
Postprint of article in Proceedings of the 32nd Annual International Computer Software and Applications Conference (COMPSAC ’08),

IEEE Computer Society, Los Alamitos, CA, pp. 128–135 (2008)

Debugging through Evaluation Sequences: A Controlled Experimental Study ∗ †

Zhenyu Zhang, Bo Jiang

The University of Hong Kong

Pokfulam, Hong Kong

{zyzhang, bjiang}@cs.hku.hk

W.K. Chan

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T.H. Tse ‡

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract

Predicate-based statistical fault-localization techniques

locate fault-relevant predicates in a program by contrasting

the statistics of the values of individual predicates between

successful and failure-causing runs. While short-circuit

evaluations are common in program execution, treating

predicates as atomic units ignores this fact, masking out

various types of important statistics. On the contrary, are

such statistics useful for debugging? In this paper, we

investigate experimentally the impact of the use of short-

circuit evaluation information on fault localization. The

results show that, by doing so, it significantly improves

predicate-based statistical fault-localization techniques.

Keywords: evaluation sequence, fault localization.

1 Introduction

Software debugging is a key activity in software

development, and takes up a significant amount of resources

in a typical project. Among the three major tasks

of software debugging (namely, fault localization, fault

repair, and regression testing of repaired programs), fault

∗ c© 2008 IEEE. This material is presented to ensure timely

dissemination of scholarly and technical work. Personal use of this

material is permitted. Copyright and all rights therein are retained by

authors or by other copyright holders. All persons copying this information

are expected to adhere to the terms and constraints invoked by each

author’s copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder. Permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE.
† This project is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project nos. 111107 and 716507).
‡ All correspondence should be addressed to Prof. T.H. Tse at

Department of Computer Science, The University of Hong Kong,

Pokfulam, Hong Kong. Tel: (+852) 2859 2183. Fax: (+852) 2858 4141.

Email: thtse@cs.hku.hk.

localization has been recognized as the hardest, tedious, and

time-consuming [14]. Using an effective fault-localization

technique to improve the productivity of programmers is a

long-standing trend to alleviate the problem.

Recently, effective statistical fault-localization tech-

niques were proposed. A strategy [10, 11] is to identify

fault-relevant predicates rather than directly pinpointing the

fault locations. This strategy holds the promise to sample

a program and collect execution statistics in a lightweight

manner, which also reduces the need to disclose the

execution details of all statements when remote sampling

is conducted (for the purpose of remote support rather than

on-site support). Hence, it lowers the risk of information

leakage, which is a security concern.

These techniques, however, need to summarize the

execution statistics on individual predicates. A compound

predicate may be executed in one way or another due

to short-circuit evaluations over different sub-terms of

the predicate. The execution statistics of a predicate

is, therefore, the summary of a collection of lower-

tier evaluations over different sub-terms. Is isolating

these lower-tier evaluations beneficial in improving

the effectiveness of predicate-based statistical fault-

localization techniques? This paper conducts a controlled

experimental investigation on the impact of the use of short-

circuit evaluation sequences to improve statistical fault

localization techniques.

We first give a few preliminaries. A successful test

case is a test case showing no failures, and a failure-

causing test case is one that detects a failure. A

typical program contains numerous predicates in if- and

while-statements. They are in the form of Boolean

expressions, such as “*j<=1 || src[*i+1]==’\0’”,

which may comprise further conditions, such as “*j<=1”

and “src[*i+1]==’\0’”.

Previous studies on statistical fault localization [10, 11]

find the fault-relevant predicates in a program by counting

the number of times (nt) a predicate is evaluated to be true

in an execution as well as the number of times (n f) it is

evaluated to be false, and then comparing these counts in

1

Administrator
 HKU CS Tech Report TR-2008-07

various ways. The evaluation bias nt
nt+n f

of a predicate

is the percentage that it is evaluated to be true among all

evaluations in a run [11].

