
Postprint of article in Proceedings of the 31th Annual International Computer Software and Applications Conference

(COMPSAC ’07), IEEE Computer Society, Los Alamitos, CA, pp. 397–404 (2007)

Piping Classification to Metamorphic Testing:

An Empirical Study towards Better Effectiveness for the

Identification of Failures in Mesh Simplification Programs ∗ †

W. K. Chan

City University of Hong Kong

wkchan@cityu.edu.hk

Jeffrey C. F. Ho

University College London

jcfho@cs.hku.hk

T. H. Tse ‡

The University of Hong Kong

thtse@cs.hku.hk

Abstract

Mesh simplification is a mainstream technique to

render graphics responsively in modern graphical software.

However, the graphical nature of the output poses a test

oracle problem in testing. Previous work uses pattern

classification to identify failures. Although such an

approach may be promising, it may conservatively mark the

test result of a failure-causing test case as passed.

This paper proposes a methodology that pipes the

test cases marked as passed by the pattern classification

component to a metamorphic testing component to look

for missed failures. The empirical study uses three simple

and general metamorphic relations as subjects, and the

experimental results show a 10 percent improvement of

effectiveness in the identification of failures.

Keywords: test oracle problem, mesh simplification,

metamorphic testing, classification.

∗ c© 2007 IEEE. This material is presented to ensure timely

dissemination of scholarly and technical work. Personal use of this

material is permitted. Copyright and all rights therein are retained by

authors or by other copyright holders. All persons copying this information

are expected to adhere to the terms and constraints invoked by each

author’s copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder. Permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE.
† This research is supported in part by a grant of the Research Grants

Council of Hong Kong (project no. 714504), a grant of City University of

Hong Kong (project no. 7200079), and a grant of The University of Hong

Kong.
‡ All correspondence should be addressed to Prof. T. H. Tse at

Department of Computer Science, The University of Hong Kong,

Pokfulam, Hong Kong. Tel: (+852) 2859 2183. Fax: (+852) 2557 8447.

Email: thtse@cs.hku.hk.

(a) 100% (b) 80% (c) 30%

(d) 100% (e) 70% (f) 30%

(g) 100% (h) 70% (i) 30%

Figure 1. Mesh simplification of polygonal

models of a Beethoven statue, a properly

rendered apple, and a badly rendered apple.

From [11].

1 Introduction

Testing is essential to assure the quality of software

applications. Software testers may identify test cases for a

program using test data selection techniques such as control

flow testing, dataflow testing, random testing, adaptive

random testing, and fault-based testing. After executions

of the test cases, test outputs are checked to determine

whether or not they reveal any failure. A test oracle is the

mechanism against which testers can check the output of

a program and decide whether it is correct. When the test

1

Administrator
HKU CSIS Tech Report TR-2007-04



oracle is not available or is too expensive to evaluate, it is

referred to as a test oracle problem. Various techniques such

as golden version [5], reference model [11, 12], assertion

checking [7, 29], and metamorphic testing [8, 9, 13, 14, 20]

have been proposed to alleviate the test oracle problem.

Content-rich software such as multimedia applications

and graphic rendering applications is undoubtedly an

important class of modern software. They usually accept

media specifications or objects 1 and then render the

required graphics. For real-life interactive graphics-based

software such as medical imaging [1] and graphics-based

entertainment, slow rendering of graphics is intolerable.

A mainstream technique to ease the process is mesh

simplification [15, 22, 23], which converts a given three-

dimensional (3D) polygonal model to one with fewer

polygons while appearing to be similar to the original.

Figure 1 shows a Beethoven statue and two apples

being modeled by different number of polygons via mesh

simplification.

Since rendering is often computationally expensive and

dependent on the platform where the process takes place,

precise expected results are hard to be specified in advance.

A number of preliminary experiments have been conducted

on various approaches to tackle the test oracle problem:

Hu et al. [20] have statistically shown that metamorphic

testing is more effective than asserting checking in the

context of open-source object-oriented software. Chan

et al. [10] have demonstrated the feasibility of using a

supervised machine learning approach to identify failures

in multimedia applications, where the training information

is extracted from the implementation under test and some

of its test cases. Nevertheless, such an approach requires

that some of the test results can be determined in advance.

