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Abstract

Collision detection is an essential problem in many applications in computer
graphics, CAD/CAM, and robotics. In this paper, a new method, called CD-Dual,
for detecting collision between two convex polyhedra is proposed. The idea is based
on a local search among the faces on the Minkowski difference (M) of the polyhedra.
The local search is guided by a simple signed distance function defined on the dual
polyhedron of M . Due to the convexity of the dual polyhedron, it is guaranteed
that the result of the local search will lead to a vertex on the dual polyhedron that
attains the global maximum signed distance, and this distance tells whether the two
polyhedra overlap.

1 Introduction

Collision detection is one of the major subjects in robotics and computer graphics, or other
areas that simulate physical environments [10]. Collision detection is to determine whether
two moving objects collide or not at any moment. The ability to efficiently detect collision
is critical in these applications since system responses are often based on the collision
status of the objects. A typical approach is to determine whether two objects intersect at
sampled time steps. Although collision occurring between two consecutive steps may be
missed, this kind of errors can be reduced by decreasing the sampling time interval. Since
objects’ orientations and positions differ only slightly between successive time steps for
objects with continuous motion, geometrical and temporal coherences can be exploited by
making use of witness information, such as a separating plane [1], computed at a previous
step.

Various approaches to detecting collision between convex polyhedra have been stud-
ied in the literature. One of these is the use of techniques from computational geometry.
Voronoi diagrams are used to keep track of the closest features between pairs of objects
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in [5, 11]. I-COLLIDE [5] employs the “sweep-and-prune” technique to reduce the number
of pairs of objects whose collision status is to be considered. While most algorithms are de-
signed for convex objects, some work (e.g. [12]) has also been done for non-convex objects.
Computing the intersection or the minimum distance between objects also serve as an
alternative approach to collision detection. An O(log2 n) algorithm for polytope-polytope
collision detection is given in [7], with the use of the hierarchical representation of a poly-
tope. A commonly used method, GJK [9], that computes the distance between convex
polyhedra makes use of the Minkowski difference and convex optimization techniques to
compute the closest points. Modified approaches [3, 4] and improved implementations [2]
based on GJK have been developed. It is also shown in [4] that an enhanced version of
GJK has O(1) time cost under the assumption of strong geometric coherence.

Most existing methods are efficient when the distance between two objects is large
or when two objects penetrate each other deeply. However, they become less efficient
when the objects are very close to each other or just penetrate slightly. In this paper,
we present a new algorithm, CD-Dual, to detect collision between two convex polyhedra
based on duality transformation. The algorithm is shown to be fast even in the case when
the separating distance or penetration distance is small; thus it exhibits a more balanced
running time for all collision configurations. Detailed theoretical analysis and experimental
results are also discussed.

2 Preliminaries

In this section, we shall give the definitions that are used in this paper. Also, the concept
of duality will be described.

A convex polyhedron P in E
3 can be defined as the intersection of half-spaces defined

by some planes in E
3. Let V(P ), F(P ), and E(P ) denote the set of vertices, faces, and

edges of P , respectively.

Definition 1 By considering two polyhedra P and Q as two point sets, P and Q are said
to be overlapping if P ∩Q 6= 0; otherwise, they are separate.

Definition 2 Let V(P ) denote the set of the vertices of a polyhedron P in E
3. A supporting

vertex p of P in the direction s 6= 0 is a vertex in V(P ) such that s · p = max{s · p′|p′ ∈
V(P )}, where x · y is the dot-product of the vectors x and y.

Note that for a supporting vertex p of P in the direction s, we have s·p = max{s·p′|p′ ∈
P}. We may also define the supporting edge or supporting face of P in s as the edge and
face that contains two or more supporting vertices in s.

2.1 Minkowski Sum of Two Polyhedra

Given two polyhedra P and Q, let Q̄ = {q̄| − q̄ ∈ Q}. We consider the Minkowski sum
M of P and Q̄ defined by M ≡ P ⊕ Q̄ = {p + (−q)|p ∈ P,q ∈ Q}. Since P and Q are

2



convex polyhedra, M is a convex polyhedron. It can be shown [9] that P and Q overlap if
and only if M contains the origin 0, i.e., 0 ∈M .

The Minkowski sum of two polyhedra P and Q̄ is in fact the Minkowski difference of P
and Q. Intuitively, we may think of P as continually expanding until it reaches M ≡ P⊕Q̄
while Q continually shrinking until it becomes the origin 0. If M contains the origin 0, we
have p − q = 0 and therefore p = q for some p ∈ P and q ∈ Q. It means that P and Q
share a common point, i.e., they overlap. Otherwise, if 0 6∈ M , we have p− q 6= 0 for all
p ∈ P and q ∈ Q. Therefore, P and Q are separate.

The faces in F (M) may be classified into the following three subsets (Figure 1):

P

Q̄

M ≡ P ⊕ Q̄

Fvf

Fee

Ffv

Figure 1: The Minkowski sum M of P and Q̄. Faces on M can be classified as of type Ffv,
Fvf , or Fee.

Ffv: Each face F (fp,vq̄) is a point set {x+vq̄|x ∈ fp}, where fp ∈ F(P ) and vq̄ ∈ V(Q̄)
is the supporting vertex of Q̄ in the direction n̂fp

, the normal vector of fp.

Fvf : Each face F (vp, fq̄) is a point set {vp +x|x ∈ fq̄}, where fq̄ ∈ F(Q̄) and vp ∈ V(P )
is the supporting vertex of P in the direction n̂fq̄

, the normal vector of fq̄ .

