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Figure 1: (Left): A conceptual architectural structure as a P-Hex mesh, computed using the progressive conjugation method. The interior
view (top right) shows that the shapes of the P-Hex faces transit smoothly across the parabolic curve. (Bottom right): another P-Hex mesh of
free form shape.

Abstract

Free-form meshes with planar hexagonal faces, to be called P-Hex
meshes, provide a useful surface representation in discrete differen-
tial geometry and are demanded in architectural design for repre-
senting surfaces built with planar glass/metal panels. We study the
geometry of P-Hex meshes and present an algorithm for computing
a free-form P-Hex mesh of a specified shape. Our algorithm first
computes a regular triangulation of a given surface and then turns it
into a P-Hex mesh approximating the surface. A novel local dual-
ity transformation, called Dupin duality, is introduced for studying
relationship between triangular meshes and for controlling the face
shapes of P-Hex meshes.

This report is based on the results presented at Workshop ”Polyhe-
dral Surfaces and Industrial Applications” held on September 15-
18, 2007 in Strobl, Austria.
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1 Introduction

The increasing demand in architecture for modeling freeform sur-
faces built with planar glass/metal panels provides motivations and
challenges for studies on mesh surfaces with planar faces, also
called polyhedral surfaces [Pottmann et al. 2007a]. In this paper
we focus on the geometry and computation of mesh surfaces with
planar hexagonal faces. Such meshes will be called P-Hex meshes
for short.

Computing a P-Hex mesh is equivalent to tiling a surface with pla-
nar hexagons, which is an extension to the classical plane tiling
problem. Tiling the plane with regular patterns has been well stud-
ied in 2D crystallography [Coxeter 1989] and a comprehensive ex-
position on general plane tiling can be found in [Grunbaum and
Shephard 1986]. If only the congruent copies of a regular polygon
are to be used then the plane can only be tiled with equilateral trian-
gles, squares, or regular hexagons. With an affine transformation,
the plane can also be tiled with congruent affine copies of these
three regular polygons. There are also other types of plane tiling
that use non-regular polygons or more than one type of tiles.

The problem of tiling a surface with the same type of polygons is
more challenging than its counterpart in the plane. In general, one
can no longer require the tiles to be identical – the variation of face
shapes is inevitable since they are constrained by surface curvature.
Such constraints by surface curvature can be quite significant. For
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example, as we shall, a negatively curved surface cannot be tiled by
a mesh of planar convex polygons with valence-3 vertices.

In architectural construction, glass panels represented by planar
faces of a mesh surface are framed by beams joined at nodes (also
known as junctions) where all adjacent faces meet each other. A
major consideration of manufacturing cost is to reduce the node
complexity, i.e., the number of beams joined at a node. Although a
triangle mesh with vertices of valence 6 meets the face planarity re-
quirement naturally, it has the most complex nodes, so is often not
preferred in practice. Another disadvantage of the triangle mesh is
that it does not have a proper definition of offset meshes [Pottmann
et al. 2007b].

This leads to demands for free-form meshes with planar quadri-
lateral faces (or P-Quad meshes) and mesh surfaces with planar
hexagonal faces (or P-Hex meshes), as extensions to plane tiling
with squares and regular hexagons. The geometry and effective
computation of P-Quad meshes are well known [Sauer 1970; Liu
et al. 2006]: the edges of a P-Quad mesh are discretization of con-
jugate curve networks of the underlying smooth surface. Various
special P-Quad meshes have also been identified. For example, if a
P-Quad mesh is required to possess a constant face-distance offset,
then it belongs to the special class of conical P-Quad meshes which
discretize curvature lines of the underlying smooth surface [Liu
et al. 2006].

Figure 2: Left: A buckyball – the molecule Carbon 540; right: the
hexagonal roof in Eden project.

P-Hex meshes are an attractive shape representation for several rea-
sons. The hexagonal tiling or hexagonal symmetry arises naturally
in organic structures, such as honeycomb, the epidermal layer of
cells and the the beautiful skeleton of radiolaria revealed by Ernst
Haeckel [Thompson 1992], appears as the predominant structure
in fullerene-like graphite structure (e.g., buckyballs and nanotubes
– see Figure 2) [Harris 1999], and is the optimal layout for tight-
est circle packing in the plane [Coxeter 1989]. Therefore it is re-
garded as a highly harmonious and symmetric shape with natural
visual appeal[Weyl 1983]. For surface modeling in architecture,
P-Hex meshes have the simplest node, since there are only three
beams joining at each node; furthermore, any P-Hex mesh is a con-
ical mesh, thus possessing constant face-distance offset meshes to
facilitate the modeling of multilayered surface structure[Liu et al.
2006]. Finally, P-Hex meshes provide a useful shape representa-
tion in discrete differential geometry [Bobenko and Suris 2005] –
their offset property allows simple and elegant definition and com-
putation of surface curvature for the purpose of modeling various
special surface (e.g., minimal surfaces and constant mean curva-
ture surfaces) [Bobenko et al. 2006; Pottmann et al. 2007b; Mueller
2007].

However, there has been little research in the literature about the
geometry or computation of free-form P-Hex meshes. Almost all
building surfaces modeled with P-Hex meshes seen in real life,
known as geodesic domes [Tarnai 1993], are spherical, such as the
Eden Project in UK (see Figure 2). We fill this gap by studying the
geometry of P-Hex meshes and giving the first method for comput-
ing free-form P-Hex meshes.

Contribution Our contributions are the following.

1. We reveal a natural correspondence between regular triangle
meshes and P-Hex meshes, and develop a novel analytical
tool, called Dupin duality, to study this correspondence for
controlling the shape of the hexagonal faces in the compu-
tation of P-Hex meshes. We emphasize on the shape, size
and pattern of the mesh faces and study how these criterions
are affected by surface curvatures and various conjugate curve
networks.

2. We present a complete and robust method that computes a
valid triangle meshes approximating a given free-form surface
and uses Dupin duality and nonlinear optimization to turn it
into a P-Hex mesh with desired face shape and pattern.

