
Postprint of article in Proceedings of the 28th Annual International Computer Software and Applications Conference

(COMPSAC ’04), vol. 1, IEEE Computer Society, pp. 458–465 (2004)

Testing Context-Sensitive Middleware-Based Software Applications ∗ †

T.H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Stephen S. Yau

Computer Science & Engineering Department

Arizona State University

Tempe, AZ 85287, USA

yau@asu.edu

W.K. Chan

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

wkchan@cs.hku.hk

Heng Lu

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

hlu@cs.hku.hk

T.Y. Chen

School of Information Technology

Swinburne University of Technology

Hawthorn 3122, Australia

tychen@swin.edu.au

Abstract

Context-sensitive middleware-based software is an

emerging kind of ubiquitous computing application. The

components of such software communicate proactively

among themselves according to the situational attributes of

their environments, known as the “contexts”. The actual

process of accessing and updating the contexts lies with

the middleware. The latter invokes the relevant local and

remote operations whenever any context inscribed in the

situation-aware interface is satisfied. Since the applications

∗ c© 2004 IEEE. This material is presented to ensure timely

dissemination of scholarly and technical work. Personal use of this

material is permitted. Copyright and all rights therein are retained by

authors or by other copyright holders. All persons copying this information

are expected to adhere to the terms and constraints invoked by each

author’s copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder. Permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE.
† This work is supported in part by a grant of the Research Grants

Council of Hong Kong, a grant of the Croucher Foundation, a grant of The

University of Hong Kong, and an Australian Research Council Discovery

Grant (Project No. DP 0345147).

operate in a highly dynamic environment, the testing of

context-sensitive software is challenging.

Metamorphic testing is a property-based testing strategy.

It recommends that, even if a test case does not

reveal any failure, follow-up test cases should be further

constructed from the original to check whether the software

satisfies some necessary conditions of the problem to

be implemented. This paper proposes to use isotropic

properties of contexts as metamorphic relations for testing

context-sensitive software. For instance, distinct points

on the same isotropic curve of contexts would entail

comparable responses by the components. This notion of

testing context relations is novel, robust, and intuitive to

users.

Keywords: Property-based testing, RCSM, middleware-

based application, metamorphic testing

1. Introduction

Context-sensitive middleware-based software is an

emerging kind of computing application following up

on the concept of ubiquitous computing, or computing

everywhere. The context of an entity is any inform-

1

Administrator
 HKU CS Tech Report TR-2004-07

ation characterizing its environmental situation [1]. The

components of context-sensitive software communicate

proactively among themselves according to the contexts.

Various projects, such as [2, 3, 4, 5, 6, 7, 8, 9], employ

a context-sensitive middleware to assess the environment

so that the low-level recognition process can be hidden

from the users’ applications. Pilot applications such

as [10, 11, 12, 13] have been reported in the literature.

Since applications must operate in a highly dynamic

and situated environment, this type of configuration

increases the intricacy in software quality assurance.

To our best knowledge, there is no software testing

technique addressing context-sensitive middleware-based

applications, although testing is the major means to assure

their quality. Finding effective software testing techniques

for such applications in a specification-based or program-

based setting is an open and challenging problem.

In conventional approaches in software testing, the

behavior of an application is assumed to be included inside

the implemented program. In context-sensitive middleware-

based applications, on the other hand, the middleware may

repeatedly invoke certain software components according

to the interface contexts, until the triggering conditions

inscribed in the middleware are no longer satisfied. Hence,

part of the application behavior can be determined by a

triggering condition or a stopping criterion specified in the

middleware rather than based on the source code of the

application. This blurred boundary poses new challenges

to software testers. Even for unit testing, it is not sufficient

to consider only the source code of the application (such

as when constructing test cases for all-du coverage [14]

in white-box testing), or to use the situational conditions

registered in the middleware as activation conditions (in the

sense of pre-conditions in model-based languages such as

Z [15]). Furthermore, it is a formidable task to work out a

precise test oracle and to test the application against it.

Metamorphic testing [16, 17, 18] is a property-

based testing strategy. It recommends that, even if a

test case does not reveal any failure, follow-up test

cases should be further constructed from the original

to check whether the software satisfies some necessary

conditions of the problem to be implemented. It can reveal

functional errors without the need to rely on test oracles.

Consider a (metamorphic) relation for more than one

input-output pair, such as (x1 −x0)
2 +(f (x1)−y0)

2 = r2 =
(x2−x0)

2 +(f (x2)−y0)
2 ∧ x2 = 2x0−x1. When all but one

input-output pairs are known, such as x0 = 2, y0 = 2, x1 = 1,

and f (x1) = 1, we can compute the next input, say x2 = 3.