Fee: Each face F (ep, eq̄) is a parallelogram with vertices (v0,v1,v2,v3) where v0 =
vp0 + vq̄0,v1 = vp1 + vq̄0,v2 = vp1 + vq̄1,v3 = vp0 + vq̄1 with vp0,vp1 ∈ V(P )
forming an edge ep = (vp0,vp1) ∈ E(P ) and vq̄0,vq̄1 ∈ V(Q̄) forming an edge
eq̄ = (vq̄0,vq̄1) ∈ E(Q̄). Moreover, the Gaussian images of ep and eq̄ intersect on
the unit sphere S2.

Remark 1 The Gaussian image G(P ) of a polyhedron P is a graph embedded on the
unit sphere S2 that is obtained as follows (Figure 2): A face f ∈ F(P ) is transformed to a
vertex S(f) = n̂ ∈ S2 where n̂ is the unit normal vector of f . An edge e ∈ E(P ) adjacent
to two faces f0, f1 ∈ F(P ) is transformed to a great arc A(e) connecting two vertices S(f0)
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and S(f1) on S2. In fact, G(P ) is a connected network on S2 and each region of G(P )
corresponds to a vertex vi ∈ V(P ) denoted by RP (vi).

P

G(P )

RP (v0)

v0

f0

S(f0)

f1 S(f1)
f2 S(f2)e0

A(e0)

e1

A(e1)

e2

A(e2)

Figure 2: A polyhedron P and its Gaussian image G(P ) on S2.

Remark 2 The Gaussian image of a feature (vertex, edge or face) φ of a polyhedron P
is the set of normal directions of planes that that may come into contact with P at φ. In
other words, φ is the supporting feature of P in the directions represented by its Gaussian
image.

Remark 3 The Gaussian image of M = P ⊕ Q̄ (denoted by G(M)) can be obtained by
superimposing the Gaussian images G(P ) and G(Q̄). Each vertex in G(M) corresponds to
a face of M . Figure 3 shows how three kinds of vertices in G(M) are related to the three
types of faces in F(M) described above.

G(P ) G(Q̄) G(M)

Figure 3: The planar representation of the Gaussian image G(M) by superimposing G(P )
and G(Q̄). There are three types of vertices in G(M): (i) (white point) a vertex of G(P )
falling within a region of G(Q̄), i.e., a face in Ffv; (ii) (black point) a vertex of G(Q̄) falling
within a region of G(P ), i.e., a face in Fvf ; and (iii) (shaded square) a vertex formed by
two intersecting arcs from G(P ) and G(Q̄), i.e., a face in Fee.
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2.2 Duality

Let a plane L in E
3 be given by ax+by+cz = d, d 6= 0. The duality transformation denoted

by D maps L to a point l = (a/d, b/d, c/d)T in the dual space Ê
3. A point u = (r, s, t)T in

E
3 is transformed by D to a plane U : rx + sy + tz = 1 in Ê

3. A plane passing through
the origin in E

3 is mapped to a point at infinity in Ê
3. The origin in E

3 is transformed to
the plane at infinity in Ê

3. In fact E
3 is also the dual space of Ê

3. See [8, 14] for more
about duality transformation. There is thus a one-to-one correspondence between a plane
(point) in E

3 and a point (plane) in Ê
3. Table 1 summarizes some important properties of

a polyhedron P in E
3 and its dual P̂ in Ê

3:

Table 1: Properties of a polyhedron P under a duality transformation.

In E
3 In Ê

3

P is convex P̂ is convex
a face in F(P ) a vertex in V(P̂ )

a vertex in V(P ) a face in F(P̂ )
P contains the origin P̂ contains the origin
a point x inside P the plane D(x) does not intersect P̂

a point x outside P the plane D(x) intersects P̂

3 The Algorithm

In this section, we shall present our algorithm to detect collision between two convex
polyhedra. We first give the basic idea of the algorithm.

3.1 Basic Idea

Let P and Q be two convex polyhedra in E
3 and M ≡ P⊕Q̄ be their Minkowski difference.

Let o be the origin of E
3 and c any fixed point inside M , with c 6= o. Consider a translation

T : E
3 7→ E

3
T such that c′ = T (c) is the origin of E

3
T (Figure 4). Let o′ = T (o) = −c

and M ′ = T (M). Since c ∈ M , M ′ must contain the origin. Next, we apply a dual
transformation D : E

3
T 7→ Ê

3
T that maps o′ to a plane ô and the polyhedron M ′ to a

polyhedron M̂ . As o′ is not the origin, ô is not the plane at infinity. Also, the plane ô

intersects M̂ if and only if o′ 6∈M ′. Hence, we have

P and Q overlap ⇔ o ∈M

⇔ o′ ∈M ′

⇔ ô does not intersect M̂.
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o

c

M

o′

c′

M ′ M̂
ô

T D

E
3

E
3
T Ê

3
T

Figure 4: A 2D illustration of how M̂ and ô are obtained. Note that if o 6∈M , ô intersects
M̂ .

Therefore, we just need to test if the plane ô intersects the polyhedron M̂ in order to detect
if P and Q overlap.

3.2 Signed Distance Function

Recall the signed distance of a point p = [x0, y0, z0]
T to a plane L : ATx = k which is

given by dL(p) = ATp − k, where A = [l,m, n]T is the unit normal of L, x = [x, y, z]T ,
and k > 0 is the perpendicular distance of the origin 0 to the plane. Note that, if p lies on
L, dL(p) = 0; if p lies on the same side of L as 0, dL(p) < 0; and if p lies on the opposite
side of L to 0, dL(p) > 0.