An alternate way is to use a reference model to provide

the training information. Chan et al. [11] have conducted

experiments to show that a resembling rendering approach

is better than a dissimilar one when serving as a pseudo-

oracle. Chan et al. [12] have further shown that, when

compared with a simple reference model, the use of

a resembling but sophisticated reference model is more

effective and accurate but less robust. Owing to the

conservative nature of the training, however, many failure-

causing test cases are classified as passed test cases. This

hinders the effectiveness of the proposal in [11, 12].

Many techniques, such as assertion checking, directly

verify the output of a test case. Metamorphic testing (MT)

verifies relationship among the outputs of a collection of

test cases instead [13]. Given a test case (known as a source

test case in MT), testers may be unable to directly verify

whether the output is correct. To tackle the test oracle

problem, MT recommends the construction of follow-up

test cases. In the simplest form, MT compares the test

1 In such formats as MRI files, X3D files, and MPEG files.

outputs of both the source and follow-up test cases to check

whether they may contradict any necessary relation, thus

indicating a failure.

The main contributions of this paper are two-fold:

It presents a methodology to integrate analytical and

statistical ways of identifying failures in the testing of mesh

simplification programs. It also reports the first set of

evaluation results of its type.

The rest of the paper is organized as follows: Section 2

reviews related work on the testing of software with

graphical interfaces. A review of metamorphic testing is

presented in Section 3. Section 4 presents our methodology.

Section 5 presents our experimental setup, results, and

threats to validity. Finally, Section 6 concludes the paper.

2 Related Work

We review related work that uses machine learning

approaches as pseudo-oracles, as well as related work on

metamorphic testing and other approaches to alleviating the

test oracle problem. For brevity, we shall focus on the

testing of software with graphical interfaces.

Berstel et al. [3] design the VEG language to describe

graphical user interfaces and show that model checkers may

verify properties against a specification written in VEG

without referring to the source program. Our approach

does not rely on source code either, but our work involves

dynamic analysis whereas theirs is static. D’Ausbourg et

al. [16] support the formal design of operations in user

interface systems via a software environment. The formal

design can be verified as in [3]. Memon et al. [28] use a

test specification of internal object interactions as a means

of detecting inconsistencies between the test specification

and the resulting execution sequence of events for each test

case. This approach is often used in the conformance testing

of telecommunication protocols. Sun et al. [33] propose

a similar approach for test harnesses. Memon et al. [27]

further evaluate several types of pseudo-oracle for GUIs.

Their results suggest the use of simple pseudo-oracles for

large test sets and complex pseudo-oracles for small test

sets. Our work does not explore such kinds of tradeoff, but

integrates a complex pseudo-oracle (classification) with a

simple one (metamorphic relation).

There are other approaches to test programs with

graphical outputs. gDEBugger 2 checks the conformance

of the list of commands issued by an application to the

underlying graphics-rendering Application Programming

Interface (API) of OpenGL [32]. As explained in [4,

11], however, many different sets of commands may be

rendering the same graphical image. To test programs with

interfaces with virtual reality applications, Bierbaum [4]

2 Available at http://www.gremedy.com/.

2



proposes a framework to record selected intermediate states

of the program for given test cases and contrast them against

the expected ones. Following Chan et al. [11], we do not use

the internal states of the program under test. Mayer [25]

proposes to use explicit statistical formulas such as mean

and distributions to determine whether the output exhibits

the same characteristics. Following [11], we use classifiers

to handle such features instead.

The test oracle problem has also been studied in

other contexts. Ostrand et al. [30] propose an integrated

environment so that testers can easily review and modify

their test scripts. Dillon and Ramakrishna [17] prune the

search space of test oracles constructed from a specification.

Baresi et al. [2] add assertions [29] to programs to check

their intermediate states.

More specifically, there are techniques for applying

pattern classifications to alleviate the test oracle problem.