2 Related work

Much work has been done in surface remeshing using quad meshes
(e.g., [Alliez et al. 2003; Marinov and Kobbelt 2004; Kälberer et al.
2007]) and subdivision for generating hexagonal meshes [Oswald
and Schröder 2003], without seeking the planarity of the faces. Pla-
nar quad meshes are the topic of [Glymph et al. 2004; Liu et al.
2006] from the viewpoint of building construction. General meshes
with planar faces are computed in [Cohen-Steiner et al. 2004; Cut-
ler and Whiting 2006] without control over the number of sides
or the shape of the faces. The offset properties of P-Hex meshes
are investigated in [Pottmann et al. 2007b]. Muller [Mueller 2007]
considers using hexagons for constructing minimal surfaces via the
technique of parallel meshes. In chemistry, tiling free form surfaces
with polygons, which are in general non-planar, is of great impor-
tance to finding fullerenes beyond buckyballs and nano-tubes [Ter-
rones and Mackay 1992; Tarnai 1993].

Projective duality establishes a correspondence between P-Hex
meshes in prime space and triangle meshes in dual space. This re-
lationship has been explored by Kawaharada and Sugihara [Kawa-
harada and Sugihara 2006] to derive subdivision rules for P-Hex
meshes from subdivision rules for triangle meshes. However, when
applied to computing a P-Hex mesh of a given shape S from a tri-
angle mesh of the dual of S, the projective duality suffers from high
metric distortion and not being a one-to-one correspondence for a
free-form shape, since surface points with the same tangent planes
are mapped to the same point. All these cause unstable computa-
tion, as well as self-intersection and shape distortion of the faces of
the resulting P-hex mesh.

For a given surface S, Almegaard et al. [Almegaard et al. 2007] use
a piecewise linear supporting function of S over the Gauss sphere
S2 to compute a P-Hex mesh. Since the supporting function is the
composition of a projective duality and the inversion with respect
to a sphere, this method basically suffers from the same problems
of the approach above based on projective duality, especially the
issues of self-intersecting faces of P-Hex meshes. In particular, it
is unclear with this method what triangulation of S2 will lead to
a P-Hex whose faces are free of self-intersection. Pottmann et al.
[Pottmann et al. 2007b] compute a P-Hex mesh of a surface as a
parallel mesh of another given P-hex mesh approximating a sphere
S2. This method does not work for free-form surfaces and often pro-
duces self-intersecting P-Hex faces even for simple convex shapes.

Diáz et al. [Severiano et al. 2005] use stereographic projection of
power diagrams in 2D to generate polyhedral surfaces, including
P-Hex meshes, approximating spheres and their projective equiva-
lents. This method, however, cannot be extended to shapes other
than elliptic quadrics or more general surfaces.

To summarize, the major issues with the existing methods that we
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need to address are generality and face shape control, which mean
the ability of representing a general free-form shape with P-Hex
meshes and the need to ensure that the resulting P-Hex faces are
free of self-intersection.

3 Preliminaries

Although it is tempting to tile a free-form surface using planar con-
vex polygons only, a negatively curved surface, such as a hyper-
boloid of one sheet, cannot be tiled properly by convex planar poly-
gons, supposing that all the interior vertices have valence 3. For
example, regular (hence convex) pentagons and heptagons, in ad-
dition to regular hexagons, are used to design graphite structure
of freeform shapes with valence-3 vertices [Terrones and Mackay
1992; Tarnai 1993]. However, these seemingly convex polygons
cannot all be planar in a negatively curved region; in fact, their
sides are curves that are realized by bent C-C bonds [Tarnai 1993].
This can be seen as follows.

Figure 3: A convex vertex and non-convex vertex on a torus-shaped
P-Hex mesh.

Suppose that a negatively curved surface S is approximated by a
polyhedral mesh M with convex faces and valence-3 interior ver-
tices only. For any interior vertex p of M , three planar faces of M
meet at p. Suppose that the three faces have strictly convex corners
at p, i.e., α,β ,γ < π (see Figure 3, left). Clearly, α + β + γ ≤ 2π .
We assume that α + β + γ 6= 2π , since otherwise the three faces
would be coplanar, which would then force the entire mesh M to
be on a plane. Therefore the three faces form a convex vertex fig-
ure at p, which is characterized by the convex spherical triangle cut
out by the three faces on a sphere centered at p. Since the convex
figures at all the vertices of M are consistently oriented, M is then
necessarily a convex surface, contradicting that M approximates
the negatively curve surface S. Hence, at least one concave angle
(e.g., γ > π) has to be involved to form a non-convex vertex figure
for tiling a negatively curved surface (Figure 3, right). In the fol-
lowing we shall show more specifically how a face of P-Hex mesh
is constrained by surface curvature.

Dupin indicatrix An important concept to be used in our investi-
gation is the Dupin indicatrix [Carmo 1976]. Given a surface S and
a point p ∈ S, let Tp(S) denote the tangent plane of S at p. Consider
a 2D local coordinate system on Tp(S) with the x and y axes aligned
with the principal curvature directions of S at p. Then the Dupin in-
dicatrix is the collection of conics defined by κ1x2 + κ2y2 = ±1,
where κ1, κ2 are the principal curvatures of S at p (Figure 4, left).
Intuitively, a plane that is near and parallel to Tp(S) cuts S in a
shape which in a first approximation similar to the Dupin indica-
trix [Struik 1988] (Figure 4, right). When p is an elliptic point, the
Dupin indicatrix is the ellipse κ1x2 + κ2y2 = 1, assuming κ1 > 0
and κ2 > 0 by changing the normal orientation of S if necessary.
When p is a hyperbolic point, the Dupin indicatrix consists of two
hyperbolas having the same pair of asymptotic lines. When p is a
parabolic point, assuming that κ1 6= 0 and κ2 = 0, the Dupin indica-
trix is a pair of lines κ1x2 =±1. The Dupin indicatrix is not defined
at a planar point, i.e., if κ1 = κ2 = 0.

Recall that a homothetic transformation in 2D is x′ = ax + c1 and

y′ = ay + c2, i.e., the composition of a uniform scaling and trans-
lation [Coxeter 1989]. Throughout the paper we shall frequently
refer to a conic homothetic to the Dupin indicatrix. For brevity, we
shall call it a Dupin conic, or Dupin ellipse or Dupin hyperbola if
we need to be specific. Thus, by a Dupin conic of S at p we will
mean a homothetic copy of the Dupin indicatrix of S at p.

Figure 4: Dupin indicatrix.