Furthermore, we can determine whether this input-output

pair, say (x2, y2) = (3, f (3)), violates the metamorphic

relation. Throughout the course of checking of results,

there is no need to pre-determine the expected value for any

RCSM

Optional components

Context-sensitive application objects

RCSM ephemeral group
communication service

Core components

Adaptive object containers (ADCs)
(providing awareness of context)

RCSM object request broker (R-ORB)
(providing transparency over ad hoc communication)

Other services

O
p
e
r
a
t
i
n
g

s
y
s
t
e
m

Transport layer protocols for ad hoc networks

Sensors

Figure 1. The device­centric architecture of

RCSM (from [8]).

particular input, such as whether f (3) should or should not

be 1.

It is obvious from this example that a metamorphic

relation is not the same as the specification for an

application. The former does not define the expected

outcomes in an explicit form. It facilitates software testing

in cases where it is difficult to determine the test oracle

precisely. Passing every test case in metamorphic testing

does not warrant the correctness of an application. On the

other hand, this is the limitation of all testing methods.

The rest of the paper is organized as follows: First,

Section 2 describes the infrastructure of context-sensitive

middleware-based applications, which is the main topic

of interest of the paper. It will pay special attention to

context-sensitive interfaces from the viewpoint of software

testing. This is illustrated by a smart streetlight application

described in Section 3. Section 4 discusses the difficulties of

testing such systems. Sections 5 and 6 review metamorphic

testing and demonstrate how this can be applied to reveal

the failures in the smart streetlight example. Finally,

Section 7 concludes the paper.

2. Reconfigurable Context-Sensitive

Middleware (RCSM)

2.1. Architecture

According to [19, 20, 21, 22], an application in

ubiquitous computing environment [23] exhibits two

properties. First, an application is context-sensitive when

it adapts its behavior by using information from its

surrounding environment, usually known as the contexts.

2

Secondly, such applications communicate frequently and

proactively with other devices in an ad hoc network.

Reconfigurable Context-Sensitive Middleware (RCSM)

[8] is a middleware for the ubiquitous computing environ-

ment. It responds to these two properties by providing a

context-sensitive interface. It allows applications to free

themselves from the detection of contexts and concentrate

on context-independent actions. More specifically, RCSM

regards each context-sensitive application as an object and

provides the latter with a custom-made adaptive object

container (ADC) generated according to the RCSM-specific

interface definition specification [24].

Figure 1, taken from [8], sketches the architecture of

RCSM in a typical device. During runtime, each adaptive

object container will register its contextual requirements

to the middleware and periodically collect raw contextual

data from the underlying system. Once suitable situational

conditions are detected, the responsible adaptive object

container will activate appropriate actions. The discovery

of devices, the communication model among devices, and

the detection of any specific situations are transparent to

applications. More detailed explanations can be found

in [8, 25].

2.2. Situation­Aware Interface Definition
Language

Situation-Aware Interface Definition Language (SA-

IDL) [26] describes formally the situations to be detected

and the corresponding actions to be passed on to the

applications.

A time stamp, denoted by t, carries the ordinary meaning

of time as represented in most systems. A context variable,

denoted in general by ci, specifies an attribute of a specific

context. A context tuple, or simply a context, is a tuple

〈t, c1, c2, . . . , cn〉 of context variables. For instance,

suppose that GPSposition = (x, y, z) is a context variable

representing the position of a moving trolley. A context

describing its position can be expressed as 〈t, GPSposition〉.
A derived context is a mathematical function of contexts

that describes how contexts vary with time. An action tuple

is a tuple 〈t, a1, a2, . . . , an〉 of actions in response to a

specific context. In the rest of the paper, we shall assume

the existence of the time component without an explicit

reference in our examples.

A situation expression indicates how contexts and

actions vary over time. A valid situation expression

includes the following components in sequence: (i) a

universal or existential quantifier, (ii) the variable t within a

time range, and (iii) a list of comparisons among actions,

contexts, and values. A situation expression can also

be composed with other situation expressions to form a

new situation expression using the logical operators “and”,

“or”, or “not”. In this paper, conditions in a situation

expression are also referred as situational conditions.

Finally, a responding action must be annotated with one

of the following tags: [incoming], [outgoing], [local], or

[clientserver]. It should also be associated with the context

using a tag [activate at context x], where x is a context

variable or expression. More detailed elaborations on the

specification format and how it deals with real-time and

quality-of-service (QoS) issues can be found in [25].

3. Smart Streetlight System: an Application

Scenario

3.1. Description

Consider an example of a system of smart streetlights

that collaborate to illuminate a city zone. The system

includes two features. (i) As far as possible, every

visitor can personalize their favorite level of illumination

irrespectively of their location within the zone. (ii) At

the same time, the system maximizes energy savings by

dimming unnecessary streetlights.