Last and others [21, 34] train a classifier to augment the

incomplete specification of legacy systems, treating the

latter as a golden version. As we have explained, golden

versions are often not available for rendering-intensive

software. Podgurski et al. and their research group classify

failure cases into categories by machine learning [31]

and then refine the categories using the classification tree

technique [18]. Bowring et al. [6] apply machine learning

to regression testing of a consecutive sequence of minor

revisions of the same program to identify failures in

versions. Their approach is similar to the reference model

approach by Chan et al. [11]. However, the approach by

Bowring et al. requires the source code of the program

under test while that by Chan et al. does not. Another

pattern classification approach by Chan et al. [10] does not

use reference models.

3 Metamorphic Testing

This section revisits metamorphic testing (MT). The

central idea of MT is to check necessary properties that

relate multiple test cases and their results with a view to

revealing failures. Such necessary properties are known as

metamorphic relations.

A metamorphic relation (MR) [9, 14] is a relation over a

set of distinct inputs and their corresponding outputs of the

target function f to be implemented by the program P under

test. For the sine function, for instance, given any inputs x1

and x2 such that x1 + x2 = π, we must have sin x1 = sin x2.

Given a test case x1, using the above MR for the sine

function, a tester will construct a follow-up test case x2

based on the relation x1 +x2 = π. By executing the program

p over both x1 and x2, the tester will obtain the respective

test results y1 and y2 and then check whether y1 is equal

to y2 using the relation sin x1 = sin x2. If the equality is

breached, MT detects a failure.

IUT

Black-Box

Feature Extraction Classifier

MT

3D model as test case

Legitimate

pass

test case

Features as 

test output

Program

output

Failure-

causing

test case
Passed test case

Black-Box

Feature Extraction

Program

output

Features to 

train classifier

Resembling Reference Model

Figure 2. Blueprint of the methodology.

4 Methodology

This section proposes a testing methodology that inte-

grates the pattern classification technique and metamorphic

testing. It investigates the integration of statistical and

analytical techniques for alleviating the test oracle problem.

In our methodology, a trained classifier may label a test

case as failed or passed. A test case marked as failed would

catch the attention of testers. Because of the statistical

nature of a classifier, however, test outputs marked as

passed may still be failures. Thus, even after a statistical

classifier has determined that a (source) test case does not

reveal any failure, our methodology proposes to pipe the

test case (and its test output) to an analytical MT component

for further checking. Figure 2 depicts the blueprint of the

methodology.

In this way, the integrated strategy saves checking efforts

in MT for the test cases that have been classified as failed.

Still, it is not known how many of the test cases classified

by the statistical classifier as passed are, in fact, failure-

causing. Will the extra step of applying MT be worth the

effort? A research question thus arises: During the testing

of mesh-simplification software, how much improvement in

the effectiveness of failure identification will result by piping

the results of the machine learning approach to MT?

Since the pattern classification step relevant to the

methodology has already been evaluated preliminarily by

Chan et al. [11], our current experiments, to be presented

in the next section, will focus on evaluating the second

step of our methodology, which builds atop the previous

experiments in [11]. We identify simple metamorphic

relations for the MT component proposed above. Based

on these metamorphic relations, the MT approach alone

can identify 30% of the failures. Using 10% data as

training samples to train the classifier, an initial study of our

3



methodology shows a 10 percent boost in the effectiveness

of correctly identifying program failures from the test

outputs. The details of the empirical study are presented

in the next section.

5 Empirical Study

In this section, we describe the setup and results of our

empirical study. The study is built on top of previous

experiments by Chan et al. [11]. The entire classification

data of [11] will be used as a starting point. Specifically, we

use a few subject programs to construct mutants, and then

execute them with open-source models to generate a test

pool. A small number of the test cases in the pool are used

to train the classifier on the reference model. We then apply

the remaining test cases to the program under test and ask

the trained classifier to mark them as passed or failed. Apart

from this, we also design a few metamorphic relations. We

then pipe the test cases marked as passed by the classifier

to the metamorphic testing process. Further details of the

classification process can be found in [11].

5.1 Subject Programs

For the purpose of comparison, we use the same Java

programs studied in [11] as subject programs. Each

of the four programs has a distinct mesh simplification

algorithm, namely a shortest edge algorithm in Shortest,

Melax’s simplification algorithm [26] in Melax, a quadric

algorithm [19] in Quadric, and a quadric algorithm

weighted by the area of triangles [19] in QuadricTri.