To show the constraint of surface curvatures on the shape of a P-
Hex face, we first consider the special case where a face f of a
P-Hex mesh H, called a P-Hex face, has all its vertices on a locally
convex surface S. Let P be the plane containing f . (See Figure
4, right.) Since f is inscribed in the curve C on S cut out by P,
its vertices are nearly on a Dupin conic. This observation holds in
general, that is, for any P-Hex mesh H approximating a free-form
S, whose vertices are not necessarily on S, the P-Hex faces of H are
approximately inscribed in a Dupin conic. To exclude pathological
cases, we suppose that S is approximated by H smoothly in the
sense that the approximation error is O(h2) when the size of P-Hex
faces of H is O(h). The exact statement in terms of the order of
approximation error is given in the next proposition. Its proof is
omitted due to the limitation of space.

Proposition 1 Let H be a P-Hex mesh approximating a surface S.
Suppose that f is a face of H and f approximates S at a point p∈ S,
where the principal curvatures of S are not both zero. Let the size of
f be O(h). Then the vertices of f have the distances of order O(h2)
to a Dupin conic C of S at p.

Figure 5: A P-Hex face approximating S is in a approximation
inscribed in a Dupin conic.

As a consequence of Proposition 1, if we suppose that the P-Hex
face f is a simple polygon, then f is a convex hexagon at an elliptic
point of S, since it is approximately inscribed in an ellipse, and a
non-convex hexagon at a hyperbolic point of S, since it is approxi-
mately inscribed in a hyperbola (Figure 5). The case of K = 0 (i.e.,
parabolic points) deserves special attention. When the parabolic
points are isolated or form a parabolic curve, then the P-Hex face at
the point or the curve can assume various shapes, as influenced by
the neighboring P-Hex faces where K 6= 0 (Figure 5).



If K = 0 everywhere on the surface S, then S is either
a plane or a developable surface, which is necessar-
ily singly curved [Carmo 1976]. When S is a plane,
Proposition 1 does not apply, since the Dupin indica-
trix is not defined, and in this case any hexagonal mesh
of S is a P-Hex mesh. When S is a developable, a P-
Hex mesh of S must be very special – all its faces have
the shape of a quadrilateral and they are tiled along the
rulings of S, as constrained by the degenerate Dupin
conics, which are pairs of lines. (The figure on the
right shows a P-Hex tiling of a cylinder.)

4 Dupin duality

4.1 Triangle meshes and Dupin dual

In this section we shall first discuss a correspondence, called tan-
gent duality, between a regular triangulation of a surface S and a
P-Hex mesh of S, and then introduce the Dupin duality to study
the local property of tangent duality. A regular triangulation of S,
also called a regular triangle mesh, refers to a triangle mesh whose
vertices are of valence 6. We make the smoothness assumption
throughout that the edges of a regular triangulation of S are dis-
cretizations of three families of smooth curves on S. In this section
we assume that the Gaussian curvature K 6= 0. The handling of de-
generate cases with K = 0 will be discussed in detail in Section 5.3.

Tangent duality Consider a sufficiently dense regular triangle
mesh T whose vertices are on a smooth surface S (Figure 6, left).
Let t be a triangle of T with vertices va, vb and vc. Then, in general,
the three tangent planes of S at va, vb and vc intersect at a point.
Let us denote this intersection point as ut and associate it with the
triangle t. If we do this for every triangle t of T and connect the
points ut of adjacent triangles of T , then we obtain a hexagonal
mesh H combinatorially dual to T (Figure 6, right). Clearly, each
face of H is a planar hexagon tangent to S at a vertex of T . Hence,
H is a P-Hex mesh approximating S. Conversely, a P-Hex H with
its faces tangent to the surface S corresponds to a regular triangle
mesh whose vertices are at the tangency points of the faces H with
S. This correspondence between T and H will be referred to as the
tangent duality.

Figure 6: (Left) Tangent duality: a vertex ut of a P-Hex face is at
the intersection of three tangent planes of S; (right): a P-Hex face
is obtained from a triangle mesh of S.

Although the tangent duality involves only a straightforward ge-
ometric construction, its behavior can be rather complex. There
are several questions that must be answered before it can be put in
practical use for computing a P-Hex mesh from a triangle mesh.
First, under the tangent duality a triangle mesh of a surface S may
correspond to a P-hex mesh whose faces have self-intersection.
For example, Figure 11(top) shows a triangle mesh of a one-sheet
hyperboloid and its corresponding P-Hex mesh with face self-
intersection. Hence, the question is how to identify and design
those ‘good’ triangle meshes that produce valid P-Hex meshes free

of face self-intersection. Furthermore, we need to know how to
find a triangle mesh that, under the tangent duality, corresponds to
a P-Hex mesh whose faces have desired shapes. Finally, there is
a robustness issue. The tangent duality construction breaks down
when the three tangent planes are nearly parallel to each other, ei-
ther because the three vertices of the triangle t are too close to each
other or because the curvature of S is too small. This is a critical
problem when we deal with freeform shapes containing parabolic
points or nearly planar regions. We will address these issues in the
framework of Dupin duality, a new concept to be introduced below.

Figure 7: Dupin duality: projections of triangle mesh vertices on
the tangent plane Γ of S.

Dupin duality Dupin duality is a simple transformation that lo-
cally characterizes the behavior of the tangent duality construction.
Suppose that T is a regular triangle mesh whose vertices are on a
surface S. Let Γ be the tangent plane of S at a vertex vc ∈ S of T . Let
v′i, i = 0,1, . . . ,5, be the vertical projections on the plane Γ of the six
vertices vi of T that are connected to vc (Figure 7, left and middle).
Since vc ∈ Γ, its projection on Γ is v′c = vc. Let t ′i denote the trian-
gles4vcv′iv

′
i+1, i = 0,1, . . . ,5, mod 6. Let the size of the triangle t ′i

be O(h). By the smoothness assumption on the edges of T , with a
perturbation of order O(h2) the points v′i can be perturbed into new
points v̄i such that the v̄i, i = 0,1, . . . ,5, form a centrally symmetric
hexagon centered at v̄c ≡ vc with all the triangles t̄i : vcv̄iv̄i+1 being
congruent to each other (Figure 7, right). We call such a group of
six triangles t̄i with the above properties a triangle star, and denote
it as T̄ . Since the six triangles of T̄ are congruent, we may pick any
one of them and call it the fundamental triangle, denote it as t̄.

Figure 8: Dupin duality. (Left) the Dupin center of the fundamen-
tal triangle t̄; (middle) the Dupin conics of the six triangles in T̄ ;
(right) the dual hexagon, inscribed in a Dupin conic.

