
1

Postprint of article in Proceedings of the 2007 IEEE International Conference on Systems, Man, and Cybernetics (SMC ’07),

IEEE Computer Society, Los Alamitos, CA (2007)

Transformation of UML Interaction Diagrams

into Contract Specifications for Object-Oriented Testing

Huo Yan Chen, Chuang Li, and T.H. Tse, Senior Member, IEEE

Abstract—Testing is an important means to ensure the

quality of software systems. Contract specification can be used

to formally specify the cluster level of object-oriented software,

which can then be tested using TACCLE, an advanced

methodology for object-oriented testing. The use of formal

specifications as a testing base has many advantages. However,

such specifications are not easily understood and therefore not

widely used in the software industry. On the other hand, UML,

a semi-formal modeling language, is becoming increasingly

popular and widely accepted. In particular, UML interaction

diagrams specify the dynamic, interacting behavior among the

objects of an object-oriented system. If the transformation of

UML interaction diagrams into Contract specifications can be

automated, the TACCLE methodology can be applied directly

to test object-oriented software at the cluster level. In this paper,

a method to transform UML interaction diagrams into

Contract specifications is proposed based on the UML meta-

model. A prototype has been developed.

© 2007 IEEE. This material is presented to ensure timely dissemination

of scholarly and technical work. Personal use of this material is permitted.

Copyright and all rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to adhere to the

terms and constraints invoked by each author's copyright. In most cases,

these works may not be reposted without the explicit permission of the

copyright holder. Permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Manuscript received February 2007. This work was supported in part by

the National Natural Science Foundation of China under Grant #60173038,

the Guangdong Province Science Foundation under Grant #010421, and the

Research Grants Council of Hong Kong under CERG Grant #714504.

Huo Yan Chen and Chuang Li are with the Department of Computer

Science, Jinan University, Guangzhou 510632, China (phone and fax: +86

20 8522 0226, e-mail: tchy@jnu.edu.cn).

T.H. Tse is with the Department of Computer Science, The University of

Hong Kong (e-mail: thtse@cs.hku.hk).

I. INTRODUCTION

Formal specifications are precise and unambiguous, and

facilitate verifying, testing, deduction, and code automation.

Contract is a formal specification language for defining

interactions in object-oriented software. It “captures

explicitly and abstractly the behavioral dependencies

amongst cooperating objects” [1]. It consists of three parts:

(a) a set of communicating participants with their type

obligations and causal obligations, (b) invariants that

participants must maintain via cooperation, and (c) pre-

conditions and operations that instantiate the behavior.

Contract has aroused a lot of attention by researchers. For

example, Google Scholar reports 426 citations for [1].

In [2], we proposed a systematic methodology known as

TACCLE for the testing of object-oriented software. The

methodology was successfully applied to a technology-

transfer project for ASM, the world’s largest supplier of

assembly and packaging equipment for the semiconductor

industry [3]. In particular, Contract specifications are used in

TACCLE for specifying cluster level behavior among

interacting objects.

However, as a typical formal specification language,

Contract is not easily understood by developers and not

widely used in the software industry.

On the other hand, Unified Modeling Language (UML), a

visual modeling language, is attracting more and more

attention, and has become a de-facto standard in the industry.

It has received wide acceptance because of its ease of

understanding and ease of use. Since it was created as a

semi-formal modeling language, UML does not include a

formal semantics. This makes rigorous analyses difficult [4].

UML comprises various diagrams. Among them, sequence

diagrams and communication diagrams 1, which specifying

the interacting behavior among objects of a system, are

collectively known as interaction diagrams. We propose to

transform UML interaction diagrams into Contract

specifications so that systems specified by UML is amenable

to rigorous analyses, verification, and testing using estab-

lished formal techniques such as TACCLE.

1 Formerly known as collaboration diagrams.

mailto:tchy@jnu.edu.cn
Administrator
 HKU CS Tech Report TR-2007-08

2

In general, there are two main approaches for diagram

transformation, as highlighted by Solenon et al. [5]: a push

approach where features of the source diagrams are consid-

ered in turn, and a pull approach where the features of the

target diagrams are considered in turn. In our method, we use

the push approach.