Shortest is a simple and direct mesh simplification

algorithm. It always picks the shortest edge of a mesh

to collapse. Melax measures the cost of each edge as a

product of its length and curvature, and iteratively picks the

edges with the lowest costs to remove. Quadric contracts

pairs of vertices rather than edges, so that unconnected

regions can also be joined. It approximates contraction

errors by quadric matrices. QuadricTri improves on

Quadric by considering also the sizes of triangles around

vertices during contraction. Quadric and QuadricTri

are two resembling subject programs. A preliminary

empirical study by Chan et al. [11] indicate that the use

of a resembling reference model to train a classifier for

failure identification is better than that of a dissimilar

model. Hence, in our present experiment, we focus on the

improvement in the effectiveness of failure identification

between Quadric and QuadricTri.

Each program accepts two inputs: a 3D polygonal model

file in standard .PLY format and an integer (from 0 to 100)

indicating the target percentage of polygons that will remain

after mesh simplification. If the value of the input integer is

zero, for instance, only the background will be shown. The

backgrounds of all outputs are black in color. Each program

fits the 3D polygonal model in a bounding box between

(−1, −1, −1) and (1, 1, 1), centered at (0, 0, 0). The image

resolution is standardized to 800 pixels × 600 pixels.

5.2 Test Cases

Chan et al. [11] use a supervised machine learning

approach to classify test cases into two categories: passed

and failed. We apply the same classification procedure in

our empirical study.

To collect training samples for the passed class, we

execute a set of 44 3D polygonal models 3 with up to 17,000

polygons in each reference system. We do not use the

remaining 8 available models because they are outliners in

terms of the number of polygons they contain. In order

to better utilize the 3D polygonal models, we rotate each

model in 22 different orientations, and each orientation is

further used to construct 11 images at various simplification

ratios (from 0% to 100% with increments of 10%). In other

words, 44×22×11 = 10,648 images are produced.

Shortest Melax Quadric QuadricTri

350 401 1,122 1,187

Table 1. Numbers of mutants used.

To collect training samples for the failed class, program

mutants are generated from the reference system using a

mutation tool known as MuJava [24]. Screening measures

have been taken by Chan et al. [11] to ensure that the

mutants generated are useful and non-equivalent. A total

of 3,060 mutants remain, as shown in Table 1. We use all of

these mutants to collect the features defined in [11] through

a total of more than 440,000 program executions.

5.3 Classification Phase

After capturing the test cases and features, an experiment

in the style of [11] is conducted for pattern classification

using the C4.5 classifier. It classifies test cases into two

categories: passed and failed.

The main focus of the present paper is to use the passed

test cases and pipe them to the next metamorphic testing

phase (as described in Section 5.4), building atop the

finding in [11] that testers are better off using a resembling

reference model to train a classifier. We have experimented

with the use of one to five models (representing 2.2% to

11.4% of the total of 44 models) to train the classifier and

classify all the other 10,000 test cases.

3 Available at http://www.melax.com/polychop/lod demo.zip. According

to this source, they are “big demo[s]” to convince skeptical visitors.

4



The mean classification results are depicted in Figure 3.

It shows the results of classifying the test cases for

Quadric and Melax after the classifier has been trained on

QuadricTri as the reference model. Using “approximately

10 percent of the data” as a sample training criterion,

we may focus on the rightmost two pairs of bars. They

represent the situations where the classifier has been trained

with 4 and 5 models, respectively, corresponding to 9.1%

and 11.4% of the dataset. The y-axis represents the

effectiveness, which is the percentage of failure-causing test

cases that are correctly marked as failed. The bars for

Quadric are 69.1% and 67.79%, respectively, while those

for Melax are 70.69% and 67.53%, respectively. We shall

use them as benchmarks for evaluating the improvements

due to the metamorphic testing phase.

Effectiveness of Failure Identification

0

10

20

30

40

50

60

70

80

1 2 3 4 5

No. of trained models

E
ff

ec
ti

v
en

es
s

Quadric

Melax

Figure 3. Classification results by the

C4.5 classifier trained by QuadricTri as the

reference model.