When there is no visitor nearby, a streetlight will turn

itself off. When a visitor walks toward a particular

streetlight, the light detects the visitor and brightens itself.

Other surrounding streetlights may dim if the closest light

has provided sufficient illumination. The other streetlights

may not dim, however, if there are other visitors requiring

illumination. Because of the interference from other light

sources and the presence of other visitors nearby, the

resulting illumination for the visitor may differ from their

favorite level. Finally, the system assumes that the effective

distance for any streetlight to serve a visitor is at most 5

meters.

3.2. Sample Programs

Figure 2 1 shows a sample situation-aware interface

definition specification for a lighting device 2. In particular,

the situation low illumination targets to represent that,

when the visitor is inside the effectively illuminated region

at time stamp t of the received context, the current

illumination ln at the visitor site is short of the favorite

illumination l f for more than a tolerance of ε in the past

3 seconds. When this is the case, the application needs

to power up its lighting device. This is accomplished

by invoking the local function PowerUp(). A situation

high illumination is similarly defined.

1 In practice, a derived context should be used in situation expressions

to compute the differences between the variables l f and ln. For the ease of

presentation in the paper, the specification in the figure uses a simplified

notation that merges the derived context definitions for (ln − l f) and (l f −
ln) into their corresponding situation expressions.

2 To simplify our discussion in this paper, every context is placed in the

same context tuple in the SA-IDL specification.

3

#de f ine ε 0.1

ContextTuple lightcontext{

Time t; // time stamp

// remote contexts:

int s; // no. of surrounding streetlights of a visitor

float l f ; // the favorite illumination

// (radiance) of the visitor

float ln; // the illumination (radiance)

// at the visitor site

Position pv; // visitor’s (x, y) position

// local contexts:

float l0; // the illumination (radiant intensity)

// emitted from the streetlight

Position pl ; // (x, y) position of the streetlight

};

interface smartlight{

Derived d (pl .x− pv.x)
2 +(pl .y− pv.y)

2)

Situation high illumination

(ForAny t > T −3) (d 6 25) ∧ (ln − l f > ε)
Situation low illumination

(ForAny t > T −3) (d 6 5) ∧ (l f − ln > ε)
// Note: (d 6 25) is mistaken as (d 6 5)

[local][activate at high illumination] void PowerDown();

[local][activate at low illumination] void PowerUp();

};

Figure 2. A simplified SA­IDL for the smart

lighting device.

Nevertheless, there is an error in the SA-IDL

specification of lighting devices as shown in Figure 2. In

the situation expression low illumination, the variable d

is mistaken to mean “distance” rather than its square. It

defines the situation expression to be detected when the

value of the variable d is no more than 5 meters, which

would be conceptually correct if the variable d were indeed

a measure of the distance. The correct comparison should

check its value against “25”, and the correct situation

expression for the situation low illumination should be as

follows:

Situation low illumination

ForAny (t > T −3)
(d 6 25) ∧ (l f − ln > ε)

(1)

The concept behind the function PowerUp() is as

follows: In the smart streetlight system, each visitor will

be surrounded by a number, say s, of streetlights that can

communicate with the visitor. Suppose that the lighting is

void PowerUp(){
s1 int r;

s2 r = rand() % s;

// randomize the action

s3 if r == 0 {
s4 if l0 < MAX {
s5 l0 = l0 +1;

}}
s6 sleep(r/2);
}

Figure 3. The implementation of PowerUp().

optimal at the moment and a visitor increases their favorite

illumination so that exactly one surrounding streetlight

can optimally meet its new requirement. Since there are

s streetlights detecting the change, there are s devices

ready to activate their PowerUp() functions. Obviously,

these streetlights must be collaborative; otherwise an

uncontrolled effect will result in too much or too little

light for the visitor. In each device for a streetlight, the

implementation PowerUp() makes use of the contextual

data s that represents the number of lights surrounding

the visitor. The function computes the probability 1
s

that

it needs to increase the power supplied, and then casts a

die. Since there are s surrounding streetlights and each

has a probability of 1
s

to brighten itself, there will be,

on average, one streetlight to serve the visitor. When

none of the streetlights chooses to light up, the situation

low illumination will remain active. Further running of the

PowerUp() function will be required.

On the other hand, when there is more than one

streetlight lighting up, the situation high illumination at all

the surrounding streetlights will be activated accordingly.

The function PowerDown() will be run to dim the

corresponding lights non-deterministically.

To complete an overall adjustment, an individual

streetlight may or may not activate the functions PowerUp()

and PowerDown(). In general, each of these functions

will make small adjustments to the power supply and,

hence, the corresponding middleware is required to invoke

the functions a number of times to achieve the required

illumination. Consequently, the overall illumination at

the visitor site will oscillate, sometimes higher than the

expected and sometimes lower, and will eventually reach

an optimal value.