Several techniques have been proposed for transforming

UML diagrams into formal specifications. Some of them,

such as [6, 7, 8], are based on the UML meta-model; some

methods, such as [9], are based on an extended UML meta-

model; other methods such as [4] are not based on the meta-

model.

UML has a layered architecture based on a four-tier

structure. Its semantics is mainly specified in the meta-model

layer. This layer is independent of implementation details.

The UML meta-model constitutes the foundation of model

interchange, reuse, and interoperability among tools. Hence,

we have decided that our transformation technique should be

based on the UML meta-model.

The UML meta-model consists of three main parts:

semantics, notation, and standard profile [10]. UML seman-

tics define the UML model elements, their relationships, and

constrains. UML notation specifies the graphic syntax for

expressing the semantics. UML standard elements and exten-

sion mechanism are explained in the standard profile. The

UML notation comprises various diagrams. The diagram

elements are visual representations of UML model elements.

They must fulfill the well-formed rules defined in the seman-

tics of UML before the diagrams can express the defined

meanings. Hence, a single isolated diagram does not comply

with UML.

In [11], Chen has proposed high-level guidelines to trans-

form UML interaction diagrams into Contract specifications.

Our present method conforms to these guidelines.

The rest of the paper is organized as follows: Background

knowledge of Contract specifications and UML interaction

diagrams are introduced in Section 2. Section 3 proposes a

generic algorithm for transforming UML interaction dia-

grams into Contract specifications. Considering the fact that

different UML tools implement different subsets of UML, a

specialized algorithm is presented in Section 4 to fit a sample

implementation. In Section 5, we discuss an implementation

of our algorithm based on XMI. Section 6 concludes the

paper.

II. BACKGROUND KNOWLEDGE

This section introduces the basic knowledge of Contract

specifications and UML interaction diagrams.

A. Contract Specifications

The following is a sample Contract specification taken

from [2]:

1 contract CustomerAccount

2 Customer supports

3 [

4 address : String

5 accounts : Accounts

6 Customer  setAddress(S : String) =>

@Customer.address; {Customer.address = S};

Customer  notify().

7 Customer  getAddress() => return Customer.address.

8 Customer  notify() =>

(/Ac : Ac in accounts : Ac  update()).

9 Customer  openAccount(Ac : Account) =>

{Ac in accounts}.

10 Customer  closeAccount(Ac : Account) =>

{Ac not_in accounts}

11]

12 Accounts : SetOf(Account) where each Account

supports
13 [

14 customer : Customer

15 freeze : Boolean

16 Account  setFreeze(B : Boolean) => @Account.freeze;

{Account.freeze = B}.

17 Account  update() =>

if Account.freeze then return "Account is frozen"

else Account  changeAddress().

18 Account  changeAddress() =>

customer  getAddress();

{Account reflects customer.address}.

19 Account  setCustomer(C : Customer) =>

{customer = C}

20]

21 instantiation

(/Ac : Ac in Accounts :

(Customer  openAccount(Ac) /

Ac  setCustomer(Customer)))

22 end contract

The example shows a cluster CustomerAccount which

comprises a Customer class and an Accounts class. Each

instance of Accounts is a collection of accounts that belong

to the same customer (such as saving account, check account,

and fixed deposit account).

For the easy of reference, we label each statement with a

line number. Reserved words of the Contract language are

typeset in bold. Line 1 indicates that the name of the

Contract specification is CustomerAccount. Lines 2 and 12

show that there are two communicating participants in this

Contract: Customer and Accounts. Their type obligations are

shown in lines 4 to 5 and lines 14 to 15, respectively; and

their causal obligations are shown in lines 6 to 10 and lines

16 to 19, respectively. Line 21 shows the preconditions and

3

operations that instantiate the contact. There is no invariant

in this contract.

In Contract specifications, the main part is the causal

obligations. Each line of a causal obligation is a message-

passing rule that explicitly expresses a message passed

between participants as well as the post-conditions or related

actions (such as the return of values) on acceptance of the

message by the receiving object [2]. For example, line 6

means that, when an object of the Customer class receives a

message setAddress(S : String), it will set the value of the

attribute Customer.address to S, as indicated by the post-

condition “{Customer.address = S}”, and send a message to

this object, as indicated by “Customer  notify()”. In this

way, Contract specifications explicitly show the behavioral

dependences between the participants specified. For more

details, please refer to [1, 2, 11].