Let C denote the Dupin indicatrix of S at vc. Since a homothetic
transformation in the plane has three free parameters (one for simil-
itude and two for translation), there is a unique Dupin conic C′i , i.e.,
a homothetic copy of C, that circumscribes each triangle t̄i (Fig-
ure 8, left). The center of C′i is called the Dupin center of ti. Clearly,
the six conics C′i are translational copies of each other, since the tri-
angles t̄i are congruent and are translational or reflectional copies
of each other (Figure 8, middle). Then the Dupin centers of the six
triangles t̄i form a centrally symmetric hexagon f̄ on the tangent
plane Γ. We will call f̄ the Dupin hexagon (Figure 8, right). This
procedure of computing the Dupin centers of the triangles and con-
necting them into a hexagon will be referred to as Dupin duality.



We stress that Dupin duality is defined in the tangent plane of S and
equipped with the Dupin indicatrix of S at the tangent point.

Since perturbation errors are incurred from mapping the vertices vi
of the original triangle mesh T of the surface S to v̄i, the Dupin
duality is an approximation to the tangent duality. The following
proposition ensures that it is indeed a good approximation. The
proof of the proposition is given in the appendix.

Proposition 2 Suppose that the size of the triangles ti of T is O(h).
Then there is an O(h2) difference between each vertex ui of the
hexagon face f of H generated by the tangent duality and its corre-
sponding vertex ūi of the Dupin hexagon f̄ generated by the Dupin
duality.

The simplicity of the Dupin duality makes it easy to analyze the
properties of the tangent duality. We will see how it can be used to
derive simple conditions for avoiding self-intersections of the faces
of P-Hex meshes. Since, by Proposition 2, the Dupin duality mod-
els faithfully the behavior of the tangent duality, these conditions
are applicable asymptotically when computing P-Hex meshes us-
ing the tangent duality or its variants, provided that the triangles of
T are sufficiently small in size.

The next proposition states a useful property of the Dupin hexagon.
Its proof is elementary so is omitted.

Proposition 3 The Dupin hexagon f̄ is inscribed in a Dupin conic.
Furthermore, this Dupin conic is congruent to the Dupin conics of
the six triangles t̄i in the triangle star T̄ . (See Figure 8, right.)

4.2 Shape control

Avoiding P-Hex faces with self-intersection A P-Hex mesh
is of little use if its faces have self-intersection. A face of a P-
Hex mesh is valid if it has no self-intersection, i.e., it is a simple
hexagon. A P-Hex mesh is valid if all its faces are valid. Accord-
ingly, a triangle mesh approximating a surface S is said to be valid if
it corresponds to a valid P-Hex mesh via the tangent duality. Sim-
ilarly, in Dupin duality, a triangle star T̄ is said to be valid if the
corresponding Dupin hexagon f̄ has no self-intersection. In the fol-
lowing we are going to derive conditions on a valid triangle star
T̄ .

Proposition 4 Suppose that the Gaussian curvature K > 0 at vc ∈
S. Then the following are equivalent: 1) the triangle star T̄ is valid;
2) the Dupin center of the fundamental triangle t̄ is inside t̄; 3) the
three edge directions of t̄ are not enclosed by any pair of conjugate
directions with respect to the Dupin indicatrix C.

Figure 9: Illustration of the conditions in Proposition 4 for the
case of K > 0. The dashed lines are a pair of conjugate directions.
The three blue lines, parallel to the sides of t̄, stand for the edge
directions of t̄. (Left) the edges directions are not enclosed by any
conjugate directions; (right): the edges directions are enclosed by
the two conjugate directions shown.

The proof of Proposition 4 is given in the Appendix. Figure 9 il-
lustrates the conditions in Proposition 4. For a hyperbolic region,
recall that there are two asymptotic directions at a hyperbolic point

of a surface [Struik 1988]. These two directions are self-conjugate.
The next proposition gives a condition on a valid triangle star T̄ at
a hyperbolic point of a surface. Its proof is given in the Appendix.

Proposition 5 When the Gaussian curvature K < 0, the following
are equivalent: 1) the triangle star T̄ is valid; 2) the three vertices
of fundamental triangle t̄ are on different branches of its circum-
scribing Dupin hyperbola; 3) the three edge directions of t̄ are not
all enclosed in the same range bounded by the two asymptotic di-
rections of S at vc.

Figure 10: Illustration of the conditions in Proposition 5 for the
case of K < 0. The three blue lines are parallel to the edge direc-
tions of the fundamental triangle. (Left) the edges directions are not
enclosed by the asymptotical directions (dashed lines); (right): the
edges directions are enclosed by the asymptotical directions.

Figure 10 illustrates the conditions in Propostion 5. Figure 11(top)
shows a triangle mesh that does not meet the conditions in Propo-
sition 5, with its invalid corresponding P-Hex mesh (i.e., having
faces with self-intersection). Figure 11(bottom) shows a triangle
mesh that satisfies the conditions in Proposition 5, with its valid
corresponding P-Hex mesh.

Figure 11: (Top): The condition (3) of Proposition 5 is not satisfied
by the triangle mesh on the left, and the resulting P-Hex mesh on
the right contains self-intersecting faces. (Bottom): the condition
is satisfied by the triangle mesh and the resulting P-Hex mesh does
not have face self-intersection.

Optimal shape of P-Hex faces From an aesthetic viewpoint,
we would like to obtain those triangle meshes whose Dupin dual are
valid P-Hex meshes with nicely shaped faces. When the Gaussian
curvature K > 0, a natural criterion is to have, as much as possi-
ble, P-Hex faces to be images of a regular hexagon under affine
transformations, or called affine regular hexagons, as shown in Fig-
ure 12(left). Evidently, this amounts to requiring that the Dupin
center of the fundamental triangle t be at the centroid of the fun-
damental triangle t̄; such a triangle is called an ideal triangle when
K > 0.



Figure 12: Left (K > 0): a regular hexagon and an affine regular
hexagon. Right (K < 0): a quasi-regular hexagon and an affine
quasi-regular hexagon.