Let d′ be the maximum signed distance of all points in M̂ to the plane ô. Since M̂ is
convex, the point that attains the maximum signed distance d′ on M̂ to the plane ô must
lie on the boundary of M̂ , i.e., either on a vertex, a face or an edge. In any case, there is
a vertex v ∈ V(M̂) such that its signed distance to the plane ô, dô(v), equals d′. Hence,
we may consider only the signed distance of all vertices of M̂ to the plane ô.

If d′ < 0, all vertices on M̂ are on the same side of ô as the origin and therefore M̂
and ô do not intersect. Otherwise if d′ > 0, at least one vertex is at the opposite side of
ô to the origin, which implies that ô intersects M̂ and we conclude that P and Q do not
overlap. When d′ = 0, ô touches M̂ at some boundary point. So o lies on the boundary
of M in E

3. By the construction of M as described in section 2.1, o = p − q for some
boundary points p and q of P and Q, respectively. It implies that p = q and P and Q
share a common boundary point. In this case, P and Q touch each other.

Let f be a face in F(M) and v̂ ∈ V(M̂) be its corresponding dual vertex under D ◦ T .
We may then define the signed distance of f denoted by d(f), to be the signed distance
of v̂ to the plane ô, i.e., dô(v̂). Let Hf be the plane containing f with plane equation
NTx = k with k > 0. Then f is translated by T to a face in F(M ′) with plane equation
NTx = k − NTc. This corresponds to v̂ = N/(k − NTc) in V(M̂) in the dual space.
The origin o in E

3 is mapped to −c in E
3
T and therefore the plane equation of ô in Ê

3
T is
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−cTx = 1. The signed distance d(f) can then be expressed explicitly as follows:

d(f) = dô(v̂) =
−cT

‖c‖ ·
N

k −NTc
− 1

‖c‖

= − k

‖c‖(k −NTc)
. (1)

Let us now take a closer look at the geometrical meaning of d(f). The quantity d(f) =
dô(v̂) uniquely determines a plane L̂ in Ê

3
T such that dô(x) = dô(v̂) for all points x ∈ L̂

(Figure 5). It is easy to see that the plane L̂ passes through v̂ and is parallel to the
plane ô. Let l be a point in E

3 whose image under D ◦ T is L̂ ∈ Ê
3
T . Since L̂ has the same

c

o

M

E
3

f1

f0

f2

l0

l2
l1

M̂

Ê
3
T

ô
L̂0

L̂1
L̂2

v̂0

v̂1

v̂2

Figure 5: The vertex v̂0 in Ê
3
T attaining maximum signed distance to ô corresponds to a

face f0 in E
3 intersecting the directed line co. The dual image of o, fi and li under D ◦ T

are ô, v̂i and L̂i, i = 0, 1, 2, respectively.

normal direction as ô, l must lie on the directed line co. Moreover, L̂ passes through v̂ and
therefore l lies on the plane Hf containing the face f . This implies that l is the intersection
of the plane Hf and the line co. Note that a larger d(f) corresponds to a point l closer to c.
If d(f) is the largest among the signed distances of all faces in F(M), the intersection point
of the plane Hf and the line co must be the closest to the point c among all intersections
between the directed line co and the planes containing the faces of M . This can happen
only when the line co intersects the face f , since c ∈ M and M is convex. Now, the
signed distance of c and o to the plane Hf are given by dHf

(c) = −(k −NTc)/‖N‖ and
dHf

(o) = −k/‖N‖, respectively. If d(f) < 0, since k > 0, by Eq. (1), k −NTc > 0 and
therefore dHf

(c) and dHf
(o) are of the same sign; thus c and o are on the same side of the

face f and o ∈M . On the other hand, if d(f) > 0, c and o are on opposite sides of f and
therefore o 6∈M .

It is now clear that we are in fact determining whether o is in M by firing a ray from
an interior point c of M to o, obtaining a face of M that intersects the ray and deciding
whether the intersection point lies within the line segment co, by computing the maximum
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signed distance of all faces in M . From Eq. (1), we see that d(f) can be computed without
even applying the duality transformation on M . However, it becomes apparent that d(f)
is a convex function by considering dô(v̂) in the dual space. Since M̂ is convex, a vertex v̂

in V(M̂) attaining a local maximum signed distance must also attain the global maximum
signed distance among all vertices in V(M̂).

We may then define our objective function as the signed distance of a face f in F(M)
and let dmax = max{d(f)|f ∈ F(M)} denote the maximum signed distance of all faces in
F(M). Now the problem of detecting collision between two polyhedra P and Q can be
transformed to finding the optimal value dmax. Starting from any face on F(M), we can go
to the next face that has the largest signed distance among all immediate neighbours of the
current face. By this local search, we shall visit faces with increasing signed distance and
eventually stop at a face with a locally maximum signed distance. Due to the convexity
of the objective function d(f), this local search scheme will lead to the optimal face, fopt,
that attains the maximum signed distance dmax among all faces in F(M).

As a further remark, let α be the distance between the point o and the intersection of
the directed line co and fopt. If P and Q are separate, α is their separating distance along
the direction co, which is the distance that Q can be moved along co until it touches the
fixed P . If P and Q are overlap, α is then their penetration distance along co, which is
the distance that Q can be moved along co until it touches the fixed P externally. Further
details can be found in section 6.

The remaining problem now is to find efficiently the optimal face fopt. Note that it
is possible to have more than one fopt that attain dmax. This happens when the line co

intersects M at an edge or a vertex.

3.3 Searching for the optimal vertex

A naive way to search for fopt is to first construct the Minkowski difference M ≡ P ⊕ Q̄
and perform the search on the vertices in M . However, the time complexity of constructing
M is O(mn) in the worst case, where m and n are the number of vertices of P and Q,
respectively. Moreover, it would take a long time to traverse the faces on M by advancing
one edge to the neighbour at each step. To avoid the high cost of constructing M , our
searching scheme is based on three successive search phases for fopt within three subsets
of the faces of M , without completely constructing M .