According to Figure 3, the classification results of Melax

are at least as good as those of Quadric, contradicting the

finding in [11] that “the reference should preferably be a

resembling system that the new implementation improves

on”. We investigate further about the issue in [12]. On

closer look, we find that in the case of Melax, many test

cases that are not failure-causing are classified as failed,

making the quality of classification phase unsatisfactory.

In the case of Quadric, the vast majority of these test

cases are retained in the passed category. Figure 4 shows

the percentage of non-failure-causing test cases that are

correctly marked as passed. We refer to this percentage

as the robustness. It can be observed that all the bars for

Quadric are much higher than those for Melax. We have

analyzed the results of classifying test cases into failed

and passed categories using a resembling reference model.

They show that the approach is conservative, in the sense

that it has a high score in robustness. This would avoid

misclassifying a passed test case as failed and, hence, save

the testers’ effort in futile attempts to debug such test cases.

Robustness of Failure Identification

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

No. of trained models

R
o
b

u
st

n
es

s

Quadric

Melax

Figure 4. Robustness of retaining non-

failure-causing test cases in the passed

category.

Because of the conservative bias, however, failed test

cases may be grouped under the passed category and

ignored by testers. We propose to further mine them out

using metamorphic testing as explained in the next section.

5.4 Metamorphic Testing Phase

As we have explained in Section 1 and reported in

Section 5.3 as well as in [11], the classification phase

may group failed test cases into the passed category. In

this phase, we aim at digging out the failure-causing test

cases from the pool of test cases that have been marked

as passed by the classification phase. We first describe the

metamorphic relations for the experiments, and then report

on the findings.

Metamorphic Relations: We acknowledge the real-life

situation where the complexity of interactions of features in

a program makes the definition of a complex metamorphic

relation tedious and effortful. We propose to use three

simple metamorphic relations to check the passed test

cases. As defining an adequate set of metamorphic relations

is still an open problem, we pick the following generic

metamorphic relations based on a general understanding

of mesh simplification, so that they are not tied to any

particular simplification strategy. At the same time, we are

full aware of the implication that these MRs may be weak.

• The first metamorphic relation checks the size of the

bounding box rendered from a source test case against

that from the non-simplified 3D polygonal model (that

is, when the input integer = 100). This is akin to a

common practice in assertion checking that the size of

the bounding box is verified after each iteration.

5



• The second MR reverses the order of the vertexes of

polygons in the .PLY input file. It is analogous to

requesting the program to render the graphic in the

reversed direction.

• The third one changes the input so that the rendered

image should be upside down.

In the experiments, the first relation is further divided into

two minor versions, and so is the second relation. Since the

capabilities of failure identification only differ marginally,

we shall not further describe these minor versions. For the

sake of brevity, we shall not describe the implementation of

our algorithm to exercise MT using these relations.

Let us firstly estimate the overall capability of failure

identification by these MRs. Because of the sheer size of the

test pool used in the experiments, we cannot do the estimate

by applying the MRs exhaustively to all the test cases. We

randomly select a subset as source test cases. Using our

implementation for exercising MT, we construct follow-up

test cases and then determine whether failures are revealed.

The results show that 29.4% of the failure-causing test cases

of Melax and 34.1% for Quadric are detected.

Readers may express a concern that these metamorphic

relations appear to be weak. This, in fact, makes the

research question more interesting: Can the effectiveness

of failure identification be improved by piping results of the

machine learning approach to a number of weak MRs?

Piping: We apply all the test cases that have been

identified as passed in the classification phase to the

metamorphic testing implementation. We then count the

number of test cases that fail in one or more of the

metamorphic relations. The improvements in effectiveness

for both Quadric and Melax are shown in Figure 5. The

interpretation of the x- and y-axes is the same as that for

Figure 3.

Using the popular 80-20 rule as the yardstick for

adequate robustness (see Figure 4), we may ignore the

leftmost pairs of bars in Figure 5(a). We then compute

the improvements in effectiveness by subtracting the “Clas-

sification” values from the corresponding “Classification

plus MT” values. The improvements are, from left to

right, 14.38%, 12.9%, 7.33%, and 8.61%. The mean

improvement is 10.8%, which is encouraging.