When K < 0, we would like to have, as much as possible, the P-Hex
faces to be affine copies of a quasi-regular hexagon which is formed
by juxtaposing the two halves of a regular hexagon as shown in Fig-
ure 12(right). It is easy to show that this happens when the Dupin
center of the fundamental triangle t̄ is at the midpoint of the centroid
of t and any one of its three vertices, shown at the marked points
in Figure 12(right). Such a triangle is called an ideal triangle when
K < 0. That there are three possible locations for the Dupin center
of an ideal triangle reflects the fact that the plane tiling with a quasi-
regular hexagon is not invariant under rotation of π/6, in contrast
to the case of plane tiling using a regular hexagon.

If the Dupin center is off the ideal locations defining ideal triangle,
the shape of the resulting P-Hex face will deviate from an affine
regular hexagon or an affine quasi-regular hexagon. However, ac-
cording to Propositions 4 and 5, as long as the Dupin center stays
inside the fundamental triangle t̄, the resulting P-Hex face will be
free of self-intersection.

5 Triangulation algorithms

For computing a P-Hex mesh of a given shape, our algorithm con-
sists of three main steps: 1) compute a valid triangulation T of S;
2) convert T into a nearly P-Hex mesh H̃ using Dupin duality; 3)
apply optimization to turn H̃ into a P-Hex mesh H. In this section
we shall explain the first two steps in detail.

Figure 13: Construction of an ideal triangle4ABC. (Left, K > 0):
the Dupin indicatrix is an ellipse; (middle, K > 0): the Dupin in-
dicatrix is a circle; (right, K < 0): the Dupin indicatrix is a hyper-
bola.

5.1 Computing ideal triangles

We first explain how to compute an ideal triangle. Suppose K > 0
and consider an ideal triangle t :4ABC, i.e., its Dupin center is at
its centroid O (Figure 13, left). Since the line CO passes through
the midpoint M of the line segment AB, it is conjugate to AB at M.
Based on this observation we can determine the vertex C when A
and B are given. First note that, given the Dupin indicatrix, there
is a unique Dupin ellipse e that has AB as its diameter. Let ` be
the line conjugate to AB and passing its midpoint M. Construct
the parallelogram ABED with AD ‖ BE ‖ ` such that DE is tan-
gent to the ellipse e. We note that the directions MD and ME are
conjugate. Now mark point C on the line ` such that the length
|CM|=

√
3 |AD|. Then 4ABC has its Dupin center at its centroid,

i.e., it is an ideal triangle. This can be seen by noting that obviously
this construction works correctly when e is a circle (Figure 13, mid-
dle) and that the properties involved in the construction are affinely
invariant. Here, any point C′ on the line ` above the line DE defines
a valid triangle 4ABC′, since in this case its three edge directions
are not enclosed by any pair of conjugate directions with respect to
the Dupin ellipse e. (cf. Proposition 4).

When K < 0, we apply the same construction as above for the case
of K > 0, but with the difference that the two vertices D and E
of the parallelogram ABED are now determined such that MD and
ME are on the asymptotes of the Dupin hyperbola centered at M.
See Figure 13(right). Here the choice of C using the same rule
‖CM‖ =

√
3‖AE‖ ensures that 4ABC is an ideal triangle, i.e., its

Dupin center is located at O = (A + B + 4C)/6. The proof for the
correctness of this construction is elementary, so is omitted. Again,
any point C′ above the line DE defines a valid triangle 4ABC′,
since its three edge directions are not enclosed by the two asymp-
totic directions (cf. Proposition 5).

5.2 Computing a valid triangulation

We shall present two methods for laying valid triangulations on a
surface S based on conjugate curve networks.

Figure 14: Laying triangles with the progressive conjugation
method.

Method 1: Progressive conjugation method We start with
a base curve L0 with uniformly spaced sample points Ai on it,
i = 0,1,2, . . . ,n. (See Figure 14.) Let Mi denote the midpoint of
the line segment AiAi+1. Let `i be the half line starting at Mi and
going in the direction conjugate to AiAi+1. We use the procedure in
Section 5.1 to find a point Ci on each `i such that 4AiAi+1Ci is an
ideal triangle (cf. Figure 13). Then connect all the segments CiCi+1
to get the triangle 4CiCi+1Ai+1 to complete the first layer of tri-
angles. Next, taking the poly-line C : . . .Ci−1CiCi+1 . . . as the new
base curve L1 with the new sample points Ai := Ci, we follow the
same procedure to fill the next layer of triangles. This is repeated
to generate the subsequent layers.

The above family of curves Li, i = 0,1, . . . ,n, is conjugate to the
family of curves along the directions of `i (see Figure 14). Since
this conjugate network is generated on-the-fly while the triangula-
tion is being computed, the method is called progressive conjuga-
tion method. This method ensures that the resulting P-Hex faces are
nearly affine regular or quasi-regular hexagons, since ideal triangles
are computed within discretization errors (see Figure 15, left). A
problem with this approach is that the widths and orientations of
the triangle layers cannot easily be predicted or controlled. This
leads to the following alternative that computes the triangulation
following two pre-specified conjugate direction fields.

Method 2: Pre-specified conjugation method Here we con-
sider laying a valid triangulation on a surface S parameterized by
P(u,v), (u,v) = [u0, ū]× [v0, v̄] along two input conjugate direction



Figure 15: (Left): A triangulation and its P-Hex mesh computed
using the progressive conjugation method (method 1), where the P-
Hex faces are nearly affine regular (or quasi-regular) hexagons;
(right) the results obtained using the pre-specified conjugation
method (method 2).

fields DF : F(u,v) and DG : G(u,v). The first field DF may be speci-
fied by the user and then the second field DG is uniquely determined
by DF , assuming that the Gaussian K 6= 0. We first take the base
curve L0 to be a flow line from the first field DF and sample points
Ai on L0. (See Figure 16.) Let Mi be the middle point of the line
segment AiAi+1. There is a unique flow line `i from the second di-
rection field DG that passes through Mi. On each `i, following the
procedure in Section 5.1 we find the point Ci such that 4AiAi+1Ci
is an ideal triangle. This is possible because DF and DG are con-
jugate, so the direction of `i is conjugate to that of AiAi+1. Since
the poly-line C : . . .Ci−1CiCi+1 . . . is in general not a flow line from
the field DF , we select a flow-line L1 from DF to approximate the
poly-line C and use the intersections C′i of the lines `i and the flow
line L1 as the final choices to define the triangles 4AiAi+1C′i and
4C′iC

′
i+1Ai+1, to complete the first layer of triangles. Note that

L1 should be computed such that its intersections C′i with the lines
`i are above the edge DE as shown in Figure 13; otherwise self-
intersecting P-Hex faces would occur. By using L1 as the new base
curve with the new sample points Ai := C′i , we proceed to com-
plete the subsequent layers of triangles. With the this pre-specified
conjugation method we can ensure that the triangles are arranged
along pre-specified conjugate directions, but due to this constraint
the faces of the resulting P-Hex mesh may deviate from affine reg-
ular or affine quasi-regular hexagons.