Note that each face f ∈ F(M) must belong to either one of the sets Ffv, Fvf or Fee.
Our algorithm is to search for fopt in each of the three sets separately and successively
in a local manner. Three procedures for this searching will be described in the following
subsections. The correctness of these procedures are based on three theorems whose proofs
can be found in the Appendix.

3.3.1 Procedure Search-FV

This procedure is to search for a face in F(M) having the maximum signed distance among
all faces in Ffv. We first choose a face f0 ∈ F(P ) with normal vector np. We may use
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heuristic search in a preprocessing step so that the face F (f0,v0) ∈ M formed by f0 and
its supporting vertex v0 in Q̄ is close to fopt on M. The heuristic search for f0 will be
discussed in detailed in section 4.2. The following pseudocode describes the procedure:

Procedure Search-FV
(dm, fm) = SignedDistance-FV(f0)
For each iteration i

If dm > 0,
Return (dm, fm).

Obtain the n faces f0
i , f1

i , . . . , fn−1
i that are adjacent to fi in P

For each face f
j
i ,

(dj
i , f

j
m,i)← SignedDistance-FV(f j

i ).

If dm < dk
i , where dk

i = max{dj
i |j ∈ [0, n− 1]}

dm ← dk
i , fm ← fk

m,i, fi+1 ← fk
i ;

Otherwise,
Return (dm, fm).

Function SignedDistance-FV(fp ∈ F(P ))
vq̄ ← the supporting vertex of Q̄ in the direction n,

where n is the normal of fp.
Obtain a face fm ∈ Ffv where fm = {x + vq̄|x ∈ fp}.
dm ← d(fm)
Return (dm, fm)

The determination of the supporting vertex of Q̄ given a direction n in the subroutine
SignedDistance-FV can be accelerated by using the hierarchical representation of a
polyhedron as described in [6].

Theorem 1 The face fm ∈ F(M), computed by Search-FV, attains the maximum signed
distance among all faces in Ffv, i.e., d(fm) = max{d(f)|f ∈ Ffv}.

3.3.2 Procedure Search-VF

This procedure is similar to Search-FV in that it searches for the a face in F(M) attaining
the maximum signed distance among all faces in Fvf . The only difference is that the roles
of P and Q̄ are interchanged and hence the pseudocode for the procedure is omitted for
brevity. The first face f0 ∈ F(Q̄) from which the search is started can be chosen by
heuristic as for Search-VF. An alternative is to choose a face f0 ∈ F(Q̄) that is incident
at vq̄ in Q̄ where fm = F (fp,vq̄) is the face output by Search-FV, since we have been
approaching the optimal face fopt at each step of the procedure.

Theorem 2 The face fm ∈ F(M), computed by Search-VF, attains the maximum signed
distance among all faces in Fvf , i.e., d(fm) = max{d(f)|f ∈ Fvf}.
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3.3.3 Procedure Search-EE

By the procedures Search-FV and Search-VF, we determined the face f that attains
the maximum signed distance among all faces in the set Ffv ∪ Fvf . Starting from f , we
shall search for the remaining faces in Fee.

Let 〈ep, eq̄〉 be an edge pair with ep ∈ E(P ) and eq̄ ∈ E(Q̄). As mentioned in section 2.1,
if the arcs that are the Gaussian images of ep and eq̄ intersect on S2, a face F (ep, eq̄) ∈ Fee

will be formed. We shall describe in details how to determine whether two arcs intersect
in section 4.3.

The following procedure Search-EE makes use of a stack S to keep track of all candi-
date edge pairs 〈ei

p, e
i
q̄〉 which might give us the face in Fee that attains the largest signed

distance among all faces in Fee.

Procedure Search-EE
dm ← max{dm computed by Search-FV and Search-VF}.
fm ← the face in Ffv ∪ Fvf that attains dm.
Push to S all possible edge pair 〈e′p, e′q̄〉

where
e′p are edges of fp and e′q̄ are edges incident at vq̄, if fm = F (fp,vq̄), or

e′p are edges incident at vp and e′q̄ are edges of fq̄, if fm = F (vp, fq̄).

Repeat
If dm > 0,

Return (dm, fm).
Pop 〈ei

p, e
i
q̄〉 from S.

If 〈ei
p, e

i
q̄〉 forms a face fi ∈ Fee,

di ← d(fi)
If di > dm,

dm ← di, fm ← fi

Push to S all possible edge pairs 〈ei
p, e

j
q̄〉, 〈ej

p, e
i
q̄〉,

where e
j
q̄ are edges incident at the two end vertices of ei

q̄,

and e
j
p are edges incident at the two end vertices of ei

p.

Until S is empty.
Return (dm, fm).

Theorem 6 The face fm ∈ F(M), computed by Search-EE, attains the maximum signed
distance among all faces in F(M), i.e., fm = fopt and d(fm) = dmax.

With the above theorems and the ideas presented, the following pseudocode describes
our algorithm to detect whether two convex polyhedra P and Q overlap:

10



Procedure CD-Duality(P , Q)
(dmax, fmax)← Search-FV
(dmax, fmax)← Search-VF
(dmax, fmax)← Search-EE
If dmax > 0

Report P and Q are Separate
Otherwise

Report P and Q are Overlap

4 Implementation Issues

In this section, we shall highlight several important issues in implementing our algorithm
so that the computations can be carried out efficiently.