Figure 3 shows a correct implementation of the function

PowerUp() 3. Once a new value for the context variable

l0 is computed, it should be detected by the middleware at

the visitor site. This paper assumes that there is a correct

3 In practice, the value of the context variable l0 may be passed to a

control system to regulate the power supply after statement s5.

4

test stub for the function ComputeRadiance() in the visitor

device to take the values of l0 from all the surrounding

streetlights and to compute a corresponding new value for

the context variable ln. The theoretical formula to compute

the variable ln is defined as follows 4, although tolerances

such as |ln − l f | < ε may need to be added in real-life

practice.

ln =
s

∑
i=1

l
(i)
0

d(i)

where l
(i)
0 and d(i) denote the context variable l0 and

the derived context variable d, respectively, from the ith

surrounding streetlight. In particular, for a configuration

with only one visitor and one streetlight, the formula can

be simplified to:

ln =
l0

d
(2)

4. Challenges in Testing Context-Sensitive

Middleware-Based Software

Most context-sensitive middleware-based systems em-

phasize that context detections, situation detections, and

invocations of corresponding functions are the duties of the

middleware. However, the active nature of the middleware

and the emphasis of clear segregation of duties pose new

challenges to testers.

An SA-IDL specification is a readily available formal

definition of the interface between an application and the

middleware in an RCSM framework. An error in the

specification, which will automatically be translated into

problematic code by the SA-IDL compiler, may be difficult

to detect for a number of reasons. First, there are many

challenges in testing the prohibitive number of possible

relationships between the application and the middleware,

as discussed later in this section. Secondly, an error-

free SA-IDL specification is only an idealistic target and

is not known to the designer. There is, therefore, no

oracle to validate the correctness of the functions defined

in an SA-IDL specification. Thirdly, one may also like

to adopt a formal specification to specify the functions

of the application, thereby easing the development and

testing process. However, since they involve probabilistic

operations, their specifications must either be probabilistic

or non-deterministic. Take PowerUp() as an example. An

informal non-deterministic description may take the form:

“As long as the context variable l0 is less than MAX ,

PowerUp() may or may not increment l0 by 1.” The

4 According to the principles of optics, the value of illumination emitted

by the streetlight is expressed in terms of radiant intensity, denoted by l0,

and the value of illumination estimated at the visitor site is expressed in

terms of radiance, denoted by ln. They obey the formula ln = k
l0
d2 , where

d is the distance between the streetlight and the visitor, and k is a constant.

integration of a formal non-deterministic specification with

an SA-IDL specification to help detect, for instance, the

missing-situation error in Figure 2, is subject to extensive

further research.

For unit tests in conventional software testing, a function

such as PowerUp() plus the associated situations can be

treated in at least 3 different levels with a middleware that

can synchronize contexts:

L1: Treat PowerUp() as a function under test in a

conventional application.

L2: On top of level L1, consider situational conditions as

constraints imposed on the input domain. In other

words, every test input has to satisfy these constraints;

otherwise the middleware will not activate the program

under test accordingly.

L3: In addition to level L2, consider the middleware to be

autonomous in function invocations.

They also represent different degrees of challenges in

testing.

4.1. Level L1

Suppose there is a fault in statement s5 of the PowerUp()

implementation such that it updates the variable ln instead

of l0:

s5 : ln = l0 +1;

Suppose a tester follows this faulty implementation of

PowerUp() to partition the set of legitimate execution

paths according to the path analysis strategy [27]. Three

distinct execution paths will result. Consider the path

〈s1, s2, s3, s4, s5, s6〉 that passes through all the statements.

Suppose

〈s = 1, l f = 2, ln = 5, l0 = 7, pv = (2, 3), pl = (0, 0)〉

is the initial value of the context tuple for the streetlight.

An execution of this path will modify the context variable

ln from 5 to 8 because of the faulty statement s5. A correct

computation should not amend the value of ln, but should

adjust l0 to 8 instead.

There are at least two challenges in this case:

(a) The context variables are detected and probed in real

time by the underlying middleware. Since ln is a

remote context variable, a new value for this context

variable may supersede the computation error at any

time, so that the fault may not be detected. For

instance, according to formula (2), ln at the visitor site

will be updated to 7
13

when l0 is 7, and to 8
13

when l0
is 8. This value will then synchronize with the local

context tuple at the lighting device 5.

5 During unit testing, testers tend to implement test stubs at the

streetlight site to simulate the actual implementation at the visitor site.

5

One can argue that this is the usual problem of a

race condition (that is, having concurrent operations

that conflict with one another) as in conventional

concurrent applications. On the other hand, it is

also a desirable property of the middleware to refresh

context variables in order to provide transparency

to the application. However, this may result in an

undetected fault.