Figure 16: Laying triangles with the pre-specified conjugation
method.

5.3 Degenerate cases (K = 0)

Free-form surfaces often contain parabolic points, i.e., points with
K = 0, which is the case we have not considered so far in triangula-
tion computation. If K ≡ 0 on S, then S is a plane or a developable
surface [Carmo 1976]. The case of S being a plane is trivial, since
any hexagonal mesh of S is a P-Hex mesh. When S is a developable,
we just need to tile quadrilateral-shaped hexagons along the rulings
of S (cf. the last paragraph of Section 3).

In the following we shall explain how to compute a valid triangu-
lation across parabolic curves on a surface. Suppose that we reach
a point at or near a parabolic curve on S when we compute a tri-
angulation of S using either of the two methods in Section 5.2. In

general, the scheme in Section 5.1 for computing an ideal triangle
will fail, because the step size MC will be either too large or too
small. For example, if we lay the triangulation from bottom up for
the surface in Figure 17(left), the step size will be too large near the
parabolic curve, where the zero principal curvature direction points
across the parabolic curve. In such a case, we re-use the valid step
size from the previous layer where K 6= 0 so we can safely cross
the parabolic curve. Figure 18(left) shows the triangulation of the
vase generated using this scheme, together with the resulting P-Hex
mesh.

Figure 17: Two typical cases of parabolic curves, where K = 0.

Figure 18: (Left): Triangulation and its P-Hex mesh of a vase us-
ing the step control scheme from bottom up; (right): a triangulation
and its P-Hex mesh of the vase computed in the longitudinal direc-
tion.

At a point near or on a parabolic curve, the step size may also be
too small or even zero. For example, this occurs if we lay out a
triangulation on the torus shown in Figure 17(right), following the
indicated laying direction. Here the zero principal curvature is in
a direction along the parabolic curve. Although a small step size
is sufficient to yield a valid triangle, the resulting triangle layers
would be too narrow and the corresponding P-Hex faces would have
a large disparity in size with those neighboring P-Hex faces away
from the parabolic curve.

We circumvent the problem by using an ap-
propriate lower bound b on the aspect ratio
|CM|/|AB| of the triangle 4ABC, as shown
in Figure 13, which reflects the step size in
triangulation layout. Suppose that the com-
puted step size |CM| produces the ratio r.
Then the actual ratio r̄ we use will be r if
r ≥ 2b, but b+ r2/(4b) if 2b > r ≥ 0. This scheme ensures a lower
bound on the step size |CM| and provides a smooth transition of
the step size when it approaches the lower bound, as shown on the
right. Figure 19(right) shows the triangulation of a torus generated
using this scheme, together with the resulting P-Hex mesh.

6 Optimization

Initialization via Dupin duality For a valid triangulation T on
surface S that contains no zero-curvature point, the tangent duality
provides a fast and precise method for turning T into a P-Hex mesh,
without the need for nonlinear optimization. However, as we noted



Figure 19: (Left): A triangulation and its P-Hex mesh of a torus
computed without using a lower bound on the step size, leading to
narrow triangle layers; (right): a triangulation and its P-Hex mesh
of the torus computed using a lower bound on the step size.

earlier, the tangent duality construction may fail or become numer-
ically unstable near a parabolic region or when the three vertices
of triangle are too small. Hence, as a general treatment for free
form shapes, we use an approximate Dupin duality to first convert
T into a nearly planar hexagonal mesh H̃0, which, as a good initial
mesh, is then made into a P-Hex mesh by our planarity optimization
method.

We adopt the following notation. For a triangle face 4v1v2v3, let
κi,1,κi,2, ~Ui,~Vi, and Ki denote the principle curvatures and their di-
rections, and the Gaussian curvature at vi. Let Ni denote the unit
normal vector at vi. The algorithm for computing the Dupin center
for each triangle face is as follows.

(1) Parabolic region detection: if K1,K2,K3 are not of the same
signs or one of |K1|, |K2|, |K3| is near zero (10−8), then trian-
gle 4p1 p2 p3 in a parabolic region. We set the Dupin center of
4v1v2v3 at its centroid, (v1 + v2 + v3)/3.
(2) For each vertex vi in4v1v2v3, we project the other two vertices
v j,vk onto the plane Γi determined by vi and Ni. We use the curva-
ture information to compute a Dupin conic Ci on Γi to pass through
pi and the projections of v j,vk. The center ui of Ci is assigned to be
the Dupin center associated with vi.
(3) The average center u = (u1 +u2 +u3)/3 is assigned as the Dupin
center of4v1v2v3.
(4) Finally, a hexagonal mesh H̃0, with vertices {ui}n

i=0 and faces
{ fi}m

i=0, is obtained from the Dupin centers of all the triangles using
a simple mesh-duality technique.

Planarity Optimization The computation of the hexagonal
mesh H̃0 is a close approximation to the Dupin duality on a tan-
gent plane (cf. Section 4.1). Therefore, by Proposition 2, H̃0 is
nearly planar. From the numerical optimization point of view, H̃0
is a good initial mesh for planarity optimization. The planarity of
a face fi = u0u1u2u3u4u5 can be attained by forcing the volume of
the tetrahedra formed by all the 4-point subsets of the vertices of fi
to be zero. Let vol(ui,u j,uk,u`) denote the volume of a tetrahedron
(ui,u j,uk,u`). Hence, for each hex-face fi, we define the planarity
constraint as

F( fi) :=
5

∑
i=0

vol2 (ui,ui+1,ui+2,ui+3) = 0.

with the indices modulo 6. To ensure minimal shape distortion,
we add two energy terms into our optimization function: Fs =
∑

n
i=0 ‖ui− ui,0‖2 and Fd = ∑

n
i=0 dist2(ui,S) Where ui,0 is the ini-

tial position of the vertex ui and S is the underlying surface approx-
imated by a triangular mesh. We use a penalty method to solve
this constrained optimization problem [Nocedal and Wright 2006].
Therefore, the objective function is

m

∑
i=0

F( fi)+λFs + µFd .