4.1 To obtain a point c inside M

To compute the signed distance for a face in M , we need to determine an interior point
c ∈ M which must not be the origin. The point c can be any arbitrary point as long
as it is inside M . Therefore, we might store two distinct interior points, p0,p1 ∈ P and
q0,q1 ∈ Q, for each of P and Q. The vector differences, pi − qj, of these four interior
points give rise to four distinct interior points in M , from which it is always possible to
obtain an interior point of M which is not the origin.

4.2 To obtain the initial face in Search-FV

In section 3.3.1, we mentioned that a heuristic method can be used to get the initial
face f0 ∈ F(P ) from where Search-FV starts. The aim of this step is to optimize the
searching for fopt and therefore f0 should be chosen such that F (f0,v0) is as close to fopt

as possible, where v0 is the supporting vertex of Q̄ in the normal direction of f0. Noting
from the properties of duality that the normal of the plane ô is in fact the vector s = o−c

(Figure 4), therefore fopt must be front-facing with respect to s with nfopt
· s > 0, where

nfopt
is the normal of fopt. We may then take the face f0 ∈ F(P ) with normal n0 such

that n0 · s is the greatest among all faces in F(P ). F (f0,v0) may not be as close to fopt

especially when M is flat and elongated (Figure 6) and in fact this drawback is reflected
in our experiments. However, this heuristic scheme can still efficiently eliminate most
back-facing faces f with normal nf in M with respect to s such that nf · s < 0.

4.3 To decide whether two arcs on S2 intersect

In procedure Search-EE, we often need to decide whether two arcs A(ep), A(eq̄) of the
edge pair 〈ep, eq̄〉 intersect on the Gaussian sphere S2. Therefore, the computation has to
be done efficiently. Now, let a,b be the end points of A(ep), c,d be the end points of A(eq̄)
and o be the centre of S2 (Figure 7). Ap and Aq̄ intersect if and only if (1) c,d are on
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P
Mc

s = o − c

fopt

f0
F (f0,v0)

Figure 6: The face formed by the first face f0 chosen by the heuristic scheme may not be
close to fopt in M .

different sides of plane oba; (2) a,b are on different sides of plane ocd; and (3) a,b, c,d
are on the same hemisphere.

o o oo

a a

a

a

b
b

b

b

c c

c

c
d

d
d

d

(i) (ii) (iii) (iv)

Figure 7: Determining whether two arcs intersect on S2. Arcs intersect in (i). No inter-
section between arcs where (ii) only condition (1); (iii) only condition (2) and (iv) only
condition (3) is violated.

Consider the signed volume, |cba| = det[ c b a ], of a parallelepiped spanned by
three vectors a,b, c. The quantities |cba| and |dba| are of different signs if they are at
opposite sides of plane oba.

Therefore, the above three conditions can be formulated as (1) |cba| × |dba| < 0; (2)
|adc| × |bdc| < 0; and (3) |acb| × |dcb| > 0 since a,d lie on the same side of plane
ocb and all four points will be on the same hemisphere defined by ocb. Noting that
only the quantities |cba|, |dba|, |adc| and |bdc| are required, since |acb| = |cba| and
|dcb| = |bdc|.

4.4 Frame Coherence

When the two polyhedra P and Q assume continuous motion from frame to frame, our
algorithm may also exploit the temporal or frame coherence. At each time frame, we
compute fopt either in Ffv,Fvf or Fee that attains the maximum signed distance among
all faces in F(M). In any case, we can determine quickly a face f ′ = F (fp,vq̄) ∈ Ffv that
is as close to fopt as possible.

For the next frame, since the position and orientation of P and Q will only have little
changes, the new optimal face should also be close to fopt and the use of fp as the initial
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face for Search-FV will lead us to the new optimal face more rapidly.

5 Results

We have tested CD-Dual on a PC with a Pentium III 1.7GHz CPU. The algorithm is im-
plemented in C++ and is compared against the enhanced version of the GJK method [4].
Since GJK computes also the minimum distance or the penetration distance of two poly-
hedra, its implementation has been modified so that it will complete computations once
collision or non-collision is determined. Two polyhedra that are both approximations of
some ellipsoids are obtained by randomly generating points on the surface of the ellip-
soids. At each run, the two polyhedra are of the same ellipsoidal shape, size and number
of vertices. The distance l between the two polyhedra varies and it is the distance that one
object must be moved in one direction so that two objects become separate. A negative l
corresponds to two penetrating objects while a positive l means that two objects are sep-
arate. For any fixed l, the orientation of one polyhedron is fixed while the other assumes
500 orientations; and 500 pairs of polyhedra are thus obtained. The two algorithms are
then run on each pair of polyhedra for 300 times without using frame coherence and the
average CPU time is recorded.

Figure 8 shows the experimental results with the varying number of vertices of the
polyhedra. It is noticed that there are some peaks in the graphs for GJK near l = 0, i.e.,
when the two polyhedra are close to each other or their penetration distance is small. This
is because in such situations, the GJK algorithm converges slowly. In contrast, CD-Dual
has an almost constant running time for cases where the two polyhedra touch (l = 0) or
intersect (l < 0), no matter what the penetrating distance is. This is because the face
fopt that attains the maximum signed distance has to be reached to confirm the colliding
status. The graphs also show that the CPU time drops significantly for CD-Dual when the
two polyhedra are separate (l > 0). The reason is that CD-Dual can determine separation
once a face in M with positive signed distance is reached. The running time decreases
gradually as the separating distance increases because there are more faces in M with
positive signed distance and separation can therefore be determined more quickly. There
is also mild increase in the running time for our algorithm when the number of vertices on
each polyhedra increases. Although the graph shows favourable running time of CD-Dual
over GJK, it should be reminded that the CPU time depends on the specific implementation
and the optimization level of the algorithms.