B. UML Interaction Diagrams

UML notation defines various diagrams to help specifying

software systems. They provide multiple perspectives of

systems under analysis or development [10]. These diagrams

are based on the main modeling concepts of the language

defined in UML semantics as model elements at meta-model

level. There are mapping relationships between diagram

elements and the model elements. The diagrams express the

model elements and their relationships in a graphic manner.

However, the diagrams are not formally defined in UML.

There are presentation options left for users or tool

developers to choose from. This is one of the reasons why

we base our transformation on the meta-model of UML

rather than the diagrams themselves.

UML uses a UseCase to specify the scenarios of a system.

The external environment interacting with the system (such

as users or other systems) is expressed by an Actor. A

UseCase can be further refined to a set of UseCases. The

realization of a UseCase can be specified via the notion of

Collaboration. The structure of the participants that play the

roles in the performance of a specific task and their

relationships is called a Collaboration. The roles are

specified by ClassifierRoles. Their communication pattern is

called Interaction. An Interaction is defined in the context of

a Collaboration. Collaboration and Interaction then give out

the two aspects of the description of a behavior.

In the graphic counterpart, interaction diagrams including

sequence diagrams and communication diagrams express the

behavior of a system. A sequence diagram shows the explicit

sequence of interactions, while a communication diagram

shows the participants of an interaction and their

relationships. They share common meta-models with

different emphases. Sequence diagrams emphasize the

sequential order. Communication diagrams emphasize the

structure of the collaborators and their associations. These

two types of diagram specify behavior of objects in a system

complementally.

Sequence diagrams and communication diagrams may be

drawn in two forms: the specification level and an instance

level. There is, however, no difference as far as our transfor-

mation is concerned.

Our transformation uses the following meta-models of

UML: UseCase, Collaboration, Interaction, ClassifierRole,

Classifier, Signal, Message, Procedure, Action, Parameter,

Reception, and Feature. Formal definitions of the meta-

models and detailed mappings of the diagram elements to the

meta-models can be found in [10].

III. GENERIC ALGORITHM FOR THE TRANSFORMATION

For any UseCase of the UML model of a system, an

Interaction represented by an interaction diagram (which

may be a sequence diagram or a communication diagram)

can be transformed into a Contract specification using the

following transformation algorithm:

Algorithm 1

(1) Take the Interaction name as the Contract name.

(2) For every ClassifierRole in this Interaction that is not an

Actor, take the name of its base Classifier as the name of

the Contract participant.

(3) Suppose the name of the participant is NM. If the

attribute Multiplicity of any ClassifierRole is not 1, then

use the following string instead of the participant name:

NMs: SetOf(NM) where each NM supports;

(4) For every ClassifierRole of the Interaction, take the

attributes of the Feature associated with it as the

corresponding type obligations in Contract.

(5) For every Message received by every ClassifierRole of

the Interaction, if it is a Signal, then the reaction of this

Message is decided by the attribute Specification of the

Reception associated with the Signal.

(6) Otherwise, if the Message is the invocation of a

procedure, then the Messages within this Interaction

whose Activator is the current Message form the “result-

ing messages” of the current Message, and the order of

the “resulting messages” is decided by the Predecessor

relationships among them. In other words, if Message A

is Predecessor of Message B, then A is listed before B.

(7) For every Message in the “resulting messages” in (6), if

the attribute Multiplicity of the Receiver is not 1, then

when this Message is listed in “resulting messages”, it

should be transformed into a repeating form. Suppose

the Message is Mi() and its Receiver is ClassifierRole_k

whose base Classifier is Classifier_k. Then the Message

in “resulting messages” is changed to

(/V : V in Classifier_k : V  Mi());

4

(8) For every Message in the Interaction, if there are

preconditions revealed by the attribute Body of its corre-

sponding Procedure or by the corresponding detailed

Action model, then add “if (preconditions) then” before

this Message when it is included in “resulting messages”.