The SOBER approach [11] proposes to contrast the

differences between a set of evaluation biases due to

successful test cases and that due to failure-causing ones

for every predicate in the program. It hypothesizes

that, the greater is the difference between such a pair of

sets of evaluation biases, the higher will be the chance

that the corresponding predicate is fault-relevant. The

CBI approach [10] proposes a heuristic that measures the

increase in probability that a predicate is evaluated to be true

in a set of failure-causing test cases, compared to the whole

set of (successful and failure-causing) test cases. These

proposals are particularly interested in the evaluation results

of predicates. They use the resultant values of the predicates

to determine the counts.

A predicate can be considered as a Boolean expression.

As mentioned above and to be discussed in Section 2,

the resultant values of a Boolean expression may

be due to different evaluation sequences. If we

ignore the information on evaluation sequences, we

may be masking out very useful statistics for effect-

ive fault localization. In this paper, we investigate whether

the effect of a lower-tier concept — evaluation sequences —

of predicates is significant on the effectiveness of predicate-

based statistical fault localization. We set up a controlled

experiment to study this question.

The major contributions of this paper are twofold:

(i) We provide the first set of experimental results

regarding the effect of short-circuit evaluations on statistical

debugging. (ii) We show that short-circuit evaluation has a

significant impact on the effectiveness of predicate-based

fault-localization techniques. Indeed, the experimental

result shows that the use of evaluation sequences can

significantly improve on existing predicate-based statistical

fault-localization techniques.

We shall illustrate the potential of using evaluation

sequences for fine-grained statistical fault localization in

Section 2, which casts a scene for us to formulate the

research questions in Section 3, followed by the associated

experiment in Section 4. We shall next review related work

in Section 5. Section 6 concludes the paper.

2 A Motivating Study

This section shows a motivating study we have

conducted. It enables readers to have a feel of how the

distribution of evaluation biases at the evaluation sequence

level can be used to pinpoint a faulty predicate.

The upper part of Figure 1 shows a code fragment

excerpted from the original version (version v0) of

print tokens2 from the Siemens suite of programs [5]. We

/* Original Version v0 */

if(

C1
︷ ︸︸ ︷

ch == ’ ’ ||

C2
︷ ︸︸ ︷

ch == ’\n’ ||

C3
︷ ︸︸ ︷

ch == 59)

return(true);

/* Faulty Version v8 */

if(

C1
︷ ︸︸ ︷

ch == ’ ’ ||

C2
︷ ︸︸ ︷

ch == ’\n’ ||

C3
︷ ︸︸ ︷

ch == 59 ||

C4
︷ ︸︸ ︷

ch == ’t’)

return(true);

Figure 1. Code excerpts from versions v0 and

v8 of print tokens.

ES C1 C2 C3 C4 v0 v8 v0 = v8?

es1 T ⊥ ⊥ ⊥ T T yes

es2 F T ⊥ ⊥ T T yes

es3 F F T ⊥ T T yes

es4 F F F T
F

T no

es5 F F F F F yes

Table 1. Evaluation sequences of code

fragments.

have labeled the three individual conditions as C1, C2, and

C3, respectively. The lower part of the same figure shows

the code fragment excerpted from a faulty version (version

v8) of the Siemens suite, where a fault was seeded into the

predicate by adding an extra condition ch==’\t’. We have

labeled this condition as C4.

Because of the effect of short-circuit rules of the C

programming language on Boolean expressions, a condition

in a Boolean expression may be evaluated to be true

(T) or false (F), or may not be evaluated at all (⊥).

Furthermore, in terms of evaluations, the conditions on a

Boolean expression can be seen as an ordered sequence. 1

When a preceding condition in an evaluation sequence is not

evaluated, by the short-circuit rule, no succeeding condition

in the evaluation sequence will be evaluated.