Figure 9 shows the CPU time of both algorithms with the shape of the approximated
ellipsoid varying. Notice that CD-Dual takes longer time to complete when the ellipsoid
is more elongated in shape. As explained section 4.2, M is most likely to be elongated in
this case, and therefore the first chosen face in Ffv is not close to the optimal face and it
takes more steps to reach the optimal face.

The amount of time spent on each of the procedures Search-FV, Search-VF, and
Search-EE is shown in the accumulated graph in Figure 10. Little time has been used in
Search-VF since the procedure starts from the optimal face in Ffv which is often close
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Figure 8: Varying number of vertices (n) on the polyhedra with a fixed size of the approx-
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Figure 9: Varying ellipsoid shapes (a : b : c, i.e., the sizes along the three major axes) for
the two polyhedra with fixed number of vertices (n = 1000).

to the target face in Fvf , i.e., the face with maximum signed distance in Fvf . Search-EE
takes more time to complete as there are in general more Fee-type faces in M (although
most such faces have been skipped by Search-FV and Search-VF) and the computation
in each step involves the more complicated arc-arc intersection when compared to the
other two procedures. However, when the separation distance increases, the time needed
for Search-EE drops drastically as in most of the time a face in M with positive signed
distance is reached quickly and the algorithm will report separation, sometimes even within
the procedures Search-FV and Search-VF. Figure 11 shows how the searches proceed
in each of the procedures in a typical scenario.
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6 Estimating Minimum Separating Distance Along a

Specified Direction

Let P and Q be two polyhedra. If P and Q are separate, the minimum separating distance
along a direction s between P and Q is defined as the minimum distance that Q should move
in the direction s (with P fixed) such that P and Q just touch each other (Figure 12(a)).
To determine this distance using CD-Dual, we may choose any point c in M ≡ P ⊕ Q̄ such
that c = ks, for some constant k > 0.

We first obtain two sets of points Ṗ and Q̇ by applying an orthographic projection
along s of all vertices of P and Q to a plane H normal to s. This projection can be done
in O(m + n) time (Figure 13(a)) where m and n are the number of vertices of P and Q,
respectively. The next step is to construct the convex hull, CH(Ṗ ) and CH(Q̇), of the
points Ṗ and Q̇, respectively, which can be done in O(m + n) time since the boundary
vertices of CH(Ṗ ) and CH(Q̇) are the silhouette vertices of P and Q as viewed along s. P
and Q intersect when Q is moved along s if and only if CH(Ṗ ) and CH(Q̇) intersect and
therefore the Minkowski difference Ṁ of CH(Ṗ ) and CH(Q̇) contains the origin 0. Note
that Ṁ can be built in O(m+n) time. Let ṙi = ṗi−q̇i be the vertices of Ṁ in anticlockwise
order (Figure 13(b)). We may then quickly determine in O(m+n) time whether 0 is in Ṁ
by examining the triangles △ṙ0ṙj ṙj+1, j = 1, . . . , l− 2 where l is the number of vertices of
Ṁ . We have 0 ∈ Ṁ if and only if 0 ∈ △ṙ0ṙj ṙj+1, for some j = 1, . . . , l − 2. If 0 /∈ Ṁ , the
two polyhedra P and Q do not collide no matter how far Q is moved along s or −s and
the point c cannot be found. Otherwise, let (u, v, w), where u, v, w > 0 and u + v + w = 1,

15



1 2

3

4 5

6 8
9

10 11

12

13
14

15 16 17
18

19

20

21

22

7

23

24

25

26

27

28

29

30

Figure 11: Search path on M . Top: In Search-FV (dotted regions contain faces in Ffv);
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.

be the barycentric coordinates of 0 with respect to ṙ0, ṙj, ṙj+1. Then,

0 = uṙ0 + vṙj + wṙj+1

= u(ṗ0 − q̇0) + v(ṗj − q̇j) + w(ṗj+1 − q̇j+1)

= (uṗ0 + vṗj + wṗj+1)− (uq̇0 + vq̇j + wq̇j+1)

= ṗ− q̇,

where ṗ = uṗ0 + vṗj +wṗj+1 and q̇ = uq̇0 + vq̇j +wq̇j+1. Let p = up0 + vpj +wpj+1 and
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Figure 12: (a) The minimum separating distance between P and Q along s when they
are separate and the corresponding distance between o and M = P ⊕ Q̄; and (b) the
relationship between the minimum separating distance g and the signed distance of d(fopt)
in the dual space.

P
Q

s

{ṗ}
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ṙj

ṙj+1

H

(a) (b)

Figure 13: (a) Orthographic projection of P and Q along s to a plane H normal to s;
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containing the origin 0.
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q = uq0 + vqj + wqj+1, where p0,pj,pj+1 are vertices in P and q0,qj,qj+1 are vertices
in Q that are projected to ṗ0, ṗj, ṗj+1 and q̇0, q̇j, q̇j+1, respectively. Since the projection
of P and Q along s to the plane H normal to s is an affine transformation that preserves
ratio of area and therefore barycentric coordinates, ṗ and q̇ are the projected images of p

and q, respectively. We have p ∈ P and q ∈ Q because u, v, w > 0 and u + v + w = 1.
Also p− q 6= 0 as P and Q are separate. Since ṗ = q̇, we have c = p− q = ks, for some
constant k 6= 0 and also c ∈ M = P ⊕ Q̄. The minimum separating distance between P
and Q is along s for k > 0 and along −s if k < 0.

As P and Q are separate, ô intersects M̂ in Ê
3
T and therefore the algorithm should be

modified slightly so that it keeps on searching for fopt, even if we have reached a face in
M with positive signed distance. The distance between o and the intersection of fopt with
the line oc is then the required minimum separating distance.

