structure of the Delaunay
triangulation, then the expression of F changes as well, since it will be based on a different triangulation. In
other words, F is piecewise defined in the space of X and the pieces correspond to the subsets of the space
of X where the combinatorial structure of the Delaunay triangulation remains the same. A combinatorial
change occurs in 2D when four or even more vertices become co-circular (or 5 or even more vertices become
co-spherical in 3D). While these “degenerate” configurations are often considered as nuisances in mesh
generation, they define “gateways”, or common faces, that connect the pieces of the space of X. Crossing
such a gateway results in changes in the expression of F. As we will see in Section 3, F is C? at such
transitions.

3. ENERGY SMOOTHNESS

For CVT in a 2D convex domain, we have the following theorem.
THEOREM 1. The 2D CVT function is C? in T if Q) is convex and the density function p(X) is C2.
The proof is given in Appendix A.

Following the same idea of the proof for the 2D case, we can also prove the following result for the 3D case.
The proof will be given separately elsewhere, due to space limitation.

THEOREM 2. The 3D CVT function is C? in T if Q) is convex and the density function p(X) is C2.

REMARK 1. In the more general locational optimization problem [Okabe et al. 2000], the distance function in
Equation (1) is a smooth and strict increasing function W(|x —x;||), i.e.,, F(X) = X1y [icq. POOW(|Ix —x;]|) do.
Theorem 1 and 2 still hold in this case.

O 9

p(tl)o f
p(t)O

Fig.3. A configuration where the CVT function is C! Fig. 4. A 2D non-convex CVT after several Lloyd’s iterations. The
CVT energy is C? around this configuration.

In general, Theorem 1 and 2 do not hold for a non-convex domain Q). The C? smoothness of the CVT
function F is lost when a continuous part of d() is contained in a face of a CVT cell or a smooth part of the
boundary curve of ) is tangent to some face of a Voronoi cell — the CVT function is C! but not C? in this
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case. This is illustrated in 2D in Figure 3. Consider the two points p and q in the shown 2D non-convex
domain Q). Fix the point q and let p move from p(ty) up to p(t1). When the bisector line of p and q contains
the thick blue horizontal edge, F is C! but not C2.

The similar situation can occur in 3D as well. It can be shown that this is the only type of situation where C?
smoothness of F is lost. Clearly, this situation rarely occurs in practice during optimization, since in most
cases the faces of the Voronoi cell are not parallel to the domain boundary when there are sufficiently many
seeds with a reasonable distribution (see Figure 4). That is to say, even if the function F(X) is not globally
C? in this case, the regions where an optimization procedure operates on is almost always C2.

REMARK 2. It however seems possible to relax the requirement on the C* smoothness of the density function p(X).
We conjecture that Theorems 1 and 2 still hold when p(X) is C°.

We now use two simple examples to illustrate the smoothness of 2D and 3D CVT functions. We will see that,
as asserted by Theorems 1 and 2, C? continuity of the CVT function is attained even when the topological
structure of the Voronoi diagram changes.

EXAMPLE 1. 2D case: Here the domain Q) is the square [—1,1)? with eight seeds, as shown in Figure 5(a). One
seed p moves along straight line p(t) linearly parameterized by t, and the other seven seeds are fixed and located on a
circle. The Voronoi diagram changes during the motion of p(t); for example, when p(t) crosses the circle. Figures 5(b)
to (d) show the graphs of the CVT function F(t) and its derivatives F'(t), F" (t) with respect to the motion parameter
t. Figure 5(e) is a zoom-in view of part of the graph of F'(t). We see that F"(t) is C°, therefore F(t) is C2. The
kinks in the graph of F" (t) correspond to the structural transitions of VD of the domain when the seed p(t) crosses
the circle.
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Fig. 5. Illustrations of C2 smoothness of the 2D CVT function.

EXAMPLE 2. 3D case: Here the domain Q) is the cube [—1,1]> with eight seeds, as shown in the Figure 6(a). One
of the seeds moves along a linear trajectory p(t) and it passes through a sphere formed by four of the other seeds. The
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Fig. 6. Illustrations of C2 smoothness of the 3D CVT function.

graphs of F(t), F'(t) and F" (t) are shown in Figure 6(b)-(c), verifying that the CVT function F is C? for this domain
Qin 3D.

4. NUMERICAL OPTIMIZATION

In this section we will briefly discuss the efficiency issues of Newton-type methods. We emphasize on quasi-
Newton methods and describe the basic ideas of two methods we will use for efficient CVT computation
— the L-BFGS method (limited-memory BFGS) and the P-L-BFGS method (pre-conditioned L-BFGS), which are
two variants of the classical quasi-Newton BFGS method.

4.1 Newton method and quasi-Newton method

Since the 2D and 3D CVT functions are almost always C2, we may consider using Newton method for
nonlinear optimization [Nocedal and Wright 2006] to compute a local minimizer of the CVT function F(X).
Newton method solves the linear system of equations Hdx = —VF to determine the search step dx in each
iteration, where H is the Hessian of the CVT function F. We note that the components of the gradient VF
are given by g—fi = 2m; (x; — ¢;) (cf. Equation (2)), and the explicit formulae for the second order derivatives,

which are the elements of the Hessian, are available in [Iri et al. 1984; Asami 1991].

Although the Hessian matrix H is sparse, it is in general not positive-definite, therefore must be modified
to be so to define a meaningful search direction. Iri et al. [1984] modified the Hessian into a diagonal matrix

D by replacing the diagonal gi—f by 2m;. This simplification in fact leads to Lloyd’s method, thus is not a
ik

good approximation and slows down convergence.

With proper modification such as modified Cholesky factorization [Schnabel and Eskow 1999; Nocedal
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and Wright 2006], Newton method is applicable to small and median size optimization problems. Figure 7
shows a simple example in which Newton method is applied to computing a CVT of a square with 20 seeds.
As expected due to the C? smoothness of the CVT function, the log-scale plot of the gradient ||VF(X)]|
shows clearly the quadratic convergence of Newton method.

The main problem of Newton method is the costly computation and modification of the Hessian matrix.
Therefore it is normally not recommended for large-scale problems, that is, when there are a large number
of seeds in CVT computation. For large-scale CVT computation, the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method [Nocedal and Wright 2006], a classical quasi-Newton method, would be more suitable,
since it needs only the function value and the gradient, and involves only matrix-vector multiplications.
However, the major drawback of the BEGS methods is its large space requirement for storing the Hessian
matrix, since the approximated inverse Hessian generated in each iteration is dense. In practice, this draw-
back is circumvented by the limited memory BEGS method [Nocedal 1980], or the L-BFGS method for short, to
be discussed below.

F(X) IVEX)|
0.22 e+l
e+0
el T—
0.20 o3
-4
e-5
0.18 &9
-8
3o
&
0.16 e19
612
er
o
0.14 si8
# of iter. &1 :
012 el # of iter.
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

(b) (© (d

Fig.7. (a): An initial Voronoi tessellation of 20 points; (b): The final Voronoi tessellation after optimization; (c): F(X) versus the number
of iterations; (d): || VF(X)|| versus the number of iterations.