Although we do not recommend the use of a dissimilar

approach as a reference model, we have included a plot of

the improvements in effectiveness for Melax in Figure 5(b)

for the sake of comparison. For every pair of bars in

Figures 5(a) and (b), let us concentrate on the improvement

in effectiveness as indicated by the increase in height of

the second bar over the first one. In all five corresponding

pairs of bars in the two figures, the improvements for

Quadratic are always more than that for Malex. The mean

Improved Effectiveness of 

Failure Identification

0

10

20

30

40

50

60

70

80

1 2 3 4 5

No. of trained models

E
ff

ec
ti

v
en

es
s

Classificaiton
Classificaiton plus MT

(a) Quadric

Improved Effectiveness of 

Failure Identification

0

10

20

30

40

50

60

70

80

1 2 3 4 5

No. of trained models
E

ff
ec

ti
v
en

es
s

Classificaiton
Classificaiton plus MT

(b) Malex

Figure 5. Improved effectiveness via the

proposal.

improvement for the former is 13.4% and that for the latter

is 9.2%. If we consider only the rightmost 4 pairs of bars in

each plot, the means will be 10.8% and 7.4%, respectively.

In all the cases analyzed above, the use of a resembling

reference system has a positive and statistically significant

difference in both the classification phase and the integrated

approach. Also, since the metamorphic testing approach

can identify a large number of failures not detectable

by the classification phase in all the analyzed cases,

our preliminary results show that metamorphic testing

complements the classification approach effectively. The

results in [11, 12] and the present paper provide the first set

of evaluation results of this type.

5.5 Threats to Validity

In this section, we discuss the threats to validity of our

empirical study.

We are dealing with rendering-intensive software in

our study. Because of the oracle problem in verifying

graphical outputs, we use feature extraction techniques to

6



tackle the issue instead of directly comparing the actual

outputs. We realize from the machine learning community

that the selection of useful features plays a central role

in the effectiveness of a classifier. In our metamorphic

testing phase, we still apply the same features as used in the

classification phase to identify failures. Intuitively, using

a different set of features may affect the results, be it in a

positive or negative manner. To alleviate this threat, generic

features such as the standard frequency spectrum are used

in the study. This is in line with the philosophy in [11].

Our implementation uses openGL to render graphics.

While openGL is a popular standard, there are other choices

such as DirectX and Flash. We have only experimented with

a few implementations of mesh simplification algorithms.

There are many other rendering algorithms. The

generalization of our proposal, therefore, warrants more

research. Also, our work is built on top of the C4.5

classifier. While it is an extremely important and classical

algorithm in data mining, there are other classifiers that can

be used.

Our experiment is done on a set of 44 open-source 3D

polygonal models. They include many different graphics

including a chair, a spider, a teapot, a tennis shoe, a

weathervane, a street lamp, a sandal, a cow, a Porsche car,

an airplane, and so on. Naturally, they do not represent all

types of 3D polygonal model.

The choice of the three metamorphic relations is based

on our experience. We are aware that the quality of

metamorphic relations is important. We deliberately use

simple and coarse metamorphic relations in our study. The

results of our experiments serve as a baseline for further

investigations.

6 Conclusion

A lot of modern software uses graphics at various

levels of detail to improve the user friendliness. Mesh

simplification is a mainstream technique to help render

graphics responsively. The graphic nature of the output,

however, causes a test oracle problem when testing these

programs. Previous pattern classification proposals assume

that testers can train classifiers using the behaviors of the

implementation under test. Our previous work recognizes

the use of resembling reference models to guide the training

phase. Because of the conservative nature of classifiers,

many test cases classified into the passed category may,

in fact, be failed ones, thus lowering the effectiveness in

identifying failures.