If post-conditions are revealed, then add “{post-

conditions}” at the end of the “resulting messages”

corresponding to this Message.

(9) For every Message in the Interaction, if it has

Parameters and the attribute Kind of one Parameter is

“return”, suppose the attribute Name of the Parameter is

“pname” and the base Classifier of the Receiver of this

Message is Classifier_j. Then add the following clause

at the end of “resulting messages” corresponding to this

Message:

return Classifier_j.pname.

IV. SPECIALIZED ALGORITHM FOR SPECIFIC MODELING

TOOL

The algorithm given above is a generic algorithm. However,

most of the existing UML modeling tools do not adhere to

the original semantics of UML. When applied to a specific

modeling tool, the algorithm should be adapted to follow the

vendor-dependent semantics. We choose the UML case tool

IBM Rational Rose as an illustrative example owing to its

widespread use in the software industry.

In Rational Rose, the label of a message only contains the

sequence number and message name. The message name is

mapped to the operation name of the class receiving the

message. For consistency of modeling, we cannot add

additional information on the label. A solution is to express

the preconditions and post-conditions in the specification

dialog box of the corresponding Operation. This is a use of

the extension mechanism of UML. The preconditions and

post-conditions are expressed in the attribute “DataValue” of

TaggedValue at the meta-model level.

Thus, the actual transformation algorithm is summarized

as follows.

Algorithm 2

This algorithm is the same as algorithm 1 except step (8),

which is replaced by the following, since only this step needs

to be specialized:

(8) For every Message in the Interaction, if the

TaggedValue associated with the Operation correspond-

ing to the Message is not empty, and if the attribute

“DataValue” of the TaggedValue is a logical expression

(which signifies preconditions), then add “if (precondi-

tions) then” before this Message when it is included in

“resulting messages”. If there are post-conditions in

TaggedValue associated with the Operation correspond-

ing to the Message, then add “{post-conditions}” at the

end of the “resulting messages” corresponding to this

Message.

V. A PROTOTYPE

We have developed a prototype of our algorithm based on

XML Metadata Interchange (XMI).

A. Algorithm for the Prototype Based on XMI

As various UML case tools implement the language in

different ways, problems may occur during model inter-

change between different modeling tools. OMG introduces

XMI as a standard to ease this problem. XMI allows

metadata to be interchanged as streams or files with a

standard format based on XML [12, 13]. Its textual form

further eases the process. Many UML modeling tools have

plug-in programs to help convert models to XMI files. For

Rational Rose Enterprise Edition, for instance, we can use

Unisys Rose XML Tool 1.3.6.01 to export the XMI files

from its models.

Our prototype takes the XMI file exported from the model

in Rational Rose as input and produces Contract specifica-

tions of all the use cases is described by interaction diagrams.

The transformation algorithm is as follows:

Algorithm 3

(1) For every child element 2 of “UML : Interaction” in

every “UML : UseCase” element of the XMI file, take

the value of its attribute “name” as the name of the

contract.

(2) Construct a tuple M consisting of all the child elements

of “UML : Message”. Arrange the sequence of elements

in M as follows:

Suppose A and B are two elements in M.

If the value of attribute “activator” of A is equal to

the value of attribute “xmi.id” of B, then

arrange A behind B.

If the value of attribute “predecessor” of A is equal

to the value of attribute “xmi.id” of B, then

arrange A behind B and behind all other

elements whose attributes “activator” have the

same value as attribute “xmi.id” of B.

(3) Suppose there are k elements in M. For every i = 1, 2, ...,

k, construct a tuple ACTMi consisting of all the elements

whose attributes “activator” have the same value as

attribute “xmi.id” of element i.

 (4) Construct a tuple OBID consisting of all the values of

attributes “sender” and “receiver” of all the child

elements of “UML : Message”, such that the sequence

of OBID is not important. Construct a tuple OB

2 Each one of these child elements corresponds to a contract.

5

consisting of all the “UML : ClassifierRole” elements

whose attribute “xmi.id” has the same value as some

element of OBID, such that the sequence of its elements

corresponds to OBID. Construct a tuple C consisting of

all the “UML : Class” elements whose attribute “xmi.id”

has the same value as the attribute “base” of any element

in OB, such that the sequence of its elements correspond

to OB. Construct a set MOB consisting of all the

elements of OB whose “UML : MultiplicityRange” has

child elements with an attribute “upper” having a value

not equal to “1”.