4.2 L-BFGS method

The L-BFGS method is similar to the classical inverse BFGS method in that the inverse Hessian is corrected
by the BGFS formula. Here we quote the concise description about the main idea of L-BFGS from [Liu and
Nocedal 1989] : The user specifies the number M of BFGS corrections that are to be kept, and provides a sparse
symmetric and positive definite Hy, which approximates the inverse Hessian of f. During the first M iterations the
method is identical to the BEGS method. For k > M, Hj is obtained by applying M BFGS updates to Hy using
information from M previous iterations. Here f(x) is the objective function and g is the gradient of f. Let x;
denote the iterate at the k-th iteration and sy = x¢11 — Xk, Yk = Sk+1 — Q- The inverse BFGS formula is
Hpyq = VkTﬁka + pksks,f, where py = 1/(y{sk) and V, = 1— pkyks{. Typically M is set as 3 ~ 20. The
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explicit formula of FIkH is
ﬁkﬂ = (VkT“‘szm> H0 (Vk_M“‘Vk)
T T T
t Pr-mt (Vk e Vk—M+1) Se— Skt Viewrsn -+ Vi)

T T T
t Or_pr+1 (Vk T Vk,MJrz) Sk—MI+15— K141 (Vk7M+2 Vi)

T
+ OkSkSk

where M = min{k, M — 1}. The product —Hy1 gx41 is computed by term-wise product using the above
expression of Hyy1, with O(Mn) operations, where 7 is the number of the seeds. This is much faster than
constructing Hk+1 explicitly and computing —IjIkH 8k+1 using matrix-vector multiplication, which uses
O(n?) operations. This saving is key to the efficiency improvement of the L-BFGS over the BFGS method.

Although only the gradient is required in their computation, the proper convergence of the BFGS and L-
BFGS algorithm requires that the objective function be C? [Nocedal and Wright 2006; Liu and Nocedal
1989]. That is why we have to be concerned with the C? continuity of the CVT energy function.

The following is the pseudo code for updating the approximate inverse Hessian in a L-BFGS iteration.

L-BFGS update at step k:

(1) initialization: ¥ = —gg;
(2) 1% L-BFGS Update:
fori=min(M-1,k-1),...,0
{ Yi = PiS,'TT
ro=
3) di:= H,? 7;
(4) 2" L-BFGS Update:
fori=0,..., min(M—1,k—1)
d = dx+si(vi — oyl dy) ;
(5) update xy 1 = x + aydy and letk = k+ 1.

~ T
A typical choice of H,? is the diagonal matrix %I [Liu and Nocedal 1989].
k—1JK=

4.3 Preconditioned L-BFGS method

As we will see in experiments shortly, L-BFGS is much faster than Lloyd’s method. When the Hessian
is available, the convergence of L-BFGS can be accelerated further by frequently using the Hessian as the
initial of Hy — this is the idea of the preconditioned L-BFGS method, or P-L-BFGS method for short, by
Schlick [1992] and Jiang et al. [2004]. Of course, the exact Hessian should not be used in every iteration,
otherwise the method will be essentially the full Newton method and become too costly to be useful.

There are two integer parameters, M and T in the P-L-BFGS method, denoted as P-L-BFGS(M, T). The
parameter M means that the gradients at the previous M iterations are used to construct the approximate

inverse Hessian, and T means that the initial Hessian estimate H is updated to be the current exact Hessian
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after every T iterations. Appropriately chosen values of M and T can yield an acceptable balance between
the accuracy of the approximate inverse Hessian and the average time cost per iteration.

In the case of CVT in 2D and 3D, the exact Hessian can be constructed as follows. Let J; denote the indices
of those seed points whose Voronoi cells are adjacent to (;. Let (; (1 (); be the common face shared by the

Voronoi cells of x; and x;, which is an edge in 2D or a polygon in 3D. Denote x!' = (xi1,%p, ..., xy) and
xT = (x1,%2,...,xN). Then the second derivatives of the CVT function are given by the following explicit
formulae [Iri et al. 1984; Asami 1991]:

9°F 2
. dm—Y. . S
axlzk " ZJEL fQ,ﬂQj ij*XiH

0°F 2
0x;j0x;) (xik — x%) (xip —x2)p(x)do; k # A

(xik — x¢)%p(x) dor

- _Zjeli fQ,ﬂQ
0’F I 2

dxydxjy  TUNDY [lx; — x|
9°F

0X;(0X ) =0 j#EL €]

i [l — x|

(xik — %) (xja — x2)p(x) do, j#FLJEL

The combined pseudo code of the L-BFGS method and the P-L-BFGS method is as follows.
Preconditioned L-BFGS (P-L-BFGS) Algorithm:

(1) Setk := 0 and choose the values of M, T. Set f1ag which indicates whether the Hessian is required;

(2) Evaluate CVT function and compute its gradient g; Construct the Hessian matrix H and apply modified Cholesky
algorithm to obtain positive-definite H if f1ag = .true. and (T = 0 or kmod T = 0).

(3) Initialization: r := —gy;

(4) Call the 1% L-BFGS Update and obtain the updated r;

SE 1Yk

YiaVer

(6) Call the 2" L-BFGS Update and obtain the updated dy;
(7) Apply the line-search algorithm to find xy 1 := x; + agdy;

(5) Update di: if flag = .true., solve Hdk =r;elsedy := r when k > 0;

(8) Check the convergence and stop criterion. If satisfied, stop;
(9) Setk:=k+1. Go tostep 2.

if flag := false in the above algorithm, the P-L-BFGS method is the L-BFGS method actually.

5. PERFORMANCE EVALUATION

In this section, we will first compare the quasi-Newton methods with Lloyd’s method to demonstrate the
improved efficiency of the quasi-Newton method in CVT computation. Then we will discuss the robustness
issue of the Lloyd-Newton method, in comparison with the quasi-Newton method.

5.1 Comparison with Lloyd’'s method

Since Lloyd’s method is currently the most commonly used, we will compare it with our CVT computation
based the quasi-Newton methods. We will show that both L-BFGS method and P-L-BFGS methods are
much faster than Lloyd’s method.
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Besides Lloyd’s method, we have implemented Newton method, the L-BFGS method, and the P-L-BFGS
method. In each of the test examples below, we will compare Lloyd’s method with all these methods. Our
tests were run on a desktop computer with a 2.33GHz Intel Xeon CPU and 4GB RAM in Windows XP
64-bit system and our C++ implementation integrates CGAL [Fabri 2001] to compute Voronoi diagrams
via Delaunay triangulation with hierarchy and QHULL [Barber et al. 1996] to obtain the boundary cells via
half-space computation. To avoid handling the boundary constraints x € () in our P-L-BFGS framework
explicitly, especially when the boundary of the domain is more complex than a square/cube, we reduce the
increment of the seed points if the P-L-BFGS iteration moves them outside the domain.