For the faulty Boolean expression in the fragment shown

in Figure 1, there are five legitimate evaluation sequences

(es1 to es5), as shown in Table 1. The columns under the

individual conditions (C1 to C4) represent the evaluation

outcomes of the respective conditions based on the short-

circuit rules of the programming language. In the column

entitled v0, it shows the respective resultant values of the

predicate in the original version of the program. In this

column, the last two grids are merged because the two

evaluation sequences (es4 and es5) make no difference in

1 We simply consider every condition to be a distinct occurrence. In

other words, even if two conditions in a predicate are identical, we consider

them as two distinct occurrences.

2

the original program. The column entitled v8 shows the

respective resultant values in the faulty program. The

rightmost column shows whether the original and faulty

predicates give the same values.

To gain an idea of whether short-circuit rules can

be useful for fault localization, we have run an

initial experiment. We apply the whole test pool

for the program from the Software-artifact Infrastructure

Repository (SIR) [5], and record the counts of each of the

five evaluation sequences for each test case. Following [11],

we use the formula in Section 1 to calculate the evaluation

biases for the set of successful test cases, and those for the

set of failure-causing test cases. The results are shown as the

histograms in Figure 2. The distribution of evaluation biases

over successful test cases and that over failure-causing test

cases are given in pairs. The plots in Figures 2(a) to 2(e)

are the respective distribution pairs of the five evaluation

sequences. The plots in Figures 2(f) and 2(g) are those for

the predicate-level, as used in previous work ([11]).

From the histograms in Figure 2, we observe that the

distribution of evaluation biases for es4 on successful test

cases is drastically different from that of the failure-causing

one. Indeed, it is the most different one among all pairs

of histograms shown in the figure. We also observe from

Table 1 that the fault in the code fragment can only be

revealed when es4 is used, because the fault does not affect

the values in the other alternatives.

Our initial study indicates that it may be feasible to use

evaluation sequences to identify a fault-relevant statement

more accurately. However, it is still uncertain how much

the use of evaluation sequences will be beneficial to fault

localization. We shall formulate our research questions in

the next section and then investigate them experimentally

in Section 4.

3 Research Questions

In this section, we shall discuss the research questions to

be addressed by our controlled experimental study. We refer

to a predicate-based statistical fault-localization technique

as a base technique, and refer to the use of evaluation

sequences in predicate execution counts as the fine-grained

version of the base technique.

RQ1: In relation to the base technique, is the use of

evaluation sequences for statistical fault localization

effective?

RQ2: If the answer to RQ1 is true, is the effectiveness of

using evaluation sequences significantly better than the

base technique?

RQ3: Do the execution statistics of different evaluation

sequences of the same predicate differ significantly?

(a) es1 Plot

(b) es2 Plot

(c) es3 Plot

(d) es4 Plot

(e) es5 Plot

(f) predicate f alse Plot

(g) predicatetrue Plot

Figure 2. Comparison of distributions of

evaluation biases (x-axis: evaluation bias; y-

axis: no. of test cases).

3.1 Performance Evaluation

Performance metrics are widely used to facilitate

comparisons among different approaches. Renieres and

Reiss [13] propose a (T-score) method of for measuring

their fault-localization technique. The method is also

adopted by Cleve and Zeller [3] and Liu et al. [11] to

3

evaluate other fault-localization techniques.

For the ease of comparison with previous work, we

also use T-scores to evaluate the fine-grained evaluation

sequence approach in relation to the corresponding base

techniques. We select two base techniques for study,

namely SOBER [11] and CBI [10], because they are

representative.

In brief, the T-score method takes a program P, its

marked faulty statements S, and a sequence of most

suspected faulty statements S′ as inputs, and produces a

value V as output. The procedure to compute the T-score

is as follows: (i) Generate a Program Dependence Graph

(PDG) G for P. (ii) Using the dependence relations in

the PDG as a measure of distance among statements, do a

breadth-first search starting with the statements in S′, until

some statement in S is reached. (iii) Return the percentage

of searched statements (with respect to the total number of

statements in P) as the value V . If the original S′ consists of

k most suspected faulty statements, the final result is known

as the top-k T-score value.