 (5) Suppose there are n elements in OB. For every i = 1,

2, ..., n, construct a tuple Rmi consisting of all the

elements of M whose attribute “receiver” has the same

value as the attribute “xmi.id” of some element in OB.

 (6) For every i = 1, 2, ..., n, if the value of the attribute

“xmi.id” of the i-th element in OB is not equal to the

value of attribute “xmi.id” for any “UML : Actor”

element in the file, then

(a) Suppose the value of attribute “name” of the

element in C corresponds to an element of some Ci

in OB.

If Ci is not in MOB, then output: “Ci supports [”.

If Ci is in MOB, then output:

“Ci : SetOf(Ci) where each Ci supports [”.

(b) For every element of Rmi, if it is the j-th element of

M and if ACTMj is not empty, then

 (i) Suppose the value of attribute “name” of the

element is Mj(). Output: “Ci  Mj() =>“.

(ii) For every element of ACTMj, perform

algorithm 3.1.

(iii) If the value of attribute “xmi.id” of an element

in Rmi is equal to the value of attribute “action”

of the j-th element of M, then:

Suppose the value of attribute “operation”

of this element is Opj.

If a “UML : Operation” element has an

attribute “xmi.id” whose value is equal to

Opj, and a child element of “UML :

Parameter” has an attribute “kind” whose

value is “return” and an attribute “name”

whose value is “pname”, then

output: “return Ci.pname”.

If a “UML : Operation” element has an

attribute “modelElement” whose value is

equal to Opj, and the value of attribute

“tag” of this element is “RationalRose :

postconditions”, then:

Suppose the value of attribute

“value” is r_condition. Output:

“{r_condition}”.

(c) Output: “]”.

(7) Output: “end contract”.

Algorithm 3.1

Suppose the input parameter is the x-th element of M with

the following properties:

(a) the value of attribute “name” of this element is Mx(),

(b) the value of attribute “receiver” of this element is Cx,

which corresponds (through OB) to the value of the

attribute “name” of an element in C, and

(c) the value of attribute “action” of this element is equal to

the value of attribute “xmi.id” of an element whose

attribute “operation” has a value of Opx.

This algorithm will output a “UML : Message” element as a

“resulting message”. The details of the algorithm are as

follows:

(1) If the value of attribute “modelElement” of an element

is equal to Opx and the value of attribute “tag” of this

element is “RationalRose : preconditions”, then:

Suppose the value of attribute “value” is

“condition”.

If the element of OB corresponding to the value of

attribute “receiver” of element x is not in MOB,

then

output: “if condition then Cx  Mx()”

else

output: “(/V : V in Cx : if condition then

V  Mx())”.

(2) Otherwise:

If the element of OB corresponding to the value of

attribute “receiver” of element x is not in MOB,

then

output: “Cx  Mx()”

else

output: “(/V : V in Cx : V  Mx())”.

B. Prototype Program

The prototype program consists of three parts:

(1) Definition of data structures.

(2) Parsing of the input file and construction of various data

structures to obtain information required for transfor-

mation.

6

(3) Follow the main algorithms above to obtain the results.

The most important data structure in UML interaction

diagrams are Messages and their relationships. We use

linked lists to represent them. Each node of the linked list

represents a message, which is defined thus:

typedef struct message {

char * id;

char * name;

char * activator;

char * prec;

char * postc;

char * receiver;

char * returnv;

char * sender;

char * predecessor;

char * action;

char * operation;

struct mptr * activation;

struct message * next;

} MG;

MG *mp;

The second part of the program parses the input file, extracts

the information needed and fills in various structures such as

messages. As the information in the file is not arranged

sequentially to meet our acquisition requirement, we need to

parse the file several times to obtain the necessary

information. After construction, these structures containing

information of the diagram are arranged in proper order.

When we parse the XML file to find elements and values,

we apply the “look ahead” technique commonly used in

compilers. It means that the program can recognize the end

of an element only after it has read one more character not

belonging to the element. Hence, we need to return the last

character back to the input stream.