(b) Suppose the middleware were not included in the unit

testing. In this case, testers would be modifying the

behavior of the application. We would not be able

to draw a conclusion whether it would be an error

for the test result of l0 to remain as 7, unless there

was a detailed specification for testers to compute the

behaviors when the effects of the middleware were

totally diminished.

4.2. Level L2

The second level of unit testing is to take the situational

conditions into account. By treating the situational

conditions in SA-IDL specification as constraints to define

the input domain, testers may apply the domain-testing

strategy [28]. Testers may partition the input domain into

two subdomains according to the situational conditions

low illumination and high illumination.

However, as situational conditions play an active role in

the behaviors of the application, a variant in the situation

expression may cause the function (such as PowerUp())

to be activated improperly or not to be activated properly.

For instance, the situation expression in equation (1) of

Section 3 shows that the function PowerUp() should be

activated when the streetlight is at position (0, 0) and the

visitor is at position (3, 3). (That is, the derived context

variable d in the SA-IDL specification will be evaluated

to 18, which is less than 25. Hence, the middleware will

trigger the function PowerUp() according to the situation

expression in equation (1) 6.)

4.3. Level L3

The third level is to take into account the active nature of

the middleware. Hence, a unit under test is the integrated

module of a triggered function (such as PowerUp())

and the related triggering situation expressions (such as

low illumination). As contexts are partially controlled by

middleware, (intermediate) values and validities of context

variables may change in unforeseeable combinations during

6 We observe that a context tuple meeting the constraints of situation

expression low illumination in Figure 2 will also satisfy this (correct)

situation expression shown in equation (1). Thus, any test case that can

cause the middleware to trigger the function PowerUp() will not reveal

this problem.

a series of automatic triggering. The number of potential

combinations is usually formidably large. It poses a

combinatory explosion problem to testers.

Furthermore, as the middleware is proactive, it may

trigger application functions now and then. Thus, it will

not be easy to determine precisely the (hard) termination

of a computation for a particular input. Consider, for

example, the faulty statement s5 in PowerUp() and the

initial context tuple discussed in level L1 above. Since

the illumination ln takes a value of 7
13

at the visitor site,

the situation low illumination will be invoked, causing

the local copy of ln to be erroneously altered to 8. The

latter will be detected by the middleware and, hence, the

computation will not terminate. On the other hand, even

for the correct implementation of the application, since

the implementation PowerUp() is non-deterministic, it may

take an indefinite number of invocations before the situation

low illumination can be satisfied to terminate the execution

of a test case.

4.4. Inadequacies of Data­Flow Testing and
Coverage Testing

The data-flow testing strategy, code coverage strategy

(such as path coverage), and predicate-based testing

strategy are three of the most popular kinds of strategy

in code-based testing techniques. They aim at generating

test cases so that different parts of the program under

test will execute. As discussed in Section 4.2, the fault

in the program under test lies in the context-sensitive

interface that excludes certain situations to be detected by

the middleware. Thus, by generating test cases according

to the structure of PowerUp() and its relationships to

context variables, and at the same time fulfilling the SA-

IDL constraints to activate the function PowerUp(), one

can never discover the missing situations. For the unit

under test (PowerUp() with situation low illumination),

for example, the following test set fulfills the all-branch-

coverage criteria for code coverage strategy, the all-du

coverage criteria for data-flow testing strategy, and the all-

predicate-use criteria for predicate-based testing strategy at

the same time.
{

〈s = 1, l f = 10, ln = 5, l0 = 7, pv = (1, 1), pl = (0, 0)〉,
〈s = 1, l f = 10, ln = 5, l0 = MAX , pv = (4, 0), pl = (0, 0)〉

}

Nevertheless, no failure can be revealed.

On the other hand, by sufficiently modifying these

testing techniques so that they can (creatively) produce test

cases to cover these supposedly “infeasible” situations seem

to violate their underlying philosophy and may produce

a great deal of illegitimate test cases. For instance, the

effective serving distance of a smart streetlight is at most

5 meters. The data type “float” for the variable d includes

mostly numbers larger than 5.

6

5. Metamorphic Testing

A metamorphic relation [16, 17, 18] is an existing or

expected relation over a set of distinct input data and

their corresponding output values for multiple executions

of the target program. Metamorphic testing is a property-

based testing strategy based on such relations. If a

group of test cases and their corresponding outputs do

not satisfy a specific metamorphic relation, then the

program under test must contain a fault. Various

studies on metamorphic testing have been carried out.

Reference [30] tests the implementation of partial

differential equations. References [17, 18] investigate the

integration of metamorphic testing with fault-based testing

and global symbolic evaluation. Reference [31] develops an

automated framework.