In this paper, we propose a methodology that pipes

pattern classification to metamorphic testing. It uses the

metamorphic testing approach to further check test cases

marked as passed by a classifier. We further report an

empirical study that applies three simple, general and

coarse metamorphic relations to produce follow-up test

cases for metamorphic testing. The experimental results

show a 10 percent improvement in effectiveness, which is

encouraging. Future work includes the development of new

techniques to filter out false positive cases in the failed

category and a tighter integration of pattern classification

and metamorphic testing.

References

[1] M. N. Ahmed, S. M. Yamany, N. Mohamed,

A. A. Farag, and T. Moriarty. A modified fuzzy

c-means algorithm for bias field estimation and

segmentation of MRI data. IEEE Transactions on

Medical Imaging, 21 (3): 193–199, 2002.

[2] L. Baresi, G. Denaro, L. Mainetti, and P. Paolini.

Assertions to better specify the amazon bug. In

Proceedings of the 14th International Conference on

Software Engineering and Knowledge Engineering

(SEKE ’02), pages 585–592. ACM, New York, NY,

2002.

[3] J. Berstel, S. C. Reghizzi, G. Roussel, and P. San

Pietro. A scalable formal method for design and

automatic checking of user interfaces. ACM Trans-

actions on Software Engineering and Methodology,

14 (2): 124–167, 2005.

[4] A. Bierbaum, P. Hartling, and C. Cruz-Neira.

Automated testing of virtual reality application

interfaces. In Proceedings of the Eurographics

Workshop on Virtual Environments (EGVE ’03), pages

107–114. ACM, New York, NY, 2003.

[5] R. V. Binder. Testing Object-Oriented Systems: Mod-

els, Patterns, and Tools. Addison Wesley, Reading,

MA, 2000.

[6] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active

learning for automatic classification of software

behavior. In Proceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and

Analysis (ISSTA ’04), pages 195–205. ACM, New

York, NY, 2004.

[7] L. C. Briand, M. Di Penta, and Y. Labiche. Assessing

and improving state-based class testing: a series

of experiments. IEEE Transactions on Software

Engineering, 30 (11): 770–783, 2004.

[8] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau,

and S. M. Yiu. Application of metamorphic testing

in numerical analysis. In Proceedings of the IASTED

International Conference on Software Engineering

(SE ’98), pages 191–197. ACTA Press, Calgary,

Canada, 1998.

7



[9] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and

S. S. Yau. Integration testing of context-sensitive

middleware-based applications: a metamorphic ap-

proach. International Journal of Software Engineering

and Knowledge Engineering, 16 (5): 677–703, 2006.

[10] W. K. Chan, M. Y. Cheng, S. C. Cheung, and

T. H. Tse. Automatic goal-oriented classification of

failure behaviors for testing XML-based multimedia

software applications: an experimental case study.

Journal of Systems and Software, 79 (5): 602–612,

2006.

[11] W. K. Chan, S. C. Cheung, J. C. F. Ho, and T. H. Tse.

Reference models and automatic oracles for the

testing of mesh simplification software for graphics

rendering. In Proceedings of the 30th Annual

International Computer Software and Applications

Conference (COMPSAC ’06), pages 429–438. IEEE

Computer Society, Los Alamitos, CA, 2006.

[12] W. K. Chan, S. C. Cheung, J. C. F. Ho, and T. H. Tse.

PAT: a pattern classification approach to automatic

reference oracles for the testing of mesh simplifi-

cation programs. Journal of Systems and Software,

82 (3): 422–434, 2009.

[13] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic

testing: a new approach for generating next test cases.

Technical Report HKUST-CS98-01. Department of

Computer Science, Hong Kong University of Science

and Technology, Hong Kong, 1998.

[14] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Semi-proving:

an integrated method based on global symbolic

evaluation and metamorphic testing. In Proceedings

of the 2002 ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA ’02), pages

191–195. ACM, New York, NY, 2002.

[15] P. Cignoni, C. Rocchini, and G. Impoco. A compari-

son of mesh simplification algorithms. Computers and

Graphics, 22 (1): 37–54, 1998.

[16] B. d’Ausbourg, C. Seguin, G. Durrieu, and P. Roch.

Helping the automated validation process of user

interfaces systems. In Proceedings of the 20th

International Conference on Software Engineering

(ICSE ’98), pages 219–228. IEEE Computer Society,

Los Alamitos, CA, 1998.