Our line-search routine in L-BFGS and P-L-BFGS is from [More and Thuente 1994]. We set the maximum
number of iterations to be 1000 and the iteration stops when ||[VF(X)|| < 1077 or there is no sufficient
decrease in line-search. The numerical integration method over simplices from [Genz and Cools 2003] is
used when p(x) # constant. For comparing the performance of different methods, we are concerned with
not only the convergence speed but also the total computational time.

In all the methods to be compared, a CVT function call is invoked in each iteration to construct the Voronoi
diagram of the current seeds for computing the CVT energy value and gradient. It might be invoked
multiple times in each iteration due to line-search, like in the P-L-BFGS method. Therefore, in practice
the total number of CVT function calls used is more relevant than the total number of iterations when
considering the total computation time of a particular method.

EXAMPLE 3. 2D CVT with density p(x) = 1: The 2D domain Q) is a regular octagon with the bounding box
[—2,2] x [—2,2]. We sample 2,000 points randomly in Q) as the initial seeds (see Figure 8(a)). Table I provides
detailed information of all the tested methods.

Method #of iter. | # of CVT-func-calls | time (seconds) F(X)¢ina1 [VF(X)||tina1 | time (seconds) per iter.
L-BFGS(7) 304 320 6.14 1.0369816e-2 9.462e-8 0.020
L-BFGS(20) 451 490 9.75 1.0363602e-2 8.405e-8 0.022
Lloyd 1000 1000 17.75 1.0379564e-2 9.756e-6 0.018
Newton 144 263 15.44 1.0377779e-2 9.705e-8 0.107
P-L-BFGS(20,10) 182 239 6.17 1.0366966e-2 8.408e-8 0.034
P-L-BFGS(20,20) 203 264 6.14 1.0366771e-2 8.916e-8 0.030
P-L-BFGS(200,20) 228 280 8.43 1.0372586e-2 7.586e-8 0.037

Table I. Comparisons of Example 3. # of iter. is the number of iterations and # of CVT-func-calls is the number of CVT function calls.

Before reaching the stopping criterion of gradient || VF(X)|| < 10~7, Lloyd’s method has used 1,000 itera-
tions and therefore was terminated at the CVT energy (9.75 x 10~°) higher than the values produced by the
other methods. All the other methods have reached stopping criterion of || VF(X)|| < 10~7.

Table I shows that P-L-BFGS(20,20) is more efficient than P-L-BFGS(20,10), P-L-BFGS(200, 20), as also at-
tested in Figure 8(f) and (i). Although the number of iterations used by P-L-BFGS(20,10) and Newton
method is less than that of P-L-BFGS(20,20), their more frequently use of costly Hessian computation
and modification slow them down. Therefore we choose P-L-BFGS(20,20) as the representative P-L-BFGS
method for further comparisons with the other methods, as shown in Figure 8(g), (h), (j) and (k) in terms
of the CVT energy and gradient with respect of the number of iterations and the computational time. Simi-
larly, since L-BFGS(7) is more efficient than L-BFGS(20), we show only L-BFGS(7) in the above figures.

Figure 8(b-e) show particular results computed by the P-L-BFGS(20,20) and Lloyd’s method, starting from
the same initialization. It is easy to see that P-L-BFGS(20,20) yields better quality with the same computation
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time by observing comparing the number of hexagonal Voronoi cells (in blue). This visual evaluation makes
sense because of the observation by Gersho [Gersho 1979] (see the discussion in Section 1).

Because there are many local minimizers of the CVT function, different optimization methods may find
different minimizers even if they start with the same initial set of seeds. Therefore the convergence rates of
different methods are better illustrated by the plots of their gradients | VF(X)|| (see Figures 8(h, k)), than
by the plots of the CVT energy alone.

All these data demonstrate that both L-BFGS and P-L-BFGS are significantly faster than Lloyd’s method.
We also note from Figure 8(j) that, as expected, Newton method is not much more efficient than Lloyd’s
method, due to its costly computation and modification of the Hessian matrix in every iteration.

EXAMPLE 4. 2D CVT with density p(x) # constant: The 2D domain Q) is a reqular hexagon with the bounding
box [—2,2] x [—2,2]. We sample 4,000 points randomly in Q) as the initial seeds (see Figure 9). The density function
is p(x) = e=20(*+y) 4 0,05 sin?(7rx) sin?(7ty). Figure 9 shows the comparisons of F(X) and ||VF(X)| with
respect to the number of iterations and computational time. Table II shows other information of all the tested methods,
in the same format as in the previous example.

Method #of iter. | # of CVT-func-calls | time (seconds) F(X)tina1 IVE(X)|/tinax | time (seconds) per iter.
L-BFGS(7) 385 394 75.30 6.5491805e-5 9.086e-8 0.196
L-BFGS(20) 402 408 78.09 6.5420137e-5 9.997e-8 0.194
Lloyd 1000 1000 196.52 6.5833232e-5 3.277e-7 0.197
Newton 192 323 218.00 6.5781663e-5 8.137e-8 1.135
P-L-BFGS(20,10) 166 211 55.08 6.5771781e-5 8.737e-8 0.332
P-L-BFGS(20,20) 191 287 64.88 6.5564676e-5 6.411e-8 0.340
P-L-BFGS(200,20) 227 334 75.87 6.5723330e-5 8.677e-8 0.334

Table II. Comparisons of Example 4.

In this example we also find that the L-BFGS and the P-L-BFGS give the best performance as compared to
Lloyd’s method and Newton method. We note the P-L-BFGS is not very effective in its initial stage, but
starts to converge very fast after 15 iterations.

EXAMPLE 5. 3D CVT with density p(x) = 1: 2,000 seed points are sampled from an ellipsoid-shaped polyhe-
dron with the bounding box [—3.236,3.236] x [—2.427,2.427] x [—1.942,1.942]. Figure 10 shows the comparisons
of F(X) and || VF(X)|| with respect to the number of iterations and computational time. Table III shows other infor-
mation of all the tested methods, in the same format as in the previous two test examples. Again we conclude from
the data that the L-BFGS and P-L-BFGS are more efficient than the other methods, and Lloyd’s method is the most
inefficient one.