For context-sensitive middleware-based applications,

contexts can be parts of the inputs and parts of the

outputs of a feature 7 at the same time. If metamorphic

relations among contexts can be established, testers can

apply metamorphic testing to such applications. There are

a few advantages. First, testers can alleviate the problem

of blurred boundary between the context-sensitive function

and the situation-aware interface, as raised in Section 1.

Secondly, testers can check properties of the software that

are independent of situational conditions. Thirdly, it models

the feature under test as a black box and, hence, the internal

explosion of the legitimate combinations of context tuples

is encapsulated.

A metamorphic relation can be formally described as

follows: Suppose that f is an implemented function

under test. Given a relation r over n distinct inputs,

x1,x2, . . . ,xn, the corresponding n computation outputs

f (x1), f (x2), . . . , f (xn) must induce a necessary property r f .

The corresponding formula can be expressed as

r(x1, x2, . . . , xn)
⇒ r f (f (x1), f (x2), . . . , f (xn))

In other words, a metamorphic relation of f over n inputs

and n outputs can be defined as follows:

MR f = {(x1, x2, . . . , xn, f (x1), f (x2), ..., f (xn))

| r(x1, x2, . . . , xn)

⇒ r f (f (x1), f (x2), . . . , f (xn))}

6. Testing Context-Sensitive Properties

In this section, we apply the notion of metamorphic

testing to the smart streetlight application described in

Section 3 in a configuration involving a visitor and a

7 A feature includes both the context-sensitive function under test and

its corresponding SA-IDL.

streetlight. As described in Section 3, a feature of

this application is that it can provide similar levels of

illumination to a visitor at different locations in the

streetlight zone. This intuitive isotropic service agreement

is expressed as a situational condition l f − ln > ε. Hence,

whenever the visitor is within the effective servicing area

of the streetlight, a correct implementation of SA-IDL

and PowerUp() under a test stub for ComputeRadiance()

using formula (2), should compute ln to a value within

the specified tolerance limit. In this case, the maximum

tolerance between two distinct values of ln can at most

be 2ε. Consequently, we have the following metamorphic

relation for the unit testing of the function PowerUp():

MRPowerUp = {(p1, p2, ln1
, ln2

, l f1 , l f2 , p0, reff)

| r2(p1, p0) 6 r2
eff ∧ r2(p2, p0) 6 r2

eff

∧ l f1 = l f2 ⇒ ln1
≈ ln2

}

where

(i) reff is the radius of the effective illumination region of

a streetlight,

(ii) r2(pi, p0) is a function to return the square of the

distance between the streetlight at position p0 and the

visitor at position pi,

(iii) l f1 and l f2 are the favorite illuminations of the visitor

at positions p1 and p2, respectively, and

(iv) the symbol ≈ denotes that the two values are

approximately equal within an application-specific

tolerance limit of 2ε.

Application designers, users, or experienced testers can

obviously propose such context-sensitive properties for

testing. The metamorphic relation above for the smart

streetlight application, for example, can be intuitively

produced from informal requirements descriptions together

with an understanding on the SA-IDL specification.

Testers may generate lists of context variables as test

cases for the metamorphic relation MRPowerUp. For

instance, both of the following two lists t1 and t2 have

visitor positions inside the effective illumination region.

Furthermore, the testing of non-determinism due to the

random function rand() can be achieved using such

methods as the forced deterministic testing approach [32,

33].

t1 = 〈s = 1, l f = 10, ln = 5, l0 = 7,

pv = (1, 1), pl = (0, 0)〉

t2 = 〈s = 1, l f = 10, ln = 5, l0 = 7,

pv = (4, 0), pl = (4, 4)〉

7

(a) For the test case t1, 2 will be assigned to the derived

context variable d. Hence, the predicate d 6 5 will

be evaluated to true. Moreover, as the initial value

of ln (= 5) is also smaller than that of l f (= 10),

even if a tolerance threshold ε is taken into account,

the situation low illumination should be detected by

the middleware. The middleware, thus, invokes the

function PowerUp().

After the first round of execution of PowerUp(), l0
is increased from 7 to 8. This change in value for

the variable l0 will be passed to the test stub for

ComputeRadiance(), which computes a new value
8
2

= 4 for the variable ln. The middleware will

still detect this value of ln as satisfying the situation

low illumination. Additional invocations of the

function PowerUp() will be made. The iterative

process will be repeated 12 more times, so that

l0 is gradually increased to 20. The test stub for

ComputeRadiance() computes the latest ln to be 10.

The situation low illumination will no longer be

satisfied. The context tuple will be

CTt1 = 〈s = 1, l f = 10, ln = 10, l0 = 20,

pv = (1, 1), pl = (0, 0)〉

and will remain unchanged afterwards.

(b) On the other hand, for the test case t2, the variable d

will be computed to give 16, which is larger than 5.