This measure is useful in assessing objectively the

quality of proposed ranking lists of fault-relevant predicates

and the performance of fault-localization techniques. Since

the evaluation sequence approach is built on top of base

techniques (such as SOBER and CBI), we also use T-

scores to compare different approaches in our controlled

experiment to answer the research questions.

3.2 Enabling Fine-Grained View of Base Tech-

niques

As we are interested in studying the impact of

short-circuit evaluations and evaluation sequences for

statistical fault localization, we need a method to

incorporate the fine-grained view into a base technique.

Intuitively, this will provide execution statistics which may

help statistical fault-localization techniques identify the

locations of faults more accurately.

We note that a base technique, such as SOBER or CBI,

conducts sampling of the predicates in a subject program

to collect run-time execution statistics, ranks the fault

relevance of the predicates. To assess the effectiveness of

the selected set of predicates to locate faults, researchers

may use T-scores to determine the percentage of code

examined in order to discover the fault.

As such, given a set of predicates applicable to a base

technique, we identify all legitimate evaluation sequences

for each of these predicates. We then insert probes at the

predicate locations to collect the evaluation outcomes of

atomic conditions in these predicates. For each evaluation

of a predicate, based on the evaluation outcomes of

the atomic conditions, we can determine the evaluation

sequence that takes place in the predicate evaluation.

Hence, we collect the counts for individual evaluation

sequences. By treating each evaluation sequence as a

distinct (fine-grained) predicate in the base technique, the

ranking approach in the base technique can be adopted to

rank these fine-grained predicates.

On the other hand, from the developers’ viewpoint,

it may be more convenient to recognize (through their

eyeballs) the occurrence of an original predicate (than an

evaluation sequence of the predicate) from the program text.

Hence, it is to the benefit of developers to map the ranked

evaluation sequences to their respective predicates and thus

the corresponding statements.

Some measures need to be taken in the above mapping

procedure, however. Different evaluation sequences may

receive different ranks. A simple mapping may thus result

in a situation where a predicate occurs more than once in

a ranking list. We choose to use the highest rank of all

evaluation sequences for each individual predicate as the

final rank of that predicate. This strategy also aligns with

the basic idea of predicate ranking in SOBER and CBI.

We refer to the fine-grained approach as Debugging through

Evaluation Sequences (DES).

4 Controlled Experiment

This section presents a controlled experiment and its

results and analyses.

4.1 Subject Programs and Test Cases

In this study, we choose the Siemens suite of programs

to conduct our experiment. They were originally created

to support research on data-flow and control-flow test

adequacy [7]. Our version of Siemens subject programs

are obtained from the Software-artifact Infrastructure

Repository (SIR) [5] at http://sir.unl.edu. The Siemens suite

consists of seven programs as shown in Table 2. A number

of faulty versions are attached to each program. In our

experiment, if any faulty version comes with no failure-

causing cases, we do not include it in the experiment,

since the base techniques [10, 11] require failure-causing

test cases. We use a Unix tool, gcov, to collect the

instrumentation log. Six faulty versions that cannot be

processed by gcov are excluded. As a result, we use 126

faulty versions in total.

Each of the Siemens programs is equipped with a test

pool. According to the authors’ original intention, the test

pool simulates a representative subset of the input domain

of the program, so that test suites should be drawn from

such a test pool [5]. In the experiment, we follow the work

of [11] to input the whole test pool to every technique to

rank predicates or their evaluation sequences.

4

Program Exe. LoC Faulty Ver. A B

print tokens 341–342 7 4130 1.7

print tokens2 350–354 10 4115 5.4

replace 508–515 31 5542 2.0

schedule 291–294 5 2650 3.2

schedule2 261–263 9 2710 1.0

tcas 133–137 41 1608 2.4

tot info 272–274 23 1052 5.6

Exe. LoC: executable lines of code.

Faulty Ver.: no. of faulty versions.

A: no. of test cases in the test pool.

B: average percentage of compound Boolean

expressions to all Boolean expressions.

Table 2. Statistics of subject programs.