Method #of iter. | #of CVT-func-calls | time (seconds) | F(X)fina1 | ||VF(X)|lfina1 | time (seconds) per iter.
L-BFGS(7) 487 498 100.17 1.3513974 8.850e-8 0.206
L-BFGS(20) 645 665 136.25 1.3511813 9.971e-8 0.211
Lloyd 1000 1000 197.53 1.3530904 2.144e-4 1.975
Newton 236 493 202.39 1.3519816 9.864e-8 0.858
P-L-BFGS(20,10) 266 439 102.00 1.3519459 6.684e-8 0.383
P-L-BFGS(20,20) 313 428 94.33 1.3517604 9.865e-8 0.301
P-L-BFGS(200,20) 299 400 91.36 1.3519590 7.620e-8 0.306

Table III. Comparisons of Example 5.
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Fig. 8. Example 3. (a): The initial Voronoi tessellation; (b): the result after 100 iterations by P-L-BFGS(20, 20); (c): the result after 203
iterations by P-L-BFGS(20, 20); (d): the result after 153 Lloyd’s method (the computational time is same as (b)); (e): the result after
1000 Lloyd’s method; (f): F(X) versus # of iter. of the P-L-BFGS methods; (g): F(X) versus # of iter. of selected methods; (h): || VF(X)||
versus # of iter. of selected methods; (i): F(X) versus the computational time of P-L-BFGS methods; (j): F(X) versus the computational

time of selected methods; (k): | VF(X)|| versus the computational time of selected methods.
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Fig. 9. Example 4. (a): The initial Voronoi tessellation; (b): the result after 100 iterations by P-L-BFGS(20, 20); (c): the result after 191
iterations by P-L-BFGS(20, 20); (d): the result after 203 Lloyd’s method (the computational time is the same as (b)); (e): the result after
1000 Lloyd’s method; (f): F(X) versus # of iter. of P-L-BFGS methods; (g): F(X) versus # of iter. of selected methods; (h): | VF(X)]|
versus # of iter. of selected methods; (i): F(X) versus the computational time of P-L-BFGS methods; (j): F(X) versus the computational
time of selected methods; (k): || VF(X)|| versus the computational time of selected methods.
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Fig. 10. Example 5. (a): The initial Voronoi tessellation; (b): the result after 100 iterations by P-L-BFGS(20, 20); (c): the result after 313
iterations by P-L-BFGS(20, 20); (d): the result after 129 Lloyd’s method (the computational time is the same as (b)); (e): the result after
1000 Lloyd’s method; (f): F(X) versus # of iter. of P-L-BFGS methods; (g): F(X) versus # of iter. of selected methods; (h): | VF(X)]|
versus # of iter. of selected methods; (i): F(X) versus the computational time of P-L-BFGS methods; (j): F(X) versus the computational
time of selected methods; (k): || VF(X)|| versus the computational time of selected methods.
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5.2 Lloyd-Newton method

The Lloyd-Newton method [Du and Emelianenko 2006] is a previous attempt at CVT computation accel-
eration. We will show that it essentially uses the Gauss-Newton method to minimize an objective function
different from the CVT energy function, and as a consequence, it often fails to find a stable CVT, unless
many Lloyd iterations are first used to pre-condition the initialization. But that will then make the overall
method very inefficient.

The Lloyd-Newton method uses Newton root-finding method to solve the system of non-linear equations
given by Equation (3). In contrast, the quasi-Newton method we have considered so far for CVT com-
putation directly minimizes the CVT energy function. Hence, the two methods work by quite different
principles. Equation (3) can be rewritten as G(X) = X — T(X) = 0. Here, T(X) = (¢;(X))}_; is the Lloyd
map. Newton method for solving a system of non-linear equations operates by using a first-order approxi-
mation of G around X :

G(X+ 0x) =~ G(X) + Jg Ix

where dx denotes a small displacement around X and Jg = [3—%]1] is the Jacobian matrix of G. Then it
repeatedly applies the following iteration until some convergence criterion is reached :
solve Jgdox = —G(X) 4)
X — X+ dx

where G(X) = X —T(X) and Jg = (I - J1).

We now show that the Lloyd-Newton method is essentially the same as applying the Gauss-Newton method
to the least squares problem that minimizes the function

.1 1
F= 2 Y Il = 216G 6

The gradient VF and Hessian H' of F are given by :
VE =JLG

H =J{lc+Q~]iJc

where Q contains some second-order terms that are neglected by the Gauss-Newton method. This gives
the following expression to compute the step vector dx in each Gauss-Newton iteration:

J&Jcox = —JEG(X)

Since the number of equations and unknowns are same, /g is a square matrix. If Jg is non-singular, ]é can
be removed from both sides, and this produces exactly the same update scheme as in the Lloyd-Newton
method (cf. Equation 4).

There are two aspects that make it difficult to compute CVT by minimizing F = 1| X — T(X)||> = 3| G(X)|?
using a Newton-like method. First, the Lloyd map T(X) is only a C! function. So the quadratic convergence
cannot be expected in general by either applying Newton method to solve G(X) = 0 or applying the
Gauss-Newton method to minimize F = 1||G(X)||?. Second, even more important, when such a method
converges, it may well converge to a solution of G(X) = 0 that is an unstable critical point of the CVT
function F or to a local nonzero minimizer of £, which is not even a critical point of F.
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In the originally proposed Lloyd-Newton method [Du and Emelianenko 2006], to increase the chance of
converging to a stable CVT, a large number of Lloyd’s iterations are first performed to condition the input
before the Newton root finder is invoked, hence the name Lloyd-Newton. Therefore, the Lloyd-Newton
method can be regarded as a hybrid method consisting of Lloyd’s method and the Newton root-finding
method.

To compare it with other methods experimentally, we implemented the Lloyd-Newton method following
the flow provided in [Du and Emelianenko 2006]. It is listed below.

(1) Perform Lloyd’s algorithm. If the difference of centroids and seeds is larger than €, the seeds are up-
dated by centroids, goto 1; otherwise set stepsize to 1, goto 2;

(2) Perform Newton method to solve the system of nonlinear equations in Equation (3);

(3) nis the number of computed seeds which are outside of the domain Q). If n = 0, update seeds; if n =1,
half the stepsize, goto 3; if n > 1, goto 1.

The performance of the Lloyd-Newton algorithm is sensitive to the parameter €, which dictates when one
should switch from Lloyd’s iteration to Newton iteration. If € is too small, the Lloyd-Newton method is just
Lloyd’s method. If € is not very small (e.g., € > 107°), the Lloyd-Newton algorithm cannot benefit from the
robustness of Lloyd’s method and will likely move to an unstable CVT.

Incidentally, there is a flaw in the above procedure for the Lloyd-Newton method as provided [Du and
Emelianenko 2006]. In step (1), if the difference bewteen the centroids and the seeds is smaller than e,
then we go to (2). In step (2), if there are two or more seeds computed by Newton method are outside of
the domain (), then we go to step (1). Therefore, when both conditions are satisfied simultaneously, the
Lloyd-Newton method is stuck in an infinite loop.

We now provide experimental results for examining the Lloyd-Newton method. For each different value
of the parameter €, we collected statistics by performing 100 tests of computing CVT in the square [—1,1]?
with 100 seeds. In each test, the 100 seeds are initialized with a uniformly random distribution. For each
value of €, we record the number of Lloyd’s iterations needed, the number of Newton iterations needed,
and the numbers of stable CVTs and unstable CVTs computed by the Lloyd Newton method. The results
are shown in the following table.

€ # of failures | # of unstable CVTs | # of stable CVTs | # of Lloyd iter. | # of Newton iter.
10° 96 4 0 124.25 28.25
10°° 31 31 38 317.72 40.86
107 3 17 80 388.59 25.41
1075 3 6 91 481.98 18.22
1077 2 4 94 622.11 11.72
101 0 1 99 776.98 5.13

In this table, # of failure is the number of tests (out of a total of the 100 tests) in which the Lloyd-Newton
method fails to find a critical points of F — either it returns a non-zero minimizer or falls in an infinite loop;
# of unstable CV'Ts is the number of times it returns an unstable CVT; # of minimum is the number of times it
returns a stable CVT; # of Lloyd is the averaged number of Lloyd iterations used in each test; # of Newton is
the averaged number of Newton iterations used in each test.