[17] L. K. Dillon and Y. S. Ramakrishna. Generating ora-

cles from your favorite temporal logic specifications.

In Proceedings of the 4th ACM SIGSOFT Symposium

on Foundations of Software Engineering (ISSTA ’96),

pages 106–117. ACM, New York, NY, 1996.

[18] P. Francis, D. Leon, M. Minch, and A. Podgurski.

Tree-based methods for classifying software failures.

In Proceedings of the 15th International Symposium

on Software Reliability Engineering (ISSRE ’04),

pages 451–462. IEEE Computer Society, Los

Alamitos, CA, 2004.

[19] M. Garland and P. Heckbert. Surface simplification

using quadric error metrics. In Proceedings of the

24th Annual Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH ’97), pages 209–

216. ACM, New York, NY, 1997.

[20] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse. An

empirical comparison between direct and indirect

test result checking approaches. In Proceedings

of the Third International Workshop on Software

Quality Assurance (SOQUA ’06) (in conjunction with

the 14th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (SIGSOFT

’06/FSE-14)), pages 6–13. ACM, New York, NY,

2006.

[21] M. Last, M. Friedman, and A. Kandel. The data

mining approach to automated software testing. In

Proceedings of the 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining (KDD ’03), pages 388–396. ACM, New York,

NY, 2003.

[22] D. P. Luebke. A developer’s survey of polygonal

simplification algorithms. IEEE Computer Graphics

and Applications, 21 (3): 24–35, 2001.

[23] D. P. Luebke, M. Reddy, J. D. Cohen, A. Varshney,

B. Watson, and R. Huebner. Level of Detail for 3D

Graphics. Morgan Kaufmann, San Francisco, CA,

2003.

[24] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon. MuJava: an

automated class mutation system. Software Testing,

Verification and Reliability, 15 (2): 97–133, 2005.

[25] J. Mayer. On testing image processing applications

with statistical methods. In Software Engineering

2005 (SE ’05), Lecture Notes in Informatics, pages

69–78. Gesellschaft für Informatik, Bonn, 2005.

[26] S. Melax. A simple, fast, and effective polygon

reduction algorithm. Game Developer Magazine,

pages 44–49, November 1998.

[27] A. Memon, I. Banerjee, and A. Nagarajan. What

test oracle should I use for effective GUI testing?.

In Proceedings of the 18th IEEE International

Conference on Automated Software Engineering (ASE

’03), pages 164–173. IEEE Computer Society, Los

Alamitos, CA, 2003.

[28] A. M. Memon, M. E. Pollack, and M. L. Soffa.

Automated test oracles for GUIs. In Proceedings

8



of the 8th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (FSE ’00),

pages 30–39. ACM, New York, NY, 2000.

[29] B. Meyer. Eiffel: the Language. Prentice Hall, New

York, NY, 1992.

[30] T. Ostrand, A. Anodide, H. Foster, and T. Goradia.

A visual test development environment for GUI

systems. In Proceedings of the 1998 ACM SIGSOFT

International Symposium on Software Testing and

Analysis (ISSTA ’98), pages 82–92. ACM, New York,

NY, 1998.

[31] A. Podgurski, D. Leon, P. Francis, W. Masri,

M. Minch, J. Sun, and B. Wang. Automated support

for classifying software failure reports. In Proceedings

of the 25th International Conference on Software

Engineering (ICSE ’03), pages 465–475. IEEE

Computer Society, Los Alamitos, CA, 2003.

[32] M. Segal and K. Akeley. The OpenGL Graphics

System: a Specification. Version 2.0. Silicon Graphics,

Mountain View, CA, 2004.

[33] Y. Sun and E. L. Jones. Specification-driven au-

tomated testing of GUI-based Java programs. In

Proceedings of the 42nd Annual Southeast Regional

Conference (ACM-SE 42), pages 140–145. ACM New

York, NY, 2004.

[34] M. Vanmali, M. Last, and A. Kandel. Using a neural

network in the software testing process. International

Journal of Intelligent Systems, 17 (1): 45–62, 2002.

9