Table 2 shows the statistics of the subject programs and

test pools that we use. The data with respect to each subject

program, including the executable lines of code (column

“Exe. LoC”), the number of faulty versions (column “Faulty

Ver.”), the size of the test pool (column A), and the average

percentage of compound Boolean expression statements

with respect to all Boolean expression statements (column

B), are obtained from SIR [5] (as at January 10, 2008). For

instance, there are 10 faulty versions for the print tokens2

program. Their sizes vary from 350 to 354 LoC, and their

test pool contains 4115 test cases. On average, 5.4% of

the Boolean expression statements in these faulty versions

contain compound Boolean expressions. Other rows can be

interpreted similarly.

We observe from column B that, in each subject

program, the percentage of predicates having more than one

atomic condition is low. This makes the research questions

even more interesting: We would like to see whether such

a low percentage would affect the performance of a base

technique to a large extent.

4.2 Setup of Controlled Experiment

In this section, we describe the setup of the controlled

experiment. Using our tool, we produce a set of

instrumented versions of the subject programs, including

both the original and faulty versions. Based on the

instrumentation log as well as the coverage files created by

gcov, we calculate the execution counts for the evaluation

sequences, and finally rank the Boolean expression

statements according to the description presented in

Section 3. We also calculate the number of faults

successfully identified through the examined percentage of

code at different T-score values (see Section 3).

The experiment is carried out on a DELL PowerEdge

1950 server with two 4-core Xeon 5355 (2.66Hz)

processors, 8GB physical memory and 400GB hard disk

equipped, serving a Solaris Unix with the kernel version of

Generic 120012-14.

Our experimental platform is constructed using the tools

of flex++ 2.5.31, bison++ 1.21.9-1, CC 5.8, bash 3.00.16(1)-

release (i386-pc-solaris2.10), and sloccount 2.26.

4.3 Results and Analysis

In this section, we present the experimental results,

compare the relative effectiveness of the integrated

approach with the base approach, and address the research

questions one by one.

Answering RQ1: Is DES effective? Figures 3 and 4

show the results of SOBER against SOBER enabled with

DES, and those of CBI against CBI enabled with DES,

respectively. To ease our discussion, we refer to CBI

enabled with DES as DES CBI, and SOBER enabled with

DES as DES SOBER.

The x-axis of each plot in these two figures shows the T-

score values, which represents the percentage of statements

of the respective faulty program version to be examined.

The y-axis is the percentage of faults located within the

given code examining range. According to [11], the use of

the top 5 predicates in the ranked list will produce the best

results for both SOBER and CBI. For a fair comparison with

previous work, we also adopt the use of the top 5 predicates

in the controlled experiment. In the remaining parts of the

paper, therefore, we shall always compare the top-5 T-score

values for DES SOBER and DES CBI against those for

SOBER and CBI.

We observe from Figure 3 that DES SOBER consis-

tently achieves better average fault localization results (that

is, more faults for the same percentage of examined code)

than SOBER. For example, when checking 10% to 20%

of the code, DES SOBER can find at least 10 percent

more faults than SOBER. As the percentage of examined

code increases, however, the difference shrinks. This is

understandable because, when an increasing amount of

code has been examined, the difference between marginal

increases of located faults will naturally be diminished.

When all the faults are located or all the statements are

examined, the two curves will attain the same percentage of

located faults. We also observe from Figure 4 that DES CBI

also outperforms CBI.

However, the visual differences between the curves

appear to be small. To gain a more detailed picture, we

further compare the two base techniques with their DES-

enabled versions from another point of view. Figures 5

and 6 show the relative comparison of DES SOBER and

SOBER as well as DES CBI and CBI on the Siemens suite

of programs.

5

90%

100%

50%

60%

70%

80%

90%

e
o

f
fa

u
lt

s
lo

ca
te

d

0%

10%

20%

30%

40%

p
er

ce
n

ta
g
e

DES_SOBER

SOBER

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of code examined

Figure 3. Direct comparison of DES SOBER

and SOBER.