Let g be the minimum separating distance. We would then establish the relationship
between g and the signed distance d(fopt). Let c′ be the origin of E

3
T as described in

section 3.1. Let also o′ = (a, b, c)T (Figure 12(b)). Then ô is the plane given by ax + by +
cz−1 = 0. The face fopt ≡ ux+vy+wz−1 = 0 corresponds to the vertex vopt = (u,v,w)T

on M̂ in Ê
3
T and g is the distance between o′ and the intersection of fopt with the line c′o′.

Now,

d(fopt) =
au + bv + cw − 1√

a2 + b2 + c2

Let ḡ be the shortest distance from the point o′ to the face fopt and θ be the angle between
the line c′o′ and the normal vector of fopt. Then

ḡ =
ua + vb + wc− 1√

u2 + v2 + w2
, and

cos(θ) =
au + bv + cw√

a2 + b2 + c2
√

u2 + v2 + w2
.

We have

g =
ḡ

cos(θ)
=

(ua + vb + wc− 1)
√

a2 + b2 + c2

au + bv + cw

=
d(fopt)(a

2 + b2 + c2)

d(fopt)
√

a2 + b2 + c2 + 1
.

7 Conclusion

We have presented an efficient algorithm for detecting collision between two convex poly-
hedra P and Q. The algorithm is based on local searches in the three subsets Ffv, Fvf and
Fee of all faces in the Minkowski sum M = P ⊕ Q̄. The search is guided by an objective
function that is the signed distance of a face on M which is the signed distance of its dual
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vertex to a plane in the dual space. The function can be calculated easily. The global
maximum signed distance of all faces on M indicates whether P and Q overlap. Due to
the convexity of the dual of M , the face that attains the global maximum signed distance is
guaranteed to be found by a local search on M . Moreover, by partitioning the set of faces
of M into Ffv, Fvf and Fee and performing the local search in each partition successively,
we are able to skip most of the Fee-type faces, which in general are of O(mn) in number
where m and n are the number of vertices on P and Q, respectively. This then saves much
of the computational time.

Experiments show that our algorithm is fast and takes constant time to finish, inde-
pendent of penetration depth, when the two polyhedra touch or penetrate each other. It
performs well especially when the two polyhedra are separate since the algorithm can ter-
minate once the search reaches a face in M with positive signed distance. One drawback
is that the algorithm takes longer time when M gets elongated in shape. Since different
procedures are taken to deal with the three subsets of faces, more involved implementation
work is also needed.

We have also shown how the algorithm can exploit geometric and temporal coherence in
a dynamic environment. Although the algorithm does not compute the shortest distance
between two polyhedra, it can be used to determine the minimum separating distance
along a given direction in a natural way. We hope to extend the idea of the algorithm to
deal with collision detection of convex bodies bounded by curved surface in the future.
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A Theorems and Proofs

Theorem 1 The face fm ∈ F(M), computed by Search-FV, attains the maximum signed
distance among all faces in Ffv, i.e., d(fm) = max{d(f)|f ∈ Ffv}.

Proof: Consider the set of faces Ffv and its corresponding dual point set F̂fv = D ◦
T (Ffv). If for every two faces f0, f1 ∈ F(P ) that share an edge, we connect F̂ (f0,v0) and

F̂ (f1,v1) by an edge, by the construction of M ≡ P ⊕ Q̄ and the properties of duality,
we know that the point set F̂fv and the augmented edges form a polyhedron Ŵ . Since

F̂fv ⊂ V(M̂) and M̂ is convex, Ŵ must be convex too. Now, Search-FV searches locally

for a vertex in Ŵ that attains the largest signed distance to the plane ô. The search path
also follows the adjacency of the faces in P and therefore is along the edges of Ŵ . As Ŵ
is convex, the dual vertex f̂m (corresponding to the face fm) attaining the local maximum
that is returned by the procedure must be the one that attains the global maximum among
all dual vertices in F̂fv (corresponding to the face set Ffv). �

Theorem 2 The face fm ∈ F(M), computed by Search-VF, attains the maximum signed
distance among all faces in Fvf , i.e., d(fm) = max{d(f)|f ∈ Fvf}.
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Proof: Similar to proof of Theorem 1.

Recall the Gaussian image of a polyhedron as described previously, let us further denote
by S(Ffv), S(Fvf ) and S(Fee) the Gaussian images of the three types of faces Ffv,Fvf and
Fee, respectively.

Lemma 3 Let f = F (f ′,v′), f ′ ∈ F(P ) (or F(Q̄)) and v′ ∈ V(Q̄) (or V(P )), be the
face computed by Search-FV and Search-VF such that f attains the maximum signed
distance among all faces in Ffv∪Fvf . If f 6= fopt, there exists at least a face f̃ = F (ef ′ , ev′)
where ef ′ is an edge of face f ′ and ev′ is an edge incident at v′, such that d(f̃) > d(f).

Proof: Without loss of generality, let f = F (fp,vq̄), fp ∈ F(P ) and vq̄ ∈ V(Q̄). Using the
Gaussian image G(M) of M , we now consider only vertices in the region RQ̄(vq̄) and mark
those vertices in S(Ffv) ∪ S(Fvf ) by white and those in S(Fee) by black as in Figure 14.

RQ̄(vq̄)

S(f)

Figure 14: An illustration for proof of Lemma 3. RQ̄(vq̄) is the grey region that S(f) falls
into; white vertices are in S(Ffv) ∪ S(Fvf ) while black vertices are in S(Fee).