We see that, when € = 10~°, even with more than 300 Lloyd iterations, the Lloyd-Newton method still fails
to compute a stable CVT most of the time — 62 out of 100 times. In contrast, running L-BFGS 100 times



On Centroidal Voronoi Tessellation — Energy Smoothness and Fast Computation . 19

with this example using the same initialization, we obtained stable CVTs in all the 100 tests. The average
number of L-BFGS iterations used in each test is 116.98, costing about one third of the time used by the
Lloyd-Newton method. The P-L-BFGS has the similar level of robustness and efficiency as the L-BFGS
method.

To conclude, the Lloyd-Newton method, based on finding the fixed points of the Lloyd map T, is equivalent
to minimizing the energy F = 1 ¥ ||x; — ¢;||> with the Gauss-Newton method. This approach is not efficient
because it requires to first use a large number of Lloyd iterations to provide a very good initial value,
making the computation inefficient. However, without such an expensive initialization, it will suffer from
lack of robustness as it will often get stuck in an unstable CVT or fail to converge at all.

6. FAST CVT COMPUTATION ON MESH SURFACES

In this section we will test the efficiency improvement brought about by the quasi-Newton method for CVT
computation on a surface. CVT can be extended to manifolds with several possible applications, including
surface remeshing [Alliez et al. 2003]. It is natural to use geodesic metric in CVT formulation [Kunze et al.
1997; Leibon and Letscher 2000; Peyré and Cohen 2004], but the computational cost would then be quite
high. Du et al. propose Constrained Centroidal Voronoi Diagram (CCVT) [2003], in which geodesic metric on
a surface is approximated by Euclidean metric in 3D. We adopt this formulation of CVT on a surface in the
following experiments in mesh surfaces.

6.1 Constrained centroidal Voronoi tessellation

Denote a given smooth surface by () C R3. Let X denote the distinct seed points (x;)"_; in (), that is,
Vi # j,x; # xj. The Voronoi region of the seed x; is defined as (O = {x € Q | [|x —x|| < [[x —x;|, Vj # k}.
The constramed centroid of () is defined as

‘ 2
= y —x||“do,
= argrrém/6 kp(x)|| x||* do

which exists but may not be unique [Du et al. 2003]. The CCVT function is defined by

2 [ POl e

Du et al. proved that Lloyd’s method works well for CCVT [2003].

On a surface F(X) is also defined in a piecewise manner - its expression takes different forms for combina-
torially different Voronoi tessellations, and the change in this expression occurs when there is a structural

change of the Voronoi tessellation. It can also be shown that at such a change the CVT function is in general
c2.

For computation of CCVT, we need the projection of the gradient of CVT on the tangent plane of the surface
), which can be derived from the gradient component g—fi = 2m; (x; — ¢;) of CVT as follows:

oF
axi

d d
=5 (5 N ) ) ©

where N(x;) is the unit normal vector of the surface () at x;.
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Fig. 11. Voronoi diagrams and their dual. (a): Voronoi diagram by face-clustering CVT; (b) the dual triangulation by face-clustering
CVT; (c) Voronoi diagram by face-splitting CVT; (d) the dual triangulation by face-splitting CVT. We can find that the result via face-
splitting is more regular.

With this gradient function, we are able to implement L-BFGS method for computing CCVT on a surface.
Note that, the updated x; in every iteration needs to be projected to the nearest point on the surface, as
required by the formulation of CCVT.

6.2 Computing Voronoi diagram on mesh surface

The most time consuming part of CVT computation is to determine the Voronoi region for each seed. Face
clustering by the flood-fill algorithm [Cohen-Steiner et al. 2004] and boundary edge updating method [Valette
and Chassery 2004; Valette et al. 2008] have proven extremely fast in approximate Vornoi diagrams. Valette
et al. employed face clustering with approximated CCVT energy using Lloyd algorithm [2004]. These meth-
ods are discrete in the sense that each triangle face of the input mesh is the smallest primitive that is not
subdivided anymore. Therefore, these methods terminate quickly, but at a sub-optimal solution.

In contrast, we treat a mesh surface as a piecewise continuous surface, and we split the triangle faces to
accurately evaluate the CVT energy when computing Voronoi cells. This leads to better remeshing quality
as shown by the following example. Consider a sphere-shaped mesh surface with 2,562 vertices and 5,120
faces. The discrete CVT of 200 seeds generated using Lloyd’s iteration in the method by Valette et al. [2004]
and its dual triangle mesh are shown shown in Figure 11(a) and (b). The CCVT of 200 seeds generated by
Lloyd’s method with face splitting and its dual triangle mesh are shown in Figure 11(c) and (d). There is an
obvious difference between the two resulting meshes in terms of the regularity of vertex degrees and shape
of the triangle faces. The method by Valette et al. [2004] stops after 33 iterations, while Lloyd’s method with
face splitting stops after 70 iterations (||0x|| < 0.5 x 10~%). Indeed, in this example the former is faster — it
takes only 0.95 seconds, while Lloyd’s method based on face splitting takes 4.33 seconds.

Careful implementation is needed to split triangle faces of a mesh surface by the boundaries of Voronoi
cells. We skip the details of this computation due to space limitation, since they are not so directly related
to our main contribution of the present paper.

6.3 Comparison of Lloyd’s method and L-BFGS for CCVT

We will present two test examples to demonstrate the speedup by the L-BFGS method over Lloyd’s method.
The two input surfaces are the mesh surfaces of two 3D models, Rocker and Lion. The vertices of the input
meshes are used as the initial seeds. The input mesh, the initial Voronoi tessellation, the computed Voronoi
diagram by L-BFGS, and the dual triangle mesh are shown as in Figures 12 and 13, respectively. The
parameter M is set to be 7 in L-BFGS (see the discussion in Section 4.1). Figure 12(e) and (f) (Figure 13 (e) and
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(f), resp.) show the CVT energy computed by Lloyd’s method and the L-BFGS method, with respect to the
number of iterations and computation time. The gradient curve is shown in Figure 12(g) (and Figure 13(g),
resp.). From these data we see that the L-BFGS method is significantly faster than Lloyd’s method. For the
Rocker model, for instance, Lloyd’s method takes 1,000 iterations to reduce the CVT energy to 4.18544 x
10~° (with gradient ||VF(X)|| = 3.37589 x 107°), taking 1,268.25 seconds. In comparison, the L-BFGS
method reaches about the same CVT energy value (F(X) = 4.18519 x 10~° with gradient |[VF(X)| =
2.82868 x 10~°) using 36 iterations, taking 34.51 seconds.