90%

100%

50%

60%

70%

80%

90%

e
o

f
fa

u
lt

s
lo

ca
te

d

0%

10%

20%

30%

40%

p
er

ce
n

ta
g
e

DES_CBI

CBI

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of code examined

Figure 4. Direct comparison of DES CBI and

CBI.

20%

a
te

d

-20%

0%

n
ta

g
e

o
f

fa
u

lt
s

lo
ca

-80%

-60%

-40%

re
la

ti
v

e
p

er
ce

n

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of code examined

Figure 5. Relative comparison of DES SOBER

and SOBER.

In Figure 5, the x-axis of the plot is the percentage

of code examined (T-score). For a given percentage

of code examined, the y-axis shows a value that we

call the relative percentage of faults located, calculated

by the formula
percentage of faults located by SOBER

percentage of faults located by DES SOBER
− 1.

Figure 6 can be interpreted similarly. In either figure,

the parts below the x-axis indicates the relative percentage

that the DES-enabled version of the respective technique

(SOBER or CBI) outperforms the base version of the same

technique. The portion above the x-axis shows the opposite.

Firstly, let us examine Figure 5. When the percentage

20%

a
te

d

-20%

0%

n
ta

g
e

o
f

fa
u

lt
s

lo
ca

-80%

-60%

-40%

re
la

ti
v

e
p

er
ce

n

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of code examined

Figure 6. Relative comparison of DES CBI and

CBI.

of examined code is low, say 2% to 20%, the curves

for SOBER is far below the x-axis. This shows that

SOBER locates fewer faults than DES SOBER when the

percentage of code examined is small. Similarly, we can

find from Figure 6 that CBI locates fewer faults compared

with DES CBI. When the T-score increases, the differences

shrink as expected.

The results show that, on average, the evalua-

tion sequence approach attains a relatively good fault-

localization effectiveness (when benchmarked with the base

techniques). We can, therefore, answer the first research

question: the DES approach is effective.

Answering RQ2: Is DES better? In the above, we

showed that the DES approach is effective for fault

localization. However, it is unclear whether the difference

between a base technique and its DES-enabled version is

simply due to chance. We further wish to find out: Does

a technique enabled with the evaluation sequence approach

differ significantly from the base technique? Is it indeed

better?

To answer these questions, we perform a Mann-Whitney

U-test to determine whether a DES-enabled technique

differs significantly from its base technique. The detailed

procedure to analyze the data is as follows.

Firstly, we subtract the percentage of located faults

within the given T-score (values of 0%, 10%, . . . , 100%)

of DES CBI by that of CBI to obtain a set of sample

data. Then, we compare this sample set with another set

of data containing only zeros to test the null hypothesis

that DES CBI and CBI are not significantly different. The

result of the U-test for DES CBI and CBI gives a p-

value [4] of less than 0.001, which successfully rejects the

null hypothesis at 5% significant level. It confirms that

DES CBI and CBI are significantly different. We also

perform a U-test using the same procedure on DES SOBER

and SOBER. It also gives a p-value of less than 0.001,

which again successfully rejects the null hypothesis at 5%

6

significant level. From the experimentation above, we also

observe that the DES-enabled versions improve on their

base techniques.

Our answer to RQ2 is, therefore, that the DES-enabled

techniques differ significantly from the respective base

techniques. The answer to RQ2 also confirms that short-

circuit evaluation rules do have significant impacts on

statistical fault localization.

Combining the answers to RQ1 and RQ2, the

experimental results show that the DES approach has

the potential to improve significantly the effectiveness of

fault-localization techniques. 2 They also show that short-

circuiting is a significant factor in predicate-based statistical

fault localization.