Thus, the predicate d 6 5 will be evaluated to false,

so that the situation low illumination will never be

activated. Since the initial value of l0 is 7 and stays

constant, ln is updated to 7
16

, or 0.4375. It will preserve

this value afterwards. The eventual context tuple of t2
will be

CTt2 = 〈s = 1, l f = 10, ln = 0.4375, l0 = 7,

pv = (4, 0), pl = (4, 4)〉

By the metamorphic relation MRPowerUp, the difference

between ln in CTt1 and that in CTt2 exceeds the tolerance

limit 2ε (= 0.2). Consequently, since the eventual 8 values

of the context variable ln for the two test cases are not

always the same within certain tolerance limits over a period

of time, the relation MRPowerUp is violated. In other words,

it reveals a failure in the implementation under test.

7. Conclusion

Ubiquitous computing is a notion of computing

everywhere. One of the emerging approaches is to develop

8 In the sense that it is sufficiently long from the real-time perspective

to affect outputs.

context-sensitive middleware that facilitates application-

transparent communications in an ad hoc network. This

paper examines the active nature of the middleware based

on RCSM. We note that there are challenges for testers to

test applications atop such middleware. They include (i)

race conditions in context tuples between the middleware

layer and the application layer, (ii) potential non-testable

nature of situation expressions, and (iii) combinatory

explosion of unforeseeable combinations of intermediate

contexts to trigger subsequent context-sensitive functions.

This paper proposes to investigate into the metamorphic

relations of the context tuples so that the program in

the middleware under test can be modeled as a black

box. In this way, race conditions and state explosions

of intermediate contexts can be encapsulated. We

also propose that, owing to the non-testable nature of

situation expressions, metamorphic relations can be chosen

to be independent of situation expressions. Hence,

such a metamorphic relation is black-box and situation-

independent, thus providing a robust testing platform for

complex context-sensitive software systems.

The paper also describes a smart streetlight example. It

uses the service level agreement as an informal specification

to formulate a metamorphic relation. Based on the relation,

we discuss a way to detect missing-situation errors in an

implementation of the power-up feature of the example

system.

In summary, the application of metamorphic testing

to context-sensitive middleware-based software systems is

novel, robust, and intuitive to testers.

8. Acknowledgements

The authors would like to thank the anonymous

reviewers for their very encouraging evaluations of the

paper.

References

[1] H.J. Nock, G. Iyengar, and C. Neti. Multimodal processing

by finding common cause. Communications of the ACM,

47 (1): 51–56, 2004.

[2] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli.

Context-aware middleware for resource management in

the wireless Internet. IEEE Transactions on Software

Engineering, 29 (12): 1086–1099, 2003.

[3] A.T.S. Chan and S.-N. Chuang. MobiPADS: a reflective

middleware for context-aware mobile computing. IEEE

Transactions on Software Engineering, 29 (12): 1072–1085,

2003.

[4] M. Haahr, R. Cunningham, and V. Cahill. Supporting

CORBA applications in a mobile environment. In Proceed-

ings of the 5th Annual ACM/IEEE International Conference

8

on Mobile Computing and Networking, pages 36–47. ACM,

New York, NY, 1999.

[5] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich.

Xmiddle: a data-sharing middleware for mobile computing.

Wireless Personal Communications, 21 (1): 77–103, 2002.

[6] G.P. Picco, A.L. Murphy, and G.-C. Roman. LIME: Linda

meets mobility. In Proceedings of the 21st International

Conference on Software Engineering (ICSE ’01), pages

368–377. IEEE Computer Society, Los Alamitos, CA, 1999.

[7] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T

spaces: the next wave. IBM Systems Journal, 37 (3): 454–

474, 1998.

[8] S.S. Yau, F. Karim, Y. Wang, B. Wang, and S.K.S. Gupta.

Reconfigurable context-sensitive middleware for pervasive

computing. IEEE Pervasive Computing, 1 (3): 33–40, 2002.

[9] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Devel-

oping multiagent systems: the Gaia methodology. ACM

Transactions on Software Engineering and Methodology,

12 (3): 317–370, 2003.

[10] G. Cabri, L. Leonardi, and F. Zambonelli. Engineering mo-

bile agent applications via context-dependent coordination.

IEEE Transactions on Software Engineering, 28 (11): 1039–

1055, 2002.

[11] C.K. Hess and R.H. Campbell. An application of a context-

aware file system. Personal and Ubiquitous Computing,

7 (6): 339–352, 2003.

[12] A. Spriestersbach, H. Vogler, F. Lehmann, and T. Ziegert.

Integrating context information into enterprise applications

for the mobile workforce: a case study. In Proceedings of

the 1st International Workshop on Mobile Commerce, pages

55–59. ACM, New York, NY, 2001.