We use the Gauss-Newton method to minimize this function.
For most of our examples, we choose λ = 1.0,µ = 0.0 and
λ(j+1)-th step = 0.1λj-th step. Since the initial hexagonal mesh
M0 is almost planar, our optimization runs very fast. Normally, we
have maxi ‖Fp( fi)‖ = 10−15 within 10 iterations. The total time,
including processing the conjugate curve network and optimization
for planarity is from seconds to several dozens of second for most
of the examples in this paper, depending on the number of faces.
For example, the cyclide P-Hex mesh for the architectural model
on the title page was computed in 10 seconds.

7 Experiments and discussions

Figure 20: Three P-Hex meshes of different patterns on a spherical
surface: radial, diverging, and spiral. Here, despite the variations
in the face size, the P-Hex faces are controlled to be nearly affine
regular hexagons.

Figure 21: (Left): The P-Hex mesh of a minimal surface computed
using the pre-specified conjugation method; (right) a convex P-Hex
mesh whose triangulation under the Dupin duality is generated by
applying Loop’s subdivision to the shown control structure. The
marked faces are pentagons.

In our algorithms the laying directions for computing a valid trian-
gulation follow conjugate curve networks (see Section 5.2). Using
different conjugate networks for computing a valid triangulation,
P-Hex meshes of different patterns can be generated on the same
surface Figure 20. Since, a P-Hex mesh has three distinct principal
directions along which its faces can be aligned, it is important to
arrange the conjugate network in coordination with those geometri-
cally significant directions on S, in order to produce a good P-Hex
mesh. For instance, in a negatively curved region, one should keep
away from asymptotic directions, which are self-conjugate, highly
distorted P-Hex faces would result.

In this regard, whenever possible, it is often desirable to adopt the
curvature lines as the conjugate network for computing the triangu-
lation, which offers the additional benefit of generating non-skewed
affine regular (or quasi-regular) hexagonal faces, since the any two
principal curvature directions are orthogonal. This is the choice
made in generating the P-Hex meshes in Figure 15(right), Fig-
ure 18, and Figure 21. The two principal curvature directions are
sometimes not equally good; for example, for the cyclide in Fig-
ure 15 or the torus in Figure 19, the show laying direction is the
only feasible one. This is similar to the case of the P-Hex mesh of a



developable surface (cf. last paragraph of Section 3). For a freeform
surface containing parabolic curves, the conjugate network should
be designed to include the parabolic curve so that the triangulation
is not “disrupted” when crossing the parabolic curve, as discussed
in detail in Section 5.3. This is illustrated in Figure 22(right).

Figure 22: (Left): A free-form P-Hex mesh with smooth transition
of the shape of P-Hex faces, computed using the pre-specified con-
jugation method; (right) curvature lines and the parabolic curve
(in green) for the surface whose P-Hex mesh is shown at the bottom
right of the figure at the top of page 1.

Not all surfaces can be tiled by P-Hex meshes. For example,
it is well known that, as the consequence of Euler’s formula, a
genus-0 surface cannot be represented by a hexagonal mesh with
all valence-3 vertices. More specifically, suppose that a surface of
genus g is represented by a mesh M that has only valence-3 ver-
tices and has F5 pentagons, F6 hexagons and F7 heptagons, and no
other types of faces. Then there is F5−F7 = 12(1−g). A realiza-
tion of this relationship is a soccer ball or the celebrated fullerene
C60 (i.e., g = 0) with 12 pentagonal faces and 20 hexagonal faces.
Computing a P-Hex mesh for a general surface with genus g 6= 1
is beyond the capability of our algorithms presented in Section 5.2,
since the methods assume that a singularity-free conjugate network
is available. However, for the important class of convex surface
of g = 0, subdivision surface schemes provide an effective means
for generating valid triangulations for the purpose of generating
P-Hex meshes (see Figure 21). This subdivision works because
it generates a convex regular triangle mesh surface (with isolated
non-valence-6 vertices) from a convex control polyhedron. It is
not difficult to see that the triangles of such a mesh contain their
Dupin centers with respect to the subdivision limit surface. Hence,
by Proposition 4, the corresponding P-Hex mesh is valid. Further
study is needed for controlling the shape of the P-Hex faces via this
subdivision approach and, of course, for extending it to the case of
non-convex surfaces.

8 Conclusion and future work

We have studied the relationship between regular triangulations and
and P-Hex meshes. We focused on understanding the effects of sur-
face curvature on the P-Hex faces, and provided characterization on
those valid triangulations that lead to P-Hex meshes whose faces are
free of self-intersection and have desired shapes, such as affine reg-
ular or quasi-regular hexagon. Based on this we developed a com-
plete algorithm for computing valid triangle meshes and turning
them into P-Hex meshes. For extensions to this work, our initial in-
vestigation (Figure 21(right)) points to the direction of introducing
non-hexagon faces, in a controlled manner in terms of both location
and number, to generate P-Hex-dominant meshes for surfaces with
complex topology (i.e., high genus) or complex geometry.
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Figure 23: Local quadratic approximation of S.

Appendix

Proof of Proposition 2: Let T be a regular triangulation of the
surface S with face size O(h). We parameterize the surface S locally
as a graph of a function z = f (x,y) over the tangent plane Γ of S
at a vertex vc ∈ S of T . In the 2D coordinate system on Γ with
the x and y axes along the principal curvature directions and the
origin at vc, z = f (x,y) is approximated by the quadratic function
z = g(x,y)≡ 1

2 (κ1x2 +κ2y2) with an O(h3) error, where κ1 and κ2
are the principal curvatures of S at vc, since z = g(x,y) is the second
order Taylor expansion of z = f (x,y) (see Figure 23).

Due to the smoothness assumption on the regular triangulation and
the second order approximation of the surface S by its Taylor ap-
proximation z = g(x,y), it is easy to see that, with perturbations of
O(h2), the vertices vi, i = 0,1, . . . ,5, of T that are adjacent to vc can
be moved to points v′i on the surface z = g(x,y) such that the vertical
projections v̄i of the v′i (i.e., along the z direction) onto the tangent
plane Γ form a centrally symmetric hexagon v̄0v̄1v̄2v̄3v̄4v̄5 with
the triangles vcv̄iv̄i+1 being congruent to each other, i = 0,1, . . . ,5,
modulo 6. Let f ′ : u′0u′1u′2u′3u′4u′5 denote the hexagon on the plane
Γ obtained by applying the tangent duality to the vertices v′i on
z = g(x,y). Let f : u0u1u2u3u4u5 denote the hexagon on Γ obtained
by applying the tangent duality to the vertices vi on z = f (x,y), i.e.,
on the surface S. Since the errors between the vi on S and the v′i
on z = g(x,y) are O(h2), the different between their corresponding
hexagons f and f ′ obtained via the tangent duality is O(h2).