Answering RQ3: Do different evaluation sequences

give the same result? To answer RQ3, we collect the

execution statistics of all the evaluation sequences of

the same Boolean expression to calculate the statistical

differences between successful and failure-causing test

cases. We perform a U-test between the evaluation biases

for the sets of evaluation sequences over the same predicate

in successful and failure-causing test cases. The results

of the U-test shows that, for 59.12% of the evaluation

sequences, there is a significant difference (at 5% significant

level) between the evaluation biases of successful and

failure-causing test cases. In other words, 59.12% of the

evaluation sequences are useful fault location indicators,

while the remaining 40.87% are not useful standalone fault

predicators to differentiate failure-causing test cases from

successful ones.

The answer to RQ3 is that different evaluation sequences

of the same predicate may have different potentials for fault

localization. It will be interesting to analyze the results

further to know the reasons.

4.4 Threats to Validity

We briefly summarize below the threats to validity in our

controlled experiment.

Construct validity is related to the platform dependence

issues when using the Siemens programs in SIR [5]. Since

every program in SIR has a fault matrix file to specify the

test verdict of each test case (that is, whether a test case is

successful or failure-causing), we also create a fault matrix

file for our test results and carefully verify each test verdict

against the corresponding one supplied by SIR. We observe

that there are only minor differences in test verdicts between

the two fault matrix files. We have thoroughly verified our

setting, and believe that the difference is due to platform

dependence issues.

2 We are conservative about the conclusion because it is subject to

external threats to validity to generalize the results.

Internal validity is related to the risk of having

confounding factors that affects the observed results.

Following [11], in the experiment, each technique uses all

the applicable test cases to locate fault-relevant predicates

in each program. The use of a test suite with a different

size may give a different result [11]. Evaluations on the

impact of different test suite sizes on our technique would

be welcome. Another important factor is the correctness

of our tools. Instead of adopting existing tools used in

the literature, we have implemented our own tools in C++

for the purpose of efficiency. To avoid errors, we have

adhered to the algorithms in the literature and implemented

and tested our tools carefully. To align with previous work,

we use the T-score method to compute the results of this

experiment. The use of other metrics may produce different

results.

External validity is the degree to which the results can be

generalized to test real-world systems. We use the Siemens

suite in the experiment to verify the research questions

because they are commonly used by researchers in testing

and debugging studies with a view to comparing different

work more easily. Further applications of our approach

to more medium to large size real-life programs would

strengthen the external validity of our work. Each of

the faulty versions in our subject programs contains one

fault. Despite the competent programmer hypothesis, real-

life programs may contain more than one fault. Although

Liu et al. have demonstrated in [12] that predicate-based

techniques can be used to locate faults in programs that

contain more than one fault, their effectiveness in this

scenario is not well discussed. We shall address this threat

in future work.

5 Related Work

There are rich categories of techniques in statistical fault

localization. There are others besides the predicate-based

category [10, 11].

Delta Debugging [3, 15] isolates failure-inducing input

elements, produces cause-effect chains, and locates the

faults through the analysis of program state changes during

a failed execution against a passed one.

Jones et al. [9] propose a Tarantula approach to rank

statements according to their relevance to program faults,

which is estimated by a ratio between the percentages of

failure-causing and successful test cases that execute the

statement. They further use Tarantula to explore ways of

classifying test cases to enable several test engineers to

debug a faulty program in parallel [8].

Liblit et al. [10] propose a sparse sampling approach

CBI to collect the statistics of predicates for statistical

fault localization. They further adapt CBI to exploit

the execution statistics of compound Boolean expressions

7

constructed from program predicates to facilitate statistical

debugging [1].

Renieres and Reiss [13] find the difference in execution

traces between a failed execution and its “nearest neighbor”

passed execution to be effective for debugging. Statements

with unsymmetrical differences between failed and passed

runs are regarded as faulty statements.

Baudry et al. [2] define a dynamic basic block as the set

of statements executed by the same test cases in a test suite.

They use a bacteriologic approach to remove test cases

while maximizing the number of dynamic basic blocks,

and use the algorithm in [9] to rank the statements. They

manage to use fewer test cases than Tarantula for the same

fault-localization results.

Griesmayer et al. [6] use model checking to locate faults.