Since d(f ′′) < d(f) for all white vertices S(f ′′) within RQ̄(vq̄), there must be at least one

black vertex S(f̃) within RQ̄(vq̄) such that d(f̃) > d(f); or otherwise, f will have the local

maximum signed distance among all faces ḟ with S(ḟ) in RQ̄(vq̄). Due to the convexity
of the signed distance function d, it also means that f attains the global maximum signed
distance, contradicting f 6= fopt. �

Lemma 4 Let 〈ep, eq̄〉 forms a face f̂ = F (ep, eq̄) ∈ Fee. If f 6= fopt and d(f) >
max{d(ḟ)|ḟ ∈ Ffv ∪ Fvf}, there exists a face f̃ = F (ep, e

′
q̄) or f̃ = F (e′p, eq̄) ∈ Fee

such that d(f̃) > d(f), where e′p ∈ E(P ) is an edge incident at any of the two end vertices
of ep and e′q̄ ∈ E(Q) is an edge incident at any of the two end vertices of eq̄.

Proof: Let S(f) be the Gaussian image of f in G(M) (Figure 15). Then S(f) is
the intersection of arcs A(ep) and A(eq̄) (i.e., the Gaussian images of the edges ep and
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eq̄, respectively). For any neighbouring face f ′ of f in M sharing a common edge, the
corresponding vertex in G(M) must be connected to S(f) by an arc. Hence, we just need
to consider these neighbouring vertices of S(f) which are divided into two types: those in
S(Ffv) ∪ S(Fvf ) and those in S(Fee) which are marked by white and black in Figure 15,
respectively.

RQ̄(vi
q̄)

RQ̄(vj
q̄)

A(ep)

A(eq̄)

x

S(f)

Figure 15: An illustration for proof of Lemma 4. Neighbouring vertices of S(f); white
vertices are in S(Ffv)∪ S(Fvf ) while black vertices are in S(Fee). A(ep) exits RQ̄(vi

q̄) and

enters RQ̄(vj
q̄) at S(f).

Possible white vertices, i.e., both in S(Ffv)∪S(Fvf ) and is connected to S(f) by an arc,
can only be the end vertices of A(ep) and A(eq̄). On the other hand, possible black vertices,
i.e., both in S(Fee) and is connected to S(f) by an arc, can only be the intersections of
A(ep) with some arcs in G(Q̄) or the intersections of A(eq̄) with some arcs in G(P ).

Now, consider the neighbourhood of S(f) along the arc A(ep). A(ep) must exit a region
RQ̄(vi

q̄) and enter a region RQ̄(vj
q̄) in G(Q̄). Therefore, vertices neighbouring to S(f) along

A(ep) must be the intersections of A(ep) and arcs bounding the regions RQ̄(vi
q̄) and RQ̄(vj

q̄)

(e.g. vertex x in Figure 15). Since vi
q̄ and v

j
q̄ are the two end vertices of the edge eq̄ in M , the

faces corresponding to these intersections must be formed by the edge pairs 〈ep, e
′
q̄〉, where

e′q̄ are edges incident at the two end vertices of eq̄. Similarly, by considering neighbouring
intersections of S(f) along A(eq̄) in G(M), the corresponding faces must be those by edge
pairs 〈e′p, eq̄〉, where e′p are edges incident at the two end vertices of ep. We have then for

any white vertices S(ḟ), d(f) > d(ḟ). If for all black vertices S(f̃), d(f̃) < d(f), f will
attain the local maximum signed distance among all its faces in M . This means that f
must attain the global maximum signed distance in M , which contradicts that f 6= fopt.
�

Corollary 5 Let f ∈ Ffv ∪ Fvf , be the face that attains the maximum signed distance
among all faces in Ffv ∪ Fvf . If f 6= fopt, we must have fopt = f̃ where f̃ ∈ Fee.

In proving Lemma 3 and 4, when considering the Gaussian image of M , we only deal
with the case where a vertex S(f) ∈ S(Ffv), f = F (fp,vq̄) falls within a region RQ̄(vq̄).
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This corresponds to the case when vq̄ is the supporting vertex of Q̄ in the normal direction
of fp. In fact, the following two cases can happen too:

(2) S(f) falls on an arc A bounding RQ̄(vq̄), when the edge in E(Q̄) corresponds to A is
parallel to fp.

(3) S(f) falls on a vertex x of RQ̄(vq̄), when the face in F(Q̄) corresponds to x is parallel
to fp.

Nevertheless, we may apply the same arguments used in the proofs to S(f) and each of
the regions that A and x are adjacent to for case (2) and (3).

Theorem 6 The face fm ∈ F(M), computed by Search-EE, attains the maximum signed
distance among all faces in F(M), i.e., fm = fopt and d(fm) = dmax.

Proof: The procedure Search-EE first starts with a face f = F (f ′, v′) that attains
the maximum signed distance among all faces in Ffv ∪Fvf . It then searches for the set of
faces S formed by the edges of f ′ and the edges incident at v′. If f 6= fopt, by Lemma 3,
there must exist a face in f̃ ∈ S such that d(f̃) > d(f) and the searching process will then
continue from f̃ ; otherwise, Search-EE returns fm = f .

When Search-EE reaches a face ḟ = F (ep, eq̄), it next searches for the set of faces Ś
formed by the edge ep (or eq̄) and edges incident at the end vertices of eq̄ (or ep). Lemma

4 guarantees that if ḟ 6= fopt, there must exist at least a face f́ ∈ Ś such that d(f́) > d(ḟ).
Also by Corollary 8, face fopt must be in Fee. At each subsequent steps, fm approaches
fopt and eventually reaches fopt such that d(fm) = d(fopt) = dmax. �
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