For the Lion model, Lloyd’s method takes 1,000 iterations to reduce the CVT energy to 2.29266 x 10~° (with
gradient | VF(X)|| = 2.4994 x 10~°), taking 6112.38 seconds; in comparison, the L-BFGS method reaches
about the same CVT energy value (F(X) = 2.29232 x 10~° with gradient || VF(X)|| = 1.58981 x 10°, using
44 iterations, taking 216.49 seconds.

7. CONCLUSION AND DISCUSSION

We have introduced a new numerical framework for CVT computation in 2D, 3D and on mesh surfaces.
Our main theoretical result is the C> smoothness of the CVT energy function in a convex domain. We have
also shown the practical importance of this result by demonstrating superior efficiency of quasi-Newton
methods for computing CVT in 2D, 3D and on mesh surfaces. Our algorithm is much faster than the
classical Lloyd’s method and more robust than the Lloyd-Newton method. All the applications of CVT,
ranging from meshing, sampling theory, compression to optimization, are expected to benefit from this
acceleration by simply replacing Lloyd’s method with our method.

Computing Voronoi tessellation is the most-time consuming task in every iteration of all the methods dis-
cussed. In practical applications, one may exploit the coherence of the Voronoi tessellations between suc-
cessive iterations to speed up the computation. Normally, after a sufficiently many iterations, the structure
of the Voronoi tessellation will change only a little or not at all from its previous iteration. Therefore, it is
possible to perform a quick check to confirm the validity of all edges inherited from the previous iteration
or perform edge flips to fix the edges if there are a small number of structural changes. However, this issue
does not affect much the comparison results of different methods, since according to our test the resulting
speedup is not very significant compared with our current implementation of quick VD computation and
in any case the speedup will benefit all the methods compared.

All other existing techniques, including the quasi-Newton approach presented in this paper, are only ca-
pable of computing a local minimum. We have tested the “Region Teleportation” approach as proposed in
[Cohen-Steiner et al. 2004] and have found that, although it does help find better a local minimum some-
times, there is no theoretic result and strong statistical evidence to guarantee that it always works. Because
the CVT objective function is known to have a large number of local minimizers, it is a challenge to devise
an effective method to find the global minimizer or even a local minimizer of as low CVT energy as prac-
tically possible. Such a method would be very useful in generating high quality mesh and of great utility
in studying empirically the possible configuration of a globally optimal CVT in 3D in relation to Gersho’s
conjecture, along the line of investigation of [Du and Wang 2005b].

There are several interesting directions for further research. One is the generalization to the CVT framework
with an arbitrary metric, with the aim of designing efficient anisotropic mesh generation algorithms. In
particular, this generalized setting raises interesting questions about the smoothness of F and effective
optimization techniques.

When applying CVT for meshing on a surface or a domain with boundary, one also needs to consider special
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Fig. 12. Rocker model (# of faces: 11,316, # of vertices: 5,658, # of seeds: 5,658, size of bounding box: 0.49 x 0.29 x 0.96). (a) The input
mesh; (b): the initial Voronoi diagram; (c): CCVT computed by L-BFGS (# of iter: 284, F(X)fu=4.0909€-5, || VF(X)||fina1=8.3197e-7,
computational time: 272.021 seconds); (d): the triangle mesh dual to CCVT; (e): F(X) versus the # of iterations; (f): F(X) versus the
computation time (in seconds); (g): || VF(X)|| versus the # of iterations.

seeds that are constrained to lie on sharp feature curves or boundary in order to preserve the features or
boundary representation with the resulting mesh. This poses the problem of defining a CVT framework
that accommodates both free seeds and constrained seeds, and issues of efficient computation within this
framework.

In this paper we have shown that the CVT function is C? in a convex domain in 2D and 3D if the density
function p(X) is C2. We conjecture that this is still true if p is C°, as supported by our empirical study.
It would be important to settle this conjecture, as the relaxed condition on the smoothness of the density
function is useful in many applications that may benefit from our techniques for efficinet CVT computation.



2.40e-!
2.38e-
2.36e-!
2.34e-
2.32e-
2.30e-!
2.28e-!
2.26e-!

2.24

5

On Centroidal Voronoi Tessellation — Energy Smoothness and Fast Computation .

(@)

# of iter.

0

200 400 600 800 1000 1200

()

2.40e-
2.38e-
2.36e-
2.34e-
2.32e-
2.30e-
2.28e-
2.26e-

2.24

5

time (in seconds)

0 1000 2000 3000 4000 5000 6000 7000

(®

23

(b)

(d)
e VP
\ |
le-6
M‘Ml,“»‘u
# of iter.
0 200 400 600 800 1000 1200

(8)

Fig. 13. Lion model (# of faces: 50,000, # of vertices: 25,002, # of seeds: 25,002, size of bounding box: 0.47 x 0.85 x 0.83). (a) The input
mesh; (b): the initial Voronoi diagram; (c): CCVT computed by L-BFGS (# of iter: 447, F(X)gq=2.2572e-5, ||V F(X)||fina=7.3149%-7,
computational time: 2,090.95 seconds); (d): the triangle mesh dual to CCVT; (e): F(X) versus the # of iterations; (f): F(X) versus the
computation time (in seconds); (g): || VF(X)|| versus the # of iterations.
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A. PROOF OF THEOREM 1

To prove Theorem 1, we first need a thorough understanding of the structure changes of a Voronoi tessel-
lation and need to classify degenerate configurations where the C2 continuity of the CVT function is to be
established. We also introduce necessary notations along the way.

Let VD(X) denote the Voronoi tessellation of an ordered set of seeds X = (x;)"_; € R?". Suppose that the
boundary of the domain Q) is a C* piecewise curve consisting of a finite number of smooth curve segments.
For a given X, a vertex ug of VD(X) is singular if it is of one of the following three types:

Type I: uy is at the center of a circle containing more than three seeds in X (see Figure 14(a));

Type II: uy is at the joining point uy of two consecutive boundary curve segments and on a Voronoi edge
passes through ug (see Figure 15(a));

Type I1I: uy is the center of a circle containing at least three seeds and located on a boundary curve segment
of the domain (see Figure 16(a)).

The Voronoi tessellation VD(X) is degenerate if at least one of its vertices is singular; otherwise, VD(X) is
proper. If VD(X) is degenerate, we call X a degenerate set of seeds, or a degenerate point in R?"; if VD(X) is
proper, then we call X a proper set of seeds, or a proper point in R?".

Oriented abstract cell complex — Given a specific proper point X,, we encode the structure of VD(X;) by
an oriented abstract cell complex (or a complex, for short), denoted as C(X). The complex C(X;) is composed
of oriented faces, edges, and vertices, which are isomorphic to the faces, edges and vertices of VD(XP).
Specifically, an oriented face fc of C(X,) corresponds to a face fy of VD(X}) formed by the corresponding
vertices, and the orientation of fc corresponds to the counterclockwise orientation of the boundary of fyp.
And the oriented edges in C(X,) are defined likewise. A vertex uc of C(X}) is encoded as the triple of seeds
such that the center of the circum-circle of the three seeds is u(’s corresponding vertex uy in VD(X,).