By searching the error traces, expressions that repair the

original program can be constructed.

6 Conclusion

Program debugging is time-consuming but important

in software development. A major task in debugging is

to locate faults. A common approach in statistical fault

localization aims at locating program predicates that are

close to faulty statements. This relaxes the requirement to

pinpoint a fault location and has been shown empirically to

be quite effective.

Following this popular trend, we would like to explore

a better way to measure and rank predicates with respect

to fault relevance. We observe that the fault-localization

capabilities of various evaluation sequences of the same

Boolean expression are not identical. Because of short-

circuit evaluations of Boolean expressions in program

execution, different evaluation sequences of a predicate

may produce different resultant values. This inspires

us to investigate the effectiveness of using Boolean

expressions at the evaluation sequence level for statistical

fault localization. The experiment on the Siemens suite of

programs shows that our approach is promising. Our future

work will include locating faults in multi-fault programs

using representative test suites.

References

[1] P. Arumuga Nainar, T. Chen, J. Rosin, and

B. Liblit. Statistical debugging using compound

Boolean predicates. In Proceedings of ISSTA ’07,

pages 5–15. ACM, 2007.

[2] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test

suites for efficient fault localization. In Proceedings of

ICSE ’06. ACM, 2006.

[3] H. Cleve and A. Zeller. Locating causes of program

failures. In Proceedings of ICSE ’05, pages 342–351.

ACM, 2005.

[4] G.E. Dallal. Why P = 0.05? 2007. Available at

http://www.tufts.edu/ gdallal/p05.htm.

[5] H. Do, S.G. Elbaum, and G. Rothermel. Supporting

controlled experimentation with testing techniques:

an infrastructure and its potential impact. Empirical

Software Engineering, 10 (4): 405–435, 2005.

[6] A. Griesmayer, S. Staber, and R. Bloem. Automated

fault localization for C programs. Electronic Notes in

Theoretical Computer Science, 174 (4): 95–111, 2007.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.

Experiments on the effectiveness of dataflow- and

controlflow-based test adequacy criteria. In Proceed-

ings of ICSE ’94, pages 191–200. IEEE Computer

Society, 1994.

[8] J.A. Jones, M.J. Harrold, and J.F. Bowring. Debugging

in parallel. In Proceedings of ISSTA ’07, pages 16–26.

ACM, 2007.

[9] J.A. Jones, M.J. Harrold, and J. Stasko. Visualization

of test information to assist fault localization. In

Proceedings of ICSE ’02, pages 467–477. ACM,

2002.

[10] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and

M.I. Jordan. Scalable statistical bug isolation. in

Proceedings of PLDI ’05, ACM SIGPLAN Notices,

40 (6): 15–26, 2005.

[11] C. Liu, L. Fei, X. Yan, S.P. Midkiff, and

J. Han. Statistical debugging: a hypothesis testing-

based approach. IEEE Transactions on Software

Engineering, 32 (10): 831–848, 2006.

[12] C. Liu, X. Yan, L. Fei, J. Han, and S.P. Midkiff.

SOBER: statistical model-based bug localization. In

Proceedings of ESEC 2005/FSE-13, ACM SIGSOFT

Software Engineering Notes, 30 (5): 286–295, 2005.

[13] M. Renieres and S.P. Reiss. Fault localization with

nearest neighbor queries. In Proceedings of ASE ’03,

pages 30–39. IEEE Computer Society, 2003.

[14] I. Vessey. Expertise in debugging computer programs:

a process analysis. International Journal of Man-

Machine Studies, 23 (5): 459–494, 1985.

[15] A. Zeller and R. Hildebrandt. Simplifying and

isolating failure-inducing input. IEEE Transactions on

Software Engineering, 28 (2): 183–200, 2002.

8

[16] A.X. Zheng, M.I. Jordan, B. Liblit, M. Naik,

and A. Aiken. Statistical debugging: simultaneous

identification of multiple bugs. In Proceedings of

ICML ’06, pages 1105–1112. ACM, 2006.

9