The third part of the program implements the main

algorithms above and outputs the contract specification of

the diagram represented by the XML file. Hence, the UML

specification can be used as input to the TACCLE testing

method. In this way, the object-oriented software system can

be tested at the cluster level.

The prototype program has only been implemented for

demonstrating the feasibility of our approach. We concede

that it has not been designed in the most efficient manner.

More future work is required for time complexity

improvements.

VI. CONCLUSION

In order to take advantage of the use of formal specifications

for the testing of object-oriented software, we transform

UML interaction diagrams into Contract specifications. The

proposed transformation techniques and algorithms are

presented in this paper. They are based on the UML meta-

model. We give a generic transformation algorithm first. It is

independent of implementation and can be used in various

tools. Then we present its specialized form for use in one

kind of UML implementation.

We have developed a prototype to evaluate the algorithm.

We have also conducted a case study, which is not included

in the present paper because of the page limit.

REFERENCES

[1] R. Helm, I.M. Holland, and D. Gangopadhyay. Contracts:

specifying behavioral compositions in object-oriented sys-

tems. In Proceedings of the 5th Annual Conference on

Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA ’90), ACM SIGPLAN Notices, 25 (10):

169–180, 1990.

[2] H.Y. Chen, T.H. Tse, and T.Y. Chen. TACCLE: a

methodology for object-oriented software testing at the class

and cluster levels. ACM Transactions on Software Engineer-

ing and Methodology, 10 (1): 56–109, 2001.

[3] T.H. Tse, F.C.M. Lau, W.K. Chan, P.C.K. Liu, and C.K.F.

Luk, “Testing of object-oriented industrial software without

precise oracles or results”, Communications of the ACM, 50

(8) (2007).

[4] J.-M. Bruel and R.B. France. Transforming UML models to

formal specifications. In Beyond the Notation: Proceedings of

the 1st International Workshop on the Unified Modeling

Language (UML ’98), volume 1618 of Lecture Notes in

Computer Science. Springer, Berlin, Germany, 1999.

[5] P. Selonen, K. Koskimies, and M. Sakkinen. Transformations

between UML diagrams. Journal of Database Management,

14 (3): 37–55, 2003.

[6] J. de Lara and H. Vangheluwe. AToM3: A Tool for multi-

formalism and meta-modelling. In Proceedings of the 5th

International Conference on Fundamental Approaches to

Software Engineering, volume 2306 of Lecture Notes in

Computer Science, pages 174–188. Springer, London, UK,

2002.

[7] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D.

Varro. VIATRA: visual automated transformations for formal

verification and validation of UML models. In Proceedings of

the 17th IEEE International Conference on Automated Soft-

ware Engineering (ASE ’02), pages 267–270. IEEE Computer

Society, Los Alamitos, CA, 2002.

[8] J. Saez, A.T. Alverez, and J.L.F. Aleman. Tool support for

transforming UML models to a formal language. In Proceed-

ings of International Workshop on Transformations of UML

Models (WTUML ’01) in conjunction with European Joint

Conferences on Theory and Practice of Software (ETAPS ’01)

(Geneva, Italy), pages 111–115, 2001.

[9] S.-K. Kim and D. Carrington. A formal metamodeling

approach to a transformation between visual and formal

modeling techniques. Technical Report 02-23. Software

Verification Research Centre, School of Information Technol-

ogy, The University of Queensland, Queensland, Australia,

2002.

7

[10] Unified Modeling Language: Superstructure, version 2.1.1.

Object Management Group, 2007. http://www.omg.org/
docs/formal/07-02-03.pdf.

[11] H.Y. Chen. An approach for object-oriented cluster-level tests

based on UML. In Proceedings of the 2003 IEEE

International Conference on Systems, Man, and Cybernetics

(SMC ’03), volume 2, pages 1064–1068. IEEE Computer

Society, Los Alamitos, CA, 2003.

[12] MOF 2.0/XMI Mapping Specification, version 2.1. Object

Management Group, 2005. http://www.omg.org/docs/
formal/05-09-01.pdf.

[13] Extensible Markup Language (XML). W3C. http://www.w3.
org/XML.