We stress that C(X;,) encodes only the structure of VD(X, ), not its geometry. Therefore, VD(X,,) is a particu-
lar geometric realization of the complex C(X,). Two different proper sets of seeds, X; and X,, may have the
same complex, that is, C(X;) = C(Xy). The set of all complexes with n seeds, which are finite in number,
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induces equivalence classes in the set of all proper sets of seeds. Treating C(X) as an abstract complex has
two advantages: 1) the abstract complex is detached from its geometric realization VD(X); and 2) a proper
C(X;) serves as a representative of its equivalence class under isomorphism of cell complexes. These two
properties will be exploited in the following discussion.

Given a complex Cp and any set of seeds X, we may use the connectivity information in Cy and the geometry
of X to form a configuration on the plane, which we will denote as (X;Cy). The configuration (X;Cp) can
also be interpreted as geometric embedding of the complex Cy — the cells of Cy and the cells (X; Cp) are in
one-to-one correspondence and the vertices of (X;Cp) are the circumcenters of the triples of seeds in X as
specified by Cp, assuming that the triples of seeds are not collinear and thus their circumcenters are finite.
For an oriented face fc in Cy, its corresponding face f{. in (X; Cp) may well be a self-intersecting polygon;
the configuration (X; C) coincides with VD(X) only when C(X) = C.

CVT energy expression ®(X; C) — Each proper cell complex C is associated with an expression for the CVT
energy function F(X). For a particular proper point X;, each term F;(X;) of F(X,) is an integral of a smooth
function over a Voronoi cell of VD(X;). This expression of CVT function, to be denoted as ®(X;C,), is
associated with the complex C, = C(X,). Denote IT, = {X € R?"|C(X) = C,}, that is, the open set of the
proper sets of seeds whose VD have the same structural as that of VD(X,,). Let ITx , denote the closure of

I1,. Then F(X) = ®(X; C) if X € Iy,

The expression ®(X;C,) is naturally extended to a neighborhood of I, that is, it is well define even if
C(X) # Cp. Denote N(S;7) = Uxes{B(x;7)}, where B(x;r) is the closed ball centered at x and has radius
r. Then N(I1,;6) is 6-neighborhood of 1, for some § > 0. We skip the detailed argument here but state
that there exists 6 > 0 such that the expression ®(X;Cp) is well-defined and C? on N(I1,;4). For any
X; € N(IIp;r) which is not in I, the integration domains for evaluating the integrations in ®(X;Cp)
may be self-intersecting polygons in the configuration (X;; C). By Green’s theorem, these integrals can be
converted to line integrals and evaluated along the sequence of oriented edges in (X; C,) as indicated by the
edges of the oriented faces in C. We note that ®(X; C) is C2 for any complex C, since the density function
p has been assumed to C2.

Neighborhood of a degenerate point — Let X be a degenerate set of seeds. Applying an arbitrarily small
perturbation dx to Xy, we may obtain a proper point X + dx that defines the complex C(Xy + Jx). All
complexes that can be obtained this way are denoted by the set H(Xp); that is, H(Xp) contains all the
“neighboring” complexes given by the proper points in the neighborhood of the degenerate point Xp, and
VD(Xp) is a degenerate geometric realization of all the complexes in H(Xp). This reflects the fact that a
degenerate set of seeds Xy allows multiple Delaunay triangulations. Obviously, |H (Xp)| > 2.

As an illustration, a local view involving four co-circular seeds x;, i = 1,2, 3,4, of a degenerate set of seeds
Xo along with its Voronoi tessellation is shown in Figure 14(a). The two complexes C; and C; (or their
corresponding configurations) incident to this degenerate point are shown in Figure 14(b) and (c)- they
are obtained by two perturbations dx and dy to X, respectively. For C;, we have the following oriented
faces associated the seeds x; in terms of counterclockwise oriented sequences of their boundary vertices :
Ry : viwyW)vougupvy, Ryp 1 vowowhvaugvy, Ry 3 0 vawswhvaupugvs, and Ry 4 1 vawawyviupvy. For Cp, we
have Ry : viwiW]vousvy, Ryo 1 Vawowhvaugusvy, Ry 3 0 vawswivaugvs, and Ry 4 @ V4W4W) VU3 Vy.

Smoothness of CVT function F(X) — With the above preparation, we now turn to the analysis of smooth-
ness of CVT energy F(X). For any proper point X € I, we have the CVT function F(X) = ®(X; Cp), where
Co = C(X). Thus, F(X) is a piecewise defined function, since it takes different expressions for configura-
tions X defining different complexes.
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Fig. 14. Anllustration for a Type I singular vertex.

First we consider the smoothness of F(X) at a proper point X, € I'c. For any sufficiently small change dx,
Xo + dx is also proper and defines the same complex as given by X, thatis, C, = C(Xo + dx) = C(Xp).
It follows that the CVT functions F(Xp) and F(Xp + 0x) are evaluated using the same expression ®(X; C;).
Hence, F(X) is C? at a proper point, since it inherits the C> smoothness of ®(X; Cp).

To complete the proof Theorem 1, it remains to establish the C? smoothness of F(X) at a degenerate point
Xp. For this we have the following lemma.

LEMMA 1. Let Xg be a degenerate set of seeds. Let C1 and Cy be any two distinct complexes in H(Xo). Then their
CVT expressions ®(X; C;) and ®(X; Cy) have C* contact at Xo.

PROOF: Suppose that an arbitrary perturbation dx of order O(h), where h > 0 is arbitrarily small, is applied
to Xp to yield X = X + dx. Since ®(X; C;) and ®(X; C;) are C2, we can write down their second order Taylor
expansions as ®(X; C;) and ®(X; Cy) at Xo: ®(X;C1) = Q1(Xp;x) + O(h®) and ®(X; Co) = Q2(Xo; 6x) +
O(h3). Here, Q1 (Xo; 6x) and Qo (Xo; dx) are, respectively, quadratic polynomials in dx with their coefficients
being various derivatives of ®(X;Cy) and ®(X; Cy) at Xp, up to the second order. In order to show that
®(X; C;) and ®(X; C) have C? contact at Xy, we need to show that Q;(Xo; éx) = Q2(Xo; dx), Vdx, that is, all
their corresponding coefficients agree with each other.

We claim that ®(X; C;) — ®(X; C1) = O(h®) implies Q1 (Xo; 6x) = Q2(Xo;dx). This can be seen as follows.
Suppose that ®(X;Cy) — ®(X;C;) = O(h3). Assume that Q;(Xo;6x) # Q2(Xo;0x). Then Q;(Xo;dx) —
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Q2(Xo; dx) can only be of the order O(h7), g = 0,1 or 2. However, from the above Taylor expansions of
O(X;Cy) and ©(X; Cy), we derive

Q2(XQ; (5)() - Q1 (Xo,' 5)() = q)(X; Cz) - CD(X,' Cl) + O(ha) = O(l’l3)
This is a contradiction. Hence, ®(X; C;) — ®(X; C;) = O(h3) implies Q1 (Xo; ox) = Q2(Xo; Ix)-

In the following we will only prove ®(X; C;) — ®(X;C;) = O(h3) in detail when VD(X;) contains exactly
one singular vertex, for when there are multiple singular vertices in VD(Xp), we still have ®(X; Cy) —
®(X; C;) = O(h®) by adding up the individual terms of order O(h®) contributed by all the singular vertices.