Let f̄ : ū0ū1ū2ū3ū4ū5 denote the hexagon on Γ obtained by apply-
ing Dupin duality to the vertices v̄i, i = 0,1, . . . ,5 (Figure 7). To
complete the proof, we are going to show that the hexagon f̄ is
the same as the hexagon f ′. Consider the triangle 4vcv′iv

′
i+1 on

z = g(x,y), whose vertical projection on Γ is 4vcv̄iv̄i+1 (see Fig-
ure 23). It is elementary to show the intersection point u′i of the
paraboloid z = g(x,y) with the plane Pi containing 4vcv′iv

′
i+1 is a

conic whose vertical projection on Γ is the Dupin conic C′i circum-
scribing 4vcv̄iv̄i+1. Clearly, the intersection of the three tangent
planes of z = g(x,y) at vc, v′i and v′i+1 is the pole of the plane Pi
with respect to z = g(x,y) as a quadric surface. Since the vertical
projection here is a stereographic projection on z = g(x,y) with the
center of projection at infinity in the direction of the z axis, the pole
of Pi, i.e., u′i, is identical with the center of the conic C′i [Aurenham-
mer and Klein 2000], which is the Dupin center ūi of4vcv̄iv̄i+1 (see
Figure 7). This completes the proof. �.

Proof of Proposition 4: Given the triangulation T̄ and the Dupin
indicatrix of S at vc, the six vertices ūi of the hexagon f̄ form two

triangles4r1r2r3 and4r′1r′2r′3, as shown in Figure 24(left). These
two triangles are reflections and are both congruent with the funda-
mental triangle t̄. Clearly, the hexagon f̄ is obtained by tracing the
vertices ri and r′i in the order: r1⇒ r′3⇒ r2⇒ r′1⇒ r3⇒ r′2⇒ r1.

Figure 24: Illustration 1 for the Proof of Proposition 4.

Figure 25: Illustration 2 for the Proof of Proposition 4. The dashed
lines are a pair of conjugate directions. The three blue lines are
translational copies of three edges at the Dupin center.

Let 4r1r2r3 be identified with the fundamental triangle t̄. By
Proposition 3, the vertices ri and r′i lie on the same Dupin conic,
denoted as C′, whose center is the Dupin center of 4r1r2r3 (Fig-
ure 24, left). Since K > 0, C is an ellipse. First consider the special
case of C′ being a circle, for which two conjugate directions are
orthogonal and the Dupin center of4r1r2r3 is its circumcenter. In
this case, obviously the three edge directions of 4r1r2r3 are not
enclosed by any two orthogonal directions if and only if 4r1r2r3
is an acute triangle, which holds if and only if the circumcenter of
4r1r2r3 is inside 4r1r2r3 (Figure 25, left). Since the properties
used in this argument are preserved by affine transformation, we
have shown that, in the general case of C being an ellipse, the three
edges directions of4r1r2r3 are not enclosed by any two conjugate
directions if and only if the Dupin center of t̄ : 4r1r2r3 is inside
t̄ :4r1r2r3.

Now we are back in the general case of C′ being an ellipse. If the
center of C′ is inside t̄ :4r1r2r3, then the h̄ yielded by tracing the
vertices r1 ⇒ r′3 ⇒ r2 ⇒ r′1 ⇒ r3 ⇒ r′2 ⇒ r1 is convex hexagon,
thus has no self-intersection (Figure 24:middle). If the center of
C′ is outside t̄ (see Figure 24, right), the same tracing order will
yield a self-intersecting hexagon f̄ . Hence, T̄ is valid if and only
if the Dupin center of the fundamental triangle t̄ lies inside t̄. This
completes the proof. �

Proof of Proposition 5: Since K < 0, the Dupin conic C′ of t̄ is a
hyperbola. Similar to the discussion in the proof of Proposition 4
for the case of K > 0, the vertices of f̄ consists of the vertices of
two triangles 4r1r2r3 and 4r′1r′2r′3, which are reflections of each
other and are both congruent to the fundamental triangle t̄ of T̄ .
Furthermore, f̄ is formed by tracing the vertices of 4r1r2r3 and
4r′1r′2r′3 in the same order: r1⇒ r′3⇒ r2⇒ r′1⇒ r3⇒ r′2⇒ r1. Let
us identify 4r1r2r3 with t̄. Obviously, the three edge directions of
t̄ :4r1r2r3 are enclosed in a range bounded by the two asymptotes
of C′ if and only if the three vertices of t̄ : 4r1r2r3 are the same
branch of the hyperbola C′.



Figure 26: Illustration of the condition in Proposition 5. (Top):
the dashed lines are the asymptotical directions. The three blue
lines are parallel to the edge directions of the fundamental triangle.
(Bottom): the corresponding Dupin hexagons.

First suppose that one of vertices of t̄ :4r1r2r3, say r1, is on one
branch of C′, and r2 and r3 are on the other branch, as shown in
Figure 26(left and middle). If r1 is between r′2 and r′3 (Figure 26,
left), by traversing the vertices r1 ⇒ r′3 ⇒ r2 ⇒ r′1 ⇒ r3 ⇒ r′2 ⇒
r1, we obtain a simple, star-shaped, hexagon, shown as the shaded
region in Figure 26(left). If r1 does not lie between r′2 and r′3 on C′,
following the required tracing order above still yields a simple non-
convex hexagon, but it is no longer star-shaped (Figure 26:middle).

Next suppose that all the vertices of t̄ :4r1r2r3 lie the same branch
of the hyperbola C′ (Figure 26, right). Then, the vertices r′i , as
reflections of the ri, are on the other branch of C′. Clearly, tracing
these vertices in the required order r1⇒ r′3⇒ r2⇒ r′1⇒ r3⇒ r′2⇒
r1 produces a self-intersecting hexagon, as shown in Figure 26(left).
This completes the proof.