[13] S.S. Yau, S.K.S. Gupta. F. Karim, S. Ahamed, Y. Wang,

and B. Wang. A smart classroom for enhancing collaborative

learning using pervasive computing technology. In Proceed-

ings of the 6th WFEO World Congress on Engineering

Education and the 2nd ASEE International Colloquium on

Engineering Education (ASEE ’03), pages 21–30. ACM,

New York, NY, 2003.

[14] P.G. Frankl and E.J. Weyuker. An applicable family of

data flow testing criteria. IEEE Transactions on Software

Engineering, 14 (10): 1483–1498, 1988.

[15] J.M. Spivey. The Z Notation: a Reference Manual. Prentice

Hall International Series in Computer Science. Prentice

Hall, Hemel Hempstead, Hertfordshire, UK, 1992.

[16] T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic

testing: a new approach for generating next test

cases. Technical Report HKUST-CS98-01. Department of

Computer Science, Hong Kong University of Science and

Technology, Hong Kong, 1998.

[17] T.Y. Chen, T.H. Tse, and Z.Q. Zhou. Semi-proving: an

integrated method based on global symbolic evaluation and

metamorphic testing. In Proceedings of the ACM SIGSOFT

International Symposium on Software Testing and Analysis

(ISSTA ’02), pages 191–195. ACM, New York, NY, 2002.

[18] T.Y. Chen, T.H. Tse, and Z.Q. Zhou. Fault-based testing

without the need of oracles. Information and Software

Technology, 45 (1): 1–9, 2003.

[19] G.D. Abowd and E.D. Mynatt. Charting past, present, and

future research in ubiquitous computing. ACM Transactions

on Computer-Human Interaction, 7 (1): 29–58, 2000.

[20] P. Tandler. The beach application model and software

framework for synchronous collaboration in ubiquitous

computing environments. Journal of Systems and Software,

69 (3): 267–296, 2004.

[21] P. Tarasewich. Designing mobile commerce applications.

Communications of the ACM, 46 (12): 57–60, 2003.

[22] S.S. Yau and F. Karim. Context-sensitive distributed soft-

ware development for ubiquitous computing environments.

In Proceedings of the 25th Annual International Computer

Software and Applications Conference (COMPSAC ’01),

pages 263–268. IEEE Computer Society, Los Alamitos, CA,

2001.

[23] M. Weiser. Some computer science issues in ubiquitous

computing. Communications of the ACM, 36 (7): 75–84,

1993.

[24] S.S. Yau, Y. Wang, D. Huang, and H.P. In. Situation-

aware contract specification language for middleware for

ubiquitous computing. In Proceedings of the 9th IEEE

Workshop on Future Trends of Distributed Computing

Systems (FTDCS ’03), pages 93–99. IEEE Computer

Society, Los Alamitos, CA, 2003.

[25] S.S. Yau and F. Karim. An adaptive middleware for

context-sensitive communications for real-time applications

in ubiquitous computing environments. Journal of Real-

Time Systems, 26 (1): 29–61, 2004.

[26] S.S. Yau, Y. Wang, and F. Karim. Development of situation-

aware application software for ubiquitous computing

environments. In Proceedings of the 26th Annual Inter-

national Computer Software and Applications Conference

(COMPSAC ’02), pages 233–238. IEEE Computer Society,

Los Alamitos, CA, 2002.

[27] W.E. Howden. Reliability of the path analysis testing

strategy. IEEE Transactions on Software Engineering, SE-

2 (3): 208–215, 1976.

[28] B. Jeng and E.J. Weyuker. A simplified domain-testing

strategy. ACM Transactions on Software Engineering and

Methodology, 3 (3): 254–270, 1994.

[29] E.J. Weyuker. On testing non-testable programs. The

Computer Journal, 25 (4): 465–470, 1982.

9

[30] T.Y. Chen, J. Feng, and T.H. Tse. Metamorphic testing of

programs on partial differential equations: a case study.

In Proceedings of the 26th Annual International Computer

Software and Applications Conference (COMPSAC ’02),

pages 327–333. IEEE Computer Society, Los Alamitos, CA,

2002.

[31] A. Gotlieb and B. Botella. Automated metamorphic testing.

In Proceedings of the 27th Annual International Computer

Software and Applications Conference (COMPSAC ’03),

pages 34–40. IEEE Computer Society, Los Alamitos, CA,

2003.

[32] R.H. Carver and K.-C. Tai. Use of sequencing constraints

for specification-based testing of concurrent programs. IEEE

Transactions on Software Engineering, 24 (6): 471–490,

1998.

[33] B. Karacali and K.-C. Tai. Automated test sequence gener-

ation using sequencing constraints for concurrent programs.

In Proceedings of the 4th International Symposium on

Software Engineering for Parallel and Distributed Systems

(PDSE ’99), pages 97–108. IEEE Computer Society, Los

Alamitos, CA, 1999.

10