Let uy be the only singular vertex in VD(Xp). Suppose that ug is incident to k Voronoi regions and we
may suppose that these regions, denoted R;, are associated with the seeds x;, i = 1,2,...,k. Apply an
arbitrary but fixed perturbation dx of order O(h) to the degenerate point Xy, and denote X = Xy + dx.
Let ®(X;C1) = L ¢ and (X;Ca) = Y7L ¢oi. The k terms ¢y ; and ¢, ; associated with the seeds
x;, i = 1,2,...,k, are integrations over oriented regions R;; and R;; in the configurations (X,C;) and
(X, Cy), respectively. Then we have ®(X; C;) — ®(X;C;) = Y5, (¢2; — ¢1;). Here, all other terms ¢, ; and
¢1,, i = k+1,...,n, are canceled out, because they have the identical integration domains R;; and Ry,
i = k+1,...,n This means that the geometric change alone (i.e., the change of positions of the seeds)
without structural change of VD(Xy) does not contribute to the difference between ®(X; C;) and ®(X; Cy).

Denote T; = Ry ; — Ry ;, where the operation “—" refers to the connected sum between two chains [Massey
1991] with the boundary orientation of R; ; reversed. Let )} denote the connected sum of multiple chains.
Clearly, Y 1 Ry; = Y 1 Ry = Q, where Q) is regarded as an oriented region. Also, we have T; = Ry; —
Ry;=0fori=k+1,...,n, where0 stands for the empty path or the empty oriented region. It follows that

n

k n n n
ZTI ZTI ZR21 Rl,i):ZRZ,i*ZRl,i:Q*Q:()
i=1

i=1 i=1 i=1 i=1

The fact that Zf-‘zl T; = 0 is most critical to this proof. To help better appreciate this fact, we now illustrate
it using the simple examples of the singular vertex ug being of each of the three types.

Case 1 -Type I singular vertex: Consider the degenerate set of seeds X, with a singular vertex uy shown in
Figure 14(a). Here ug is the circumcenter of 4 seeds; this is the case of k = 4. The two complexes C; and
Cy in H(Xp) correspond to the proper configurations shown in Figure 14(b) and (c). With the perturbation
Jdx, we have X = Xy + dx. Without loss of generality, suppose that C; = C(X + Jx). Superimposing the
configurations (X + dx; C1) and (X + dx; Cz), we obtain the situation in Figure 14(d). The oriented regions
T; = Ry; — Ry 4,1 =1,2,3,4, as differences of oriented regions, are represented by the follow sets of oriented
edges, denoted as ordered pairs (u, u’), on the boundaries of the Tj: T} = {(up, uy), (ug, u3), (us, u2)}, o =
{(u1,u3), (uz,ug), (ug,u1)}, Ts = {(ug, uq), (ug, up), (uz,u1)}, Ty = {(uy, u), (upz, u3), (uz, uy)}. Recall that
two oriented edges with the same endpoints but opposite orientations cancel each other. It follows that
Y+, T;=0.

Case 2 — Type 1I singular vertex: Consider the degenerate set of seeds X, with a singular vertex ug shown in
Figure 15(a). Here uy is the joint of two boundary curve segment and thus incident to two Voronoi cells;
this is the case of k = 2. The two complexes C; and C; in H(Xy) correspond to the proper configurations
shown in Figure 15(b) and (c). With the perturbation éx, we have X = Xy + dx. Without loss of generality,
suppose that C; = C(X + dx). Superimposing the configurations (X + dx; C1) and (X + dx; C2), we obtain
the situation in Figure 15(d). Note that the vertex up, as required by the complex Cp, which is originally
the intersection of a bisecting line and the curve segment B; in Figure 15(c), is now the intersection point
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up

Fig. 15. Anillustration for a Type II singular vertex.

between the bisecting line vu; and the extended tangent line of the boundary curve B, at ug. The two
oriented faces of x; and x; in the complexes C; and C; are, respectively, Ry : vujugwiv, R17 : uyvwouy
and Ry : wywivuy, Ry : upvwouguy. Then the oriented regions T; = Ry; — Ry ;, i = 1,2, are represented
by the follow sets of oriented edges: T; = {(up, u1), (u3, uz), (uz,up)}, To = {(uy, ug), (wp, uz), (up, uy)}. It
follows that Y5 | T; = Ty + T, = 0.

Case 3 — Type Il singular vertex: Consider the degenerate set of seeds Xy with a singular vertex up shown in
Figure 16(a). Here uy is incident to three Voronoi cells; this is the case of k = 3. The two complexes C; and
Cy in H(Xp) correspond to the proper configurations shown in Figure 16(b) and (c). With the perturbation
dx, we have X = X + dx. Without loss of generality, suppose that C; = C(X + dx). Superimposing the
configurations (X + dx; C1) and (X + dx; C2), we obtain the situation in Figure 16(d). The three oriented
faces of x1, xo and x3 in the complexes C; and C; are, respectively, Ry 1 : w3ugow;ws, Rjo : Wpougwawy,
Ri3 : waugwszwy and Ry 1 @ wiwzuywy, R @ woupwywy, R 3 ¢ wawgupugwa. Then the oriented regions
T; = Ry; — Ry, i = 1,2,3,are: Ty = {(up,uy), (uy,0),(0,up), To = {(ug,0),(0,uz),(uz,up)}, and T3 =
{(ug,uz), (u,0), (0,uy), (ug, ug)}. It follows that Ei-‘zl T, =T+ T, + T3 =0.

Now we come back to the discussion of the general case. Denote g;(x) = p(x)||x — x;||>. Then ¢y, =
foRl gi(x)do and ¢, ; = fxeRz gi(x)do, i = 1,2,...,k. Since the seeds x;, i = 1,2,...,k, are co-circular
in Xo, we have IIxi —of =1, where o is the center and 7 the radius of the circle S containing the seeds
x;, i = 1,2,...,k. Clearly, after the perturbation, at X; we have |x — o|| = O(h), Vx € T;. Consequently,
gi(x) = p()|x = x||?> = p(x)[r? + O(h)], Vx € T;,i = 1,2,... k.

Due to the convexity of the domain Q), the vertices of T;, i = 1,2,.. .,k are all in the O(h) neighborhood of
ug. Therefore, the length of any edge of T; is O(h). It follows that the area of T; is [, 5. do = O(h?).
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Fig. 16. Anillustration for a Type III singular vertex.

From these observations, we have

K

D(X;Co) —P(X;Cr) = Y[ — ¢1,i]
i1

k

- (%) do — / (x)d
Y[y, 80040 = [ it o]
k k
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Now we have shown ®(X; C;) — ®(X; C;) = O(h?) at a degenerate point Xy. Hence, the lemma is proved.

a

This completes the proof of Theorem 1. B





